The electron cyclotron maser

Reviews of Modern Physics 76, 489-540

DOI: 10.1103/revmodphys.76.489

Citation Report

#	Article	IF	Citations
1	A THz vacuum electronic source based on field emission cathodes. , 0, , .		0
2	APPLIED PHYSICS: Enhanced: The Maser at 50. Science, 2004, 306, 236-237.	6.0	4
3	Field-emission based vacuum devices for the generation of THz waves. , 0, , .		0
4	Absolute instabilities in a high-order-mode gyrotron traveling-wave amplifier. Physical Review E, 2004, 70, 056402.	0.8	34
5	High power microwave sources and applications. , 0, , .		53
6	Pulsed power-driven high-power microwave sources. Proceedings of the IEEE, 2004, 92, 1082-1095.	16.4	102
7	High-performance circular TE/sub 01/-mode converter. IEEE Transactions on Microwave Theory and Techniques, 2005, 53, 3794-3798.	2.9	52
8	High Power Gyro-Devices for Plasma Heating and Other Applications. Journal of Infrared, Millimeter and Terahertz Waves, 2005, 26, 483-503.	0.6	88
9	Field-emission based vacuum device for the generation of terahertz waves. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 849.	1.6	25
10	Study on the generation of THz waves in a vacuum electronic device. , 0, , .		0
11	Relativistic electromagnetic ion cyclotron instabilities. Physical Review E, 2005, 71, 036410.	0.8	5
12	Dynamics of Mode Competition in the Gyrotron Backward-Wave Oscillator. Physical Review Letters, 2005, 95, 185101.	2.9	43
13	High Performance Circular TE01, Mode Converter. IEEE International Conference on Plasma Science, 2005, , .	0.0	57
14	Quasi-optical converters for high-power gyrotrons: a brief review of physical models, numerical methods and computer codes. Journal of Physics: Conference Series, 2006, 44, 102-109.	0.3	13
15	Emission nonuniformity due to profilimetry variation in thermionic cathodes. Applied Physics Letters, 2006, 88, 164105.	1.5	16
16	Study on the Generation of THz Waves in a Vacuum Electronic Device. , 0, , .		0
17	Linear theory of the electron cyclotron maser based on TM circular waveguide mode. Physics of Plasmas, 2006, 13, 073104.	0.7	22
18	Two interacting electrons in a one-dimensional parabolic quantum dot: exact numerical diagonalization, lournal of Physics Condensed Matter, 2006, 18, 2623-2633.	0.7	22

ATION REDO

#	Article	IF	CITATIONS
19	High-Performance Circular TE21 TE01 and TE41. , 2006, , .		1
20	The electron–cyclotron maser for astrophysical application. Astronomy and Astrophysics Review, 2006, 13, 229-315.	9.1	291
21	Wave interaction in relativistic harmonic gyro-traveling-wave devices. Physical Review E, 2006, 73, 056401.	0.8	2
22	Transition of absolute instability from global to local modes in a gyrotron traveling-wave amplifier. Physical Review E, 2006, 74, 016402.	0.8	9
23	A Field Emission Based Ka-Band Millimeter Wave Generator. , 0, , .		2
24	Linear and nonlinear analysis of a gyrotron traveling wave amplifier with misaligned electron beam. Physics of Plasmas, 2006, 13, 113101.	0.7	15
25	Rise and fall time behavior of the gyrotron backward-wave oscillator. Physical Review E, 2006, 74, 046405.	0.8	8
26	A Millimeter Wave Generator Based on Field Emission Cathode. , 2006, , .		1
27	Interaction Mechanism of a THz Wave Generator using a Field Emission Cathode. , 2006, , .		1
28	Post amplification of a gyrotron RF beam by a sheet electron beam. , 2007, , .		1
29	Nonlinear analysis of electron cyclotron maser based on anomalous Doppler effect. Physics of Plasmas, 2007, 14, 053108.	0.7	15
30	Selective suppression of high order axial modes of the gyrotron backward-wave oscillator. Physics of Plasmas, 2007, 14, .	0.7	10
31	Simulation analysis of rectangular dielectric-loaded traveling wave amplifiers for THz sources. Physical Review Special Topics: Accelerators and Beams, 2007, 10, .	1.8	6
32	Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun. Applied Physics Letters, 2007, 90, 253501.	1.5	101
33	Dominance of second Bessel peak in relativistic electromagnetic ion cyclotron instabilities driven by fusion-produced fast ions. Physics of Plasmas, 2007, 14, 092102.	0.7	2
34	Electron heating by nonlinear whistler waves. Plasma Physics and Controlled Fusion, 2007, 49, A17-A27.	0.9	11
35	Analytical solution for relativistic charged particle motion in a circularly polarized electromagnetic wave. Physics of Plasmas, 2007, 14, 063101.	0.7	8
36	An injection locked millimeter wave oscillator based on field emission cathodes. , 2007, , .		0

