By Carrot or by Stick: Cognitive Reinforcement Learnin

Science 306, 1940-1943

DOI: 10.1126/science.1102941

Citation Report

#	Article	IF	CITATIONS
1	Understanding decision-making deficits in neurological conditions: insights from models of natural action selection., 2011 ,, $330-362$.		2
2	Betting on Dopamine. CNS Spectrums, 2005, 10, 268-271.	0.7	12
4	Effects of Parkinson Disease on Two Putative Nondeclarative Learning Tasks. Cognitive and Behavioral Neurology, 2005, 18, 185-192.	0.5	89
5	The basal ganglia: learning new tricks and loving it. Current Opinion in Neurobiology, 2005, 15, 638-644.	2.0	614
7	Tinnitus dopaminergic pathway. Ear noises treatment by dopamine modulation. Medical Hypotheses, 2005, 65, 349-352.	0.8	22
8	Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal. Neuron, 2005, 47, 129-141.	3.8	1,149
9	Error-Related Negativity Predicts Reinforcement Learning and Conflict Biases. Neuron, 2005, 47, 495-501.	3.8	364
10	Toward a New Neuropsychological Model of Attention-Deficit/Hyperactivity Disorder: Subtypes and Multiple Deficits. Biological Psychiatry, 2005, 57, 1221-1223.	0.7	45
11	Dissociable contributions of the mid-ventrolateral frontal cortex and the medial temporal lobe system to human memory. Neurolmage, 2006, 31, 1790-1801.	2.1	30
12	Anatomy of a decision: Striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal Psychological Review, 2006, 113, 300-326.	2.7	506
13	Proteomic Analysis of the Silkworm (Bombyx mori L.) Hemolymph during Developmental Stage. Journal of Proteome Research, 2006, 5, 2809-2814.	1.8	63
14	Banishing the homunculus: Making working memory work. Neuroscience, 2006, 139, 105-118.	1.1	268
15	A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol Behavioral Neuroscience, 2006, 120, 497-517.	0.6	411
16	Impulsivity, reward sensitivity, and decision-making in subarachnoid hemorrhage survivors. Journal of the International Neuropsychological Society, 2006, 12, 697-706.	1.2	10
17	Cortico–basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nature Neuroscience, 2006, 9, 956-963.	7.1	434
18	Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 2006, 442, 1042-1045.	13.7	1,351
19	Dopaminergic modulation of cognitive function-implications for l-DOPA treatment in Parkinson's disease. Neuroscience and Biobehavioral Reviews, 2006, 30, 1-23.	2.9	778
20	Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 2006, 19, 1120-1136.	3.3	587

#	ARTICLE	IF	CITATIONS
21	Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia. Neural Computation, 2006, 18, 283-328.	1.3	839
22	Involvement of Human Basal Ganglia In Offline Feedback Control of Voluntary Movement. Current Biology, 2006, 16, 2129-2134.	1.8	33
23	The impact of normal aging and Parkinson's disease on response preparation in task-switching behavior. Brain Research, 2006, 1114, 173-182.	1.1	27
24	A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine–acetylcholine synaptic balance. Lancet Neurology, The, 2006, 5, 974-983.	4.9	289
25	l-dopa impairs learning, but spares generalization, in Parkinson's disease. Neuropsychologia, 2006, 44, 774-784.	0.7	135
26	An investigation of learning strategy supporting transitive inference performance in humans compared to other species. Neuropsychologia, 2006, 44, 1370-1387.	0.7	48
27	Impaired dimensional selection but intact use of reward feedback during visual discrimination learning in Parkinson's disease. Neuropsychologia, 2006, 44, 1290-1304.	0.7	29
28	Reversal learning in Parkinson's disease depends on medication status and outcome valence. Neuropsychologia, 2006, 44, 1663-1673.	0.7	272
29	Transverse Patterning and Human Amnesia. Journal of Cognitive Neuroscience, 2006, 18, 1723-1733.	1.1	29
30	Dissociable Systems for Gain- and Loss-Related Value Predictions and Errors of Prediction in the Human Brain. Journal of Neuroscience, 2006, 26, 9530-9537.	1.7	501
31	The Basal Ganglia in Human Learning. Neuroscientist, 2006, 12, 285-290.	2.6	150
32	A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia. Journal of Neuroscience, 2006, 26, 12921-12942.	1.7	317
33	When Memory Fails, Intuition Reigns. Psychological Science, 2006, 17, 700-707.	1.8	133
34	Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16311-16316.	3.3	614
35	Pharmacology and Treatments. , 2007, , 169-208.		1
36	L-DOPA Disrupts Activity in the Nucleus Accumbens during Reversal Learning in Parkinson's Disease. Neuropsychopharmacology, 2007, 32, 180-189.	2.8	262
37	Ageing and early-stage Parkinson's disease affect separable neural mechanisms of mesolimbic reward processing. Brain, 2007, 130, 2412-2424.	3.7	169
38	Medication-Related Impulse Control and Repetitive Behaviors in Parkinson Disease. Archives of Neurology, 2007, 64, 1089.	4.9	381

#	Article	IF	Citations
39	Systems Neurobiology of the Dysfunctional Brain: Schizophrenia. Pharmacopsychiatry, 2007, 40, S40-S44.	1.7	13
40	Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1601-1613.	1.8	355
41	The Basal Ganglia and Cortex Implement Optimal Decision Making Between Alternative Actions. Neural Computation, 2007, 19, 442-477.	1.3	338
42	Implicit category learning performance predicts rate of cognitive decline in nondemented patients with Parkinson's disease Neuropsychology, 2007, 21, 183-192.	1.0	16
43	A neurobiological theory of automaticity in perceptual categorization Psychological Review, 2007, 114, 632-656.	2.7	269
44	Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder Psychological Review, 2007, 114, 1047-1075.	2.7	139
45	Dopamine signaling and the distal reward problem. NeuroReport, 2007, 18, 1833-1836.	0.6	5
46	Medication-related impulse control and repetitive behaviors in Parkinson??s disease. Current Opinion in Neurology, 2007, 20, 484-492.	1.8	134
47	Learning by doing: an fMRI study of feedback-related brain activations. NeuroReport, 2007, 18, 1423-1426.	0.6	53
48	Optimal decision-making theories: linking neurobiology with behaviour. Trends in Cognitive Sciences, 2007, 11, 118-125.	4.0	317
49	Immediate early gene activation in hippocampus and dorsal striatum: Effects of explicit place and response training. Neurobiology of Learning and Memory, 2007, 87, 583-596.	1.0	23
50	The error negativity in nonmedicated and medicated patients with Parkinson's disease. Clinical Neurophysiology, 2007, 118, 1223-1229.	0.7	49
51	Genetically Determined Differences in Learning from Errors. Science, 2007, 318, 1642-1645.	6.0	381
52	Multiple Dopamine Functions at Different Time Courses. Annual Review of Neuroscience, 2007, 30, 259-288.	5.0	1,153
53	Cognition Enhancers., 2007,, 241-283.		6
54	Testing Computational Models of Dopamine and Noradrenaline Dysfunction in Attention Deficit/Hyperactivity Disorder. Neuropsychopharmacology, 2007, 32, 1583-1599.	2.8	200
55	Hold Your Horses: Impulsivity, Deep Brain Stimulation, and Medication in Parkinsonism. Science, 2007, 318, 1309-1312.	6.0	928
56	An ART neural network model of discrimination learning. , 2007, , .		3

#	Article	IF	Citations
57	Neural Models that Convince: Model Hierarchies and Other Strategies to Bridge the Gap Between Behavior and the Brain. Philosophical Psychology, 2007, 20, 749-772.	0.5	7
58	Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1641-1654.	1.8	142
59	Selective Reinforcement Learning Deficits in Schizophrenia Support Predictions from Computational Models of Striatal-Cortical Dysfunction. Biological Psychiatry, 2007, 62, 756-764.	0.7	283
60	Similarities and Differences in the Supramolecular Organization of Silkworm and Spider Silk. Macromolecules, 2007, 40, 5360-5365.	2.2	50
61	Bilinearity, rules, and prefrontal cortex. Frontiers in Computational Neuroscience, 2007, 1, 1.	1.2	44
62	Decision-making in Parkinson's disease. Movement Disorders, 2007, 22, 1371-1372.	2.2	3
63	Dopamine levels modulate the updating of tastant values. Genes, Brain and Behavior, 2007, 6, 314-320.	1.1	40
64	Risk and protective haplotypes of the alpha-synuclein gene associated with Parkinson?s disease differentially affect cognitive sequence learning. Genes, Brain and Behavior, 2007, 7, 070503084107001-???.	1.1	14
65	The striatum and probabilistic implicit sequence learning. Brain Research, 2007, 1137, 117-130.	1.1	59
66	Modulation by dopamine of human basal ganglia involvement in feedback control of movement. Current Biology, 2007, 17, R587-R589.	1.8	9
67	Impaired recognition of facial expressions of anger in Parkinson's disease patients acutely withdrawn from dopamine replacement therapy. Neuropsychologia, 2007, 45, 65-74.	0.7	143
68	Cognitive sequence learning in Parkinson's disease and amnestic mild cognitive impairment: Dissociation between sequential and non-sequential learning of associations. Neuropsychologia, 2007, 45, 1386-1392.	0.7	33
69	The effects of positive versus negative feedback on information-integration category learning. Perception & Psychophysics, 2007, 69, 865-878.	2.3	44
70	Cross-task individual differences in error processing: Neural, electrophysiological, and genetic components. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 297-308.	1.0	70
71	Reward-Related Responses in the Human Striatum. Annals of the New York Academy of Sciences, 2007, 1104, 70-88.	1.8	624
72	Plastic Corticostriatal Circuits for Action Learning: What's Dopamine Got to Do with It?. Annals of the New York Academy of Sciences, 2007, 1104, 172-191.	1.8	101
73	The Role of Orbitofrontal Cortex in Decision Making. Annals of the New York Academy of Sciences, 2007, 1121, 421-430.	1.8	117
74	Event perception: A mind-brain perspective Psychological Bulletin, 2007, 133, 273-293.	5. 5	745

#	Article	IF	CITATIONS
75	Dopaminergic contribution to cognitive sequence learning. Journal of Neural Transmission, 2007, 114, 607-612.	1.4	21
76	Category learning and the memory systems debate. Neuroscience and Biobehavioral Reviews, 2008, 32, 197-205.	2.9	148
77	Single dose of a dopamine agonist impairs reinforcement learning in humans: Behavioral evidence from a laboratory-based measure of reward responsiveness. Psychopharmacology, 2008, 196, 221-232.	1.5	217
78	The Cerebellum Is Involved in Reward-based Reversal Learning. Cerebellum, 2008, 7, 433-443.	1.4	80
79	Dopaminergic modulation of emotional memory in Parkinson's disease. Journal of Neural Transmission, 2008, 115, 1159-1163.	1.4	6
80	Interactive memory systems and category learning in schizophrenia. Neuroscience and Biobehavioral Reviews, 2008, 32, 206-218.	2.9	19
81	Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 2008, 32, 219-236.	2.9	192
82	Impulse Control and Related Disorders in Parkinson's Disease. Annals of the New York Academy of Sciences, 2008, 1142, 85-107.	1.8	109
83	Neurocomputational mechanisms of reinforcement-guided learning in humans: A review. Cognitive, Affective and Behavioral Neuroscience, 2008, 8, 113-125.	1.0	38
84	A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience, 2008, 9, 545-556.	4.9	1,715
85	Smokers' brains compute, but ignore, a fictive error signal in a sequential investment task. Nature Neuroscience, 2008, 11, 514-520.	7.1	160
86	A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex. Brain Research, 2008, 1202, 99-108.	1.1	84
87	Prefrontal cortex and striatal activation by feedback in Parkinson's disease. Brain Research, 2008, 1236, 225-233.	1.1	14
88	Reinforcement learning: The Good, The Bad and The Ugly. Current Opinion in Neurobiology, 2008, 18, 185-196.	2.0	803
89	Motivation modulates motor-related feedback activity in the human basal ganglia. Current Biology, 2008, 18, R648-R650.	1.8	21
90	Cognitive integrity predicts transitive inference performance bias and success. Neuropsychologia, 2008, 46, 1314-1325.	0.7	18
91	The effect of feedback on non-motor probabilistic classification learning in Parkinson's disease. Neuropsychologia, 2008, 46, 2683-2695.	0.7	39
92	A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia, 2008, 46, 3144-3156.	0.7	162

#	Article	IF	CITATIONS
93	Midazolam, hippocampal function, and transitive inference: Reply to Greene. Behavioral and Brain Functions, 2008, 4, 5.	1.4	7
94	A unified framework for addiction: Vulnerabilities in the decision process. Behavioral and Brain Sciences, 2008, 31, 415-437.	0.4	431
95	Habenula: Crossroad between the Basal Ganglia and the Limbic System. Journal of Neuroscience, 2008, 28, 11825-11829.	1.7	374
96	Midbrain Dopaminergic Neurons and Striatal Cholinergic Interneurons Encode the Difference between Reward and Aversive Events at Different Epochs of Probabilistic Classical Conditioning Trials. Journal of Neuroscience, 2008, 28, 11673-11684.	1.7	240
97	Integrating Memories in the Human Brain: Hippocampal-Midbrain Encoding of Overlapping Events. Neuron, 2008, 60, 378-389.	3.8	427
98	Dynamics of cortical theta activity correlates with stages of auditory avoidance strategy formation in a shuttle-box. Neuroscience, 2008, 151, 467-475.	1.1	12
99	The cognitive functions of the caudate nucleus. Progress in Neurobiology, 2008, 86, 141-155.	2.8	716
100	Serotoninergic regulation of emotional and behavioural control processes. Trends in Cognitive Sciences, 2008, 12, 31-40.	4.0	544
101	Transitive inference in non-human animals: An empirical and theoretical analysis. Behavioural Processes, 2008, 78, 313-334.	0.5	129
102	Implicit emotional biases in decision making: The case of the Iowa Gambling Task. Brain and Cognition, 2008, 66, 253-259.	0.8	26
103	The biopsychosocial and "complex―systems approach as a unified framework for addiction. Behavioral and Brain Sciences, 2008, 31, 446-447.	0.4	12
104	Feedback signals in the caudate reflect goal achievement on a declarative memory task. NeuroImage, 2008, 41, 1154-1167.	2.1	103
105	Modeling the organization of the basal ganglia. Revue Neurologique, 2008, 164, 969-976.	0.6	38
106	Reward Processing in Schizophrenia: A Deficit in the Representation of Value. Schizophrenia Bulletin, 2008, 34, 835-847.	2.3	476
107	The Neuromodulatory System: A Framework for Survival and Adaptive Behavior in a Challenging World. Adaptive Behavior, 2008, 16, 385-399.	1.1	113
108	Role of Dopamine in the Motivational and Cognitive Control of Behavior. Neuroscientist, 2008, 14, 381-395.	2.6	288
109	A mismatch with dual process models of addiction rooted in psychology. Behavioral and Brain Sciences, 2008, 31, 460-460.	0.4	1
110	Neither necessary nor sufficient for addiction. Behavioral and Brain Sciences, 2008, 31, 447-448.	0.4	1

#	ARTICLE	IF	CITATIONS
111	Are addictions "biases and errors―in the rational decision process?. Behavioral and Brain Sciences, 2008, 31, 449-450.	0.4	3
112	Impulsivity, dual diagnosis, and the structure of motivated behavior in addiction. Behavioral and Brain Sciences, 2008, 31, 443-444.	0.4	6
113	Bridging the gap between science and drug policy: From "what―and "how―to "whom―and "wh Behavioral and Brain Sciences, 2008, 31, 454-455.	nen― 0.4	0
114	Addiction as vulnerabilities in the decision process. Behavioral and Brain Sciences, 2008, 31, 461-487.	0.4	46
115	Computing motivation: Incentive salience boosts of drug or appetite states. Behavioral and Brain Sciences, 2008, 31, 440-441.	0.4	8
116	Social influence and vulnerability. Behavioral and Brain Sciences, 2008, 31, 442-443.	0.4	O
117	Addiction, procrastination, and failure points in decision-making systems. Behavioral and Brain Sciences, 2008, 31, 439-440.	0.4	1
118	Role of affective associations in the planning and habit systems of decision-making related to addiction. Behavioral and Brain Sciences, 2008, 31, 450-451.	0.4	9
119	Addiction: More than innate rationality. Behavioral and Brain Sciences, 2008, 31, 453-454.	0.4	2
120	Expanding the range of vulnerabilities to pathological gambling: A consideration of over-fast discounting processes. Behavioral and Brain Sciences, 2008, 31, 452-453.	0.4	O
121	Gambling and decision-making: A dual process perspective. Behavioral and Brain Sciences, 2008, 31, 444-445.	0.4	2
122	The origin of addictions by means of unnatural decision. Behavioral and Brain Sciences, 2008, 31, 437-438.	0.4	72
123	Vulnerabilities to addiction must have their impact through the common currency of discounted reward. Behavioral and Brain Sciences, 2008, 31, 438-439.	0.4	0
124	Addiction science as a hedgehog and as a fox. Behavioral and Brain Sciences, 2008, 31, 441-442.	0.4	2
125	Human drug addiction is more than faulty decision-making. Behavioral and Brain Sciences, 2008, 31, 448-449.	0.4	7
126	Negative affects are parts of the addiction syndrome. Behavioral and Brain Sciences, 2008, 31, 451-452.	0.4	1
127	Linking addictions to everyday habits and plans. Behavioral and Brain Sciences, 2008, 31, 455-456.	0.4	4
128	Timing models of reward learning and core addictive processes in the brain. Behavioral and Brain Sciences, 2008, 31, 457-458.	0.4	1

#	Article	IF	Citations
129	Cue fascination: A new vulnerability in drug addiction. Behavioral and Brain Sciences, 2008, 31, 458-459.	0.4	1
130	E pluribus unum? A new take on addiction by Redish et al Behavioral and Brain Sciences, 2008, 31, 459-459.	0.4	0
131	The elephantine shape of addiction. Behavioral and Brain Sciences, 2008, 31, 461-461.	0.4	32
132	The disunity of Pavlovian and instrumental values. Behavioral and Brain Sciences, 2008, 31, 456-457.	0.4	15
133	Different vulnerabilities for addiction may contribute to the same phenomena and some additional interactions. Behavioral and Brain Sciences, 2008, 31, 445-446.	0.4	3
134	A Role for Dopamine in Temporal Decision Making and Reward Maximization in Parkinsonism. Journal of Neuroscience, 2008, 28, 12294-12304.	1.7	116
135	Disconnecting force from money: effects of basal ganglia damage on incentive motivation. Brain, 2008, 131, 1303-1310.	3.7	169
136	Focal basal ganglia lesions are associated with impairments in reward-based reversal learning. Brain, 2008, 131, 829-841.	3.7	111
137	The human ventromedial frontal lobe is critical for learning from negative feedback. Brain, 2008, 131, 1323-1331.	3.7	83
138	Lesions of the Medial Striatum in Monkeys Produce Perseverative Impairments during Reversal Learning Similar to Those Produced by Lesions of the Orbitofrontal Cortex. Journal of Neuroscience, 2008, 28, 10972-10982.	1.7	228
139	The Cognitive Neuroscience of Motivation and Learning. Social Cognition, 2008, 26, 593-620.	0.5	79
140	Human Medial Frontal Cortex Activity Predicts Learning from Errors. Cerebral Cortex, 2008, 18, 1933-1940.	1.6	60
141	Mesolimbic Functional Magnetic Resonance Imaging Activations during Reward Anticipation Correlate with Reward-Related Ventral Striatal Dopamine Release. Journal of Neuroscience, 2008, 28, 14311-14319.	1.7	426
142	Schizophrenia: A Computational Reinforcement Learning Perspective. Schizophrenia Bulletin, 2008, 34, 1008-1011.	2.3	34
143	Acute effects of cocaine on the neurobiology of cognitive control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3267-3276.	1.8	127
144	A Psychological and Neuroanatomical Model of Obsessive-Compulsive Disorder. Journal of Neuropsychiatry and Clinical Neurosciences, 2008, 20, 390-408.	0.9	109
145	Stimulus Representation and the Timing of Reward-Prediction Errors in Models of the Dopamine System. Neural Computation, 2008, 20, 3034-3054.	1.3	128
146	Emotion, Motivation, and Reward Processing in Schizophrenia Spectrum Disorders: What We Know and Where We Need to Go. Schizophrenia Bulletin, 2008, 34, 816-818.	2.3	30

#	Article	IF	CITATIONS
147	Inefficiency in Self-organized Attentional Switching in the Normal Aging Population is Associated with Decreased Activity in the Ventrolateral Prefrontal Cortex. Journal of Cognitive Neuroscience, 2008, 20, 1670-1686.	1.1	39
148	Levodopa and executive performance in Parkinson's disease: A randomized study. Journal of the International Neuropsychological Society, 2008, 14, 832-841.	1.2	41
149	Learning to avoid in older age Psychology and Aging, 2008, 23, 392-398.	1.4	111
150	Rats and humans paying attention: Cross-species task development for translational research Neuropsychology, 2008, 22, 787-799.	1.0	101
151	Enhanced negative feedback responses in remitted depression. NeuroReport, 2008, 19, 1045-1048.	0.6	86
152	Contribution of subcortical structures to cognition assessed with invasive electrophysiology in humans. Frontiers in Neuroscience, 2008, 2, 72-85.	1.4	32
153	Functional connectivity of reward processing in the brain. Frontiers in Human Neuroscience, 2008, 2, 19.	1.0	110
154	Procedural Learning in Humans. , 2008, , 321-340.		12
155	Optimal decision-making theories. , 2009, , 373-397.		9
156	The basal ganglia in reward and decision making. , 2009, , 399-425.		23
157	A Novel Form of Memory for Auditory Fear Conditioning at a Low-Intensity Unconditioned Stimulus. PLoS ONE, 2009, 4, e4157.	1.1	19
158	Reward networks in the brain as captured by connectivity measures. Frontiers in Neuroscience, 2009, 3, 350-362.	1.4	96
159	Better than expected or as bad as you thought? The neurocognitive development of probabilistic feedback processing. Frontiers in Human Neuroscience, 2009, 3, 52.	1.0	75
160	Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson's patients. Brain, 2009, 132, 2385-2395.	3.7	310
161	Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its Sensitivity to Dopaminergic Drug Administration. Journal of Neuroscience, 2009, 29, 1538-1543.	1.7	315
162	Impaired conscious and preserved unconscious inhibitory processing in recent onset schizophrenia. Psychological Medicine, 2009, 39, 907-916.	2.7	52
163	Decision-Making Impairment in a Patient With New Concomitant Diagnoses of Parkinson's Disease and HIV. Journal of Neuropsychiatry and Clinical Neurosciences, 2009, 21, 352-353.	0.9	4
164	Dopamine, Reinforcement Learning, and Addiction. Pharmacopsychiatry, 2009, 42, S56-S65.	1.7	68

#	Article	IF	CITATIONS
165	Neurotransmitter Systems in Alcohol Dependence. Pharmacopsychiatry, 2009, 42, S95-S101.	1.7	39
166	Dopamine Agonists Diminish Value Sensitivity of the Orbitofrontal Cortex: A Trigger for Pathological Gambling in Parkinson's Disease?. Neuropsychopharmacology, 2009, 34, 2758-2766.	2.8	140
167	Subcortical Structures and Cognition. , 2009, , .		156
168	CNTRICS Final Task Selection: Long-Term Memory. Schizophrenia Bulletin, 2009, 35, 197-212.	2.3	49
169	Pharmacological modulation of subliminal learning in Parkinson's and Tourette's syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19179-19184.	3.3	131
170	Dopaminergic Drugs Modulate Learning Rates and Perseveration in Parkinson's Patients in a Dynamic Foraging Task. Journal of Neuroscience, 2009, 29, 15104-15114.	1.7	213
171	Choking on the Money. Psychological Science, 2009, 20, 955-962.	1.8	81
172	Distinct Hippocampal and Basal Ganglia Contributions to Probabilistic Learning and Reversal. Journal of Cognitive Neuroscience, 2009, 21, 1820-1832.	1.1	61
173	Impaired relational organization of propositions, but intact transitive inference, in aging: Implications for understanding underlying neural integrity. Neuropsychologia, 2009, 47, 338-353.	0.7	20
174	Rule-based category learning in patients with Parkinson's disease. Neuropsychologia, 2009, 47, 1213-1226.	0.7	46
175	Decision making under risk and under ambiguity in Parkinson's disease. Neuropsychologia, 2009, 47, 1901-1908.	0.7	65
176	Task-related dissociation in ERN amplitude as a function of obsessive–compulsive symptoms. Neuropsychologia, 2009, 47, 1978-1987.	0.7	92
177	Dissociation of decision-making under ambiguity and decision-making under risk in patients with Parkinson's disease: A neuropsychological and psychophysiological study. Neuropsychologia, 2009, 47, 2882-2890.	0.7	151
178	Reinforcement learning and higher level cognition: Introduction to special issue. Cognition, 2009, 113, 259-261.	1.1	22
179	Instructional control of reinforcement learning: A behavioral and neurocomputational investigation. Brain Research, 2009, 1299, 74-94.	1.1	217
180	Single dose of a dopamine agonist impairs reinforcement learning in humans: Evidence from eventâ€related potentials and computational modeling of striatalâ€cortical function. Human Brain Mapping, 2009, 30, 1963-1976.	1.9	117
181	Impulsive and compulsive behaviors in Parkinson's disease. Movement Disorders, 2009, 24, 1561-1570.	2.2	192
182	Cognitive impulsivity in Parkinson's disease patients: Assessment and pathophysiology. Movement Disorders, 2009, 24, 2316-2327.	2.2	32

#	Article	IF	CITATIONS
183	Lifespan development of stimulus-response conflict cost: similarities and differences between maturation and senescence. Psychological Research, 2009, 73, 777-785.	1.0	45
184	Turning it Upside Down: Areas of Preserved Cognitive Function in Schizophrenia. Neuropsychology Review, 2009, 19, 294-311.	2.5	121
185	A neurocomputational account of catalepsy sensitization induced by D2 receptor blockade in rats: context dependency, extinction, and renewal. Psychopharmacology, 2009, 204, 265-277.	1.5	40
186	Recreational cocaine polydrug use impairs cognitive flexibility but not working memory. Psychopharmacology, 2009, 207, 225-234.	1.5	72
187	Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nature Neuroscience, 2009, 12, 1062-1068.	7.1	409
188	Should I stay or should I go: genetic bases for uncertainty-driven exploration. Nature Neuroscience, 2009, 12, 963-965.	7.1	6
189	Neuropharmacology of performance monitoring. Neuroscience and Biobehavioral Reviews, 2009, 33, 48-60.	2.9	149
191	Aging and the neuroeconomics of decision making: A review. Cognitive, Affective and Behavioral Neuroscience, 2009, 9, 365-379.	1.0	46
193	Neurocomputational models of basal ganglia function in learning, memory and choice. Behavioural Brain Research, 2009, 199, 141-156.	1.2	190
194	Pre-surgical training ameliorates orbitofrontal-mediated impairments in spatial reversal learning. Behavioural Brain Research, 2009, 197, 469-475.	1.2	22
195	The role of the basal ganglia in learning and memory: Neuropsychological studies. Behavioural Brain Research, 2009, 199, 53-60.	1.2	217
196	A neurocomputational model of tonic and phasic dopamine in action selection: A comparison with cognitive deficits in Parkinson's disease. Behavioural Brain Research, 2009, 200, 48-59.	1.2	42
197	Personality, Addiction, Dopamine: Insights from Parkinson's Disease. Neuron, 2009, 61, 502-510.	3.8	313
198	Synchronization of Midbrain Dopaminergic Neurons Is Enhanced by Rewarding Events. Neuron, 2009, 62, 695-704.	3.8	75
199	Midbrain Dopamine Neurons Signal Preference for Advance Information about Upcoming Rewards. Neuron, 2009, 63, 119-126.	3.8	406
200	The Neurobiology of Decision: Consensus and Controversy. Neuron, 2009, 63, 733-745.	3.8	765
201	Genetic contributions to avoidance-based decisions: striatal D2 receptor polymorphisms. Neuroscience, 2009, 164, 131-140.	1.1	118
202	Probabilistic reversal learning is impaired in Parkinson's disease. Neuroscience, 2009, 163, 1092-1101.	1.1	78

#	Article	IF	CITATIONS
203	Decision making in ambiguous and risky situations after unilateral temporal lobe epilepsy surgery. Epilepsy and Behavior, 2009, 14, 665-673.	0.9	31
204	Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior. Progress in Neurobiology, 2009, 89, 79-123.	2.8	135
205	Changes of procedural learning in Chinese patients with non-demented Parkinson disease. Neuroscience Letters, 2009, 449, 161-163.	1.0	20
206	Recreational use of cocaine eliminates inhibition of return Neuropsychology, 2009, 23, 125-129.	1.0	31
207	Serotonin in Affective Control. Annual Review of Neuroscience, 2009, 32, 95-126.	5.0	301
208	Behavioural Adverse Effects of Dopaminergic Treatments in Parkinson's Disease. Drug Safety, 2009, 32, 475-488.	1.4	80
209	Right Ventromedial and Dorsolateral Prefrontal Cortices Mediate Adaptive Decisions under Ambiguity by Integrating Choice Utility and Outcome Evaluation. Journal of Neuroscience, 2009, 29, 11020-11028.	1.7	91
210	Dorsal Striatal–midbrain Connectivity in Humans Predicts How Reinforcements Are Used to Guide Decisions. Journal of Cognitive Neuroscience, 2009, 21, 1332-1345.	1.1	97
211	Oscillatory Activity and Phase–Amplitude Coupling in the Human Medial Frontal Cortex during Decision Making. Journal of Cognitive Neuroscience, 2008, 21, 390-402.	1.1	191
212	Human Substantia Nigra Neurons Encode Unexpected Financial Rewards. Science, 2009, 323, 1496-1499.	6.0	204
213	Proactive Inhibitory Control and Attractor Dynamics in Countermanding Action: A Spiking Neural Circuit Model. Journal of Neuroscience, 2009, 29, 9059-9071.	1.7	108
214	Dopamine Dysregulation Syndrome. CNS Drugs, 2009, 23, 157-170.	2.7	203
215	Multi-objective parameter estimation of biologically plausible neural networks in different behavior stages. , 2009, , .		3
216	How the brain resolves high conflict situations: Double conflict involvement of dorsolateral prefrontal cortex. NeuroImage, 2009, 44, 1201-1209.	2.1	42
217	On a basal ganglia role in learning and rehearsing visual–motor associations. NeuroImage, 2009, 47, 1701-1710.	2.1	39
218	Inactivating the activated: identifying functions of specific neural networks. Nature Neuroscience, 2009, 12, 965-966.	7.1	0
219	\hat{l}^2 Oscillations as the Cause of Both Hyper- and Hypokinetic Symptoms of Movement Disorders. Journal of Neuropsychiatry and Clinical Neurosciences, 2009, 21, 352-352.	0.9	3
220	Deep brain stimulation modulates effects of motivation in Parkinson's disease. NeuroReport, 2009, 20, 622-626.	0.6	6

#	Article	IF	Citations
221	Altered Sexual Orientation Following Dominant Hemisphere Infract. Journal of Neuropsychiatry and Clinical Neurosciences, 2009, 21, 353-354.	0.9	6
222	Effect of Dopaminergic Medications on the Time Course of Explicit Motor Sequence Learning in Parkinson's Disease. Journal of Neurophysiology, 2010, 103, 942-949.	0.9	74
223	Motivational influences on response inhibition measures Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 430-447.	0.7	137
224	Adult age differences in learning from positive and negative probabilistic feedback Neuropsychology, 2010, 24, 534-541.	1.0	47
225	Stress reduces use of negative feedback in a feedback-based learning task Behavioral Neuroscience, 2010, 124, 248-255.	0.6	81
226	Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males. Psychopharmacology, 2010, 211, 187-195.	1.5	41
227	Striatal action-learning based on dopamine concentration. Experimental Brain Research, 2010, 200, 307-317.	0.7	31
228	l-Dopa induces under-damped visually guided motor responses in Parkinson's disease. Experimental Brain Research, 2010, 202, 553-559.	0.7	16
229	NOvelty-related Motivation of Anticipation and exploration by Dopamine (NOMAD): Implications for healthy aging. Neuroscience and Biobehavioral Reviews, 2010, 34, 660-669.	2.9	173
230	Relational framework improves transitive inference across age groups. Psychological Research, 2010, 74, 207-218.	1.0	13
231	Adaptation, Expertise, and Giftedness: Towards an Understanding of Cortical, Subcortical, and Cerebellar Network Contributions. Cerebellum, 2010, 9, 499-529.	1.4	58
232	Computational models of reinforcement learning: the role of dopamine as a reward signal. Cognitive Neurodynamics, 2010, 4, 91-105.	2.3	55
233	Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease. Lancet Neurology, The, 2010, 9, 1200-1213.	4.9	753
234	Convergent evidence for abnormal striatal synaptic plasticity in dystonia. Neurobiology of Disease, 2010, 37, 558-573.	2.1	112
235	Medication impairs probabilistic classification learning in Parkinson's disease. Neuropsychologia, 2010, 48, 1096-1103.	0.7	106
236	Dopaminergic medication boosts action–effect binding in Parkinson's disease. Neuropsychologia, 2010, 48, 1125-1132.	0.7	73
237	Altered cingulate sub-region activation accounts for task-related dissociation in ERN amplitude as a function of obsessive-compulsive symptoms. Neuropsychologia, 2010, 48, 2098-2109.	0.7	41
238	Rule-based categorization deficits in focal basal ganglia lesion and Parkinson's disease patients. Neuropsychologia, 2010, 48, 2974-2986.	0.7	26

#	Article	IF	CITATIONS
239	Increasing dopamine levels in the brain improves feedback-based procedural learning in healthy participants: An artificial-grammar-learning experiment. Neuropsychologia, 2010, 48, 3193-3197.	0.7	40
240	The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 2010, 115, 458-465.	1.1	308
241	Computational models of cognitive control. Current Opinion in Neurobiology, 2010, 20, 257-261.	2.0	79
242	Neural system interactions underlying human transitive inference. Hippocampus, 2010, 20, 894-901.	0.9	27
243	Reckless generosity in Parkinson's disease. Movement Disorders, 2010, 25, 221-223.	2.2	16
244	Compulsive use of dopaminergic drug therapy in Parkinson's disease: Reward and anti-reward. Movement Disorders, 2010, 25, 867-876.	2.2	48
245	The relationship between uric acid levels and Huntington's disease progression. Movement Disorders, 2010, 25, 224-228.	2,2	83
246	Parkinsonism in patients with a history of amphetamine exposure. Movement Disorders, 2010, 25, 228-231.	2.2	32
247	Longâ€term deep brain stimulation for essential tremor: 12â€year clinicopathologic followâ€up. Movement Disorders, 2010, 25, 232-238.	2.2	47
248	B cell depletion therapy for newâ€onset opsoclonusâ€myoclonus. Movement Disorders, 2010, 25, 238-242.	2.2	59
249	Risk and learning in impulsive and nonimpulsive patients with Parkinson's disease. Movement Disorders, 2010, 25, 2203-2210.	2,2	88
250	Dopamine boosts memory for angry faces in Parkinson's disease. Movement Disorders, 2010, 25, 2792-2799.	2.2	15
251	A rotarod test for evaluation of motor skill learning. Journal of Neuroscience Methods, 2010, 189, 180-185.	1.3	400
252	Genetic association studies of performance monitoring and learning from feedback: The role of dopamine and serotonin. Neuroscience and Biobehavioral Reviews, 2010, 34, 649-659.	2.9	34
253	Neural mechanisms of acquired phasic dopamine responses in learning. Neuroscience and Biobehavioral Reviews, 2010, 34, 701-720.	2.9	87
254	To gamble or not to gamble: is that a decision?. European Journal of Neurology, 2010, 17, 1-2.	1.7	6
255	Decisionâ€making in Parkinson's disease patients with and without pathological gambling. European Journal of Neurology, 2010, 17, 97-102.	1.7	97
256	Putative γâ€aminobutyric acid neurons in the ventral tegmental area have a similar pattern of plasticity as dopamine neurons during appetitive and aversive learning. European Journal of Neuroscience, 2010, 32, 1564-1572.	1.2	19

#	Article	IF	CITATIONS
257	Neuroimaging of Parkinson's disease., 2010,, 361-370.		0
258	Differential Influence of Levodopa on Reward-Based Learning in Parkinson's Disease. Frontiers in Human Neuroscience, 2010, 4, 169.	1.0	42
259	Effects of dopamine medication on sequence learning with stochastic feedback in Parkinson's disease. Frontiers in Systems Neuroscience, 2010, 4, .	1.2	22
260	Goal Representations and Motivational Drive in Schizophrenia: The Role of Prefrontal-Striatal Interactions. Schizophrenia Bulletin, 2010, 36, 919-934.	2.3	415
261	Oxytocin Decreases Aversion to Angry Faces in an Associative Learning Task. Neuropsychopharmacology, 2010, 35, 2502-2509.	2.8	76
262	α-Synuclein gene duplication impairs reward learning. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15992-15994.	3.3	32
263	Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nature Reviews Neurology, 2010, 6, 487-498.	4.9	196
264	Reward Changes Salience in Human Vision via the Anterior Cingulate. Journal of Neuroscience, 2010, 30, 11096-11103.	1.7	518
265	Contextual Novelty Changes Reward Representations in the Striatum. Journal of Neuroscience, 2010, 30, 1721-1726.	1.7	91
266	Prefrontal cortex and basal ganglia contributions to visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18167-18172.	3.3	156
267	Effects of Expectation on Placebo-Induced Dopamine Release in Parkinson Disease. Archives of General Psychiatry, 2010, 67, 857.	13.8	244
268	Posterior Weighted Reinforcement Learning with State Uncertainty. Neural Computation, 2010, 22, 1149-1179.	1.3	13
269	Approach and avoidance learning in patients with major depression and healthy controls: relation to anhedonia. Psychological Medicine, 2010, 40, 433-440.	2.7	123
270	Individual Differences in Nucleus Accumbens Dopamine Receptors Predict Development of Addiction-Like Behavior: A Computational Approach. Neural Computation, 2010, 22, 2334-2368.	1.3	37
271	Dissociable responses to punishment in distinct striatal regions during reversal learning. Neurolmage, 2010, 51, 1459-1467.	2.1	62
272	The neural mechanisms of learning from competitors. Neurolmage, 2010, 53, 790-799.	2.1	27
273	A neural model of hippocampal–striatal interactions in associative learning and transfer generalization in various neurological and psychiatric patients. Brain and Cognition, 2010, 74, 132-144.	0.8	43
274	Mechanisms Underlying Dopamine-Mediated Reward Bias in Compulsive Behaviors. Neuron, 2010, 65, 135-142.	3.8	259

#	Article	IF	CITATIONS
275	Frontal Cortex and the Discovery of Abstract Action Rules. Neuron, 2010, 66, 315-326.	3.8	272
276	Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 2010, 68, 815-834.	3.8	2,017
277	The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning. Neuroscience, 2010, 166, 752-762.	1.1	24
278	Dopaminergic modulation of rapid reality adaptation in thinking. Neuroscience, 2010, 167, 583-587.	1.1	22
279	Dopamine and adaptive memory. Trends in Cognitive Sciences, 2010, 14, 464-472.	4.0	551
280	Epigenetic Robotics Architecture (ERA). IEEE Transactions on Autonomous Mental Development, 2010, 2, 325-339.	2.3	69
281	Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson's disease patients: evidence from a model-based fMRI study. NeuroImage, 2010, 49, 772-781.	2.1	78
282	Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. Neurolmage, 2010, 49, 3198-3209.	2.1	376
283	Serotonin Modulates Sensitivity to Reward and Negative Feedback in a Probabilistic Reversal Learning Task in Rats. Neuropsychopharmacology, 2010, 35, 1290-1301.	2.8	269
284	Conditional routing of information to the cortex: A model of the basal ganglia's role in cognitive coordination Psychological Review, 2010, 117, 541-574.	2.7	308
285	Neurocomputational models of motor and cognitive deficits in Parkinson's disease. Progress in Brain Research, 2010, 183, 275-297.	0.9	87
287	Deficits in Positive Reinforcement Learning and Uncertainty-Driven Exploration Are Associated with Distinct Aspects of Negative Symptoms in Schizophrenia. Biological Psychiatry, 2011, 69, 424-431.	0.7	195
288	Inverted-U–Shaped Dopamine Actions on Human Working Memory and Cognitive Control. Biological Psychiatry, 2011, 69, e113-e125.	0.7	1,315
290	lowa Gambling Task in Parkinson's Disease. Journal of Clinical and Experimental Neuropsychology, 2011, 33, 395-409.	0.8	39
291	Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias. NeuroImage, 2011, 57, 617-623.	2.1	48
292	Probabilistic learning and inference in schizophrenia. Schizophrenia Research, 2011, 127, 115-122.	1.1	83
293	Impulsivity and Parkinson's disease: More than just disinhibition. Journal of the Neurological Sciences, 2011, 310, 202-207.	0.3	42
294	Opponency Revisited: Competition and Cooperation Between Dopamine and Serotonin. Neuropsychopharmacology, 2011, 36, 74-97.	2.8	389

#	Article	IF	Citations
295	Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions. Neuropsychopharmacology, 2011, 36, 98-113.	2.8	382
296	The Roles of Dopamine and Serotonin in Decision Making: Evidence from Pharmacological Experiments in Humans. Neuropsychopharmacology, 2011, 36, 114-132.	2.8	192
297	Mechanisms of cerebellar involvement in associative learning. Cortex, 2011, 47, 128-136.	1.1	43
298	Aging, probabilistic learning and performance monitoring. Biological Psychology, 2011, 86, 74-82.	1.1	39
299	Contributions of ERK signaling in the striatum to instrumental learning and performance. Behavioural Brain Research, 2011, 218, 240-247.	1,2	80
300	Theory of Mind in Parkinson's disease. Behavioural Brain Research, 2011, 219, 342-350.	1.2	72
301	The feedback-related negativity is modulated by feedback probability in observational learning. Behavioural Brain Research, 2011, 225, 396-404.	1,2	31
302	Impulse control disorders in Parkinson's disease: clinical characteristics and implications. Neuropsychiatry, 2011, 1, 133-147.	0.4	31
303	Mild cognitive impairment and cognitive reserve in Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 579-586.	1.1	86
304	Rethinking Motor Learning and Savings in Adaptation Paradigms: Model-Free Memory for Successful Actions Combines with Internal Models. Neuron, 2011, 70, 787-801.	3.8	400
305	Impaired appetitively as well as aversively motivated behaviors and learning in PDE10A-deficient mice suggest a role for striatal signaling in evaluative salience attribution. Neurobiology of Learning and Memory, 2011, 95, 260-269.	1.0	23
306	The role of the basal ganglia in learning and memory: Insight from Parkinson's disease. Neurobiology of Learning and Memory, 2011, 96, 624-636.	1.0	144
307	Toward an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system., 0,, 239-263.		1
308	Neurobiologische Forschung in der Psychiatrie – Dimensional veräderte Lernmechanismen statt Reifizierung von Kategorien?. E-Neuroforum, 2011, 17, 137-143.	0.2	1
309	The Role of Feedback in Decision Making. , 0, , .		0
310	Differential Effects of Dopaminergic Therapies on Dorsal and Ventral Striatum in Parkinson's Disease: Implications for Cognitive Function. Parkinson's Disease, 2011, 2011, 1-18.	0.6	96
311	Striatal Dopamine and the Interface between Motivation and Cognition. Frontiers in Psychology, 2011, 2, 163.	1.1	177
312	Larger Error Signals in Major Depression are Associated with Better Avoidance Learning. Frontiers in Psychology, 2011, 2, 331.	1.1	63

#	Article	IF	CITATIONS
313	Valence, Arousal, and Cognitive Control: A Voluntary Task-Switching Study. Frontiers in Psychology, 2011, 2, 336.	1.1	38
314	Dopamine-Mediated Learning and Switching in Cortico-Striatal Circuit Explain Behavioral Changes in Reinforcement Learning. Frontiers in Behavioral Neuroscience, 2011, 5, 15.	1.0	49
315	Levodopa Enhances Reward Learning but Impairs Reversal Learning in Parkinson's Disease Patients. Frontiers in Human Neuroscience, 2011, 4, 240.	1.0	3
316	Effect of reinforcement history on hand choice in an unconstrained reaching task. Frontiers in Neuroscience, 2011, 5, 41.	1.4	44
317	Modulation of Habit Formation by Levodopa in Parkinson's Disease. PLoS ONE, 2011, 6, e27695.	1.1	4
318	Evidence of Dopaminergic Processing of Executive Inhibition. PLoS ONE, 2011, 6, e28075.	1.1	39
319	Rapid Processing of Both Reward Probability and Reward Uncertainty in the Human Anterior Cingulate Cortex. PLoS ONE, 2011, 6, e29633.	1.1	47
320	Impulse control disorders in Parkinson's disease. Current Opinion in Neurology, 2011, 24, 324-330.	1.8	162
321	Acute nicotine enhances strategy-based semantic processing in Parkinson's disease. International Journal of Neuropsychopharmacology, 2011, 14, 877-885.	1.0	18
322	Altered probabilistic learning and response biases in schizophrenia: Behavioral evidence and neurocomputational modeling Neuropsychology, 2011, 25, 86-97.	1.0	114
323	Is apathy a valid and meaningful symptom or syndrome in Parkinson's disease? A critical review Health Psychology, 2011, 30, 386-400.	1.3	32
324	Dopamine and effort-based decision making. Frontiers in Neuroscience, 2011, 5, 81.	1.4	133
325	Individual differences in substance dependence: at the intersection of brain, behaviour and cognition. Addiction Biology, 2011, 16, 458-466.	1.4	48
326	Sensitivity to positive and negative feedback in euthymic patients with bipolar I disorder: the last episode makes the difference. Bipolar Disorders, 2011, 13, 638-650.	1.1	23
327	Methamphetamine neurotoxicity decreases phasic, but not tonic, dopaminergic signaling in the rat striatum. Journal of Neurochemistry, 2011, 118, 668-676.	2.1	31
328	From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 2011, 14, 154-162.	7.1	641
329	Neuromodulation of rewardâ€based learning and decision making in human aging. Annals of the New York Academy of Sciences, 2011, 1235, 1-17.	1.8	181
330	Altruistic punishment in patients with Parkinson's disease with and without impulsive behaviour. Neuropsychologia, 2011, 49, 103-107.	0.7	18

#	Article	IF	CITATIONS
331	Novelty seeking behaviour in Parkinson's disease. Neuropsychologia, 2011, 49, 2483-2488.	0.7	66
332	Beyond valence and magnitude: A flexible evaluative coding system in the brain. Neuropsychologia, 2011, 49, 3891-3897.	0.7	84
333	Computational models of motivated action selection in corticostriatal circuits. Current Opinion in Neurobiology, 2011, 21, 381-386.	2.0	162
334	Learning and motivation in the human striatum. Current Opinion in Neurobiology, 2011, 21, 408-414.	2.0	69
335	Pathological gambling in Parkinson's disease: disease related or drug related?. Expert Review of Neurotherapeutics, 2011, 11, 809-814.	1.4	7
336	Probabilistic reinforcement learning in adults with autism spectrum disorders. Autism Research, 2011, 4, 109-120.	2.1	66
337	Neurobiological research in psychiatryâ€"classification of dimensions of learning mechanisms instead of reification of categories?. E-Neuroforum, 2011, 17, 88-94.	0.2	2
338	Transitive inference in adults with autism spectrum disorders. Cognitive, Affective and Behavioral Neuroscience, 2011, 11, 437-449.	1.0	20
339	Impulse control disorders in Parkinson's disease: seeking a roadmap toward a better understanding. Brain Structure and Function, 2011, 216, 289-299.	1.2	72
340	Drug-induced impulse control disorders in Parkinson's disease. Journal of Neurology, 2011, 258, 323-327.	1.8	15
341	Pathological gambling in patients with Parkinson's disease is associated with fronto-striatal disconnection: A path modeling analysis. Movement Disorders, 2011, 26, 225-233.	2.2	109
342	Reward processing abnormalities in Parkinson's disease. Movement Disorders, 2011, 26, 1451-1457.	2.2	38
343	Differential role of dopamine in emotional attention and memory: Evidence from Parkinson's disease. Movement Disorders, 2011, 26, 1677-1683.	2.2	14
344	Approach and avoidance learning in obsessive-compulsive disorder. Depression and Anxiety, 2011, 28, 166-172.	2.0	36
345	Computational cognitive models of prefrontal-striatal-hippocampal interactions in Parkinson's disease and schizophrenia. Neural Networks, 2011, 24, 575-591.	3.3	37
346	To Choose or to Avoid: Age Differences in Learning from Positive and Negative Feedback. Journal of Cognitive Neuroscience, 2011, 23, 41-52.	1.1	73
348	Dopaminergic Genes Predict Individual Differences in Susceptibility to Confirmation Bias. Journal of Neuroscience, 2011, 31, 6188-6198.	1.7	156
349	Action Dominates Valence in Anticipatory Representations in the Human Striatum and Dopaminergic Midbrain. Journal of Neuroscience, 2011, 31, 7867-7875.	1.7	202

#	Article	IF	Citations
350	Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences, 2011, 34, 169-188.	0.4	421
351	Integration of Reinforcement Learning and Optimal Decision-Making Theories of the Basal Ganglia. Neural Computation, 2011, 23, 817-851.	1.3	72
352	Risk preference following adolescent alcohol use is associated with corrupted encoding of costs but not rewards by mesolimbic dopamine. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5466-5471.	3.3	84
353	The imaginary fundamentalists: The unshocking truth about Bayesian cognitive science. Behavioral and Brain Sciences, 2011, 34, 194-196.	0.4	27
354	Dopamine-Mediated Reinforcement Learning Signals in the Striatum and Ventromedial Prefrontal Cortex Underlie Value-Based Choices. Journal of Neuroscience, 2011, 31, 1606-1613.	1.7	244
355	Dopamine-dependent reinforcement of motor skill learning: evidence from Gilles de la Tourette syndrome. Brain, 2011, 134, 2287-2301.	3.7	83
356	Thalamocingulate Interactions In Performance Monitoring. Journal of Neuroscience, 2011, 31, 3375-3383.	1.7	68
357	The myth of computational level theory and the vacuity of rational analysis. Behavioral and Brain Sciences, 2011, 34, 189-190.	0.4	1
358	More varieties of Bayesian theories, but no enlightenment. Behavioral and Brain Sciences, 2011, 34, 193-194.	0.4	5
359	Don't throw out the Bayes with the bathwater. Behavioral and Brain Sciences, 2011, 34, 198-199.	0.4	4
360	Osiander's psychology. Behavioral and Brain Sciences, 2011, 34, 199-200.	0.4	4
361	Probabilistic models as theories of children's minds. Behavioral and Brain Sciences, 2011, 34, 200-201.	0.4	7
362	In praise of Ecumenical Bayes. Behavioral and Brain Sciences, 2011, 34, 206-207.	0.4	6
363	Cognitive systems optimize energy rather than information. Behavioral and Brain Sciences, 2011, 34, 207-207.	0.4	10
364	Enlightenment grows from fundamentals. Behavioral and Brain Sciences, 2011, 34, 207-208.	0.4	2
365	Distinguishing literal from metaphorical applications of Bayesian approaches. Behavioral and Brain Sciences, 2011, 34, 211-212.	0.4	1
366	Bayesian computation and mechanism: Theoretical pluralism drives scientific emergence. Behavioral and Brain Sciences, 2011, 34, 212-213.	0.4	0
367	The uncertain status of Bayesian accounts of reasoning. Behavioral and Brain Sciences, 2011, 34, 201-202.	0.4	0

#	ARTICLE	IF	CITATIONS
368	What the Bayesian framework has contributed to understanding cognition: Causal learning as a case study. Behavioral and Brain Sciences, 2011, 34, 203-204.	0.4	0
369	Survival in a world of probable objects: A fundamental reason for Bayesian enlightenment. Behavioral and Brain Sciences, 2011, 34, 197-198.	0.4	2
370	Maybe this old dinosaur isn't extinct: What does Bayesian modeling add to associationism?. Behavioral and Brain Sciences, 2011, 34, 190-191.	0.4	2
371	Reverse engineering the structure of cognitive mechanisms. Behavioral and Brain Sciences, 2011, 34, 209-210.	0.4	3
372	Pinning down the theoretical commitments of Bayesian cognitive models. Behavioral and Brain Sciences, 2011, 34, 215-231.	0.4	10
373	Keeping Bayesian models rational: The need for an account of algorithmic rationality. Behavioral and Brain Sciences, 2011, 34, 197-197.	0.4	2
374	Relating Bayes to cognitive mechanisms. Behavioral and Brain Sciences, 2011, 34, 202-203.	0.4	2
375	Human Dorsal Striatal Activity during Choice Discriminates Reinforcement Learning Behavior from the Gambler's Fallacy. Journal of Neuroscience, 2011, 31, 6296-6304.	1.7	32
376	Patients with schizophrenia show increased aversion to angry faces in an associative learning task. Psychological Medicine, 2011, 41, 1471-1479.	2.7	18
377	Evolutionary psychology and Bayesian modeling. Behavioral and Brain Sciences, 2011, 34, 188-189.	0.4	13
378	The illusion of mechanism: Mechanistic fundamentalism or enlightenment?. Behavioral and Brain Sciences, 2011, 34, 208-209.	0.4	0
379	Come down from the clouds: Grounding Bayesian insights in developmental and behavioral processes. Behavioral and Brain Sciences, 2011, 34, 204-206.	0.4	2
380	Post hoc rationalism in science. Behavioral and Brain Sciences, 2011, 34, 214-214.	0.4	0
381	Taking the rationality out of probabilistic models. Behavioral and Brain Sciences, 2011, 34, 210-211.	0.4	1
382	Is everyone Bayes? On the testable implications of Bayesian Fundamentalism. Behavioral and Brain Sciences, 2011, 34, 213-214.	0.4	1
383	In praise of secular Bayesianism. Behavioral and Brain Sciences, 2011, 34, 202-202.	0.4	1
384	Integrating Bayesian analysis and mechanistic theories in grounded cognition. Behavioral and Brain Sciences, 2011, 34, 191-192.	0.4	23
385	Mechanistic curiosity will not kill the Bayesian cat. Behavioral and Brain Sciences, 2011, 34, 192-193.	0.4	2

#	Article	IF	CITATIONS
387	Dorsal Striatal D ₂ -Like Receptor Availability Covaries with Sensitivity to Positive Reinforcement during Discrimination Learning. Journal of Neuroscience, 2011, 31, 7291-7299.	1.7	81
388	The Role of Dorsal Striatal D2-Like Receptors in Reversal Learning: A Reinforcement Learning Viewpoint. Journal of Neuroscience, 2011, 31, 14049-14050.	1.7	13
389	Encoding of Both Positive and Negative Reward Prediction Errors by Neurons of the Primate Lateral Prefrontal Cortex and Caudate Nucleus. Journal of Neuroscience, 2011, 31, 17772-17787.	1.7	91
390	Feedback Timing Modulates Brain Systems for Learning in Humans. Journal of Neuroscience, 2011, 31, 13157-13167.	1.7	151
391	Neurogenetics and Pharmacology of Learning, Motivation, and Cognition. Neuropsychopharmacology, 2011, 36, 133-152.	2.8	163
392	Habitual versus Goal-directed Action Control in Parkinson Disease. Journal of Cognitive Neuroscience, 2011, 23, 1218-1229.	1.1	102
393	The risky business of dopamine agonists in Parkinson disease and impulse control disorders Behavioral Neuroscience, 2011, 125, 492-500.	0.6	92
394	Disentangling the Roles of Approach, Activation and Valence in Instrumental and Pavlovian Responding. PLoS Computational Biology, 2011, 7, e1002028.	1.5	292
395	Dorsolateral Prefrontal Cortex Modulates Striatal Reward Encoding during Reappraisal of Reward Anticipation. Cerebral Cortex, 2011, 21, 2578-2588.	1.6	145
396	Positive Affect Modulates Flexibility and Evaluative Control. Journal of Cognitive Neuroscience, 2011, 23, 524-539.	1.1	89
397	Social stress reactivity alters reward and punishment learning. Social Cognitive and Affective Neuroscience, 2011, 6, 311-320.	1.5	77
398	How Human Electrophysiology Informs Psychopharmacology: from Bottom-up Driven Processing to Top-Down Control. Neuropsychopharmacology, 2011, 36, 26-51.	2.8	95
399	Dopamine Modulates Reward Expectancy During Performance of a Slot Machine Task in Rats: Evidence for a †Near-miss†Effect. Neuropsychopharmacology, 2011, 36, 913-925.	2.8	80
400	Life Span Differences in Electrophysiological Correlates of Monitoring Gains and Losses during Probabilistic Reinforcement Learning. Journal of Cognitive Neuroscience, 2011, 23, 579-592.	1.1	156
401	CNTRICS Imaging Biomarkers Final Task Selection: Long-Term Memory and Reinforcement Learning. Schizophrenia Bulletin, 2012, 38, 62-72.	2.3	21
402	Striatum–Medial Prefrontal Cortex Connectivity Predicts Developmental Changes in Reinforcement Learning. Cerebral Cortex, 2012, 22, 1247-1255.	1.6	221
403	Mechanisms of Hierarchical Reinforcement Learning in Corticostriatal Circuits 1: Computational Analysis. Cerebral Cortex, 2012, 22, 509-526.	1.6	246
404	Expectancy, Ambiguity, and Behavioral Flexibility: Separable and Complementary Roles of the Orbital Frontal Cortex and Amygdala in Processing Reward Expectancies. Journal of Cognitive Neuroscience, 2012, 24, 351-366.	1.1	25