#	Article	IF	CITATIONS
37	Instability of relativistic electron-beam–dielectric system as a mechanism for microwave generation. Journal of Applied Physics, 2007, 102, 103305.	1.1	13
38	A Simple Electromagnetic Analysis for Ohmic Quality Factor and RF Efficiency for 42 GHz, TE <inf>03</inf> -mode, Feebly Tapered Gyrotron Cavity. , 2007, , .		Ο
39	Analysis of ohmic quality factor for the Azimuthally Symmetrical TE <inf>03</inf> -mode 42CHz gyrotron cavity. , 2007, , .		1
40	Stable, high efficiency gyrotron backward-wave oscillator. Physics of Plasmas, 2007, 14, .	0.7	17
41	A TE21 second-harmonic gyrotron backward-wave oscillator with slotted structure. Physics of Plasmas, 2007, 14, 123105.	0.7	8
42	MODAL ANALYSIS OF AZIMUTHALLY PERIODIC VANE-LOADED CYLINDRICAL WAVEGUIDE INTERACTION STRUCTURE FOR GYRO-TWT. Progress in Electromagnetics Research, 2007, 70, 175-189.	1.6	11
43	A terahertz gyrotron with pulsed magnetic field. Radiophysics and Quantum Electronics, 2007, 50, 755-761.	0.1	15
44	GAIN AND BANDWIDTH ANALYSIS OF A VANE-LOADED GYRO-TWT. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 27, 333-342.	0.6	2
45	MODAL ANALYSIS OF A SLOTTED WAVEGUIDE: COMPARISON BETWEEN ANALYTIC SOLUTION AND COMPUTER SIMULATIONS. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 27, 1335-1345.	0.6	1
46	LARGE-SIGNAL SIMULATIONS OF A GYROTRON TRAVELING-WAVE AMPLIFIER WITH A MODE-SELECTIVE INTERACTION CIRCUIT. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 27, 1427-1432.	0.6	1
47	Parameters to Define the Electron Beam Trajectory of a Double-Tapered Disc-Loaded Wideband Gyro-TWT in Profiled Magnetic Field. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 28, 443-449.	0.6	2
48	A Mode Converter with Multi-waveguide Output from the TE01 Circular Waveguide Mode to the TE10 Rectangular Mode for Millimeter Wave Gyro-device Applications. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 28, 1155-1160.	0.6	5
49	Influence of Reflections of the Output Port on Beam-wave Interaction in Gyrotron Traveling Wave Amplifier. Journal of Infrared, Millimeter and Terahertz Waves, 2008, 29, 657-662.	0.6	0
50	The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range — A review of novel and prospective applications. Thin Solid Films, 2008, 517, 1503-1506.	0.8	57
51	Cyclotron Maser Radiation from an Inhomogeneous Plasma. Physical Review Letters, 2008, 101, 215003.	2.9	14
52	Dynamic nuclear polarization at high magnetic fields. Journal of Chemical Physics, 2008, 128, 052211.	1.2	734
53	MAGY Simulations of Mode Interaction in a Coaxial Gyrotron. IEEE Transactions on Plasma Science, 2008, 36, 606-619.	0.6	9
54	Exciting circular TEmn modes at low terahertz region. Applied Physics Letters, 2008, 93, .	1.5	29