#	Article	IF	CITATIONS
405	The Effect of Dopamine Agonists on Adaptive and Aberrant Salience in Parkinson's Disease. Neuropsychopharmacology, 2012, 37, 950-958.	2.8	40
406	Diagnosis of Attention-Deficit/Hyperactivity Disorder and Its Behavioral, Neurological, and Genetic Roots. Topics in Language Disorders, 2012, 32, 207-227.	0.9	10
407	People Newly in Love are More Responsive to Positive Feedback. Psychological Reports, 2012, 110, 753-763.	0.9	1
408	Impulsive and Compulsive Behaviors During Dopamine Replacement Treatment in Parkinson's Disease and Other Disorders. Current Drug Safety, 2012, 7, 63-75.	0.3	43
409	Dopamine and performance in a reinforcement learning task: evidence from Parkinson's disease. Brain, 2012, 135, 1871-1883.	3.7	137
410	Impulse control disorders in Parkinson's disease: background and update on prevention and management. Neurodegenerative Disease Management, 2012, 2, 389-400.	1.2	10
411	Spatio-temporal Brain Dynamics Mediating Post-error Behavioral Adjustments. Journal of Cognitive Neuroscience, 2012, 24, 1331-1343.	1.1	11
412	Ventral Striatum Response During Reward and Punishment Reversal Learning in Unmedicated Major Depressive Disorder. American Journal of Psychiatry, 2012, 169, 152-159.	4.0	203
413	The Human Ventromedial Prefrontal Cortex Is Critical for Transitive Inference. Journal of Cognitive Neuroscience, 2012, 24, 1191-1204.	1.1	57
414	Reinforcement-Based Decision Making in Corticostriatal Circuits: Mutual Constraints by Neurocomputational and Diffusion Models. Neural Computation, 2012, 24, 1186-1229.	1.3	169
415	Evidence of Human Subthalamic Nucleus Involvement in Decision Making. Journal of Neuroscience, 2012, 32, 8753-8755.	1.7	3
416	Neuronal Activity in the Human Subthalamic Nucleus Encodes Decision Conflict during Action Selection. Journal of Neuroscience, 2012, 32, 2453-2460.	1.7	99
417	In for a Penny, in for a Pound: Methylphenidate Reduces the Inhibitory Effect of High Stakes on Persistent Risky Choice. Journal of Neuroscience, 2012, 32, 13032-13038.	1.7	31
418	Action controls dopaminergic enhancement of reward representations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7511-7516.	3.3	102
419	Dissecting the Effects of Disease and Treatment on Impulsivity in Parkinson's Disease. Journal of the International Neuropsychological Society, 2012, 18, 942-951.	1.2	17
420	Decision Making and Executive Functions in REM Sleep Behavior Disorder. Sleep, 2012, 35, 667-673.	0.6	43
421	Negative Symptoms and the Failure to Represent the Expected Reward Value of Actions. Archives of General Psychiatry, 2012, 69, 129.	13.8	270
422	Approach–withdrawal and the role of the striatum in the temperament of behavioral inhibition Developmental Psychology, 2012, 48, 815-826.	1.2	42

#	Article	IF	CITATIONS
423	Dopaminergic and prefrontal contributions to reward-based learning and outcome monitoring during child development and aging Developmental Psychology, 2012, 48, 862-874.	1.2	60
424	Cannabinoids and value-based decision making: Implications for neurodegenerative disorders. Basal Ganglia, 2012, 2, 131-138.	0.3	9
425	Critical Roles for Anterior Insula and Dorsal Striatum in Punishment-Based Avoidance Learning. Neuron, 2012, 76, 998-1009.	3.8	193
426	Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making. Brain, 2012, 135, 3721-3734.	3.7	73
427	Dopamine Enhances Model-Based over Model-Free Choice Behavior. Neuron, 2012, 75, 418-424.	3.8	258
428	A Role for Dopamine-Mediated Learning in the Pathophysiology and Treatment of Parkinson's Disease. Cell Reports, 2012, 2, 1747-1761.	2.9	73
429	Selective IGT decision-making impairment in a patient with juvenile Parkinson's disease and pathological gambling: A role for dopaminergic therapy?. Neurocase, 2012, 18, 503-513.	0.2	5
430	Sensitivity to reward and punishment in major depressive disorder: Effects of rumination and of single versus multiple experiences. Cognition and Emotion, 2012, 26, 1475-1485.	1.2	41
431	Repetitive Transcranial Magnetic Stimulation of the Left Dorsolateral Prefrontal Cortex Improves Probabilistic Category Learning. Brain Topography, 2012, 25, 443-449.	0.8	7
432	Action Selection and Action Value in Frontal-Striatal Circuits. Neuron, 2012, 74, 947-960.	3.8	140
433	A neurocomputational account of cognitive deficits in Parkinson's disease. Neuropsychologia, 2012, 50, 2290-2302.	0.7	31
434	Computational psychiatry. Trends in Cognitive Sciences, 2012, 16, 72-80.	4.0	645
435	Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways. Trends in Neurosciences, 2012, 35, 457-467.	4.2	71
436	Trends and Issues in Characterizing Early Cognitive Changes in Parkinson's Disease. Current Neurology and Neuroscience Reports, 2012, 12, 695-702.	2.0	9
437	Simulating the effects of dopamine imbalance on cognition: From positive affect to Parkinson's disease. Neural Networks, 2012, 32, 74-85.	3.3	29
438	Effects of depression on reward-based decision making and variability of action in probabilistic learning. Journal of Behavior Therapy and Experimental Psychiatry, 2012, 43, 1088-1094.	0.6	85
439	Orbital and ventromedial prefrontal cortex functioning in Parkinson's disease: Neuropsychological evidence. Brain and Cognition, 2012, 79, 23-33.	0.8	32
440	The neural coding of expected and unexpected monetary performance outcomes: Dissociations between active and observational learning. Behavioural Brain Research, 2012, 227, 241-251.	1.2	35

#	Article	IF	Citations
441	l-DOPA changes ventral striatum recruitment during motor sequence learning in Parkinson's disease. Behavioural Brain Research, 2012, 230, 116-124.	1.2	43
442	The Behavioral Activation System and Mania. Annual Review of Clinical Psychology, 2012, 8, 243-267.	6.3	178
443	How neurodegeneration, dopamine and maladaptive behavioral learning interact to produce impulse control disorders in Parkinson's disease. Basal Ganglia, 2012, 2, 195-199.	0.3	3
444	Reinforcement learning in young adults with developmental language impairment. Brain and Language, 2012, 123, 154-163.	0.8	24
445	Similar Improvement of Reward and Punishment Learning by Serotonin Reuptake Inhibitors in Obsessive-Compulsive Disorder. Biological Psychiatry, 2012, 72, 244-250.	0.7	50
446	Distorted Expectancy Coding in Problem Gambling: Is the Addictive in the Anticipation?. Biological Psychiatry, 2012, 71, 741-748.	0.7	132
447	Reward-Related Learning via Multiple Memory Systems. Biological Psychiatry, 2012, 72, 134-141.	0.7	43
448	Reward modulates adaptations to conflict. Cognition, 2012, 125, 324-332.	1.1	120
449	Linking neurogenetics and individual differences in language learning: The dopamine hypothesis. Cortex, 2012, 48, 1091-1102.	1.1	49
450	How Dopamine Enhances an Optimism Bias in Humans. Current Biology, 2012, 22, 1477-1481.	1.8	157
451	Brain function during probabilistic learning in relation to IQ and level of education. Developmental Cognitive Neuroscience, 2012, 2, S78-S89.	1.9	19
452	Improving control over the impulse for reward: Sensitivity of harmful alcohol drinkers to delayed reward but not immediate punishment. Drug and Alcohol Dependence, 2012, 125, 89-94.	1.6	26
453	Aberrant reward processing in Parkinson's disease is associated with dopamine cell loss. NeuroImage, 2012, 59, 3339-3346.	2.1	58
454	Go and no-go learning in reward and punishment: Interactions between affect and effect. Neurolmage, 2012, 62, 154-166.	2.1	328
455	Successful inhibitory control over an immediate reward is associated with attentional disengagement in visual processing areas. NeuroImage, 2012, 62, 1841-1847.	2.1	18
456	Rimonabant for neurocognition in schizophrenia: A 16-week double blind randomized placebo controlled trial. Schizophrenia Research, 2012, 134, 207-210.	1.1	47
457	Affective symptoms and cognitive functions in Parkinson's disease. Journal of the Neurological Sciences, 2012, 317, 97-102.	0.3	52
458	Case-Based Reasoning., 2012,, 509-509.		0

#	Article	IF	CITATIONS
459	Positivity effect in healthy aging in observational but not active feedback-learning. Aging, Neuropsychology, and Cognition, 2012, 19, 402-420.	0.7	9
460	Cross-cultural Training. , 2012, , 855-858.		0
461	Twenty-Five Lessons from Computational Neuromodulation. Neuron, 2012, 76, 240-256.	3.8	145
462	Creative Problem Solving. , 2012, , 838-838.		O
463	Apathy: A pathology of goal-directed behaviour. A new concept of the clinic and pathophysiology of apathy. Revue Neurologique, 2012, 168, 585-597.	0.6	91
465	Altered Risk-Based Decision Making following Adolescent Alcohol Use Results from an Imbalance in Reinforcement Learning in Rats. PLoS ONE, 2012, 7, e37357.	1.1	27
466	Impulsivities and Parkinson's Disease: Delay Aversion Is Not Worsened by Deep Brain Stimulation of the Subthalamic Nucleus. PLoS ONE, 2012, 7, e43261.	1.1	13
467	Eye Movements to Natural Images as a Function of Sex and Personality. PLoS ONE, 2012, 7, e47870.	1.1	48
468	The Effect of Motivation on Movement: A Study of Bradykinesia in Parkinson's Disease. PLoS ONE, 2012, 7, e47138.	1.1	28
469	Effects of L-dopa during Auditory Instrumental Learning in Humans. PLoS ONE, 2012, 7, e52504.	1.1	15
470	A Tribute to Charlie Chaplin: Induced Positive Affect Improves Reward-Based Decision-Learning in Parkinson's Disease. Frontiers in Psychology, 2012, 3, 185.	1.1	14
471	The Effects of Evidence Bounds on Decision-Making: Theoretical and Empirical Developments. Frontiers in Psychology, 2012, 3, 263.	1.1	25
472	How Prediction Errors Shape Perception, Attention, and Motivation. Frontiers in Psychology, 2012, 3, 548.	1.1	341
473	Frontostriatal Cognitive Staging in Parkinson's Disease. Parkinson's Disease, 2012, 2012, 1-8.	0.6	33
474	Dopaminergic control of the exploration-exploitation trade-off via the basal ganglia. Frontiers in Neuroscience, 2012, 6, 9.	1.4	137
475	Acetylcholine-Based Entropy in Response Selection: A Model of How Striatal Interneurons Modulate Exploration, Exploitation, and Response Variability in Decision-Making. Frontiers in Neuroscience, 2012, 6, 18.	1.4	25
476	Decisions from Experience: Adaptive Information Search and Choice in Younger and Older Adults. Frontiers in Neuroscience, 2012, 6, 36.	1.4	7
477	Building Bridges between Perceptual and Economic Decision-Making: Neural and Computational Mechanisms. Frontiers in Neuroscience, 2012, 6, 70.	1.4	129

#	Article	IF	CITATIONS
478	Social Learning as a Way to Overcome Choice-Induced Preferences? Insights from Humans and Rhesus Macaques. Frontiers in Neuroscience, 2012, 6, 127.	1.4	18
479	High Reward Makes Items Easier to Remember, but Harder to Bind to a New Temporal Context. Frontiers in Integrative Neuroscience, 2012, 6, 61.	1.0	25
480	Models of Value and Choice. , 2012, , 33-52.		6
481	Confucian Educational Philosophy and Its Implication for Lifelong Learning. , 2012, , 762-766.		3
482	The Role of Catechol-O-Methyltransferase in Reward Processing and Addiction. CNS and Neurological Disorders - Drug Targets, 2012, 11, 306-323.	0.8	39
483	Executive function in Parkinson's disease: contributions of the dorsal frontostriatal pathways to action and motivation. Cognitive, Affective and Behavioral Neuroscience, 2012, 12, 193-206.	1.0	27
484	Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nature Neuroscience, 2012, 15, 816-818.	7.1	820
485	From anticipation to action, the role of dopamine in perceptual decision making: an fMRI-tyrosine depletion study. Journal of Neurophysiology, 2012, 108, 501-512.	0.9	49
486	Decision making, impulsivity, and addictions: Do Parkinson's disease patients jump to conclusions?. Movement Disorders, 2012, 27, 1137-1145.	2.2	85
487	Impaired savings despite intact initial learning of motor adaptation in Parkinson's disease. Experimental Brain Research, 2012, 218, 295-304.	0.7	53
488	Theta lingua franca: A common midâ€frontal substrate for action monitoring processes. Psychophysiology, 2012, 49, 220-238.	1.2	521
489	Learning from Positive and Negative Monetary Feedback in Patients with Alcohol Dependence. Alcoholism: Clinical and Experimental Research, 2012, 36, 1067-1074.	1.4	9
490	C957T polymorphism of the dopamine D2 receptor gene is associated with motor learning and heart rate. Genes, Brain and Behavior, 2012, 11, 677-683.	1.1	24
491	Dose dependent dopaminergic modulation of reward-based learning in Parkinson's disease. Neuropsychologia, 2012, 50, 583-591.	0.7	15
492	Information routing in the basal ganglia: Highways to abnormal connectivity in autism?. Physics of Life Reviews, 2012, 9, 1-2.	1.5	5
493	Information content and reward processing in the human striatum during performance of a declarative memory task. Cognitive, Affective and Behavioral Neuroscience, 2012, 12, 361-372.	1.0	53
494	Generalization of value in reinforcement learning by humans. European Journal of Neuroscience, 2012, 35, 1092-1104.	1.2	100
495	Instrumental vigour in punishment and reward. European Journal of Neuroscience, 2012, 35, 1152-1168.	1.2	66

#	Article	IF	Citations
496	Decomposing effects of dopaminergic medication in Parkinson's disease on probabilistic action selection – learning or performance?. European Journal of Neuroscience, 2012, 35, 1144-1151.	1.2	73
497	Levodopa and the feedback process on setâ€shifting in parkinson's disease. Human Brain Mapping, 2012, 33, 27-39.	1.9	17
498	Roles of D1-like dopamine receptors in the nucleus accumbens and dorsolateral striatum in conditioned avoidance responses. Psychopharmacology, 2012, 219, 159-169.	1.5	42
499	Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology, 2012, 219, 469-490.	1.5	355
500	Constraints on decision making: Implications from genetics, personality, and addiction. Cognitive, Affective and Behavioral Neuroscience, 2013, 13, 417-436.	1.0	22
501	Effect of d-amphetamine on emotion-potentiated startle in healthy humans: implications for psychopathy and antisocial behaviour. Psychopharmacology, 2013, 225, 373-379.	1.5	7
502	New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson's disease. Lancet Neurology, The, 2013, 12, 811-821.	4.9	165
503	Empathy and feedback processing in active and observational learning. Cognitive, Affective and Behavioral Neuroscience, 2013, 13, 869-884.	1.0	16
504	Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons. Neuron, 2013, 79, 347-360.	3.8	408
505	â€~The Thorny and Arduous Path of Moral Progress': Moral Psychology and Moral Enhancement. Neuroethics, 2013, 6, 141-153.	1.7	14
506	The development of delusion revisited: A transdiagnostic framework. Psychiatry Research, 2013, 210, 1245-1259.	1.7	12
507	Reinforcing properties of Pramipexole in normal and parkinsonian rats. Neurobiology of Disease, 2013, 49, 79-86.	2.1	30
508	Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 2013, 80, 1090-1100.	3.8	210
509	Measuring reinforcement learning and motivation constructs in experimental animals: Relevance to the negative symptoms of schizophrenia. Neuroscience and Biobehavioral Reviews, 2013, 37, 2149-2165.	2.9	82
510	The effect of <scp>P</scp> arkinson's disease and <scp>H</scp> untington's disease on human visuomotor learning. European Journal of Neuroscience, 2013, 38, 2933-2940.	1.2	41
511	Incentive motivation deficits in schizophrenia reflect effort computation impairments during cost-benefit decision-making. Journal of Psychiatric Research, 2013, 47, 1590-1596.	1.5	177
512	A computational model of inhibitory control in frontal cortex and basal ganglia Psychological Review, 2013, 120, 329-355.	2.7	324
513	Freezing of gait in Parkinson's disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain, 2013, 136, 3671-3681.	3.7	222

#	Article	IF	CITATIONS
514	Goals and Habits in the Brain. Neuron, 2013, 80, 312-325.	3.8	799
515	What are people with Parkinson's disease really impaired on when it comes to making decisions? A meta-analysis of the evidence. Neuroscience and Biobehavioral Reviews, 2013, 37, 2836-2846.	2.9	27
516	Acute and chronic cognitive effects of levodopa and dopamine agonists on patients with Parkinson's disease: a review. Therapeutic Advances in Psychopharmacology, 2013, 3, 101-113.	1.2	79
517	How initial confirmatory experience potentiates the detrimental influence of bad advice. NeuroImage, 2013, 76, 125-133.	2.1	26
518	Adaptive properties of differential learning rates for positive and negative outcomes. Biological Cybernetics, 2013, 107, 711-719.	0.6	74
519	Parkinson's disease duration determines effect of dopaminergic therapy on ventral striatum function. Movement Disorders, 2013, 28, 153-160.	2.2	49
520	The Functional Anatomy of Impulse Control Disorders. Current Neurology and Neuroscience Reports, 2013, 13, 386.	2.0	64
521	Cortical Signals for Rewarded Actions and Strategic Exploration. Neuron, 2013, 80, 223-234.	3.8	54
522	Reinforcement Learning of Two-Joint Virtual Arm Reaching in a Computer Model of Sensorimotor Cortex. Neural Computation, 2013, 25, 3263-3293.	1.3	36
523	Phasicâ€like stimulation of the medial forebrain bundle augments striatal gene expression despite methamphetamineâ€induced partial dopamine denervation. Journal of Neurochemistry, 2013, 125, 555-565.	2.1	13
525	Structural integrity of the substantia nigra and subthalamic nucleus predicts flexibility of instrumental learning in older-age individuals. Neurobiology of Aging, 2013, 34, 2261-2270.	1.5	40
526	Impairments in both reward and punishment guided reinforcement learning in schizophrenia. Schizophrenia Research, 2013, 150, 592-593.	1.1	26
527	Age-related changes in processing positive and negative feedback: Is there a positivity effect for older adults?. Biological Psychology, 2013, 94, 235-241.	1.1	34
528	ADHD as a Model of Brain-Behavior Relationships. SpringerBriefs in Neuroscience, 2013, , .	0.1	34
529	Decisions under risk in Parkinson's disease: Preserved evaluation of probability and magnitude. Neuropsychologia, 2013, 51, 2679-2689.	0.7	10
530	Relearning of writing skills in Parkinson's disease: A literature review on influential factors and optimal strategies. Neuroscience and Biobehavioral Reviews, 2013, 37, 349-357.	2.9	33
531	Hyperbilirubinemia: Subcortical Mechanisms of Cognitive and Behavioral Dysfunction. Pediatric Neurology, 2013, 48, 3-13.	1.0	21
532	Effects of asymmetric dopamine depletion on sensitivity to rewarding and aversive stimuli in Parkinson's disease. Neuropsychologia, 2013, 51, 818-824.	0.7	26

#	Article	IF	CITATIONS
533	A lifespan comparison of the reliability, testâ€retest stability, and signalâ€toâ€noise ratio of eventâ€related potentials assessed during performance monitoring. Psychophysiology, 2013, 50, 111-123.	1.2	43
534	Disrupted Reinforcement Learning and Maladaptive Behavior in Women With a History of Childhood Sexual Abuse. JAMA Psychiatry, 2013, 70, 499.	6.0	65
535	Apathy in Parkinson's Disease: More Than Just Executive Dysfunction. Journal of the International Neuropsychological Society, 2013, 19, 571-582.	1.2	43
536	Superiority illusion arises from resting-state brain networks modulated by dopamine. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4363-4367.	3.3	30
537	Impulse Control and Related Disorders in Parkinson's Disease. Neurodegenerative Diseases, 2013, 11, 63-71.	0.8	82
539	Rapid Brain Responses Independently Predict Gain Maximization and Loss Minimization during Economic Decision Making. Journal of Neuroscience, 2013, 33, 7011-7019.	1.7	67
540	Genetics of impulse control disorders in Parkinson's disease. Journal of Neural Transmission, 2013, 120, 665-671.	1.4	39
541	Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors. Brain Research, 2013, 1511, 73-92.	1.1	102
542	The basal ganglia. Wiley Interdisciplinary Reviews: Cognitive Science, 2013, 4, 135-148.	1.4	23
543	Striatal dopamine D1 receptors are involved in the dissociation of learning based on reward-magnitude. Neuroscience, 2013, 230, 132-138.	1.1	12
544	Decision Making: From Neuroscience to Psychiatry. Neuron, 2013, 78, 233-248.	3.8	129
545	Frontal Theta Overrides Pavlovian Learning Biases. Journal of Neuroscience, 2013, 33, 8541-8548.	1.7	168
546	Model-Based and Model-Free Mechanisms of Human Motor Learning. Advances in Experimental Medicine and Biology, 2013, 782, 1-21.	0.8	194
547	A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning. Neural Networks, 2013, 41, 212-224.	3.3	43
548	Dopaminergic Control of Motivation and Reinforcement Learning: A Closed-Circuit Account for Reward-Oriented Behavior. Journal of Neuroscience, 2013, 33, 8866-8890.	1.7	49
549	Moral decision-making and theory of mind in patients with idiopathic Parkinson's disease Neuropsychology, 2013, 27, 562-572.	1.0	29
550	Hemispheric dissociation of reward processing in humans: Insights from deep brain stimulation. Cortex, 2013, 49, 2834-2844.	1.1	8
551	A review of methods used to study cognitive deficits in Parkinson's disease. Neurological Research, 2013, 35, 1-6.	0.6	6

#	Article	IF	CITATIONS
552	Attenuated neural response to gamble outcomes in drug-naive patients with Parkinson's disease. Brain, 2013, 136, 1192-1203.	3.7	38
553	A Trade-Off between Feedback-Based Learning and Episodic Memory for Feedback Events: Evidence from Parkinson's Disease. Neurodegenerative Diseases, 2013, 11, 93-101.	0.8	35
554	Reinforcement Learning and Tourette Syndrome. International Review of Neurobiology, 2013, 112, 131-153.	0.9	33
555	Strategic Cognitive Sequencing: A Computational Cognitive Neuroscience Approach. Computational Intelligence and Neuroscience, 2013, 2013, 1-18.	1.1	14
556	Stress modulates reinforcement learning in younger and older adults Psychology and Aging, 2013, 28, 35-46.	1.4	90
557	Cortical and Hippocampal Correlates of Deliberation during Model-Based Decisions for Rewards in Humans. PLoS Computational Biology, 2013, 9, e1003387.	1.5	71
558	Uncertainty about mapping future actions into rewards may underlie performance on multiple measures of impulsivity in behavioral addiction: Evidence from Parkinson's disease Behavioral Neuroscience, 2013, 127, 245-255.	0.6	40
559	A Role for the Medial Temporal Lobe in Feedback-Driven Learning: Evidence from Amnesia. Journal of Neuroscience, 2013, 33, 5698-5704.	1.7	90
560	A Healthy Fear of the Unknown: Perspectives on the Interpretation of Parameter Fits from Computational Models in Neuroscience. PLoS Computational Biology, 2013, 9, e1003015.	1.5	21
561	Action, Outcome, and Value. Personality and Social Psychology Review, 2013, 17, 273-292.	3.4	335
562	Dopamine imbalance in Huntington's disease: a mechanism for the lack of behavioral flexibility. Frontiers in Neuroscience, 2013, 7, 114.	1.4	126
563	Processing of emotional information in the human subthalamic nucleus. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1331-1339.	0.9	32
564	Working-memory capacity protects model-based learning from stress. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20941-20946.	3.3	393
565	Impulsivity and apathy in Parkinson's disease. Journal of Neuropsychology, 2013, 7, 255-283.	0.6	81
566	Development of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of ⟨scp⟩D⟨/scp⟩2â€like receptor tone in the nucleus accumbens. European Journal of Neuroscience, 2013, 38, 2572-2588.	1.2	21
567	Methamphetamine-induced neurotoxicity disrupts naturally occurring phasic dopamine signaling. European Journal of Neuroscience, 2013, 38, 2078-2088.	1.2	26
568	Enhanced avoidance learning in behaviorally inhibited young men and women. Stress, 2013, 16, 289-299.	0.8	27
569	Punishment-Induced Behavioral and Neurophysiological Variability Reveals Dopamine-Dependent Selection of Kinematic Movement Parameters. Journal of Neuroscience, 2013, 33, 3981-3988.	1.7	30

#	Article	IF	Citations
571	Factors underlying probabilistic and deterministic stimulus-response learning performance in medicated and unmedicated patients with Parkinson's disease Neuropsychology, 2013, 27, 498-510.	1.0	12
573	Surgical treatment and behavior. , 0, , 230-243.		0
574	Categorization., 2013,,.		4
575	The Emergence of Emotions. Activitas Nervosa Superior, 2013, 55, 115-145.	0.4	4
576	Prefrontal cortex, dopamine, and jealousy endophenotype. CNS Spectrums, 2013, 18, 6-14.	0.7	22
577	Reinforcement Learning and Dopamine in Schizophrenia: Dimensions of Symptoms or Specific Features of a Disease Group?. Frontiers in Psychiatry, 2013, 4, 172.	1.3	74
578	COMT Val158Met Polymorphism and Executive Functions in Obsessive-Compulsive Disorder. Journal of Neuropsychiatry and Clinical Neurosciences, 2013, 25, 214-221.	0.9	13
579	Assaying the Effect of Levodopa on the Evaluation of Risk in Healthy Humans. PLoS ONE, 2013, 8, e68177.	1.1	12
580	Learning to Obtain Reward, but Not Avoid Punishment, Is Affected by Presence of PTSD Symptoms in Male Veterans: Empirical Data and Computational Model. PLoS ONE, 2013, 8, e72508.	1.1	44
581	Differential Effects of Parkinson's Disease and Dopamine Replacement on Memory Encoding and Retrieval. PLoS ONE, 2013, 8, e74044.	1.1	36
582	Common Neural Mechanisms Underlying Reversal Learning by Reward and Punishment. PLoS ONE, 2013, 8, e82169.	1.1	33
583	Pleasurable music affects reinforcement learning according to the listener. Frontiers in Psychology, 2013, 4, 541.	1.1	37
584	What would my avatar do? Gaming, pathology, and risky decision making. Frontiers in Psychology, 2013, 4, 609.	1.1	53
585	Psychopathy-related traits and the use of reward and social information: a computational approach. Frontiers in Psychology, 2013, 4, 952.	1.1	17
586	A biologically plausible embodied model of action discovery. Frontiers in Neurorobotics, 2013, 7, 4.	1.6	27
587	Fronto-striatal gray matter contributions to discrimination learning in Parkinson's disease. Frontiers in Computational Neuroscience, 2013, 7, 180.	1.2	12
588	Advanced Parkinson's disease effect on goal-directed and habitual processes involved in visuomotor associative learning. Frontiers in Human Neuroscience, 2012, 6, 351.	1.0	22
589	Different mechanisms contributing to savings and anterograde interference are impaired in Parkinson's disease. Frontiers in Human Neuroscience, 2013, 7, 55.	1.0	34

#	Article	IF	Citations
590	Acute stress selectively reduces reward sensitivity. Frontiers in Human Neuroscience, 2013, 7, 133.	1.0	98
591	The influence of emotions on cognitive control: feelings and beliefs—where do they meet?. Frontiers in Human Neuroscience, 2013, 7, 508.	1.0	30
592	Extraversion differentiates between model-based and model-free strategies in a reinforcement learning task. Frontiers in Human Neuroscience, 2013, 7, 525.	1.0	26
593	Asymmetric right/left encoding of emotions in the human subthalamic nucleus. Frontiers in Systems Neuroscience, 2013, 7, 69.	1.2	59
594	Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy. Frontiers in Systems Neuroscience, 2013, 7, 122.	1.2	108
595	Impulse Control Disorders in Parkinson's Disease: Crossroads between Neurology, Psychiatry and Neuroscience. Behavioural Neurology, 2013, 27, 547-557.	1.1	12
596	Functional MRI of cognition and mood in Parkinson's disease. , 0, , 72-83.		0
597	Role of the Plasticity-Associated Transcription Factor Zif268 in the Early Phase of Instrumental Learning. PLoS ONE, 2014, 9, e81868.	1.1	17
598	How Basal Ganglia Outputs Generate Behavior. Advances in Neuroscience (Hindawi), 2014, 2014, 1-28.	3.1	21
599	Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot. Frontiers in Psychology, 2014, 5, 124.	1.1	32
600	Decision and dopaminergic system: an ERPs study of Iowa gambling task in Parkinsonââ,¬â"¢s disease. Frontiers in Psychology, 2014, 5, 684.	1.1	36
601	Inferring reward prediction errors in patients with schizophrenia: a dynamic reward task for reinforcement learning. Frontiers in Psychology, 2014, 5, 1282.	1.1	10
602	Cognition and emotional decision-making in chronic low back pain: an ERPs study during lowa gambling task. Frontiers in Psychology, 2014, 5, 1350.	1.1	51
603	Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Frontiers in Neuroanatomy, 2014, 8, 120.	0.9	59
604	Nonhuman gamblers: lessons from rodents, primates, and robots. Frontiers in Behavioral Neuroscience, 2014, 8, 33.	1.0	29
605	The role of dopamine in risk taking: a specific look at Parkinsonââ,¬â"¢s disease and gambling. Frontiers in Behavioral Neuroscience, 2014, 8, 196.	1.0	43
606	Role of dopamine D2 receptors in optimizing choice strategy in a dynamic and uncertain environment. Frontiers in Behavioral Neuroscience, 2014, 8, 368.	1.0	26
607	Losing the rose tinted glasses: neural substrates of unbiased belief updating in depression. Frontiers in Human Neuroscience, 2014, 8, 639.	1.0	105

#	Article	IF	Citations
608	Dopaminergic medication impairs feedback-based stimulus-response learning but not response selection in Parkinson's disease. Frontiers in Human Neuroscience, 2014, 8, 784.	1.0	22
609	How to be patient. The ability to wait for a reward depends on menstrual cycle phase and feedback-related activity. Frontiers in Neuroscience, 2014, 8, 401.	1.4	21
610	The Michelin red guide of the brain: role of dopamine in goal-oriented navigation. Frontiers in Systems Neuroscience, 2014, 8, 32.	1.2	9
611	Valenced action/inhibition learning in humans is modulated by a genetic variant linked to dopamine D2 receptor expression. Frontiers in Systems Neuroscience, 2014, 8, 140.	1.2	22
612	Comparison of Caffeine and d-amphetamine in Cocaine-Dependent Subjects: Differential Outcomes on Subjective and Cardiovascular Effects, Reward Learning, and Salivary Paraxanthine. Journal of Addiction Research & Therapy, 2014, 05, 176.	0.2	11
613	Maladaptive Reward-Learning and Impulse Control Disorders in Patients with Parkinson's Disease: A Clinical Overview and Pathophysiology Update. Journal of Movement Disorders, 2014, 7, 67-76.	0.7	10
614	Reward-Based Learning, Model-Based and Model-Free. , 2014, , 1-10.		9
615	Performance of a motor task learned <i>on</i> levodopa deteriorates when subsequently practiced <i>off</i> . Movement Disorders, 2014, 29, 54-60.	2.2	20
616	Decision-making impairments in Parkinson's disease as a by-product of defective cost–benefit analysis and feedback processing. Neurodegenerative Disease Management, 2014, 4, 317-327.	1.2	7
617	Large-Scale Brain Systems and Subcortical Relationships: Practical Applications. Applied Neuropsychology: Child, 2014, 3, 264-273.	0.7	8
618	Apathy in Parkinson's Disease: Neurophysiological Evidence of Impaired Incentive Processing. Journal of Neuroscience, 2014, 34, 5918-5926.	1.7	55
619	Motivational Tuning of Fronto-Subthalamic Connectivity Facilitates Control of Action Impulses. Journal of Neuroscience, 2014, 34, 3210-3217.	1.7	66
620	Dopamine Modulates the Neural Representation of Subjective Value of Food in Hungry Subjects. Journal of Neuroscience, 2014, 34, 16856-16864.	1.7	40
621	Cognitive correlates of psychosis in patients with Parkinson's disease. Cognitive Neuropsychiatry, 2014, 19, 381-398.	0.7	13
622	Eye tracking and pupillometry are indicators of dissociable latent decision processes Journal of Experimental Psychology: General, 2014, 143, 1476-1488.	1.5	204
623	Love to Win or Hate to Lose? Asymmetry of Dopamine D2 Receptor Binding Predicts Sensitivity to Reward versus Punishment. Journal of Cognitive Neuroscience, 2014, 26, 1039-1048.	1.1	53
624	A delta-rule model of numerical and non-numerical order processing Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1092-1102.	0.7	20
625	Opponent actor learning (OpAL): Modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive Psychological Review, 2014, 121, 337-366.	2.7	350

#	Article	IF	CITATIONS
626	Individual Differences in Gambling Proneness among Rats and Common Marmosets: An Automated Choice Task. BioMed Research International, 2014, 2014, 1-12.	0.9	13
628	Cerebellar and Prefrontal Cortex Contributions to Adaptation, Strategies, and Reinforcement Learning. Progress in Brain Research, 2014, 210, 217-253.	0.9	162
629	Differential Modulation of Reinforcement Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism. Journal of Neuroscience, 2014, 34, 13151-13162.	1.7	60
630	Dysfunctional and compensatory synaptic plasticity in <scp>P</scp> arkinson's disease. European Journal of Neuroscience, 2014, 39, 688-702.	1.2	52
631	Application of a neural network model of prefrontal cortex to emulate human probability matching behavior. Biologically Inspired Cognitive Architectures, 2014, 10, 10-16.	0.9	1
632	Using cognitive modelling to investigate the psychological processes of the <pre><scp>Go</scp>/<scp>NoGo</scp> discrimination task in male abstinent heroin misusers. Addiction, 2014, 109, 1355-1362.</pre>	1.7	5
633	The bonnie baby: experimentally manipulated temperament affects perceived cuteness and motivation to view infant faces. Developmental Science, 2014, 17, 257-269.	1.3	31
634	Bilingual brain training: A neurobiological framework of how bilingual experience improves executive function. International Journal of Bilingualism, 2014, 18, 67-92.	0.6	104
635	Motor impulsivity in Parkinson disease: Associations with <scp>COMT</scp> and <scp>DRD</scp> 2 polymorphisms. Scandinavian Journal of Psychology, 2014, 55, 278-286.	0.8	17
636	Reinforcement learning deficits in people with schizophrenia persist after extended trials. Psychiatry Research, 2014, 220, 760-764.	1.7	28
637	From Feedback- to Response-based Performance Monitoring in Active and Observational Learning. Journal of Cognitive Neuroscience, 2014, 26, 2111-2127.	1.1	36
638	DYNAMIC FIELD THEORY AND EXECUTIVE FUNCTIONS: LENDING EXPLANATION TO CURRENT THEORIES OF DEVELOPMENT. Monographs of the Society for Research in Child Development, 2014, 79, 116-124.	6.8	1
639	Learning To Minimize Efforts versus Maximizing Rewards: Computational Principles and Neural Correlates. Journal of Neuroscience, 2014, 34, 15621-15630.	1.7	139
641	Risky Decision Making in Smoking and Nonsmoking College Students: Examination of Iowa Gambling Task Performance by Deck Type Selections. Applied Neuropsychology: Child, 2014, 3, 38-44.	0.7	17
642	Dopamine modulates novelty seeking behavior during decision making. Behavioral Neuroscience, 2014, 128, 556-566.	0.6	183
644	Decision-making impairments in breast cancer patients treated with tamoxifen. Hormones and Behavior, 2014, 66, 449-456.	1.0	31
645	Alienation and Authenticity in Parkinson's Disease and Its Treatment. AJOB Neuroscience, 2014, 5, 54-56.	0.6	2
646	Microstimulation of the Human Substantia Nigra Alters Reinforcement Learning. Journal of Neuroscience, 2014, 34, 6887-6895.	1.7	25

#	Article	IF	CITATIONS
647	Establishing the Dopamine Dependency of Human Striatal Signals During Reward and Punishment Reversal Learning. Cerebral Cortex, 2014, 24, 633-642.	1.6	83
648	Mouse Models of Neurodevelopmental Disease of the Basal Ganglia and Associated Circuits. Current Topics in Developmental Biology, 2014, 109, 97-169.	1.0	35
649	The Contribution of Apathy and Increased Learning Trials to Risky Decision-Making in Parkinson's Disease. Archives of Clinical Neuropsychology, 2014, 29, 100-109.	0.3	22
650	Human Subthalamic Nucleus in Movement Error Detection and Its Evaluation during Visuomotor Adaptation. Journal of Neuroscience, 2014, 34, 16744-16754.	1.7	61
651	Redundant dopaminergic activity may enable compensatory axonal sprouting in Parkinson disease. Neurology, 2014, 82, 1093-1098.	1.5	49
652	Model-Based and Model-Free Decisions in Alcohol Dependence. Neuropsychobiology, 2014, 70, 122-131.	0.9	154
653	Advanced Reinforcement Learning. , 2014, , 299-320.		11
654	The effects of acute pharmacological stimulation of the 5-HT, NA and DA systems on the cognitive judgement bias of rats in the ambiguous-cue interpretation paradigm. European Neuropsychopharmacology, 2014, 24, 1103-1111.	0.3	53
655	Oscillatory subthalamic nucleus activity is modulated by dopamine during emotional processing in Parkinson's disease. Cortex, 2014, 60, 69-81.	1.1	38
656	Dopey dopamine: high tonic results in ironic performance. Trends in Cognitive Sciences, 2014, 18, 340-341.	4.0	6
657	Levodopa inhibits habit-learning in Parkinson's disease. Journal of Neural Transmission, 2014, 121, 147-151.	1.4	12
658	Rehabilitative therapy in patients with Parkinson's disease. Basal Ganglia, 2014, 4, 19-23.	0.3	5
659	Methamphetamine-Induced Neurotoxicity Disrupts Pharmacologically Evoked Dopamine Transients in the Dorsomedial and Dorsolateral Striatum. Neurotoxicity Research, 2014, 26, 152-167.	1.3	8
660	Antipsychotic dose modulates behavioral and neural responses to feedback during reinforcement learning in schizophrenia. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 189-201.	1.0	27
661	Differential, but not opponent, effects of l-DOPA and citalopram on action learning with reward and punishment. Psychopharmacology, 2014, 231, 955-966.	1.5	89
662	Agency attribution: event-related potentials and outcome monitoring. Experimental Brain Research, 2014, 232, 1117-1126.	0.7	66
663	Reduced susceptibility to confirmation bias in schizophrenia. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 715-728.	1.0	24
664	Cognitive deficits in Parkinson's disease: A cognitive neuroscience perspective. Movement Disorders, 2014, 29, 597-607.	2.2	192

#	ARTICLE	IF	CITATIONS
665	Asymmetric dopamine loss differentially affects effort to maximize gain or minimize loss. Cortex, 2014, 51, 82-91.	1.1	38
666	Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. Trends in Pharmacological Sciences, 2014, 35, 268-276.	4.0	102
667	Reduced dopamine transporter binding predates impulse control disorders in Parkinson's disease. Movement Disorders, 2014, 29, 904-911.	2.2	91
668	Dopamine D2 Receptors Regulate the Anatomical and Functional Balance of Basal Ganglia Circuitry. Neuron, 2014, 81, 153-164.	3.8	194
669	Depression and impulse control disorders in Parkinson's disease: Two sides of the same coin?. Neuroscience and Biobehavioral Reviews, 2014, 38, 60-71.	2.9	86
670	Computational approaches to psychiatry. Current Opinion in Neurobiology, 2014, 25, 85-92.	2.0	203
671	Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors. Journal of Neuroscience, 2014, 34, 14901-14912.	1.7	109
672	The Habenulo-Raphe Serotonergic Circuit Encodes an Aversive Expectation Value Essential for Adaptive Active Avoidance of Danger. Neuron, 2014, 84, 1034-1048.	3.8	158
673	Working memory and reward association learning impairments in obesity. Neuropsychologia, 2014, 65, 146-155.	0.7	158
674	Lesions of dorsal striatum eliminate loseâ€switch responding but not mixedâ€response strategies in rats. European Journal of Neuroscience, 2014, 39, 1655-1663.	1.2	35
675	The Computational and Neural Basis of Cognitive Control: Charted Territory and New Frontiers. Cognitive Science, 2014, 38, 1249-1285.	0.8	206
676	Impulse Control Disorders in Parkinson's Disease Are Associated with Dysfunction in Stimulus Valuation But Not Action Valuation. Journal of Neuroscience, 2014, 34, 7814-7824.	1.7	73
677	Value Learning through Reinforcement. , 2014, , 283-298.		41
678	Mind matters: placebo enhances reward learning in Parkinson's disease. Nature Neuroscience, 2014, 17, 1793-1797.	7.1	61
679	The Myth of Executive Functioning. SpringerBriefs in Neuroscience, 2014, , .	0.1	34
680	In the Blink of an Eye: Relating Positive-Feedback Sensitivity to Striatal Dopamine D ₂ -Like Receptors through Blink Rate. Journal of Neuroscience, 2014, 34, 14443-14454.	1.7	135
681	Differential contributions of worry, anxiety, and obsessive compulsive symptoms to ERN amplitudes in response monitoring and reinforcement learning tasks. Neuropsychologia, 2014, 61, 197-209.	0.7	40
682	Dorsal striatum is necessary for stimulus-value but not action-value learning in humans. Brain, 2014, 137, 3129-3135.	3.7	24

#	Article	IF	CITATIONS
683	Involvement of Human Internal Globus Pallidus in the Early Modulation of Cortical Error-Related Activity. Cerebral Cortex, 2014, 24, 1502-1517.	1.6	19
684	A Reinforcement Learning Mechanism Responsible for the Valuation of Free Choice. Neuron, 2014, 83, 551-557.	3.8	76
685	Encoding of sequence boundaries in the subthalamic nucleus of patients with Parkinson's disease. Brain, 2014, 137, 2715-2730.	3.7	23
686	Two-phase model of the basal ganglia: implications for discontinuous control of the motor system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130489.	1.8	11
687	Inhibitory synapses between striatal projection neurons support efficient enhancement of cortical signals: A computational model. Journal of Computational Neuroscience, 2014, 37, 65-80.	0.6	3
688	Dreams, reality and memory: confabulations in lucid dreamers implicate reality-monitoring dysfunction in dream consciousness. Cognitive Neuropsychiatry, 2014, 19, 540-553.	0.7	22
689	Role of Dopamine D2 Receptors in Human Reinforcement Learning. Neuropsychopharmacology, 2014, 39, 2366-2375.	2.8	119
690	A comparison model of reinforcement-learning and win-stay-lose-shift decision-making processes: A tribute to W.K. Estes. Journal of Mathematical Psychology, 2014, 59, 41-49.	1.0	53
691	The role of learning-related dopamine signals in addiction vulnerability. Progress in Brain Research, 2014, 211, 31-77.	0.9	72
692	Neurophysiology of Performance Monitoring and Adaptive Behavior. Physiological Reviews, 2014, 94, 35-79.	13.1	484
693	From Experienced Utility to Decision Utility. , 2014, , 335-351.		25
694	Working Memory Contributions to Reinforcement Learning Impairments in Schizophrenia. Journal of Neuroscience, 2014, 34, 13747-13756.	1.7	175
695	Functional implications of dopamine D1 vs. D2 receptors: A †prepare and select†model of the striatal direct vs. indirect pathways. Neuroscience, 2014, 282, 156-175.	1.1	111
696	Developmental changes in performance monitoring: How electrophysiological data can enhance our understanding of error and feedback processing in childhood and adolescence. Behavioural Brain Research, 2014, 263, 122-132.	1.2	34
697	A neural network model of individual differences in task switching abilities. Neuropsychologia, 2014, 62, 375-389.	0.7	96
698	Decision-making under risk is improved by both dopaminergic medication and subthalamic stimulation in Parkinson's disease. Experimental Neurology, 2014, 254, 70-77.	2.0	37
699	Error signals in the subthalamic nucleus are related to post-error slowing in patients with Parkinson's disease. Cortex, 2014, 60, 103-120.	1.1	42
700	A model of reversal learning and working memory in medicated and unmedicated patients with Parkinson's disease. Journal of Mathematical Psychology, 2014, 59, 120-131.	1.0	2

#	Article	IF	Citations
701	Impulsive and Compulsive Behaviors in Parkinson's Disease. Annual Review of Clinical Psychology, 2014, 10, 553-580.	6.3	54
702	Impaired reward processing by anterior cingulate cortex in children with attention deficit hyperactivity disorder. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 698-714.	1.0	29
703	Striatal disorders dissociate mechanisms of enhanced and impaired response selection — Evidence from cognitive neurophysiology and computational modelling. NeuroImage: Clinical, 2014, 4, 623-634.	1.4	20
704	Attention shifting in Parkinson's disease: An analysis of behavioral and cortical responses Neuropsychology, 2014, 28, 929-944.	1.0	20
705	Interpretive conundrums when practice doesn't always make perfect. Movement Disorders, 2014, 29, 7-10.	2.2	1
706	Motivational Deficits in Schizophrenia and the Representation of Expected Value. Current Topics in Behavioral Neurosciences, 2015, 27, 375-410.	0.8	61
707	Predicting psychosis across diagnostic boundaries: Behavioral and computational modeling evidence for impaired reinforcement learning in schizophrenia and bipolar disorder with a history of psychosis Journal of Abnormal Psychology, 2015, 124, 697-708.	2.0	20
708	Reduced pupillary reward sensitivity in Parkinson's disease. Npj Parkinson's Disease, 2015, 1, 15026.	2.5	44
709	Apathy and noradrenaline. Current Opinion in Neurology, 2015, 28, 344-350.	1.8	20
710	Reinforcement Learning Performance and Risk for Psychosis in Youth. Journal of Nervous and Mental Disease, 2015, 203, 919-926.	0.5	22
711	The influence of reward and punishment on motor learning. Movement Disorders, 2015, 30, 1724-1724.	2.2	0
712	Decision-making and action selection in insects: inspiration from vertebrate-based theories. Frontiers in Behavioral Neuroscience, 2015, 9, 216.	1.0	28
713	A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making. Frontiers in Computational Neuroscience, 2015, 9, 76.	1.2	29
714	Dopamine, reward learning, and active inference. Frontiers in Computational Neuroscience, 2015, 9, 136.	1.2	80
715	Neuroimaging studies of striatum in cognition part II: Parkinson's disease. Frontiers in Systems Neuroscience, 2015, 9, 138.	1.2	33
716	Why do Parkinson's Disease Patients Sometimes Make Wrong Decisions?. Journal of Parkinson's Disease, 2015, 5, 637-642.	1.5	8
717	Consider the Source: Adolescents and Adults Similarly Follow Older Adult Advice More than Peer Advice. PLoS ONE, 2015, 10, e0128047.	1.1	19
718	Sex-dependent effects on tasks assessing reinforcement learning and interference inhibition. Frontiers in Psychology, 2015, 6, 1044.	1.1	41

#	Article	IF	CITATIONS
719	Biases in probabilistic category learning in relation to social anxiety. Frontiers in Psychology, 2015, 6, 1218.	1.1	12
720	Spontaneous default mode network phase-locking moderates performance perceptions under stereotype threat. Social Cognitive and Affective Neuroscience, 2015, 10, 994-1002.	1.5	13
721	The Challenge of Understanding the Brain: Where We Stand in 2015. Neuron, 2015, 86, 864-882.	3.8	78
722	Performance monitoring and empathy during active and observational learning in patients with major depression. Biological Psychology, 2015, 109, 222-231.	1.1	20
723	Interactions among attention-deficit hyperactivity disorder (ADHD) and problem gambling in a probabilistic reward-learning task. Behavioural Brain Research, 2015, 291, 237-243.	1.2	15
724	Active Inference, Evidence Accumulation, and the Urn Task. Neural Computation, 2015, 27, 306-328.	1.3	64
725	Computing rewardâ€prediction error: an integrated account of cortical timing and basalâ€ganglia pathways for appetitive and aversive learning. European Journal of Neuroscience, 2015, 42, 2003-2021.	1.2	12
726	Easy to learn, hard to suppress: The impact of learned stimulus–outcome associations on subsequent action control. Brain and Cognition, 2015, 101, 17-34.	0.8	7
727	Translational Assessment of Reward and Motivational Deficits in Psychiatric Disorders. Current Topics in Behavioral Neurosciences, 2015, 28, 231-262.	0.8	90
728	Reward processing in neurodegenerative disease. Neurocase, 2015, 21, 120-133.	0.2	43
729	Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes. NeuroImage, 2015, 109, 95-101.	2.1	131
7 30	POTENTIATED PROCESSING OF NEGATIVE FEEDBACK IN DEPRESSION IS ATTENUATED BY ANHEDONIA. Depression and Anxiety, 2015, 32, 296-305.	2.0	46
731	Age moderates the effect of acute dopamine depletion on passive avoidance learning. Pharmacology Biochemistry and Behavior, 2015, 131, 57-63.	1.3	4
732	Compensatory fronto-parietal hyperactivation during set-shifting in unmedicated patients with Parkinson's disease. Neuropsychologia, 2015, 68, 107-116.	0.7	42
733	Motivational modes and learning in Parkinson's disease. Social Cognitive and Affective Neuroscience, 2015, 10, 1066-1073.	1.5	8
734	Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1595-1600.	3.3	200
735	Experiential reward learning outweighs instruction prior to adulthood. Cognitive, Affective and Behavioral Neuroscience, 2015, 15, 310-320.	1.0	65
736	Dopa therapy and action impulsivity: subthreshold error activation and suppression in Parkinson's disease. Psychopharmacology, 2015, 232, 1735-1746.	1.5	15

#	Article	IF	CITATIONS
737	Dopamine midbrain neurons in health and Parkinson's disease: Emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels. Neuroscience, 2015, 284, 798-814.	1.1	118
738	The dissociable effects of punishment and reward on motor learning. Nature Neuroscience, 2015, 18, 597-602.	7.1	284
739	Impact of aging on frontostriatal reward processing. Human Brain Mapping, 2015, 36, 2305-2317.	1.9	40
740	The role of prediction and outcomes in adaptive cognitive control. Journal of Physiology (Paris), 2015, 109, 38-52.	2.1	28
741	Cognitive differences in horses performing locomotor versus oral stereotypic behaviour. Applied Animal Behaviour Science, 2015, 168, 37-44.	0.8	33
742	Translational Rodent Paradigms to Investigate Neuromechanisms Underlying Behaviors Relevant to Amotivation and Altered Reward Processing in Schizophrenia. Schizophrenia Bulletin, 2015, 41, 1024-1034.	2.3	43
743	Expectation modulates neural representations of valence throughout the human brain. NeuroImage, 2015, 115, 214-223.	2.1	12
744	Mechanisms Underlying Motivational Deficits in Psychopathology: Similarities and Differences in Depression and Schizophrenia. Current Topics in Behavioral Neurosciences, 2015, 27, 411-449.	0.8	159
745	The rat's not for turning: Dissociating the psychological components of cognitive inflexibility. Neuroscience and Biobehavioral Reviews, 2015, 56, 1-14.	2.9	48
746	Be quick about it. Endogenous estradiol level, menstrual cycle phase and trait impulsiveness predict impulsive choice in the context of reward acquisition. Hormones and Behavior, 2015, 74, 186-193.	1.0	41
747	Neuronal Reward and Decision Signals: From Theories to Data. Physiological Reviews, 2015, 95, 853-951.	13.1	800
748	Understanding the Influence of Parkinson Disease on Adolf Hitler's Decision-Making during World War II. World Neurosurgery, 2015, 84, 1447-1452.	0.7	8
749	Consent Through Rose-Tinted Glasses: The Optimistic Bias in Parkinson's Disease Clinical Trials. AJOB Neuroscience, 2015, 6, 63-64.	0.6	1
750	Dopamine and Consolidation of Episodic Memory: Timing Is Everything. Journal of Cognitive Neuroscience, 2015, 27, 2035-2050.	1.1	21
751	Rapid feedback processing in human nucleus accumbens and motor thalamus. Neuropsychologia, 2015, 70, 246-254.	0.7	6
752	Spontaneous eye blink rate predicts learning from negative, but not positive, outcomes. Neuropsychologia, 2015, 71, 126-132.	0.7	59
753	The impact of stress on feedback and error processing during behavioral adaptation. Neuropsychologia, 2015, 71, 181-190.	0.7	15
754	Rodent Models of Treatment-Related Complications in Parkinson Disease., 2015,, 373-386.		О

#	Article	IF	CITATIONS
755	Motivation–cognition interaction: how feedback processing changes in healthy ageing and in Parkinson's disease. Aging Clinical and Experimental Research, 2015, 27, 911-920.	1.4	19
756	Do learning rates adapt to the distribution of rewards?. Psychonomic Bulletin and Review, 2015, 22, 1320-1327.	1.4	91
758	Decision-making and feedback sensitivity: A comparison between older and younger adults. Journal of Cognitive Psychology, 2015, 27, 882-897.	0.4	6
759	Modeling fMRI signals can provide insights into neural processing in the cerebral cortex. Journal of Neurophysiology, 2015, 114, 768-780.	0.9	8
760	Deep brain stimulation of the subthalamic nucleus modulates reward processing and action selection in Parkinson patients. Journal of Neurology, 2015, 262, 1541-1547.	1.8	25
761	Reward-Dependent Modulation of Movement Variability. Journal of Neuroscience, 2015, 35, 4015-4024.	1.7	147
762	Dopamine D2-Receptor Blockade Enhances Decoding of Prefrontal Signals in Humans. Journal of Neuroscience, 2015, 35, 4104-4111.	1.7	36
763	Learning the opportunity cost of time in a patch-foraging task. Cognitive, Affective and Behavioral Neuroscience, 2015, 15, 837-853.	1.0	141
765	Feedback-Driven Trial-by-Trial Learning in Autism Spectrum Disorders. American Journal of Psychiatry, 2015, 172, 173-181.	4.0	36
766	Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: A model for early Parkinson's disease. Neuroscience Research, 2015, 92, 71-79.	1.0	10
767	Phasic dopamine release induced by positive feedback predicts individual differences in reversal learning. Neurobiology of Learning and Memory, 2015, 125, 135-145.	1.0	36
768	A Direct Path to Action Initiation. Neuron, 2015, 88, 240-241.	3.8	6
769	Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach–Avoidance Learning and Encoding of Positive–Negative Prediction Errors in Dopaminergic Midbrain Regions. Journal of Neuroscience, 2015, 35, 14491-14500.	1.7	38
770	Abnormal modulation of reward versus punishment learning by a dopamine D2-receptor antagonist in pathological gamblers. Psychopharmacology, 2015, 232, 3345-3353.	1.5	28
771	Opponent Identity Influences Value Learning in Simple Games. Journal of Neuroscience, 2015, 35, 11133-11143.	1.7	7
772	Computational neurostimulation for Parkinson's disease. Progress in Brain Research, 2015, 222, 163-190.	0.9	11
773	The good, the bad and the brain: neural correlates of appetitive and aversive values underlying decision making. Current Opinion in Behavioral Sciences, 2015, 5, 78-84.	2.0	59
774	The C957T polymorphism in the dopamine receptor D ₂ gene modulates domain-general category learning. Journal of Neurophysiology, 2015, 113, 3281-3290.	0.9	8