#	Article	IF	Citations
55	Excitation of parasitic modes in gyrotrons with fast voltage rise. Physics of Plasmas, 2008, 15, .	0.7	20
56	Study on suppression of gyro-BWO by distributed wall losses. , 2008, , .		0
57	Loss-Induced Modal Transition in a Dielectric-Coated Metal Cylindrical Waveguide for Gyro-Traveling-Wave-Tube Applications. IEEE Electron Device Letters, 2008, 29, 1256-1258.	2.2	21
58	Effect of a backward wave on the stability of an ultrahigh gain gyrotron traveling-wave amplifier. Physics of Plasmas, 2008, 15, .	0.7	22
59	Demonstration of auroral radio emission mechanisms by laboratory experiment. Plasma Physics and Controlled Fusion, 2008, 50, 074010.	0.9	40
60	Numerical simulation of auroral cyclotron maser processes. Plasma Physics and Controlled Fusion, 2008, 50, 074011.	0.9	31
61	W -band TE01 gyrotron backward-wave oscillator with distributed loss. Physics of Plasmas, 2008, 15, .	0.7	25
62	Electron beam measurements for a laboratory simulation of auroral kilometric radiation. Plasma Sources Science and Technology, 2008, 17, 035011.	1.3	23
63	3D PiC code simulations for a laboratory experimental investigation of Auroral Kilometric Radiation mechanisms. Plasma Physics and Controlled Fusion, 2008, 50, 124038.	0.9	25
64	Injection-locked millimeter wave oscillator based on field-emission cathodes. Journal of Vacuum Science & Technology B, 2008, 26, 694-697.	1.3	2
65	Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier. Physics of Plasmas, 2008, 15, .	0.7	3
66	Nonlinear theory of cyclotron resonant wave-particle interactions: Analytical results beyond the quasilinear approximation. Physical Review E, 2008, 77, 016404.	0.8	9
67	Stability of frequency-multiplying harmonic gyroklystrons. Physics of Plasmas, 2008, 15, .	0.7	17
68	Radio frequency resonator structure and diagnostic measurements for a laboratory simulation of Auroral Kilometric Radiation. Physics of Plasmas, 2008, 15, 056503.	0.7	32
69	Effect of the transverse nonuniformity of the radiofrequency field on the start current and efficiency of gyrodevices with confocal mirrors. Physics of Plasmas, 2008, 15, .	0.7	7
70	Design of a Ka-band TE11 mode gyrotron traveling-wave amplifier. , 2009, , .		0
71	Stabilization of the potential multi-steady-state absolute instabilities in a gyrotron traveling-wave amplifier. Physics of Plasmas, 2009, 16, 103107.	0.7	5
72	Frequency tunable gyrotron using backward-wave components. Journal of Applied Physics, 2009, 105, .	1.1	111

# 73	ARTICLE Competition between fundamental and harmonic modes in the Gyro-BWO. , 2009, , .	IF	CITATIONS
74	Design of a Third-Harmonic Gyrotron Oscillator Using a Photonic Crystal Cavity. Japanese Journal of Applied Physics, 2009, 48, 074502.	0.8	2
75	Modal Transition and Reduction in a Lossy Dielectric-Coated Waveguide for Gyrotron-Traveling-Wave Tube Amplifier Applications. IEEE Transactions on Electron Devices, 2009, 56, 839-845.	1.6	14
76	A Lossy Dielectric-Ring Loaded Waveguide With Suppressed Periodicity for Gyro-TWTs Applications. IEEE Transactions on Electron Devices, 2009, 56, 2335-2342.	1.6	35
77	Analysis of the Stability in a Gyrotron Traveling Wave Amplifier with the Reflection at Output Port. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30, 128-136.	1.2	1
78	Study on the Suppression of Gyro-BWO by Distributed Wall Losses. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30, 924-930.	1.2	6
79	Design and Simulation of a Ka-Band TE11 Mode Gyro-Traveling-Wave Amplifier. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31, 221.	1.2	1
80	Analysis of Ohmic Quality Factor of Circumferentially Corrugated Circular Cavities. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31, 510.	1.2	0
81	Design and demonstration of a 0.22 THz gyrotron oscillator. Science Bulletin, 2009, 54, 1495-1499.	4.3	5
82	Study on a 60 kV/5 A magnetron injection gun for 200 GHz electron cyclotron master. Frontiers of Electrical and Electronic Engineering in China: Selected Publications From Chinese Universities, 2009, 4, 440-445.	0.6	2
83	Stability study of a gyrotron-traveling-wave amplifier based on a lossy dielectric-loaded mode-selective circuit. Physics of Plasmas, 2009, 16, .	0.7	16
84	Influence of wall impedance and self-fields on the cyclotron maser instability. Journal of Applied Physics, 2009, 106, 053110.	1.1	1
85	Impact of Spent Electrons on BWO Operation. IEEE Transactions on Plasma Science, 2009, 37, 560-567.	0.6	11
86	Magnetron injection gun for a broadband gyrotron backward-wave oscillator. Physics of Plasmas, 2009, 16, .	0.7	25
87	Electron dynamics in the process of mode switching in gyrotrons. Physics of Plasmas, 2009, 16, .	0.7	4
88	Energy gain of free electron in pulsed electromagnetic plane wave with constant external magnetic fields. Physics of Plasmas, 2009, 16, 113103.	0.7	12
89	A gyrotron-traveling-wave amplifier based on lossy dielectric-coated metal cylindrical waveguide. , 2009, , .		0
90	A co-harmonic gyro-oscillator with a novel interaction cavity. , 2009, , .		5