#	Article	IF	CITATIONS
775	The Neurobiology of Motivational Deficits in Depressionâ€"An Update on Candidate Pathomechanisms. Current Topics in Behavioral Neurosciences, 2015, 27, 337-355.	0.8	43
776	Rethinking Extinction. Neuron, 2015, 88, 47-63.	3.8	227
777	Age-related changes in deterministic learning from positive versus negative performance feedback. Aging, Neuropsychology, and Cognition, 2015, 22, 595-619.	0.7	21
778	Contextual modulation of value signals in reward and punishment learning. Nature Communications, 2015, 6, 8096.	5.8	204
779	Dopaminergic Modulation of Decision Making and Subjective Well-Being. Journal of Neuroscience, 2015, 35, 9811-9822.	1.7	174
780	An Obesity-Predisposing Variant of the FTO Gene Regulates D2R-Dependent Reward Learning. Journal of Neuroscience, 2015, 35, 12584-12592.	1.7	75
781	Differential contributions of the globus pallidus and ventral thalamus to stimulus–response learning in humans. NeuroImage, 2015, 122, 233-245.	2.1	18
782	Atypical Learning in Autism Spectrum Disorders: AÂFunctional Magnetic Resonance Imaging Study of Transitive Inference. Journal of the American Academy of Child and Adolescent Psychiatry, 2015, 54, 947-955.	0.3	22
784	Dopamine enhances willingness to exert effort for reward in Parkinson's disease. Cortex, 2015, 69, 40-46.	1.1	211
785	Different effects of dopaminergic medication on perceptual decision-making in Parkinson's disease as a function of task difficulty and speed–accuracy instructions. Neuropsychologia, 2015, 75, 577-587.	0.7	39
786	Contradictory "heuristic―theories of autism spectrum disorders: The case for theoretical precision using computational models. Autism, 2015, 19, 367-368.	2.4	1
787	Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex. Cerebral Cortex, 2015, 25, 3629-3639.	1.6	20
788	Processing of action- but not stimulus-related prediction errors differs between active and observational feedback learning. Neuropsychologia, 2015, 66, 75-87.	0.7	15
789	Evidence Accumulation in Obsessive-Compulsive Disorder: the Role of Uncertainty and Monetary Reward on Perceptual Decision-Making Thresholds. Neuropsychopharmacology, 2015, 40, 1192-1202.	2.8	88
790	Widespread Monoaminergic Dysregulation of Both Motor and Non-Motor Circuits in Parkinsonism and Dyskinesia. Cerebral Cortex, 2015, 25, 2783-2792.	1.6	42
791	Probabilistic reward learning in adults with Attention Deficit Hyperactivity Disorder—An electrophysiological study. Psychiatry Research, 2015, 225, 133-144.	1.7	21
792	Dopaminergic Circuitry and Risk/Reward Decision Making: Implications for Schizophrenia. Schizophrenia Bulletin, 2015, 41, 9-14.	2.3	38
793	From the Reward Circuit to the Valuation System: How the Brain Motivates Behavior. , 2015, , 157-173.		9

#	Article	lF	Citations
794	Transcranial direct current stimulation over the left prefrontal cortex increases randomness of choice in instrumental learning. Cortex, 2015, 63, 145-154.	1.1	17
796	Rewarding feedback promotes motor skill consolidation via striatal activity. Progress in Brain Research, 2016, 229, 303-323.	0.9	42
797	Selective Increase of Auditory Cortico-Striatal Coherence during Auditory-Cued Go/NoGo Discrimination Learning. Frontiers in Behavioral Neuroscience, 2015, 9, 368.	1.0	10
798	Dopamine Replacement Therapy, Learning and Reward Prediction in Parkinson's Disease: Implications for Rehabilitation. Frontiers in Behavioral Neuroscience, 2016, 10, 121.	1.0	16
799	Dopaminergic Medication Modulates Learning from Feedback and Error-Related Negativity in Parkinson's Disease: A Pilot Study. Frontiers in Behavioral Neuroscience, 2016, 10, 205.	1.0	10
800	Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity. Frontiers in Neural Circuits, 2016, 10, 53.	1.4	16
801	Action Experience and Action Discovery in Medicated Individuals with Parkinson's Disease. Frontiers in Human Neuroscience, 2016, 10, 427.	1.0	2
802	Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia. Frontiers in Human Neuroscience, 2016, 10, 450.	1.0	8
803	Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning. Frontiers in Neuroscience, 2016, 10, 106.	1.4	34
804	Learning Reward Uncertainty in the Basal Ganglia. PLoS Computational Biology, 2016, 12, e1005062.	1.5	74
805	Preparing for (valenced) action: The role of differential effort in the orthogonalized go/noâ€go task. Psychophysiology, 2016, 53, 186-197.	1,2	12
806	The Neuroscience of Human Decision-Making Through the Lens of Learning and Memory. Current Topics in Behavioral Neurosciences, 2016, 37, 231-251.	0.8	14
807	The Allure of High-Risk Rewards in Huntington's disease. Journal of the International Neuropsychological Society, 2016, 22, 426-435.	1.2	8
808	Reappraising striatal D1- and D2-neurons in reward and aversion. Neuroscience and Biobehavioral Reviews, 2016, 68, 370-386.	2.9	125
809	Multi-facetted impulsivity following nigral degeneration and dopamine replacement therapy. Neuropharmacology, 2016, 109, 69-77.	2.0	35
810	Feedback learning and behavior problems after pediatric traumatic brain injury. Psychological Medicine, 2016, 46, 1473-1484.	2.7	4
811	The left hemisphere learns what is right: Hemispatial reward learning depends on reinforcement learning processes in the contralateral hemisphere. Neuropsychologia, 2016, 89, 1-13.	0.7	13
812	Implicit Working Memory: Implications for Assessment and Treatment. Applied Neuropsychology: Child, 2016, 5, 223-234.	0.7	7

#	Article	IF	CITATIONS
813	Strategies in probabilistic feedback learning in Parkinson patients OFF medication. Neuroscience, 2016, 320, 8-18.	1.1	9
814	Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity. Physiology and Behavior, 2016, 162, 37-45.	1.0	84
815	Direct and indirect dorsolateral striatum pathways reinforce different action strategies. Current Biology, 2016, 26, R267-R269.	1.8	106
816	Executive functioning and risk-taking behavior in Parkinson's disease patients with impulse control disorders. Journal of Neural Transmission, 2016, 123, 573-581.	1.4	17
817	Drug addiction: An affective-cognitive disorder in need of a cure. Neuroscience and Biobehavioral Reviews, 2016, 65, 341-361.	2.9	44
818	Motivational Context Modulates Prediction Error Response in Schizophrenia. Schizophrenia Bulletin, 2016, 42, 1467-1475.	2.3	37
819	Dopamine Increases a Value-Independent Gambling Propensity. Neuropsychopharmacology, 2016, 41, 2658-2667.	2.8	58
820	The single intake of levodopa modulates implicit learning in drug naÃ⁻ve, de novo patients with idiopathic Parkinson's disease. Journal of Neural Transmission, 2016, 123, 601-610.	1.4	9
821	Reinforcement learning with Marr. Current Opinion in Behavioral Sciences, 2016, 11, 67-73.	2.0	34
822	Working memory filtering continues to develop into late adolescence. Developmental Cognitive Neuroscience, 2016, 18, 78-88.	1.9	17
823	Striatal structure and function predict individual biases in learning to avoid pain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4812-4817.	3.3	63
824	Effects of the modern food environment on striatal function, cognition and regulation of ingestive behavior. Current Opinion in Behavioral Sciences, 2016, 9, 97-105.	2.0	12
825	Resting-state qEEG predicts rate of second language learning in adults. Brain and Language, 2016, 157-158, 44-50.	0.8	71
826	Mild Reinforcement Learning Deficits in Patients With First-Episode Psychosis. Schizophrenia Bulletin, 2016, 42, 1476-1485.	2.3	26
827	To work or not to work. Progress in Brain Research, 2016, 229, 125-157.	0.9	13
828	Modelling ADHD: A review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning. Neuroscience and Biobehavioral Reviews, 2016, 71, 633-656.	2.9	86
829	Dopamine and temporal attention: An attentional blink study in Parkinson's disease patients on and off medication. Neuropsychologia, 2016, 91, 407-414.	0.7	17
830	Probabilistic Reinforcement Learning in Patients With Schizophrenia: Relationships to Anhedonia and Avolition. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 460-473.	1.1	79

#	Article	IF	Citations
831	Reward sensitivity deficits modulated by dopamine are associated with apathy in Parkinson's disease. Brain, 2016, 139, 2706-2721.	3.7	96
832	Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes. Analytical Chemistry, 2016, 88, 8129-8136.	3.2	41
833	The costs and benefits of brain dopamine for cognitive control. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 317-329.	1.4	83
834	Time on timing: Dissociating premature responding from interval sensitivity in Parkinson's disease. Movement Disorders, 2016, 31, 1163-1172.	2.2	20
835	Neuroscience: Incepting Associations. Current Biology, 2016, 26, R673-R675.	1.8	6
836	Event-related potentials and cognition in Parkinson's disease: An integrative review. Neuroscience and Biobehavioral Reviews, 2016, 71, 691-714.	2.9	77
837	Expectancy affects the feedbackâ€related negativity (FRN) for delayed feedback in probabilistic learning. Psychophysiology, 2016, 53, 1739-1750.	1.2	42
838	Dopaminergic Genetic Polymorphisms Predict Rule-based Category Learning. Journal of Cognitive Neuroscience, 2016, 28, 959-970.	1.1	3
839	The Role of Feedback in Learning and Motivation. Advances in Motivation and Achievement: A Research Annual, 2016, , 175-202.	0.3	20
840	Unmasking levodopa resistance in Parkinson's disease. Movement Disorders, 2016, 31, 1602-1609.	2.2	80
841	Neuroscience: Impaired Decision-Making in Parkinson's Disease. Current Biology, 2016, 26, R671-R673.	1.8	17
842	Basal Ganglia dysfunctions in movement disorders: What can be learned from computational simulations. Movement Disorders, 2016, 31, 1591-1601.	2.2	29
843	Neurobiological Basis of Language Learning Difficulties. Trends in Cognitive Sciences, 2016, 20, 701-714.	4.0	164
844	Behavioral and Neural Signatures of Reduced Updating of Alternative Options in Alcohol-Dependent Patients during Flexible Decision-Making. Journal of Neuroscience, 2016, 36, 10935-10948.	1.7	66
845	Anatomy and Function of the Direct and Indirect Striatal Pathways. Innovations in Cognitive Neuroscience, 2016, , 47-67.	0.3	2
846	From Laboratory to Clinic and Back: Connecting Neuroeconomic and Clinical Measures of Decision-Making Dysfunctions., 2016,, 39-52.		1
847	Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson's disease. Scientific Reports, 2016, 6, 32509.	1.6	17
848	Striatal prediction errors support dynamic control of declarative memory decisions. Nature Communications, 2016, 7, 13061.	5.8	16

#	Article	IF	Citations
849	Dopamine disruption increases negotiation for cooperative interactions in a fish. Scientific Reports, 2016, 6, 20817.	1.6	32
850	Go and NoGo: modulation of electrophysiological correlates by female sex steroid hormones. Psychopharmacology, 2016, 233, 2607-2615.	1.5	8
851	Patients with Parkinson's Disease Show Impaired Use of Priors in Conditions of Sensory Uncertainty. Current Biology, 2016, 26, 1902-1910.	1.8	43
852	Memory-reliant Post-error Slowing Is Associated with Successful Learning and Fronto-occipital Activity. Journal of Cognitive Neuroscience, 2016, 28, 1539-1552.	1.1	4
853	Atypical valuation of monetary and cigarette rewards in substance dependent smokers. Clinical Neurophysiology, 2016, 127, 1358-1365.	0.7	31
854	Carrots and sticks fail to change behavior in cocaine addiction. Science, 2016, 352, 1468-1471.	6.0	189
855	Acute effects of cocaine and cannabis on reversal learning as a function of COMT and DRD2 genotype. Psychopharmacology, 2016, 233, 199-211.	1.5	20
856	Levodopa impairs probabilistic reversal learning in healthy young adults. Psychopharmacology, 2016, 233, 2753-2763.	1.5	36
857	Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning. Journal of Neuroscience, 2016, 36, 1211-1222.	1.7	95
858	Distinct effects of dopamine vs STN stimulation therapies in associative learning and retention in Parkinson disease. Behavioural Brain Research, 2016, 302, 131-141.	1.2	6
859	The effects of methylphenidate on cerebral responses to conflict anticipation and unsigned prediction error in a stop-signal task. Journal of Psychopharmacology, 2016, 30, 283-293.	2.0	13
860	Fatty acid amide supplementation decreases impulsivity in young adult heavy drinkers. Physiology and Behavior, 2016, 155, 131-140.	1.0	10
861	Valence-dependent influence of serotonin depletion on model-based choice strategy. Molecular Psychiatry, 2016, 21, 624-629.	4.1	64
862	Forming Beliefs: Why Valence Matters. Trends in Cognitive Sciences, 2016, 20, 25-33.	4.0	207
863	Reward Sensitivity of ACC as an Intermediate Phenotype between DRD4-521T and Substance Misuse. Journal of Cognitive Neuroscience, 2016, 28, 460-471.	1.1	28
864	Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature, 2016, 531, 642-646.	13.7	178
865	Development and function of the midbrain dopamine system: what we know and what we need to. Genes, Brain and Behavior, 2016, 15, 62-73.	1.1	93
866	Striatal Dopamine, Externalizing Proneness, and Substance Abuse. Clinical Psychological Science, 2016, 4, 760-774.	2.4	12

#	Article	IF	CITATIONS
867	Expanding the role of striatal cholinergic interneurons and the midbrain dopamine system in appetitive instrumental conditioning. Journal of Neurophysiology, 2016, 115, 240-254.	0.9	13
868	Hippocampus and Prefrontal Cortex Predict Distinct Timescales of Activation in the Human Ventral Tegmental Area. Cerebral Cortex, 2017, 27, bhw005.	1.6	22
869	Intraduodenal levodopa-carbidopa intestinal gel infusion improves both motor performance and quality of life in advanced Parkinson's disease. Journal of Clinical Neuroscience, 2016, 25, 41-45.	0.8	38
870	Dopamine improves exploration after expectancy violations and induces psychotic-like experiences in patients with Parkinson's disease. Neuroscience Letters, 2016, 616, 132-137.	1.0	5
871	Dopamine Modulation of Intertemporal Decision-making: Evidence from Parkinson Disease. Journal of Cognitive Neuroscience, 2016, 28, 657-667.	1,1	25
872	Reducing failures of working memory with performance feedback. Psychonomic Bulletin and Review, 2016, 23, 1520-1527.	1.4	16
873	Prospective and Pavlovian mechanisms in aversive behaviour. Cognition, 2016, 146, 415-425.	1.1	17
874	Dopamine selectively remediates †model-based' reward learning: a computational approach. Brain, 2016, 139, 355-364.	3.7	111
875	Cognition and resting-state functional connectivity in schizophrenia. Neuroscience and Biobehavioral Reviews, 2016, 61, 108-120.	2.9	261
876	Menstrual cycle phase modulates reward sensitivity and performance monitoring in young women: Preliminary fMRI evidence. Neuropsychologia, 2016, 84, 70-80.	0.7	51
877	Probabilistic reward- and punishment-based learning in opioid addiction: Experimental and computational data. Behavioural Brain Research, 2016, 296, 240-248.	1,2	51
878	Dopamine modulation of spatial navigation memory in Parkinson's Âdisease. Neurobiology of Aging, 2016, 38, 93-103.	1.5	28
879	Processing of Positive and Negative Feedback in Patients with Cerebellar Lesions. Cerebellum, 2016, 15, 425-438.	1.4	13
880	Dopamine induces an optimism bias in rats—Pharmacological proof for the translational validity of the ambiguous-cue interpretation test. Behavioural Brain Research, 2016, 297, 84-90.	1.2	8
881	Impaired and preserved aspects of feedback learning in aMCI: contributions of structural connectivity. Brain Structure and Function, 2016, 221, 2831-2846.	1.2	18
882	Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex. Cerebellum, 2017, 16, 203-229.	1.4	321
883	Impaired Flexible Reward-Based Decision-Making in Binge Eating Disorder: Evidence from Computational Modeling and Functional Neuroimaging. Neuropsychopharmacology, 2017, 42, 628-637.	2.8	83
884	Opposing effects of acute and chronic d-amphetamine on decision-making in rats. Neuroscience, 2017, 345, 218-228.	1.1	14

#	Article	IF	CITATIONS
885	Dopamine Selectively Modulates the Outcome of Learning Unnatural Action–Valence Associations. Journal of Cognitive Neuroscience, 2017, 29, 816-826.	1.1	8
886	Tracking control of nonaffine systems using bio-inspired networks with auto-tuning activation functions and self-growing neurons. Information Sciences, 2017, 388-389, 191-208.	4.0	1
887	Striatal dopamine D1 receptor suppression impairs reward-associative learning. Behavioural Brain Research, 2017, 323, 100-110.	1.2	23
888	Disrupted iron regulation in the brain and periphery in cocaine addiction. Translational Psychiatry, 2017, 7, e1040-e1040.	2.4	47
889	Fractionating impulsivity: neuropsychiatric implications. Nature Reviews Neuroscience, 2017, 18, 158-171.	4.9	438
890	Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum. Journal of Neuroscience, 2017, 37, 1708-1720.	1.7	91
891	Comparing the effects of positive and negative feedback in information-integration category learning. Memory and Cognition, 2017, 45, 12-25.	0.9	23
892	Is the expression of stereotypic behavior a performance-limiting factor in animals?. Journal of Veterinary Behavior: Clinical Applications and Research, 2017, 20, 1-10.	0.5	14
893	Learning new sequential stepping patterns requires striatal plasticity during the earliest phase of acquisition. European Journal of Neuroscience, 2017, 45, 901-911.	1.2	20
894	Clinical Applications of Stochastic Dynamic Models of the Brain, Part II: A Review. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 225-234.	1.1	13
895	Top-down control over feedback processing: The probability of valid feedback affects feedback-related brain activity. Brain and Cognition, 2017, 115, 33-40.	0.8	10
896	Ventral striatal activity links adversity and reward processing in children. Developmental Cognitive Neuroscience, 2017, 26, 20-27.	1.9	18
897	Dorsolateral prefrontal cortex contributes to the impaired behavioral adaptation in alcohol dependence. NeuroImage: Clinical, 2017, 15, 80-94.	1.4	42
898	Separating the effect of reward from corrective feedback during learning in patients with Parkinson's disease. Cognitive, Affective and Behavioral Neuroscience, 2017, 17, 678-695.	1.0	8
899	Reward Prediction Errors in Drug Addiction and Parkinson's Disease: from Neurophysiology to Neuroimaging. Current Neurology and Neuroscience Reports, 2017, 17, 46.	2.0	23
900	Pramipexole Modulates Interregional Connectivity Within the Sensorimotor Network. Brain Connectivity, 2017, 7, 258-263.	0.8	9
901	Mechanisms of automaticity and anticipatory control in fluid intelligence. Applied Neuropsychology: Child, 2017, 6, 212-223.	0.7	6
902	Striatal dopaminergic modulation of reinforcement learning predicts rewardâ€"oriented behavior in daily life. Biological Psychology, 2017, 127, 1-9.	1.1	60

#	Article	IF	Citations
903	Placebo Intervention Enhances Reward Learning in Healthy Individuals. Scientific Reports, 2017, 7, 41028.	1.6	15
904	Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson's disease phenotypes. Neurobiology of Disease, 2017, 104, 15-23.	2.1	65
905	Acting without being in control: Exploring volition in Parkinson's disease with impulsive compulsive behaviours. Parkinsonism and Related Disorders, 2017, 40, 51-57.	1.1	21
906	A Transdiagnostic Review of Negative Symptom Phenomenology and Etiology. Schizophrenia Bulletin, 2017, 43, 712-719.	2.3	146
907	Striatal changes underlie MPEP-mediated suppression of the acquisition and expression of pramipexole-induced place preference in an alpha-synuclein rat model of Parkinson's disease. Journal of Psychopharmacology, 2017, 31, 1323-1333.	2.0	7
908	Learning relative values in the striatum induces violations of normative decision making. Nature Communications, 2017, 8, 16033.	5.8	66
909	Association between habenula dysfunction and motivational symptoms in unmedicated major depressive disorder. Social Cognitive and Affective Neuroscience, 2017, 12, 1520-1533.	1.5	58
910	Explicit and implicit reinforcement learning across the psychosis spectrum Journal of Abnormal Psychology, 2017, 126, 694-711.	2.0	65
911	A Selective Role for Dopamine in Learning to Maximize Reward But Not to Minimize Effort: Evidence from Patients with Parkinson's Disease. Journal of Neuroscience, 2017, 37, 6087-6097.	1.7	48
912	Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia. Biological Psychiatry, 2017, 82, 431-439.	0.7	88
913	Cognitive states influence dopamine-driven aberrant learning in Parkinson's disease. Cortex, 2017, 90, 115-124.	1.1	17
914	Reward learning deficits in Parkinson's disease depend on depression. Psychological Medicine, 2017, 47, 2302-2311.	2.7	16
915	Individual differences in the Simon effect are underpinned by differences in the competitive dynamics in the basal ganglia: An experimental verification and a computational model. Cognition, 2017, 164, 31-45.	1.1	25
916	Motivational neural circuits underlying reinforcement learning. Nature Neuroscience, 2017, 20, 505-512.	7.1	144
917	Reward Processing, Neuroeconomics, and Psychopathology. Annual Review of Clinical Psychology, 2017, 13, 471-495.	6.3	109
918	The association between endogenous testosterone level and behavioral flexibility in young men – Evidence from stimulus-outcome reversal learning. Hormones and Behavior, 2017, 89, 193-200.	1.0	6
919	Working Memory Load Strengthens Reward Prediction Errors. Journal of Neuroscience, 2017, 37, 4332-4342.	1.7	81
920	Stress and decision making: effects on valuation, learning, and risk-taking. Current Opinion in Behavioral Sciences, 2017, 14, 33-39.	2.0	121

#	Article	IF	CITATIONS
921	Computational approaches to schizophrenia: A perspective on negative symptoms. Schizophrenia Research, 2017, 186, 46-54.	1.1	27
922	The drift diffusion model as the choice rule in reinforcement learning. Psychonomic Bulletin and Review, 2017, 24, 1234-1251.	1.4	186
924	Stress attenuates the flexible updating of aversive value. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11241-11246.	3.3	51
925	Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson's disease. Movement Disorders, 2017, 32, 1710-1719.	2.2	54
926	A possible correlation between the basal ganglia motor function and the inverse kinematics calculation. Journal of Computational Neuroscience, 2017, 43, 295-318.	0.6	7
927	Comprehensive review: Computational modelling of schizophrenia. Neuroscience and Biobehavioral Reviews, 2017, 83, 631-646.	2.9	62
928	Dopaminergic medication increases reliance on current information in Parkinson's disease. Nature Human Behaviour, 2017, 1, 0129.	6.2	24
929	Specific effect of a dopamine partial agonist on counterfactual learning: evidence from Gilles de la Tourette syndrome. Scientific Reports, 2017, 7, 6292.	1.6	10
930	Bandit Models of Human Behavior: Reward Processing in Mental Disorders. Lecture Notes in Computer Science, 2017, , 237-248.	1.0	5
201			
931	Neuroscience: Connectivity mapping and behaviour. Nature Human Behaviour, 2017, 1, .	6.2	1
931	Neuroscience: Connectivity mapping and behaviour. Nature Human Behaviour, 2017, 1, . The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations. Journal of the International Neuropsychological Society, 2017, 23, 768-777.	1.2	4
	The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive		
933	The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations. Journal of the International Neuropsychological Society, 2017, 23, 768-777. What's in a word? How instructions, suggestions, and social information change pain and emotion.	1.2	4
933 934	The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations. Journal of the International Neuropsychological Society, 2017, 23, 768-777. What's in a word? How instructions, suggestions, and social information change pain and emotion. Neuroscience and Biobehavioral Reviews, 2017, 81, 29-42. Dopamine and light: effects on facial emotion recognition. Journal of Psychopharmacology, 2017, 31,	1.2 2.9	109
933 934 935	The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations. Journal of the International Neuropsychological Society, 2017, 23, 768-777. What's in a word? How instructions, suggestions, and social information change pain and emotion. Neuroscience and Biobehavioral Reviews, 2017, 81, 29-42. Dopamine and light: effects on facial emotion recognition. Journal of Psychopharmacology, 2017, 31, 1225-1233. Transcranial Direct Current Stimulation (tDCS) of the Anterior Prefrontal Cortex (aPFC) Modulates Reinforcement Learning and Decision-Making Under Uncertainty: a Double-Blind Crossover Study.	1.2 2.9 2.0	4 109 5
933 934 935 936	The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations. Journal of the International Neuropsychological Society, 2017, 23, 768-777. What's in a word? How instructions, suggestions, and social information change pain and emotion. Neuroscience and Biobehavioral Reviews, 2017, 81, 29-42. Dopamine and light: effects on facial emotion recognition. Journal of Psychopharmacology, 2017, 31, 1225-1233. Transcranial Direct Current Stimulation (tDCS) of the Anterior Prefrontal Cortex (aPFC) Modulates Reinforcement Learning and Decision-Making Under Uncertainty: a Double-Blind Crossover Study. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2017, 1, 318-326.	1.2 2.9 2.0	410957
933 934 935 936	The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations. Journal of the International Neuropsychological Society, 2017, 23, 768-777. Whatâ∈™s in a word? How instructions, suggestions, and social information change pain and emotion. Neuroscience and Biobehavioral Reviews, 2017, 81, 29-42. Dopamine and light: effects on facial emotion recognition. Journal of Psychopharmacology, 2017, 31, 1225-1233. Transcranial Direct Current Stimulation (tDCS) of the Anterior Prefrontal Cortex (aPFC) Modulates Reinforcement Learning and Decision-Making Under Uncertainty: a Double-Blind Crossover Study. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2017, 1, 318-326. Cognition in Parkinson's Disease. International Review of Neurobiology, 2017, 133, 557-583.	1.2 2.9 2.0 0.8	4 109 5 7 51

#	Article	IF	CITATIONS
941	Dopaminergic Enhancement of Striatal Response to Reward in Major Depression. American Journal of Psychiatry, 2017, 174, 378-386.	4.0	100
942	Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology, 2017, 42, 216-241.	2.8	272
943	Pramipexole induced place preference after L-dopa therapy and nigral dopaminergic loss: linking behavior to transcriptional modifications. Psychopharmacology, 2017, 234, 15-27.	1.5	6
944	Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework. Annual Review of Psychology, 2017, 68, 101-128.	9.9	280
945	Modafinil alters decision making based on feedback history – a randomized placebo-controlled double blind study in humans. Journal of Psychopharmacology, 2017, 31, 243-249.	2.0	7
946	Learning, Reward, and Decision Making. Annual Review of Psychology, 2017, 68, 73-100.	9.9	328
947	Associations between Electrophysiological Evidence of Reward and Punishment-Based Learning and Psychotic Experiences and Social Anhedonia in At-Risk Groups. Neuropsychopharmacology, 2017, 42, 925-932.	2.8	7
948	The role of dopamine in positive and negative prediction error utilization during incidental learning – Insights from Positron Emission Tomography, Parkinson's disease and Huntington's disease. Cortex, 2017, 90, 149-162.	1.1	19
949	Chronic administration of the dopamine D2/3 agonist ropinirole invigorates performance of a rodent slot machine task, potentially indicative of less distractible or compulsive-like gambling behaviour. Psychopharmacology, 2017, 234, 137-153.	1.5	21
950	Decision-making performance in Parkinson's disease correlates with lateral orbitofrontal volume. Journal of the Neurological Sciences, 2017, 372, 232-238.	0.3	20
951	Neural Circuits Trained with Standard Reinforcement Learning Can Accumulate Probabilistic Information during Decision Making. Neural Computation, 2017, 29, 368-393.	1.3	2
952	Acute Δ-9-tetrahydrocannabinol administration in female rats attenuates immediate responses following losses but not multi-trial reinforcement learning from wins. Behavioural Brain Research, 2017, 335, 136-144.	1.2	4
953	Neurobiological fundamentals of strategy change â€" A core competence of a companion system. , 2017, , .		1
954	Low Cognitive Impulsivity Is Associated with Better Gain and Loss Learning in a Probabilistic Decision-Making Task. Frontiers in Psychology, 2017, 8, 204.	1.1	14
955	I Don't Want to Miss a Thing – Learning Dynamics and Effects of Feedback Type and Monetary Incentive in a Paired Associate Deterministic Learning Task. Frontiers in Psychology, 2017, 8, 935.	1.1	2
956	Modeling Trait Anxiety: From Computational Processes to Personality. Frontiers in Psychiatry, 2017, 8, 1.	1.3	133
957	Depression Reduces Accuracy While Parkinsonism Slows Response Time for Processing Positive Feedback in Patients with Parkinson's Disease with Comorbid Major Depressive Disorder Tested on a Probabilistic Category-Learning Task. Frontiers in Psychiatry, 2017, 8, 84.	1.3	16
958	Impaired Feedback Processing for Symbolic Reward in Individuals with Internet Game Overuse. Frontiers in Psychiatry, 2017, 8, 195.	1.3	5

#	Article	IF	Citations
959	Adenosine Control of Striatal Functionâ€"Implications for the Treatment of Apathy in Basal Ganglia Disorders. , 2017, , 231-255.		2
960	Opponent Brain Systems for Reward and Punishment Learning. , 2017, , 291-303.		38
961	Impulsivity in Patients with Parkinson's Disease. Journal of Biomedical and Clinical Research, 2017, 10, 3-8.	0.1	0
962	Distinct Functions of the Primate Putamen Direct and Indirect Pathways in Adaptive Outcome-Based Action Selection. Frontiers in Neuroanatomy, 2017, 11, 66.	0.9	14
963	A Neurocomputational Model of the Effect of Cognitive Load on Freezing of Gait in Parkinson's Disease. Frontiers in Human Neuroscience, 2016, 10, 649.	1.0	17
964	Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning. Frontiers in Neuroscience, 2017, 11, 598.	1.4	12
965	Management of Psychosis in Parkinson's Disease: Emphasizing Clinical Subtypes and Pathophysiological Mechanisms of the Condition. Parkinson's Disease, 2017, 2017, 1-18.	0.6	29
966	Effects of dopamine on reinforcement learning and consolidation in Parkinson's disease. ELife, 2017, 6,	2.8	52
967	Reward and punishment learning in daily life: A replication study. PLoS ONE, 2017, 12, e0180753.	1.1	7
968	Individual differences in eye blink rate predict both transient and tonic pupil responses during reversal learning. PLoS ONE, 2017, 12, e0185665.	1.1	13
969	Reward and Decision Encoding in Basal Ganglia., 2017,, 59-69.		0
970	Procedural Learning in Humans â~†., 2017, , 295-312.		22
971	The Subthalamic Nucleus in Impulsivity. , 2017, , 315-325.		2
972	Decision-Making and Impulse Control DisordersÂin Parkinson's Disease. , 2017, , 305-314.		5
973	A neuronal mechanism underlying decision-making deficits during hyperdopaminergic states. Nature Communications, 2018, 9, 731.	5.8	56
974	Translational Assessments of Reward and Anhedonia: A Tribute to Athina Markou. Biological Psychiatry, 2018, 83, 932-939.	0.7	29
975	Human performance across decision making, selective attention, and working memory tasks: Experimental data and computer simulations. Data in Brief, 2018, 17, 907-914.	0.5	2
976	A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Scientific Data, 2018, 5, 180063.	2.4	312

#	Article	IF	CITATIONS
977	Insights into Parkinson's disease from computational models of the basal ganglia. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1181-1188.	0.9	54
979	Selective effects of 5-HT2C receptor modulation on performance of a novel valence-probe visual discrimination task and probabilistic reversal learning in mice. Psychopharmacology, 2018, 235, 2101-2111.	1.5	25
980	Nonequivalent modulation of corticospinal excitability by positive and negative outcomes. Brain and Behavior, 2018, 8, e00862.	1.0	6
981	Separate neural representations of prediction error valence and surprise: Evidence from an fMRI metaâ€analysis. Human Brain Mapping, 2018, 39, 2887-2906.	1.9	113
982	A tutorial on joint models of neural and behavioral measures of cognition. Journal of Mathematical Psychology, 2018, 84, 20-48.	1.0	43
983	Dopamine modulates striatal response to reward and punishment in patients with Parkinson's disease. NeuroReport, 2018, 29, 532-540.	0.6	7
984	When decisions talk: computational phenotyping of motivation disorders. Current Opinion in Behavioral Sciences, 2018, 22, 50-58.	2.0	8
985	A model-based quantification of action control deficits in Parkinson's disease. Neuropsychologia, 2018, 111, 26-35.	0.7	8
986	Stress Elevates Frontal Midline Theta in Feedback-based Category Learning of Exceptions. Journal of Cognitive Neuroscience, 2018, 30, 799-813.	1.1	5
987	The neurobiology of impulse control disorders in Parkinson's disease: from neurotransmitters to neural networks. Cell and Tissue Research, 2018, 373, 327-336.	1.5	31
988	The effects of theta burst stimulation (TBS) targeting the prefrontal cortex on executive functioning: A systematic review and meta-analysis. Neuropsychologia, 2018, 111, 344-359.	0.7	92
989	Differential coding of reward and movement information in the dorsomedial striatal direct and indirect pathways. Nature Communications, 2018, 9, 404.	5.8	63
990	Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning. Journal of Neuroscience, 2018, 38, 2442-2453.	1.7	82
991	Frontostriatal and Dopamine Markers of Individual Differences in Reinforcement Learning: A Multi-modal Investigation. Cerebral Cortex, 2018, 28, 4281-4290.	1.6	38
992	Towards a neuro-computational account of prism adaptation. Neuropsychologia, 2018, 115, 188-203.	0.7	29
993	Dopamine Receptor-Specific Contributions to the Computation of Value. Neuropsychopharmacology, 2018, 43, 1415-1424.	2.8	31
994	Intact striatal dopaminergic modulation of reward learning and daily-life reward-oriented behavior in first-degree relatives of individuals with psychotic disorder. Psychological Medicine, 2018, 48, 1909-1914.	2.7	14
995	The Protective Action Encoding of Serotonin Transients in the Human Brain. Neuropsychopharmacology, 2018, 43, 1425-1435.	2.8	70

#	ARTICLE	IF	CITATIONS
996	Age affects reinforcement learning through dopamine-based learning imbalance and high decision noiseâ€"not through Parkinsonian mechanisms. Neurobiology of Aging, 2018, 68, 102-113.	1.5	21
997	Mesocorticolimbic Connectivity and Volumetric Alterations in <i>DCC</i> Mutation Carriers. Journal of Neuroscience, 2018, 38, 4655-4665.	1.7	23
998	Striatal dopamine release and impaired reinforcement learning in adults with 22q11.2 deletion syndrome. European Neuropsychopharmacology, 2018, 28, 732-742.	0.3	9
999	Estradiol and the reward system in humans. Current Opinion in Behavioral Sciences, 2018, 23, 58-64.	2.0	21
1000	Behavioral Neuroscience of Learning and Memory. Current Topics in Behavioral Neurosciences, 2018, ,	0.8	9
1001	A Basal Ganglia Circuit Sufficient to Guide Birdsong Learning. Neuron, 2018, 98, 208-221.e5.	3.8	93
1002	Classical Computational Approaches to Modeling the Basal Ganglia. Cognitive Science and Technology, 2018, , 41-58.	0.2	1
1003	Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology, 2018, , .	0.2	12
1004	The Basal Ganglia: Summary and Future Modeling Research. Cognitive Science and Technology, 2018, , 285-296.	0.2	1
1005	Meta BCI: Hippocampus-striatum network inspired architecture towards flexible BCI., 2018, , .		2
1006	Transient and sustained ERP activity related to feedback processing in the probabilistic selection task. International Journal of Psychophysiology, 2018, 126, 1-12.	0.5	5
1007	Classification and treatment of antisocial individuals: From behavior to biocognition. Neuroscience and Biobehavioral Reviews, 2018, 91, 259-277.	2.9	82
1008	A multifactorial and integrative approach to impulsivity in neuropsychology: insights from the UPPS model of impulsivity. Journal of Clinical and Experimental Neuropsychology, 2018, 40, 45-61.	0.8	51
1009	The Influence of Emotional State on Learning From Reward and Punishment in Borderline Personality Disorder. Journal of Personality Disorders, 2018, 32, 433-446.	0.8	9
1010	Applying novel technologies and methods to inform the ontology of self-regulation. Behaviour Research and Therapy, 2018, 101, 46-57.	1.6	48
1011	The effects of reward and punishment on motor skill learning. Current Opinion in Behavioral Sciences, 2018, 20, 83-88.	2.0	39
1012	Complex Dynamics in the Basal Ganglia: Health and Disease Beyond the Motor System. Journal of Neuropsychiatry and Clinical Neurosciences, 2018, 30, 101-114.	0.9	17
1013	Frontal Cortex and the Hierarchical Control of Behavior. Trends in Cognitive Sciences, 2018, 22, 170-188.	4.0	394

#	Article	IF	CITATIONS
1014	A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements. Computers in Biology and Medicine, 2018, 92, 78-89.	3.9	8
1015	Chronic Exposure to Methamphetamine Disrupts Reinforcement-Based Decision Making in Rats. Neuropsychopharmacology, 2018, 43, 770-780.	2.8	43
1016	Alexithymia and the Reduced Ability to Represent the Value of Aversively Motivated Actions. Frontiers in Psychology, 2018, 9, 2587.	1.1	10
1017	Motivational Impairments in Psychotic and Depressive Pathology. , 2018, , 278-304.		2
1018	Dopaminergic Modulation of Synaptic Plasticity, Its Role in Neuropsychiatric Disorders, and Its Computational Modeling. Basic and Clinical Neuroscience, 2019, 10, 1-12.	0.3	24
1019	How age affects reinforcement learning. Aging, 2018, 10, 3630-3631.	1.4	3
1020	Impulse Control Behaviors in Parkinson's Disease: Drugs or Disease? Contribution From Imaging Studies. Frontiers in Neurology, 2018, 9, 893.	1.1	12
1021	Virtual Reality as a Vehicle to Empower Motor-Cognitive Neurorehabilitation. Frontiers in Psychology, 2018, 9, 2120.	1.1	57
1023	A Real-Time Phase-Locking System for Non-invasive Brain Stimulation. Frontiers in Neuroscience, 2018, 12, 877.	1.4	25
1024	Evidence for Cognitive Placebo and Nocebo Effects in Healthy Individuals. Scientific Reports, 2018, 8, 17443.	1.6	30
1025	How pupil responses track value-based decision-making during and after reinforcement learning. PLoS Computational Biology, 2018, 14, e1006632.	1.5	55
1026	Dopaminergic Neurotransmission in Patients With Parkinson's Disease and Impulse Control Disorders: A Systematic Review and Meta-Analysis of PET and SPECT Studies. Frontiers in Neurology, 2018, 9, 1018.	1.1	29
1027	Disruption of Multiple Distinctive Neural Networks Associated With Impulse Control Disorder in Parkinson's Disease. Frontiers in Human Neuroscience, 2018, 12, 462.	1.0	21
1028	The Outcomeâ€Representation Learning Model: A Novel Reinforcement Learning Model of the Iowa Gambling Task. Cognitive Science, 2018, 42, 2534-2561.	0.8	42
1029	Dynamics of error-related activity in deterministic learning - an EEG and fMRI study. Scientific Reports, 2018, 8, 14617.	1.6	8
1030	Dopaminergic Modulation of Goal-Directed Behavior in a Rodent Model of Attention-Deficit/Hyperactivity Disorder. Frontiers in Integrative Neuroscience, 2018, 12, 45.	1.0	21
1031	Left-shifting prism adaptation boosts reward-based learning. Cortex, 2018, 109, 279-286.	1.1	16
1032	Molecular Imaging of Addictive Behavior in Idiopathic Parkinson's Disease. International Review of Neurobiology, 2018, 141, 365-404.	0.9	0

#	Article	IF	CITATIONS
1033	A neuro-cognitive process model of emotional intelligence. Biological Psychology, 2018, 139, 131-151.	1.1	45
1034	Reference-point centering and range-adaptation enhance human reinforcement learning at the cost of irrational preferences. Nature Communications, 2018, 9, 4503.	5.8	54
1035	Using rodents to model abnormal sensitivity to feedback in depression. Neuroscience and Biobehavioral Reviews, 2018, 95, 336-346.	2.9	19
1036	Toward a computational cognitive neuropsychology of Wisconsin card sorts: a showcase study in Parkinson's disease. Computational Brain & Behavior, 2018, 1, 137-150.	0.9	11
1037	Learning Structures Through Reinforcement. , 2018, , 105-123.		8
1038	Crime and Parkinson's: The jury is out. Movement Disorders, 2018, 33, 1092-1094.	2.2	7
1039	Independent effects of age and levodopa on reversal learning in healthy volunteers. Neurobiology of Aging, 2018, 69, 129-139.	1.5	17
1040	Prefrontal cortex as a meta-reinforcement learning system. Nature Neuroscience, 2018, 21, 860-868.	7.1	378
1041	Effects of feedback delay on learning from positive and negative feedback in patients with Parkinson's disease off medication. Neuropsychologia, 2018, 117, 46-54.	0.7	14
1042	Smoking Decisions: Altered Reinforcement Learning Signals Induced by Nicotine State. Nicotine and Tobacco Research, 2020, 22, 164-171.	1.4	13
1043	Evidence for a general performanceâ€monitoring system in the human brain. Human Brain Mapping, 2018, 39, 4322-4333.	1.9	11
1044	Does weight stigma reduce working memory? Evidence of stereotype threat susceptibility in adults with obesity. International Journal of Obesity, 2018, 42, 1500-1507.	1.6	8
1045	Reward Learning over Weeks Versus Minutes Increases the Neural Representation of Value in the Human Brain. Journal of Neuroscience, 2018, 38, 7649-7666.	1.7	48
1046	A systematic review of decision-making impairments in Parkinson's Disease: Dopaminergic medication and methodological variability. Basal Ganglia, 2018, 14, 31-40.	0.3	10
1047	Updating Beliefs under Perceived Threat. Journal of Neuroscience, 2018, 38, 7901-7911.	1.7	59
1048	Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Heterotetramers and Adenylyl Cyclase. Frontiers in Pharmacology, 2018, 9, 243.	1.6	73
1049	Perceptual decisions based on previously learned information are independent of dopaminergic tone. Journal of Neurophysiology, 2018, 119, 849-861.	0.9	6
1050	Strength of resting-state functional connectivity associated with performance-adjustment ability. Behavioural Brain Research, 2018, 347, 377-384.	1.2	5

#	Article	IF	CITATIONS
1051	DAT1-Genotype and Menstrual Cycle, but Not Hormonal Contraception, Modulate Reinforcement Learning: Preliminary Evidence. Frontiers in Endocrinology, 2018, 9, 60.	1.5	15
1052	Computational Neuropsychology and Bayesian Inference. Frontiers in Human Neuroscience, 2018, 12, 61.	1.0	104
1053	Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior. Frontiers in Human Neuroscience, 2018, 12, 106.	1.0	61
1054	Electrophysiological reward signals predict episodic memory for immediate and delayed positive feedback events. Brain Research, 2018, 1701, 64-74.	1.1	7
1055	Paradoxical Decision-Making: A Framework for Understanding Cognition in Parkinson's Disease. Trends in Neurosciences, 2018, 41, 512-525.	4.2	22
1056	Risky decision-making and affective features of impulse control disorders in Parkinson's disease. Journal of Neural Transmission, 2018, 125, 131-143.	1.4	11
1057	Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways. Neuron, 2018, 99, 1302-1314.e5.	3.8	131
1058	Updating Beliefs Under Perceived Threat. SSRN Electronic Journal, 0, , .	0.4	0
1059	The Unsolved Jigsaw Puzzle of the Immune Response in Chagas Disease. Frontiers in Immunology, 2018, 9, 1929.	2.2	87
1060	Internet Game Overuse Is Associated With an Alteration of Fronto-Striatal Functional Connectivity During Reward Feedback Processing. Frontiers in Psychiatry, 2018, 9, 371.	1.3	7
1061	Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner. PLoS Computational Biology, 2018, 14, e1006370.	1.5	61
1062	A rodent brain-machine interface paradigm to study the impact of paraplegia on BMI performance. Journal of Neuroscience Methods, 2018, 306, 103-114.	1.3	7
1063	A Combination of Impulsivity Subdomains Predict Alcohol Intoxication Frequency. Alcoholism: Clinical and Experimental Research, 2018, 42, 1530-1540.	1.4	13
1064	Modeling Serotonin's Contributions to Basal Ganglia Dynamics. Cognitive Science and Technology, 2018, , 215-243.	0.2	4
1065	Reinforcement magnitudes modulate subthalamic beta band activity in patients with Parkinson's disease. Scientific Reports, 2018, 8, 8621.	1.6	9
1066	Positive-blank versus negative-blank feedback learning in children and adults. Quarterly Journal of Experimental Psychology, 2019, 72, 753-763.	0.6	8
1067	Approach, avoidance, and the detection of conflict in the development of behavioral inhibition. New Ideas in Psychology, 2019, 53, 2-12.	1,2	28
1068	Exploring the Neurophysiological Effects of Self-Controlled Practice in Motor Skill Learning. Journal of Motor Learning and Development, 2019, 7, 13-34.	0.2	11

#	Article	IF	CITATIONS
1069	Probabilistic Category Learning and Striatal Functional Activation in Psychosis Risk. Schizophrenia Bulletin, 2019, 45, 396-404.	2.3	16
1070	Cross-Task Contributions of Frontobasal Ganglia Circuitry in Response Inhibition and Conflict-Induced Slowing. Cerebral Cortex, 2019, 29, 1969-1983.	1.6	28
1071	Altered reward-related neural responses in non-manifesting carriers of the Parkinson disease related LRRK2 mutation. Brain Imaging and Behavior, 2019, 13, 1009-1020.	1.1	20
1072	Individual differences in learning from probabilistic reward and punishment predicts smoking status. Addictive Behaviors, 2019, 88, 73-76.	1.7	4
1073	The βâ€adrenoceptor blocker propranolol ameliorates compulsiveâ€like gambling behaviour in a rodent slot machine task: implications for iatrogenic gambling disorder. European Journal of Neuroscience, 2019, 50, 2401-2414.	1.2	7
1074	Modulating the Use of Multiple Memory Systems in Value-based Decisions with Contextual Novelty. Journal of Cognitive Neuroscience, 2019, 31, 1455-1467.	1.1	18
1075	Dopamine affects short-term memory corruption over time in Parkinson's disease. Npj Parkinson's Disease, 2019, 5, 16.	2.5	3
1076	Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism. Ageing Research Reviews, 2019, 56, 100937.	5.0	43
1077	When the outcome is different than expected: Subjective expectancy shapes reward prediction error at the FRN level. Psychophysiology, 2019, 56, e13456.	1,2	9
1078	Multiple Levels of Control Processes for Wisconsin Card Sorts: An Observational Study. Brain Sciences, 2019, 9, 141.	1.1	11
1079	Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents. Psychopharmacology, 2019, 236, 2337-2358.	1.5	64
1080	Subjective preferences differentially modulate the processing of rewards gained by own vs. observed choices. Neuropsychologia, 2019, 132, 107139.	0.7	12
1081	Striatum-related functional activation during reward- versus punishment-based learning in psychosis risk. Neuropsychopharmacology, 2019, 44, 1967-1974.	2.8	3
1082	Diminished Value Discrimination in Obsessive-Compulsive Disorder: A Prospect Theory Model of Decision-Making Under Risk. Frontiers in Psychiatry, 2019, 10, 469.	1.3	4
1083	Insensitivity to loss predicts apathy in huntington's disease. Movement Disorders, 2019, 34, 1381-1391.	2.2	14
1084	Reward and avoidance learning in the context of aversive environments and possible implications for depressive symptoms. Psychopharmacology, 2019, 236, 2437-2449.	1.5	11
1085	Effects of feedback delay and agency on feedback″ocked beta and theta power during reinforcement learning. Psychophysiology, 2019, 56, e13428.	1.2	7
1086	A reinforcement learning diffusion decision model for value-based decisions. Psychonomic Bulletin and Review, 2019, 26, 1099-1121.	1.4	106

#	ARTICLE	IF	CITATIONS
1087	Subjective estimates of uncertainty during gambling and impulsivity after subthalamic deep brain stimulation for Parkinson's disease. Scientific Reports, 2019, 9, 14795.	1.6	15
1089	Dopaminergic medication reduces striatal sensitivity to negative outcomes in Parkinson's disease. Brain, 2019, 142, 3605-3620.	3.7	26
1090	A hierarchical Bayesian approach to assess learning and guessing strategies in reinforcement learning. Journal of Mathematical Psychology, 2019, 93, 102276.	1.0	9
1091	The structural connectivity of discrete networks underlies impulsivity and gambling in Parkinson's disease. Brain, 2019, 142, 3917-3935.	3.7	33
1092	Fatigue in inflammatory rheumatic disorders: pathophysiological mechanisms. Rheumatology, 2019, 58, v35-v50.	0.9	33
1093	Reduced striatal activation in response to rewarding motor performance feedback after stroke. NeuroImage: Clinical, 2019, 24, 102036.	1.4	13
1094	Indirect pathway from caudate tail mediates rejection of bad objects in periphery. Science Advances, 2019, 5, eaaw9297.	4.7	17
1095	Deep Brain Stimulation of the Subthalamic Nucleus Selectively Modulates Emotion Recognition of Facial Stimuli in Parkinson's Patients. Journal of Clinical Medicine, 2019, 8, 1335.	1.0	6
1096	Dopamine replacement remediates risk aversion in Parkinson's disease in a value-independent manner. Parkinsonism and Related Disorders, 2019, 66, 189-194.	1.1	1
1097	Effects of Acupuncture on Behavioral Stereotypies and Brain Dopamine System in Mice as a Model of Tourette Syndrome. Frontiers in Behavioral Neuroscience, 2019, 13, 239.	1.0	20
1098	A dimensional approach to jealousy reveals enhanced fronto-striatal, insula and limbic responses to angry faces. Brain Structure and Function, 2019, 224, 3201-3212.	1.2	7
1099	Dopamine and the motivation of cognitive control. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 123-143.	1.0	47
1100	Contributions of the basal ganglia to action sequence learning and performance. Neuroscience and Biobehavioral Reviews, 2019, 107, 279-295.	2.9	17
1101	Learning task-state representations. Nature Neuroscience, 2019, 22, 1544-1553.	7.1	200
1102	A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine. Frontiers in Neural Circuits, 2018, 12, 111.	1.4	13
1103	Effects of subthalamic nucleus stimulation and levodopa on decisionâ€making in Parkinson's disease. Movement Disorders, 2019, 34, 377-385.	2.2	10
1104	Dopamine restores cognitive motivation in Parkinson's disease. Brain, 2019, 142, 719-732.	3.7	61
1105	Dopaminergic drug treatment remediates exaggerated cingulate prediction error responses in obsessive-compulsive disorder. Psychopharmacology, 2019, 236, 2325-2336.	1.5	33

#	ARTICLE	IF	CITATIONS
1106	Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies. PLoS Computational Biology, 2019, 15, e1007043.	1.5	63
1107	Dopamine D2-like receptor stimulation blocks negative feedback in visual and spatial reversal learning in the rat: behavioural and computational evidence. Psychopharmacology, 2019, 236, 2307-2323.	1.5	25
1108	Striatal circuits for reward learning and decision-making. Nature Reviews Neuroscience, 2019, 20, 482-494.	4.9	337
1109	Evaluating Augmented Depression Therapy (ADepT): study protocol for a pilot randomised controlled trial. Pilot and Feasibility Studies, 2019, 5, 63.	0.5	18
1110	Impact assessment of reinforced learning methods on construction workers' fall risk behavior using virtual reality. Automation in Construction, 2019, 104, 197-214.	4.8	129
1111	Contextual influence on confidence judgments in human reinforcement learning. PLoS Computational Biology, 2019, 15, e1006973.	1.5	44
1112	Positive reward prediction errors during decision-making strengthen memory encoding. Nature Human Behaviour, 2019, 3, 719-732.	6.2	72
1113	Levodopa does not affect expression of reinforcement learning in older adults. Scientific Reports, 2019, 9, 6349.	1.6	4
1114	The influence of task complexity and information value on feedback processing in younger and older adults: No evidence for a positivity bias during feedback-induced learning in older adults. Brain Research, 2019, 1717, 74-85.	1.1	5
1115	Modulation of feedback processing by social context in social anxiety disorder (SAD)–an event-related potentials (ERPs) study. Scientific Reports, 2019, 9, 4795.	1.6	14
1116	Learning the payoffs and costs of actions. PLoS Computational Biology, 2019, 15, e1006285.	1.5	26
1117	Hippocampal Contributions to Model-Based Planning and Spatial Memory. Neuron, 2019, 102, 683-693.e4.	3.8	119
1118	Adapting the flow of time with dopamine. Journal of Neurophysiology, 2019, 121, 1748-1760.	0.9	28
1119	Information Processing Under Reward Versus Under Punishment. Psychological Science, 2019, 30, 757-764.	1.8	7
1120	Combining error-driven models of associative learning with evidence accumulation models of decision-making. Psychonomic Bulletin and Review, 2019, 26, 868-893.	1.4	21
1121	Catecholaminergic modulation of trust decisions. Psychopharmacology, 2019, 236, 1807-1816.	1.5	3
1122	Impulsivity across reactive, proactive and cognitive domains in Parkinson's disease on dopaminergic medication: Evidence for multiple domain impairment. PLoS ONE, 2019, 14, e0210880.	1.1	8
1123	Model-Free RL or Action Sequences?. Frontiers in Psychology, 2019, 10, 2892.	1.1	12

#	ARTICLE	IF	CITATIONS
1124	Emotion in the Mind and Body. Nebraska Symposium on Motivation, 2019, , .	0.9	3
1125	A neural network for information seeking. Nature Communications, 2019, 10, 5168.	5.8	81
1126	Reduced model-based decision-making in gambling disorder. Scientific Reports, 2019, 9, 19625.	1.6	36
1127	Neuronal Representation of Object Choice in the Striatum of the Monkey. Frontiers in Neuroscience, 2019, 13, 1283.	1.4	1
1128	Deep Brain Stimulation of the Subthalamic Nucleus Influences Facial Emotion Recognition in Patients With Parkinson's Disease: A Review. Frontiers in Psychology, 2019, 10, 2638.	1.1	6
1129	Learning with Reinforcement: the Role of Immediate Feedback and the Internal Model of the Situation. Neuroscience and Behavioral Physiology, 2019, 49, 1150-1158.	0.2	3
1130	Goal congruency dominates reward value in accounting for behavioral and neural correlates of value-based decision-making. Nature Communications, 2019, 10, 4926.	5.8	45
1131	Effect of Theta Transcranial Alternating Current Stimulation and Phase-Locked Transcranial Pulsed Current Stimulation on Learning and Cognitive Control. Frontiers in Neuroscience, 2019, 13, 1181.	1.4	12
1132	Chronic corticosterone administration induces negative valence and impairs positive valence behaviors in mice. Translational Psychiatry, 2019, 9, 337.	2.4	40
1133	Spontaneous eye blink rate predicts individual differences in exploration and exploitation during reinforcement learning. Scientific Reports, 2019, 9, 17436.	1.6	16
1134	Common and distinct neural substrates of the money illusion in win and loss domains. NeuroImage, 2019, 184, 109-118.	2.1	3
1135	Dorsal striatal dopamine D1 receptor availability predicts an instrumental bias in action learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 261-270.	3.3	36
1136	Emotionally Aversive Cues Suppress Neural Systems Underlying Optimal Learning in Socially Anxious Individuals. Journal of Neuroscience, 2019, 39, 1445-1456.	1.7	36
1137	Social Cognition 2.0: An Interactive Memory Systems Account. Trends in Cognitive Sciences, 2019, 23, 21-33.	4.0	83
1138	Meditation experience predicts negative reinforcement learning and is associated with attenuated FRN amplitude. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 268-282.	1.0	5
1139	The role of dopamine in the brain - lessons learned from Parkinson's disease. NeuroImage, 2019, 190, 79-93.	2.1	123
1140	Roles for globus pallidus externa revealed in a computational model of action selection in the basal ganglia. Neural Networks, 2019, 109, 113-136.	3.3	34
1141	L-DOPA reduces model-free control of behavior by attenuating the transfer of value to action. NeuroImage, 2019, 186, 113-125.	2.1	50

#	Article	IF	CITATIONS
1142	Considerations on Effective Feedback in Computerized Speech Training for Dysarthric Speakers. Telemedicine Journal and E-Health, 2019, 25, 351-358.	1.6	11
1143	Translational tests involving non-reward: methodological considerations. Psychopharmacology, 2019, 236, 449-461.	1.5	11
1144	Differential effects of D1 and D2 dopamine agonists on memory, motivation, learning and response time in nonâ€human primates. European Journal of Neuroscience, 2019, 49, 199-214.	1.2	12
1145	Age-related variability in decision-making: Insights from neurochemistry. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 415-434.	1.0	17
1146	Individual Differences in Resting-state Brain Rhythms Uniquely Predict Second Language Learning Rate and Willingness to Communicate in Adults. Journal of Cognitive Neuroscience, 2019, 31, 78-94.	1.1	25
1147	Let's Open the Decision-Making Umbrella: A Framework for Conceptualizing and Assessing Features of Impaired Decision Making in Addiction. Neuropsychology Review, 2019, 29, 27-51.	2.5	41
1148	Mechanisms Underlying Dopamine-Induced Risky Choice in Parkinson's Disease With and Without Depression (History). Computational Psychiatry, 2020, 2, 11.	1.1	14
1149	Multiple Dissociations Between Comorbid Depression and Anxiety on Reward and Punishment Processing: Evidence From Computationally Informed EEG. Computational Psychiatry, 2020, 3, 1.	1.1	62
1150	Unmasking neurobiological commonalities between addictive disorders and impulse control disorders in Parkinson's disease. Brain Imaging and Behavior, 2020, 14, 2785-2798.	1.1	4
1151	Inhibitoryâ€control eventâ€related potentials correlate with individual differences in alcohol use. Addiction Biology, 2020, 25, e12729.	1.4	7
1152	Evidence of reward system dysfunction in youth at clinical high-risk for psychosis from two event-related fMRI paradigms. Schizophrenia Research, 2020, 226, 111-119.	1.1	23
1153	How Reward and Aversion Shape Motivation and Decision Making: A Computational Account. Neuroscientist, 2020, 26, 87-99.	2.6	14
1154	Relevance of working memory for reinforcement learning in older adults varies with timescale of learning. Aging, Neuropsychology, and Cognition, 2020, 27, 654-676.	0.7	8
1155	Weight status or weight stigma? Obesity stereotypesâ€"Not excess weightâ€"Reduce working memory in school-aged children. Journal of Experimental Child Psychology, 2020, 189, 104706.	0.7	13
1156	Driven by Pain, Not Gain: Computational Approaches to Aversion-Related Decision Making in Psychiatry. Biological Psychiatry, 2020, 87, 359-367.	0.7	14
1157	Adaptive Learning Recommendation Strategy Based on Deep Q-learning. Applied Psychological Measurement, 2020, 44, 251-266.	0.6	10
1158	Positive social feedback alters emotional ratings and reward valuation of neutral faces. Quarterly Journal of Experimental Psychology, 2020, 73, 1066-1081.	0.6	7
1159	A novel fMRI paradigm to dissociate the behavioral and neural components of mixedâ€strategy decision making from nonâ€strategic decisions in humans. European Journal of Neuroscience, 2020, 51, 1914-1927.	1.2	5

#	Article	IF	CITATIONS
1160	Dopamine-Dependent Loss Aversion during Effort-Based Decision-Making. Journal of Neuroscience, 2020, 40, 661-670.	1.7	28
1161	Competitive and cooperative interactions between medial temporal and striatal learning systems. Neuropsychologia, 2020, 136, 107257.	0.7	22
1162	Mutual benefits: Combining reinforcement learning with sequential sampling models. Neuropsychologia, 2020, 136, 107261.	0.7	36
1163	Aberrant probabilistic reinforcement learning in first-degree relatives of individuals with bipolar disorder. Journal of Affective Disorders, 2020, 264, 400-406.	2.0	2
1164	Bipolar oscillations between positive and negative mood states in a computational model of Basal Ganglia. Cognitive Neurodynamics, 2020, 14, 181-202.	2.3	10
1165	The Role of the Striatum in Learning to Orthogonalize Action and Valence: A Combined PET and 7ÂT MRI Aging Study. Cerebral Cortex, 2020, 30, 3340-3351.	1.6	7
1166	Evidence that haloperidol impairs learning and motivation scores in a probabilistic task by reducing the reward expectation. Behavioural Brain Research, 2020, 395, 112858.	1.2	1
1167	Age-related Spike Timing Dependent Plasticity of Brain-inspired Model of Visual Information Processing with Reinforcement Learning. , 2020, , .		0
1168	Acute stress enhances tolerance of uncertainty during decision-making. Cognition, 2020, 205, 104448.	1.1	14
1172	Mutual Constitution of Culture and the Mind. , 2020, , 88-119.		4
1173	Being There. , 2020, , 120-158.		1
1175	Culture in Mind – An Enactivist Account. , 2020, , 163-187.		10
1176	The Brain as a Cultural Artifact. , 2020, , 188-222.		12
1177	Cultural Priming Effects and the Human Brain. , 2020, , 223-243.		2
1178	Culture, Self, and Agency. , 2020, , 244-272.		2
1180	Neuroanthropological Perspectives on Culture, Mind, and Brain., 2020, , 277-299.		3
1181	The Neural Mechanisms Underlying Social Norms. , 2020, , 300-324.		0
1182	Ritual and Religion as Social Technologies of Cooperation. , 2020, , 325-362.		2

#	Article	IF	CITATIONS
1184	The Cultural Brain as Historical Artifact. , 2020, , 367-374.		0
1185	Experience-Dependent Plasticity in the Hippocampus. , 2020, , 375-388.		O
1186	Liminal Brains in Uncertain Futures. , 2020, , 389-401.		1
1187	The Reward of Musical Emotions and Expectations. , 2020, , 402-415.		1
1188	Literary Analysis and Weak Theories. , 2020, , 416-425.		0
1189	Capturing Context Is Not Enough. , 2020, , 426-437.		1
1190	Social Neuroscience in Global Mental Health. , 2020, , 438-449.		0
1191	Cities, Psychosis, and Social Defeat. , 2020, , 450-460.		O
1192	Internet Sociality. , 2020, , 461-476.		1
1193	Neurodiversity as a Conceptual Lens and Topic of Cross-Cultural Study. , 2020, , 477-493.		4
1196	Recovery of reward function in problematic substance users using a combination of robotics, electrophysiology, and TMS. International Journal of Psychophysiology, 2020, 158, 288-298.	0.5	12
1197	Dopamine agonist treatment increases sensitivity to gamble outcomes in the hippocampus in de novo Parkinson's disease. NeuroImage: Clinical, 2020, 28, 102362.	1.4	1
1198	A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement. Cell, 2020, 183, 211-227.e20.	13.5	49
1199	Learning to select actions shapes recurrent dynamics in the corticostriatal system. Neural Networks, 2020, 132, 375-393.	3.3	11
1200	The effect of aging, Parkinson's disease, and exogenous dopamine on the neural response associated with auditory regularity processing. Neurobiology of Aging, 2020, 89, 71-82.	1.5	13
1201	Biased belief updating and suboptimal choice in foraging decisions. Nature Communications, 2020, 11, 3417.	5. 8	22
1202	Does insufficient sleep affect how you learn from reward or punishment? Reinforcement learning after 2 nights of sleep restriction. Journal of Sleep Research, 2021, 30, e13236.	1.7	4
1203	Tremor in Parkinson's disease inverts the effect of dopamine on reinforcement. Brain, 2020, 143, 3178-3180.	3.7	O

#	Article	IF	CITATIONS
1204	The effect of feedback novelty on neural correlates of feedback processing. Brain and Cognition, 2020, 144, 105610.	0.8	4
1205	Computational Characteristics of the Striatal Dopamine System Described by Reinforcement Learning With Fast Generalization. Frontiers in Computational Neuroscience, 2020, 14, 66.	1.2	3
1206	Computational Modeling of Catecholamines Dysfunction in Alzheimer's Disease at Pre-Plaque Stage. Journal of Alzheimer's Disease, 2020, 77, 275-290.	1.2	15
1207	Assessing the Effects of Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex on Human Cognition: A Systematic Review. Frontiers in Integrative Neuroscience, 2020, 14, 35.	1.0	20
1208	Selective Mesoaccumbal Pathway Inactivation Affects Motivation but Not Reinforcement-Based Learning in Macaques. Neuron, 2020, 108, 568-581.e6.	3.8	30
1209	Parallel model-based and model-free reinforcement learning for card sorting performance. Scientific Reports, 2020, 10, 15464.	1.6	14
1210	A Basal Ganglia Computational Model to Explain the Paradoxical Sensorial Improvement in the Presence of Huntington's Disease. International Journal of Neural Systems, 2020, 30, 2050057.	3.2	2
1211	Beyond dichotomies in reinforcement learning. Nature Reviews Neuroscience, 2020, 21, 576-586.	4.9	67
1212	Culture, Mind, and Brain in Human Evolution. , 2020, , 55-87.		0
1213	A non-linear deterministic model of action selection in the basal ganglia to simulate motor fluctuations in Parkinson's disease. Chaos, 2020, 30, 083139.	1.0	4
1214	Dopamine is associated with prioritization of reward-associated memories in Parkinson's disease. Brain, 2020, 143, 2519-2531.	3.7	10
1215	Safety considerations when using non-ergot dopamine agonists to treat Parkinson's disease. Expert Opinion on Drug Safety, 2020, 19, 1155-1172.	1.0	4
1216	A Computational Study of Executive Dysfunction in Amyotrophic Lateral Sclerosis. Journal of Clinical Medicine, 2020, 9, 2605.	1.0	6
1217	Movement errors during skilled motor performance engage distinct prediction error mechanisms. Communications Biology, 2020, 3, 763.	2.0	5
1218	Toward a Computational Neuropsychology of Cognitive Flexibility. Brain Sciences, 2020, 10, 1000.	1.1	11
1219	Preliminary evidence for an association between intake of highâ€fat highâ€sugar diet, variations in peripheral dopamine precursor availability and dopamineâ€dependent cognition in humans. Journal of Neuroendocrinology, 2020, 32, e12917.	1.2	20
1220	Effects of dopamine on reinforcement learning in Parkinson's disease depend on motor phenotype. Brain, 2020, 143, 3422-3434.	3.7	26
1221	Spectrum of impulse control behaviours in Parkinson's disease: pathophysiology and management. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 703-711.	0.9	33

#	Article	IF	CITATIONS
1222	Impulsivity Relates to Relative Preservation of Mesolimbic Connectivity in Patients with Parkinson Disease. NeuroImage: Clinical, 2020, 27, 102259.	1.4	4
1223	Effects of serotonin and dopamine depletion on neural prediction computations during social learning. Neuropsychopharmacology, 2020, 45, 1431-1437.	2.8	9
1224	Avoidance Learning Across the Menstrual Cycle: A Conceptual Replication. Frontiers in Endocrinology, 2020, 11, 231.	1.5	8
1225	Stimulation of the vagus nerve reduces learning in a go/no-go reinforcement learning task. European Neuropsychopharmacology, 2020, 35, 17-29.	0.3	21
1226	Simultaneous Hierarchical Bayesian Parameter Estimation for Reinforcement Learning and Drift Diffusion Models: a Tutorial and Links to Neural Data. Computational Brain & Behavior, 2020, 3, 458-471.	0.9	31
1227	Network organization during probabilistic learning via taste outcomes. Physiology and Behavior, 2020, 223, 112962.	1.0	6
1228	Behavioral and physiological characteristics associated with learning performance on an appetitive probabilistic selection task. Physiology and Behavior, 2020, 223, 112984.	1.0	6
1229	Asymmetric coupling of action and outcome valence in active and observational feedback learning. Psychological Research, 2020, 85, 1553-1566.	1.0	4
1230	Modeling the effects of motivation on choice and learning in the basal ganglia. PLoS Computational Biology, 2020, 16, e1007465.	1.5	16
1231	What Are Memories For? The Hippocampus Bridges Past Experience with Future Decisions. Trends in Cognitive Sciences, 2020, 24, 542-556.	4.0	67
1232	Dopamine Modulates Dynamic Decision-Making during Foraging. Journal of Neuroscience, 2020, 40, 5273-5282.	1.7	46
1233	Commentary: Dopamine-Dependent Loss Aversion during Effort-Based Decision-Making. Frontiers in Neuroscience, 2020, 14, 468.	1.4	0
1234	Toward a unified framework for interpreting machine-learning models in neuroimaging. Nature Protocols, 2020, 15, 1399-1435.	5 . 5	88
1235	Dysregulation of external globus pallidusâ€subthalamic nucleus network dynamics in parkinsonian mice during cortical slowâ€wave activity and activation. Journal of Physiology, 2020, 598, 1897-1927.	1.3	36
1236	The Power of Smiling: The Adult Brain Networks Underlying Learned Infant Emotionality. Cerebral Cortex, 2020, 30, 2019-2029.	1.6	31
1237	Implications of the Lacking Relationship Between Cognitive Task and Self-report Measures for Psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 670-672.	1.1	11
1238	A new approach toward gait training in patients with Parkinson's Disease. Gait and Posture, 2020, 81, 14-20.	0.6	11
1239	Learning and Motivation for Rewards in Schizophrenia: Implications for Behavioral Rehabilitation. Current Behavioral Neuroscience Reports, 2020, 7, 147-157.	0.6	1

#	Article	IF	CITATIONS
1240	Reinforcement Learning during Adolescence in Rats. Journal of Neuroscience, 2020, 40, 5857-5870.	1.7	13
1241	Does the Punishment Fit the Crime (and Immune System)? A Potential Role for the Immune System in Regulating Punishment Sensitivity. Frontiers in Psychology, 2020, 11, 1263.	1.1	1
1242	The relationship between monoaminergic gene expression, learning, and optimism in red junglefowl chicks. Animal Cognition, 2020, 23, 901-911.	0.9	10
1243	The Role of Basal Ganglia Reinforcement Learning in Lexical Ambiguity Resolution. Topics in Cognitive Science, 2020, 12, 402-416.	1.1	2
1244	A tradeoff relationship between internal monitoring and external feedback during the dynamic process of reinforcement learning. International Journal of Psychophysiology, 2020, 150, 11-19.	0.5	3
1245	Oxytocin alters the effect of payoff but not base rate in emotion perception. Psychoneuroendocrinology, 2020, 114, 104608.	1.3	1
1246	Parkinsonism Differently Affects the Single Neuronal Activity in the Primary and Supplementary Motor Areas in Monkeys: An Investigation in Linear and Nonlinear Domains. International Journal of Neural Systems, 2020, 30, 2050010.	3.2	4
1247	Impaired context-sensitive adjustment of behaviour in Parkinson's disease patients tested on and off medication: An fMRI study. NeuroImage, 2020, 212, 116674.	2.1	3
1248	Cumulative Dopamine Genetic Score predicts behavioral and electrophysiological correlates of response inhibition via interactions with task demand. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 59-75.	1.0	9
1249	Relating Natural Language Aptitude to Individual Differences in Learning Programming Languages. Scientific Reports, 2020, 10, 3817.	1.6	40
1250	Learned avoidance requires VTA KOR-mediated reductions in dopamine. Neuropharmacology, 2020, 167, 107996.	2.0	10
1251	A Neurofunctional Domains Approach to Evaluate D1/D5 Dopamine Receptor Partial Agonism on Cognition and Motivation in Healthy Volunteers With Low Working Memory Capacity. International Journal of Neuropsychopharmacology, 2020, 23, 287-299.	1.0	10
1252	Probabilistic Learning in Children With Attention-Deficit/Hyperactivity Disorder. Journal of Attention Disorders, 2021, 25, 1407-1416.	1.5	9
1253	Variability in Action Selection Relates to Striatal Dopamine 2/3 Receptor Availability in Humans: A PET Neuroimaging Study Using Reinforcement Learning and Active Inference Models. Cerebral Cortex, 2020, 30, 3573-3589.	1.6	24
1254	Motor-cognitive approach and aerobic training: a synergism for rehabilitative intervention in Parkinson's disease. Neurodegenerative Disease Management, 2020, 10, 41-55.	1.2	23
1255	Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and L-DOPA therapy. Neurobiology of Disease, 2020, 137, 104738.	2.1	36
1256	A distributional code for value in dopamine-based reinforcement learning. Nature, 2020, 577, 671-675.	13.7	262
1257	Experimental evidence for a role of dopamine on avian personality traits. Journal of Experimental Biology, 2020, 223, .	0.8	8

#	ARTICLE	IF	CITATIONS
1258	Theories of compulsive drug use: A brief overview of learning and motivation processes. , 2020, , 137-185.		0
1259	The Effect of Aging on the ERP Correlates of Feedback Processing in the Probabilistic Selection Task. Brain Sciences, 2020, 10, 40.	1.1	2
1260	Transition to substance use disorders: impulsivity for reward and learning from reward. Social Cognitive and Affective Neuroscience, 2020, 15, 1182-1191.	1.5	35
1261	Dorsal and ventral striatal dopamine D1 and D2 receptors differentially modulate distinct phases of serial visual reversal learning. Neuropsychopharmacology, 2020, 45, 736-744.	2.8	33
1262	Maladaptive avoidance patterns in Parkinson's disease are exacerbated by symptoms of depression. Behavioural Brain Research, 2020, 382, 112473.	1.2	2
1263	Impulsivity and Compulsivity After Subthalamic Deep Brain Stimulation for Parkinson's Disease. Frontiers in Behavioral Neuroscience, 2020, 14, 47.	1.0	17
1264	Emotional feedback ameliorates older adults' feedback-induced learning. PLoS ONE, 2020, 15, e0231964.	1.1	3
1265	Does Acute Stress Impact Declarative and Procedural Learning?. Frontiers in Psychology, 2020, 11, 342.	1.1	3
1266	Computational Modeling for Neuropsychological Assessment of Bradyphrenia in Parkinson's Disease. Journal of Clinical Medicine, 2020, 9, 1158.	1.0	9
1267	Prefrontal Cortex Predicts State Switches during Reversal Learning. Neuron, 2020, 106, 1044-1054.e4.	3.8	78
1268	From apathy to addiction: Insights from neurology and psychiatry. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 101, 109926.	2.5	21
1269	A biologically constrained spiking neural network model of the primate basal ganglia with overlapping pathways exhibits action selection. European Journal of Neuroscience, 2021, 53, 2254-2277.	1.2	20
1270	A Systematic Review of the Positive Valence System in Autism Spectrum Disorder. Neuropsychology Review, 2021, 31, 58-88.	2.5	13
1271	Episodic memory governs choices: An RNN-based reinforcement learning model for decision-making task. Neural Networks, 2021, 134, 1-10.	3.3	8
1272	Computational Models of Interoception and Body Regulation. Trends in Neurosciences, 2021, 44, 63-76.	4.2	97
1273	Increased Anxiety is Associated with Better Learning from Negative Feedback. Psychology Learning and Teaching, 2021, 20, 76-90.	1.3	2
1274	Oxytocin-induced facilitation of learning in a probabilistic task is associated with reduced feedbackand error-related negativity potentials. Journal of Psychopharmacology, 2021, 35, 40-49.	2.0	11
1275	When Beliefs Face Reality: An Integrative Review of Belief Updating in Mental Health and Illness. Perspectives on Psychological Science, 2021, 16, 247-274.	5.2	52

#	Article	IF	CITATIONS
1276	Reward Learning Through the Lens of RDoC: a Review of Theory, Assessment, and Empirical Findings in the Eating Disorders. Current Psychiatry Reports, 2021, 23, 2.	2.1	20
1277	The description–experience gap: a challenge for the neuroeconomics of decision-making under uncertainty. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190665.	1.8	31
1278	$\label{eq:continuous} $$\b^{\hat{l}\pm -Synuclein}$ Selectively Impairs Motor Sequence Learning and Value Sensitivity: Reversal by the Adenosine A2A Receptor Antagonists. Cerebral Cortex, 2022, 32, 808-823.$	1.6	7
1279	Models of Human Behavioral Agents inÂBandits, Contextual Bandits and RL. Communications in Computer and Information Science, 2021, , 14-33.	0.4	7
1280	A change of mind: Globus pallidus activity and effective connectivity during changes in choice selections. European Journal of Neuroscience, 2021, 53, 2774-2787.	1.2	4
1281	The impact of social anxiety on feedback-based go and nogo learning. Psychological Research, 2022, 86, 110-124.	1.0	3
1282	Acute stress impairs reward learning in men. Brain and Cognition, 2021, 147, 105657.	0.8	10
1283	Individual Differences in Rewardâ€Based Learning Predict Fluid Reasoning Abilities. Cognitive Science, 2021, 45, e12941.	0.8	3
1285	The path linking disease severity and cognitive function with quality of life in Parkinson's disease: the mediating effect of activities of daily living and depression. Health and Quality of Life Outcomes, 2021, 19, 92.	1.0	9
1286	Time elapsed between choices in a probabilistic task correlates with repeating the same decision. European Journal of Neuroscience, 2021, 53, 2639-2654.	1.2	2
1287	Recovering Reliable Idiographic Biological Parameters from Noisy Behavioral Data: the Case of Basal Ganglia Indices in the Probabilistic Selection Task. Computational Brain & Behavior, 2021, 4, 318-334.	0.9	2
1288	Rational inattention and tonic dopamine. PLoS Computational Biology, 2021, 17, e1008659.	1.5	18
1290	Trust your gut: vagal nerve stimulation in humans improves reinforcement learning. Brain Communications, 2021, 3, fcab039.	1.5	9
1291	Depression in the Direct Pathway of the Dorsomedial Striatum Permits the Formation of Habitual Action. Cerebral Cortex, 2021, 31, 3551-3564.	1.6	5
1292	A Causal Role for the Pedunculopontine Nucleus in Human Instrumental Learning. Current Biology, 2021, 31, 943-954.e5.	1.8	3
1293	Two sides of the same coin: Beneficial and detrimental consequences of range adaptation in human reinforcement learning. Science Advances, 2021, 7, .	4.7	24
1294	Not all stress is created equal: Acute, not ambient stress, impairs learning in high schizotypes. PsyCh Journal, 2022, 11, 179-193.	0.5	0
1295	Spatial and temporal scales of dopamine transmission. Nature Reviews Neuroscience, 2021, 22, 345-358.	4.9	136

#	Article	IF	CITATIONS
1296	Atypical Reinforcement Learning in Developmental Dyslexia. Journal of the International Neuropsychological Society, 2022, 28, 270-280.	1.2	6
1300	Perseverative Cognition in the Positive Valence Systems: An Experimental and Ecological Investigation. Brain Sciences, 2021, 11, 585.	1.1	1
1304	Emotional State and Feedback-Related Negativity Induced by Positive, Negative, and Combined Reinforcement. Frontiers in Psychology, 2021, 12, 647263.	1.1	0
1305	Interpreting the role of the striatum during multiple phases of motor learning. FEBS Journal, 2022, 289, 2263-2281.	2.2	25
1309	Anatomical dissociation of intracerebral signals for reward and punishment prediction errors in humans. Nature Communications, 2021, 12, 3344.	5.8	27
1310	Punishment insensitivity in humans is due to failures in instrumental contingency learning. ELife, 2021, 10, .	2.8	15
1311	A Framework for Industry 4.0 Readiness and Maturity of Smart Manufacturing Enterprises: A Case Study. Sustainability, 2021, 13, 6659.	1.6	37
1312	Experienceâ€related enhancements in striatal temporal encoding. European Journal of Neuroscience, 2021, 54, 5063-5074.	1.2	11
1313	Reinforcementâ€based cognitive biases as vulnerability factors in alcohol addiction: From humans to animal models. British Journal of Pharmacology, 2022, 179, 4265-4280.	2.7	3
1314	Modeling changes in probabilistic reinforcement learning during adolescence. PLoS Computational Biology, 2021, 17, e1008524.	1.5	18
1315	Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology, 2022, 47, 309-328.	2.8	64
1316	Internality and the internalisation of failure: Evidence from a novel task. PLoS Computational Biology, 2021, 17, e1009134.	1.5	0
1317	Null effects of levodopa on reward- and error-based motor adaptation, savings, and anterograde interference. Journal of Neurophysiology, 2021, 126, 47-67.	0.9	9
1318	Application of machine learning in intelligent fish aquaculture: A review. Aquaculture, 2021, 540, 736724.	1.7	86
1319	Motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function. Journal of Neural Transmission, 2021, 128, 1705-1720.	1.4	4
1321	A causal role of estradiol in human reinforcement learning. Hormones and Behavior, 2021, 134, 105022.	1.0	6
1323	A mosaic of cost–benefit control over cortico-striatal circuitry. Trends in Cognitive Sciences, 2021, 25, 710-721.	4.0	39
1325	Advances in modeling learning and decision-making in neuroscience. Neuropsychopharmacology, 2022, 47, 104-118.	2.8	29

#	Article	IF	CITATIONS
1326	Dopaminergic and noradrenergic modulation of stress-induced alterations in brain activation associated with goal-directed behaviour. Journal of Psychopharmacology, 2021, 35, 1449-1463.	2.0	7
1327	Reinforcement learning modeling reveals a reward-history-dependent strategy underlying reversal learning in squirrel monkeys Behavioral Neuroscience, 2022, 136, 46-60.	0.6	3
1328	Electrophysiological biomarkers of behavioral dimensions from cross-species paradigms. Translational Psychiatry, 2021, 11, 482.	2.4	20
1329	Cortical hemodynamic mechanisms of reversal learning using high-resolution functional near-infrared spectroscopy: A pilot study. Neurophysiologie Clinique, 2021, 51, 409-424.	1.0	0
1330	Learning at Variable Attentional Load Requires Cooperation of Working Memory, Meta-learning, and Attention-augmented Reinforcement Learning. Journal of Cognitive Neuroscience, 2021, 34, 1-29.	1.1	8
1331	Exploring reward-relatedÂattention selectivity deficits in Parkinson's disease. Scientific Reports, 2021, 11, 18751.	1.6	2
1332	A Reinforcement Learning Approach to Understanding Procrastination: Does Inaccurate Value Approximation Cause Irrational Postponing of a Task?. Frontiers in Neuroscience, 2021, 15, 660595.	1.4	0
1333	The prediction-error hypothesis of schizophrenia: new data point to circuit-specific changes in dopamine activity. Neuropsychopharmacology, 2022, 47, 628-640.	2.8	29
1334	Derivative-free reinforcement learning: a review. Frontiers of Computer Science, 2021, 15, 1.	1.6	21
1335	SpikePropamine: Differentiable Plasticity in Spiking Neural Networks. Frontiers in Neurorobotics, 2021, 15, 629210.	1.6	5
1336	Computational Psychiatry Needs Time and Context. Annual Review of Psychology, 2022, 73, 243-270.	9.9	47
1337	Language statistical learning responds to reinforcement learning principles rooted in the striatum. PLoS Biology, 2021, 19, e3001119.	2.6	10
1338	Adaptive learning is structure learning in time. Neuroscience and Biobehavioral Reviews, 2021, 128, 270-281.	2.9	20
1339	Context-sensitive valuation and learning. Current Opinion in Behavioral Sciences, 2021, 41, 122-127.	2.0	20
1340	Illuminating subcortical GABAergic and glutamatergic circuits for reward and aversion. Neuropharmacology, 2021, 198, 108725.	2.0	17
1341	Cardiac autonomic functioning across stress and reward: Links with depression in emerging adults. International Journal of Psychophysiology, 2021, 168, 1-8.	0.5	3
1342	Context-dependent outcome encoding in human reinforcement learning. Current Opinion in Behavioral Sciences, 2021, 41, 144-151.	2.0	35
1343	The asymmetric learning rates of murine exploratory behavior in sparse reward environments. Neural Networks, 2021, 143, 218-229.	3.3	12

#	Article	IF	Citations
1344	Value-based cognition and drug dependency. Addictive Behaviors, 2021, 123, 107070.	1.7	0
1345	Anatomy and Disorders of Decision-Making. , 2022, , 289-297.		O
1346	The Anatomy of Placebo Effects: How Placebos Influence Mind, Brain andÂBehavior., 2022,, 336-341.		0
1347	A new model of decision processing in instrumental learning tasks. ELife, 2021, 10, .	2.8	30
1350	Impaired Learning From Errors and Punishments and Maladaptive Avoidance—General Mechanisms Underlying Self-Regulation Disorders?. Frontiers in Psychiatry, 2020, 11, 609874.	1.3	3
1351	Neural Mechanisms of Human Decision-Making. Cognitive, Affective and Behavioral Neuroscience, 2021, 21, 35-57.	1.0	1
1352	Sex Differences and Exogenous Estrogen Influence Learning and Brain Responses to Prediction Errors. Cerebral Cortex, 2022, 32, 2022-2036.	1.6	3
1353	The Basal Ganglia: Beyond the Motor System—From Movement to Thought. , 2009, , 27-68.		2
1354	Dopamine Replacement Therapy in Parkinson's Disease: Past, Present and Future. , 2009, , 1-26.		1
1355	Phasic Dopaminergic Signaling: Implications for Parkinson's Disease. , 2009, , 1-18.		2
1356	A Computational Hypothesis on How Serotonin Regulates Catecholamines in the Pathogenesis of Depressive Apathy. Springer Series in Cognitive and Neural Systems, 2019, , 127-134.	0.1	2
1357	Cognitive Control, Reward, and the Basal Ganglia. SpringerBriefs in Neuroscience, 2014, , 61-64.	0.1	4
1358	Psychological and Neuroscientific Connections with Reinforcement Learning. Adaptation, Learning, and Optimization, 2012, , 507-537.	0.5	5
1360	Depressivitäund Depression bei der Parkinson-Erkrankung. Zeitschrift Fýr Neuropsychologie = Journal of Neuropsychology, 2007, 18, 207-232.	0.2	1
1361	Reward processing and risky decision making in the aging brain, 2014, , 123-142.		13
1362	Power effects on instrumental learning: Evidence from the brain and behavior Motivation Science, 2018, 4, 206-226.	1.2	10
1363	Evaluation of relational reasoning by a transitive inference task in attention-deficit/hyperactivity disorder Neuropsychology, 2017, 31, 200-208.	1.0	6
1364	Curiosity and reward: Valence predicts choice and information prediction errors enhance learning Journal of Experimental Psychology: General, 2016, 145, 266-272.	1.5	146

#	Article	IF	CITATIONS
1365	Incidental learning of rewarded associations bolsters learning on an associative task Journal of Experimental Psychology: Learning Memory and Cognition, 2016, 42, 786-803.	0.7	5
1366	Dopamine Agonists Diminish Value Sensitivity of the Orbitofrontal Cortex: A Trigger for Pathological Gambling in Parkinson's Disease?. Neuropsychopharmacology, 2009, 34, 2758-66.	2.8	83
1367	Positron emission tomography in Parkinson's disease: insights into impulsivity. International Review of Psychiatry, 2017, 29, 618-627.	1.4	4
1368	5.4 Dopaminergic Modulation of Flexible Cognitive Control in Humans. , 2009, , 249-260.		20
1369	Damaged Self, Damaged Control: A Component Process Analysis of the Effects of Frontal Lobe Damage on Human Decision Making. , 2010, , 27-37.		1
1370	Trial-by-trial data analysis using computational models. , 2011, , 3-38.		230
1371	The striatum and beyond: contributions of the hippocampus to decision making. , 2011, , 281-310.		7
1398	A Biologically Plausible Action Selection System for Cognitive Architectures: Implications of Basal Ganglia Anatomy for Learning and Decisionâ€Making Models. Cognitive Science, 2018, 42, 457-490.	0.8	18
1399	A Psychological and Neuroanatomical Model of Obsessive-Compulsive Disorder. Journal of Neuropsychiatry and Clinical Neurosciences, 2008, 20, 390-408.	0.9	53
1400	The Computational Development of Reinforcement Learning during Adolescence. PLoS Computational Biology, 2016, 12, e1004953.	1.5	91
1401	Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection. PLoS Computational Biology, 2016, 12, e1005004.	1.5	30
1402	Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome. PLoS Computational Biology, 2017, 13, e1005395.	1.5	82
1403	Predicting explorative motor learning using decision-making and motor noise. PLoS Computational Biology, 2017, 13, e1005503.	1.5	38
1404	Predictive representations can link model-based reinforcement learning to model-free mechanisms. PLoS Computational Biology, 2017, 13, e1005768.	1.5	203
1405	Policy Adjustment in a Dynamic Economic Game. PLoS ONE, 2006, 1, e103.	1.1	57
1406	Electrical Stimulation of the Primate Lateral Habenula Suppresses Saccadic Eye Movement through a Learning Mechanism. PLoS ONE, 2011, 6, e26701.	1.1	22
1407	Effects of Dopamine on Sensitivity to Social Bias in Parkinson's Disease. PLoS ONE, 2012, 7, e32889.	1.1	9
1408	Reinforcement Learning of Targeted Movement in a Spiking Neuronal Model of Motor Cortex. PLoS ONE, 2012, 7, e47251.	1.1	33

#	Article	IF	CITATIONS
1409	Dissociation between Active and Observational Learning from Positive and Negative Feedback in Parkinsonism. PLoS ONE, 2012, 7, e50250.	1.1	24
1410	Value Learning and Arousal in the Extinction of Probabilistic Rewards: The Role of Dopamine in a Modified Temporal Difference Model. PLoS ONE, 2014, 9, e89494.	1.1	5
1411	Identifying the Basal Ganglia Network Model Markers for Medication-Induced Impulsivity in Parkinson's Disease Patients. PLoS ONE, 2015, 10, e0127542.	1.1	20
1412	Reduction of Pavlovian Bias in Schizophrenia: Enhanced Effects in Clozapine-Administered Patients. PLoS ONE, 2016, 11, e0152781.	1.1	19
1413	Linking Individual Learning Styles to Approach-Avoidance Motivational Traits and Computational Aspects of Reinforcement Learning. PLoS ONE, 2016, 11, e0166675.	1.1	13
1414	Stimulus discriminability may bias value-based probabilistic learning. PLoS ONE, 2017, 12, e0176205.	1.1	7
1415	Spatiotemporal dynamics of reward and punishment effects induced by associative learning. PLoS ONE, 2018, 13, e0199847.	1.1	4
1416	Reward and adversity processing circuits: their competition and interactions with dopamine and serotonin signaling. ScienceOpen Research, 2014, .	0.6	1
1417	Dopaminergic Drug Effects on Probability Weighting during Risky Decision Making. ENeuro, 2018, 5, ENEURO.0330-18.2018.	0.9	16
1418	A Computational Model of Dual Competition between the Basal Ganglia and the Cortex. ENeuro, 2018, 5, ENEURO.0339-17.2018.	0.9	6
1419	Reinforcement learning in probabilistic environment and its role in human adaptive and maladaptive behavior. SovremennaŢ Zarubežnaâ Psihologiâ, 2016, 5, 85-96.	0.8	1
1420	The four As associated with pathological Parkinson disease gamblers: anxiety, anger, age, and agonists. Neuropsychiatric Disease and Treatment, 2007, 3, 161-167.	1.0	10
1421	Problematic Use of the Internet and Self-Regulation: A Review of the Initial Studies. The Open Addiction Journal, 2012, 5, 24-29.	0.5	66
1422	Reward and decision processes in the brains of humans and nonhuman primates. Dialogues in Clinical Neuroscience, 2016, 18, 45-53.	1.8	8
1423	Impulse control disorders in Parkinson's disease: crossroads between neurology, psychiatry and neuroscience. Behavioural Neurology, 2013, 27, 547-57.	1.1	8
1424	Does the brain prefer geometrical homogeneity?. Behavioural Neurology, 2010, 23, 101-5.	1.1	3
1425	Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Frontiers in Behavioral Neuroscience, 2012, 6, 50.	1.0	140
1427	Levodopa/Carbidopa Intestinal Gel for Treatment of Advanced Parkinson's Disease: An Update on the Effects of Cognitive Functions. Advances in Parkinson S Disease, 2017, 06, 13-23.	0.2	7

#	Article	IF	CITATIONS
1428	Decisions, Decisions: The Neurobiology of the effects of Dopamine Replacement Therapy on Decision-Making in Parkinson's Disease. Journal of European Psychology Students, 2015, 6, 45-52.	0.5	1
1429	Reinforcement Learning, High-Level Cognition, and the Human Brain., 0, , .		8
1430	Reinforcement Learning, Conflict Monitoring, and Cognitive Control: An Integrative Model of Cingulate-Striatal Interactions and the ERN., 2011,, 310-331.		16
1431	A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. ELife, 2015, 4, .	2.8	69
1432	DYT1 dystonia increases risk taking in humans. ELife, 2016, 5, .	2.8	12
1433	A specific role for serotonin in overcoming effort cost. ELife, 2016, 5, .	2.8	77
1434	Catecholaminergic challenge uncovers distinct Pavlovian and instrumental mechanisms of motivated (in)action. ELife, 2017, 6, .	2.8	77
1435	Attenuation of dopamine-modulated prefrontal value signals underlies probabilistic reward learning deficits in old age. ELife, 2017, 6, .	2.8	37
1436	Persistent coding of outcome-predictive cue features in the rat nucleus accumbens. ELife, 2018, 7, .	2.8	12
1437	Reward prediction error does not explain movement selectivity in DMS-projecting dopamine neurons. ELife, 2019, 8, .	2.8	45
1438	Distinct roles of striatal direct and indirect pathways in value-based decision making. ELife, 2019, 8, .	2.8	18
1439	Ten simple rules for the computational modeling of behavioral data. ELife, 2019, 8, .	2.8	312
1440	Dopaminergic modulation of the exploration/exploitation trade-off in human decision-making. ELife, 2020, 9, .	2.8	65
1441	Extending a misallocation model to children's choice behavior Journal of Experimental Psychology Animal Learning and Cognition, 2021, 47, 317-325.	0.3	4
1444	Effects of methylphenidate on reinforcement learning depend on working memory capacity. Psychopharmacology, 2021, 238, 3569-3584.	1.5	12
1445	Dopamine and Reward Prediction Error: An Axiomatic Approach to Neuroeconomics. SSRN Electronic Journal, O, , .	0.4	1
1446	Entscheiden bei Morbus Parkinson – eine Übersicht. Zeitschrift Für Neuropsychologie = Journal of Neuropsychology, 2008, 19, 235-251.	0.2	0
1447	Learning and the Basal Ganglia: Benefiting from Action and Reinforcement., 2009,, 95-124.		O

#	ARTICLE	IF	CITATIONS
1448	Effects of dopamine depletion on reward-seeking behavior., 2009,, 271-289.		0
1449	Handbook of Reward and Decision Making. , 2009, , .		2
1450	Parkinsonkrankheit und Dystonie. , 2010, , 711-738.		0
1451	Neuronale Korrelate von nutzenbasierten Entscheidungen. , 2011, , 165-193.		0
1452	Subliminal Motivation of the Human Brain. Research and Perspectives in Neurosciences, 2011, , 175-190.	0.4	0
1453	The Neurocognitive Development of Social Decision Making. , 2011, , 227-242.		2
1454	Computational Models of Human Learning. , 2012, , 707-710.		0
1455	Lateral habenula neurons transmit negative value signals to midbrain dopamine neurons. Japanese Journal of Animal Psychology, 2013, 63, 1-6.	0.2	0
1456	Computation with Dopaminergic Modulation. , 2013, , 1-7.		0
1459	Movement, Thinking, Anticipation, and Banishing Executive Functioning. SpringerBriefs in Neuroscience, 2014, , 37-42.	0.1	0
1460	Computational Models of Neuromodulation. , 2014, , 1-6.		1
1461	Basal Ganglia: Mechanisms for Action Selection. , 2014, , 1-7.		3
1462	The Basal Ganglia Underpinning of Cognitive Control: The Fronto-Striatal System. SpringerBriefs in Neuroscience, 2014, , 57-59.	0.1	0
1463	Investigating decision-making in Parkinson's disease in tasks characterized by probabilistic cue-outcome associations: the role of optimality. Journal of Psychiatry and Brain Functions, 2014, 1, 6.	0.2	0
1464	Basal Ganglia: Decision-Making. , 2015, , 332-336.		0
1465	THE EFFECT OF DIFFERENT DOSES OF NITROGEN (N) APPLICATION ON THE ANTIOXIDANT ACTIVITY AND PHENOLIC MATERIAL INGREDIENT OF SORREL (RUMEX ACETOSA L.). Eurasian Journal of Forest Science, 2015, 3, 12-18.	0.7	0
1466	Striatal Mechanisms of Associative Learning and Dysfunction in Neurological Disease. Innovations in Cognitive Neuroscience, 2016, , 261-287.	0.3	0
1470	Linear Time Series Analysis. Bernstein Series in Computational Neuroscience, 2017, , 121-181.	0.0	O

#	ARTICLE	IF	CITATIONS
1471	Neurobiological Fundamentals of Strategy Change: A Core Competence of Companion-Systems. Cognitive Technologies, 2017, , 145-166.	0.5	1
1477	Studying the Effect of Dopaminergic Medication and STN–DBS on Cognitive Function Using a Spiking Basal Ganglia Model. Cognitive Science and Technology, 2018, , 197-214.	0.2	O
1490	Pathways to Motivational Impairments in Psychopathology: Common Versus Unique Elements Across Domains. Nebraska Symposium on Motivation, 2019, , 121-160.	0.9	4
1492	From mental representations to neural codes: A multilevel approach. Behavioral and Brain Sciences, 2019, 42, e228.	0.4	O
1493	Reward-Based Learning, Model-Based and Model-Free., 2019, , 1-9.		0
1512	Anticipating social incentives recruits alpha-beta oscillations in the human substantia nigra and invigorates behavior across the life span. NeuroImage, 2021, 245, 118696.	2.1	3
1514	Decision-Making and Impulse-Control Disorders in Parkinson's Disease. Neurological Sciences and Neurophysiology, 2020, 37, 11-17.	0.1	0
1515	Grant Report on Social Reward Learning in Schizophrenia. Journal of Psychiatry and Brain Science, 2020, 5, .	0.3	2
1516	Brain-Inspired Spike Timing Model of Dynamic Visual Information Perception and Decision Making with STDP and Reinforcement Learning. Lecture Notes in Computer Science, 2020, , 421-435.	1.0	2
1518	Human variation in error-based and reinforcement motor learning is associated with entorhinal volume. Cerebral Cortex, 2022, 32, 3423-3440.	1.6	7
1528	Mood-elevating effects of d-amphetamine and incentive salience: the effect of acute dopamine precursor depletion. Journal of Psychiatry and Neuroscience, 2007, 32, 129-36.	1.4	49
1530	Neuromolecular Underpinnings of Negative Cognitive Bias in Depression. Cells, 2021, 10, 3157.	1.8	17
1531	Preservation of Eye Movements in Parkinson's Disease Is Stimulus- and Task-Specific. Journal of Neuroscience, 2022, 42, 487-499.	1.7	9
1532	Heightened effort discounting is a common feature of both apathy and fatigue. Scientific Reports, 2021, 11, 22283.	1.6	12
1533	Group value learned through interactions with members: A reinforcement learning account. Journal of Experimental Social Psychology, 2022, 99, 104267.	1.3	10
1534	Cas 5. Addictions comportementales et apathie dans la maladie de ParkinsonÂ: d'un extrême à l'autre. , 2018, , 113-152.		O
1536	Valence biases in reinforcement learning shift across adolescence and modulate subsequent memory. ELife, 2022, 11 , .	2.8	20
1537	Reward and plasticity: Implications for neurorehabilitation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 331-340.	1.0	5

#	Article	IF	Citations
1538	Cognitive control in Parkinson's disease. Progress in Brain Research, 2022, 269, 137-152.	0.9	3
1539	Sensorimotor learning in response to errors in task performance. ENeuro, 2022, , ENEURO.0371-21.2022.	0.9	4
1541	Learning from gain and loss: Links to suicide risk. Journal of Psychiatric Research, 2022, 147, 126-134.	1.5	4
1542	Asymmetric effects of acute stress on cost and benefit learning. Psychoneuroendocrinology, 2022, 138, 105646.	1.3	3
1543	Neuroimaging approaches to cognition in Parkinson's disease. Progress in Brain Research, 2022, 269, 257-286.	0.9	3
1544	Role of dopamine and clinical heterogeneity in cognitive dysfunction in Parkinson's disease. Progress in Brain Research, 2022, 269, 309-343.	0.9	10
1545	Testosterone and estradiol affect adolescent reinforcement learning. PeerJ, 2022, 10, e12653.	0.9	1
1546	Unlucky punches: the vulnerability-stress model for the development of impulse control disorders in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 112.	2.5	10
1548	Coarse-Grained Neural Network Model of the Basal Ganglia to Simulate Reinforcement Learning Tasks. Brain Sciences, 2022, 12, 262.	1.1	1
1549	Increased Basal Ganglia Modulatory Effective Connectivity Observed in Resting-State fMRI in Individuals With Parkinson's Disease. Frontiers in Aging Neuroscience, 2022, 14, 719089.	1.7	3
1550	Impulse Control Disorders and the Dopamine Dysregulation Syndrome., 2022,, 224-240.		0
1554	Childhood adversity and impaired reward processing: A meta-analysis. Child Abuse and Neglect, 2023, 142, 105596.	1.3	8
1555	Pupil dilation and response slowing distinguish deliberate explorative choices in the probabilistic learning task. Cognitive, Affective and Behavioral Neuroscience, 2022, 22, 1108-1129.	1.0	6
1556	Acquisition learning is stronger for aversive than appetitive events. Communications Biology, 2022, 5, 302.	2.0	6
1557	Eyeblink rate, a putative dopamine marker, predicts negative reinforcement learning by tDCS of the dlPFC. Brain Stimulation, 2022, 15, 533-535.	0.7	6
1558	Trust and Psychopharmaca:., 2021,, 338-368.		0
1560	Improved alpha-beta power reduction via combined electrical and ultrasonic stimulation in a parkinsonian cortex-basal ganglia-thalamus computational model. Journal of Neural Engineering, 2021, 18, 066043.	1.8	3
1561	The Role of Dopaminergic Genes in Probabilistic Reinforcement Learning in Schizophrenia Spectrum Disorders. Brain Sciences, 2022, 12, 7.	1.1	6

#	Article	IF	CITATIONS
1562	Probabilistic Reinforcement Learning and Anhedonia. Current Topics in Behavioral Neurosciences, 2022, , 355-377.	0.8	7
1563	Clinical and Preclinical Assessments of Anhedonia in Psychiatric Disorders. Current Topics in Behavioral Neurosciences, 2022, , 3-21.	0.8	7
1576	Can measures of cognitive flexibility and inhibition distinguish forensic psychiatric inpatients from prisoners?. Journal of Forensic Psychiatry and Psychology, 2022, 33, 371-388.	0.6	2
1577	Disordered Decision Making: A Cognitive Framework for Apathy and Impulsivity in Huntington's Disease. Movement Disorders, 2022, 37, 1149-1163.	2.2	12
1578	Implicit Counterfactual Effect in Partial Feedback Reinforcement Learning: Behavioral and Modeling Approach. Frontiers in Neuroscience, 2022, 16, .	1.4	0
1579	Reinforcement learning and Bayesian inference provide complementary models for the unique advantage of adolescents in stochastic reversal. Developmental Cognitive Neuroscience, 2022, 55, 101106.	1.9	21
1580	Trauma Disrupts Reinforcement Learning in Rats—A Novel Animal Model of Chronic Stress Exposure. Frontiers in Behavioral Neuroscience, 2022, 16, .	1.0	0
1581	Flexibility in valenced reinforcement learning computations across development. Child Development, 2022, 93, 1601-1615.	1.7	5
1582	Physiocognitive Modeling: Explaining the Effects of Caffeine on Fatigue. Topics in Cognitive Science, 2022, 14, 860-872.	1.1	1
1583	The computational roots of positivity and confirmation biases in reinforcement learning. Trends in Cognitive Sciences, 2022, 26, 607-621.	4.0	32
1584	Uncertainty–guided learning with scaled prediction errors in the basal ganglia. PLoS Computational Biology, 2022, 18, e1009816.	1.5	4
1585	Machine Learning Advances in Microbiology: A Review of Methods and Applications. Frontiers in Microbiology, 2022, 13, .	1.5	6
1586	Cardiac Cycle Affects the Asymmetric Value Updating in Instrumental Reward Learning. Frontiers in Neuroscience, 2022, 16, .	1.4	3
1588	Distributed Neural Systems Support Flexible Attention Updating during Category Learning. Journal of Cognitive Neuroscience, 2022, 34, 1761-1779.	1.1	1
1589	Adolescent reinforcement-learning trajectories predict cocaine-taking behaviors in adult male and female rats. Psychopharmacology, 2022, 239, 2885-2901.	1.5	2
1590	Contextual influence of reinforcement learning performance of depression: evidence for a negativity bias?. Psychological Medicine, 2023, 53, 4696-4706.	2.7	5
1591	Different brain systems support learning from received and avoided pain during human pain-avoidance learning. ELife, 0, 11 , .	2.8	8
1592	Dopaminergic medication increases motivation to exert cognitive control by reducing subjective effort costs in Parkinson's patients. Neurobiology of Learning and Memory, 2022, 193, 107652.	1.0	1

#	Article	IF	CITATIONS
1593	Untested assumptions perpetuate stereotyping: Learning in the absence of evidence. Journal of Experimental Social Psychology, 2022, 102, 104380.	1.3	5
1594	Sticky me: Self-relevance slows reinforcement learning. Cognition, 2022, 227, 105207.	1.1	5
1595	Basal Ganglia: Mechanisms for Action Selection. , 2022, , 410-415.		0
1596	Computational Models of Neuromodulation. , 2022, , 930-934.		0
1597	Reward-Based Learning, Model-Based and Model-Free. , 2022, , 3042-3050.		0
1598	Basal Ganglia: Decision-Making. , 2022, , 379-383.		0
1599	Computation with Dopaminergic Modulation. , 2022, , 804-810.		0
1600	Evidence that GIRK Channels Mediate the DREADD-hM4Di Receptor Activation-Induced Reduction in Membrane Excitability of Striatal Medium Spiny Neurons. ACS Chemical Neuroscience, 2022, 13, 2084-2091.	1.7	3
1601	Gains and Losses Affect Learning Differentially at Low and High Attentional Load. Journal of Cognitive Neuroscience, 2022, 34, 1952-1971.	1.1	2
1602	Measurement of Striatal Dopamine Release Induced by Neuropsychological Stimulation in Positron Emission Tomography With Dual Injections of $[11C]$ Raclopride. Frontiers in Psychiatry, 0, 13, .	1.3	0
1603	The sense of agency for brain disorders: A comprehensive review and proposed framework. Neuroscience and Biobehavioral Reviews, 2022, 139, 104759.	2.9	7
1604	Decreased sensitivity to loss of options in patients with Parkinson's disease. Neuropsychologia, 2022, 174, 108322.	0.7	0
1605	Asymmetric and adaptive reward coding via normalized reinforcement learning. PLoS Computational Biology, 2022, 18, e1010350.	1.5	8
1607	Reinforcement learning with associative or discriminative generalization across states and actions: fMRI at 3ÂT and 7ÂT. Human Brain Mapping, 2022, 43, 4750-4790.	1.9	5
1609	Activation, but not inhibition, of the indirect pathway disrupts choice rejection in a freely moving, multiple-choice foraging task. Cell Reports, 2022, 40, 111129.	2.9	1
1611	Serotonin modulates asymmetric learning from reward and punishment in healthy human volunteers. Communications Biology, 2022, 5, .	2.0	8
1612	Dissociated modulations of intranasal vasopressin on prosocial learning between reward-seeking and punishment-avoidance. Psychological Medicine, 2023, 53, 5415-5427.	2.7	1
1613	Time estimation and arousal responses in dopa-responsive dystonia. Scientific Reports, 2022, 12, .	1.6	1

#	Article	IF	CITATIONS
1614	Cognitive [Computational] Neuroscience Test Reliability and Clinical Applications for Serious Mental Illness (CNTRaCS) Consortium: Progress and Future Directions. Current Topics in Behavioral Neurosciences, 2022, , .	0.8	0
1615	Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology, 2023, 48, 121-144.	2.8	8
1616	Anterior cingulate cortex causally supports flexible learning under motivationally challenging and cognitively demanding conditions. PLoS Biology, 2022, 20, e3001785.	2.6	6
1620	Computational analysis of probabilistic reversal learning deficits in male subjects with alcohol use disorder. Frontiers in Psychiatry, 0, 13 , .	1.3	2
1621	Computational reinforcement learning, reward (and punishment), and dopamine in psychiatric disorders. Frontiers in Psychiatry, 0, 13 , .	1.3	1
1622	Sleep Restriction Reduces Cognitive but Not Physical Motivation. Nature and Science of Sleep, 0, Volume 14, 2001-2012.	1.4	3
1623	The interpretation of computational model parameters depends on the context. ELife, 0, 11, .	2.8	28
1624	Stress effects on memory retrieval of aversive and appetitive instrumental counterconditioning in men. Neurobiology of Learning and Memory, 2022, 196, 107697.	1.0	1
1625	Online Learning inÂlterated Prisoner's Dilemma toÂMimic Human Behavior. Lecture Notes in Computer Science, 2022, , 134-147.	1.0	1
1626	Functional MRI in familial and idiopathic PD. , 2023, , 201-250.		0
1627	Different depression: motivational anhedonia governs antidepressant efficacy in Huntington's disease. Brain Communications, 2022, 4, .	1.5	7
1634	Prefrontal transcranial magnetic stimulation boosts response vigour during reinforcement learning in healthy adults. European Journal of Neuroscience, 2023, 57, 680-691.	1.2	3
1635	Effects of dopamine D2/3 and opioid receptor antagonism on the trade-off between model-based and model-free behaviour in healthy volunteers. ELife, $0,11,$	2.8	4
1636	Computational models of behavioral addictions: State of the art and future directions. Addictive Behaviors, 2023, 140, 107595.	1.7	6
1637	Intelligence Predicts Sensory Discrimination Ability but Not Implicit Reward Learning. Journal of Individual Differences, 0, , .	0.5	0
1638	Reduced sensitivity but intact motivation to monetary rewards and reversal learning in obesity. Addictive Behaviors, 2022, , 107599.	1.7	0
1639	Genetic variation in the dopamine system is associated with mixedâ€strategy decisionâ€making in patients with Parkinson's disease. European Journal of Neuroscience, 2023, 58, 4523-4544.	1.2	0
1640	Neural correlates of impulsive compulsive behaviors in Parkinson's disease: A Japanese retrospective study. NeuroImage: Clinical, 2023, 37, 103307.	1.4	1

#	Article	IF	CITATIONS
1644	Opponent Learning with Different Representations in the Cortico-Basal Ganglia Circuits. ENeuro, 2023, 10, ENEURO.0422-22.2023.	0.9	0
1645	The costs and benefits of psychedelics on cognition and mood. Neuron, 2023, 111, 614-630.	3.8	7
1647	Changes in statistical learning across development., 2023, 2, 205-219.		3
1648	Learning critically drives parkinsonian motor deficits through imbalanced striatal pathway recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
1649	Risk taking for potential losses but not gains increases with time of day. Scientific Reports, 2023, 13, .	1.6	2
1650	Transdiagnostic computations of uncertainty: towards a new lens on intolerance of uncertainty. Neuroscience and Biobehavioral Reviews, 2023, 148, 105123.	2.9	5
1651	The power of the unexpected: Prediction errors enhance stereotype-based learning. Cognition, 2023, 235, 105386.	1.1	1
1652	Theory-driven computational models of drug addiction in humans: Fruitful or futile?. Addiction Neuroscience, 2023, 5, 100066.	0.4	1
1653	Modulation of Motor Vigor by Expectation of Reward Probability Trial-by-Trial Is Preserved in Healthy Ageing and Parkinson's Disease Patients. Journal of Neuroscience, 2023, 43, 1757-1777.	1.7	5
1654	Valence precedes value in neural encoding of prediction error. Psychophysiology, 2023, 60, .	1.2	2
1655	Reduced positive affect alters reward learning via reduced information encoding in the Reward Positivity. Psychophysiology, 2023, 60, .	1.2	1
1656	"Don't [ruminate], be happy― A cognitive perspective linking depression and anhedonia. Clinical Psychology Review, 2023, 101, 102255.	6.0	8
1657	Cortical Grey Matter Mediates Increases in Model-Based Control and Learning from Positive Feedback from Adolescence to Adulthood. Journal of Neuroscience, 2023, 43, 2178-2189.	1.7	3
1658	Basal ganglia network dynamics and function: Role of direct, indirect and hyper-direct pathways in action selection. Network: Computation in Neural Systems, 2023, 34, 84-121.	2.2	4
1660	Diminished reinforcement sensitivity in adolescence is associated with enhanced response switching and reduced coding of choice probability in the medial frontal pole. Developmental Cognitive Neuroscience, 2023, 60, 101226.	1.9	4
1661	Examining social reinforcement learning in social anxiety. Journal of Behavior Therapy and Experimental Psychiatry, 2023, 80, 101810.	0.6	3
1663	On the normative advantages of dopamine and striatal opponency for learning and choice. ELife, 0, 12, .	2.8	11
1664	The effect of combining punishment and reward can transfer to opposite motor learning. PLoS ONE, 2023, 18, e0282028.	1.1	2

#	Article	IF	CITATIONS
1667	Age-related differences in prefrontal glutamate are associated with increased working memory decay that gives the appearance of learning deficits. ELife, $0,12,.$	2.8	2
1671	Computational Cognitive Models of Reinforcement Learning. , 2023, , 739-766.		O
1672	Error-related signaling in nucleus accumbens D2 receptor-expressing neurons guides inhibition-based choice behavior in mice. Nature Communications, 2023, 14, .	5.8	8
1680	Neuro-Psychological Approaches for Artificial Intelligence. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 29-43.	0.3	0
1717	Belief updates, learning and adaptive decision making. , 2024, , .		0