#	Article	IF	CITATIONS
91	Modes in lossy dielectric-loaded metal cylindrical waveguide for gyrotron-traveling-wave amplifier applications. , 2009, , .		0
92	The trajectories of charged particles moving at relativistic speeds inside particle separators – a fully symbolic solution. International Journal of Nuclear Energy Science and Technology, 2009, 4, 313.	0.2	3
93	Study of a Ka-Band TE11 Mode Gyrotron Traveling-Wave Amplifier. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31, 574.	1.2	1
94	Beam-Wave Coupling Strength Analysis in a Gyrotron Traveling-Wave Amplifier. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31, 714.	1.2	16
95	BEAM-ABSENT ANALYSIS OF DISC-LOADED-COAXIAL WAVEGUIDE FOR APPLICATION IN GYRO-TWT (PART-1). Progress in Electromagnetics Research, 2010, 109, 211-227.	1.6	17
96	Theoretical study of wave propagation along the coaxial waveguide filled with moving magnetized plasma. Chinese Physics B, 2010, 19, 105202.	0.7	2
97	Relativistic ion cyclotron instability driven by energetic alpha particles in plasma under magnetic field with sinusoidal nonuniformities. Plasma Physics and Controlled Fusion, 2010, 52, 015006.	0.9	1
98	Fundamental and harmonic mode competition in the gyromonotron. , 2010, , .		0
99	Localized cyclotron mode driven by fast <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>α</mml:mi>particles under a nonuniform magnetic field. Physical Review E, 2010, 81, 026404.</mml:math 	0.8	1
100	Study of a high-order-mode gyrotron traveling-wave amplifier. Physics of Plasmas, 2010, 17, .	0.7	3
101	Design of a Single-Anode MIG for High Voltage, Sub-Centimeter Gyrotron Traveling Wave Amplifier. , 2010, , .		0
102	Linear analysis of a rectangular waveguide cyclotron maser with a sheet electron beam. Physics of Plasmas, 2010, 17, .	0.7	12
103	Design and simulation of a â^¼390 GHz seventh harmonic gyrotron using a large orbit electron beam. Journal Physics D: Applied Physics, 2010, 43, 155204.	1.3	26
104	Fundamental and harmonic mode competition in the gyrotron oscillator. , 2010, , .		0
105	Nonlinear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit. Physics of Plasmas, 2010, 17, .	0.7	33
106	Numerical investigation of auroral cyclotron maser processes. Physics of Plasmas, 2010, 17, 056501.	0.7	19
107	Linear analysis of a W band groove-loaded folded waveguide traveling wave tube. Physics of Plasmas, 2010, 17, 113305.	0.7	7
108	Excitation of parasitic waves near cutoff in forward-wave amplifiers. Physical Review E, 2010, 82, 046404.	0.8	5

#	Article	IF	CITATIONS
109	P3-5: A novel gyrotron-cascaded prebunching-excited amplifier (gyro-CPA). , 2010, , .		0
110	P3-6: Using sharp down-tapered magnetic profile to enhance the performance of a millimeter-wave gyro-TWT. , 2010, , .		0
111	A cusp electron gun for millimeter wave gyrodevices. Applied Physics Letters, 2010, 96, .	1.5	120
112	Amplification of Picosecond Pulses in a 140-GHz Gyrotron-Traveling Wave Tube. Physical Review Letters, 2010, 105, 135101.	2.9	50
113	Efficiency enhancement in gyrotron backward wave oscillator with a nonlinearly tapered structure. , 2010, , .		0
114	Post-Amplification of a Gyrotron RF Beam by a Sheet Electron Beam. IEEE Transactions on Plasma Science, 2010, 38, 1208-1218.	0.6	2
115	Linear Full-Wave-Interaction Analysis of a Gyrotron-Traveling-Wave-Tube Amplifier Based on a Lossy Dielectric-Lined Circuit. IEEE Transactions on Plasma Science, 2010, 38, 1219-1226.	0.6	23
116	Particle-in-cell simulation of a gyrotron traveling wave amplifier. , 2011, , .		0
117	Development of a W-band gyrotron backward wave oscillator. , 2011, , .		1
118	Competition between Harmonic Cyclotron Maser Interactions in the Terahertz Regime. Physical Review Letters, 2011, 107, 135101.	2.9	44
119	Particle simulation of a ka-band gyrotron traveling wave amplifier. Physics of Plasmas, 2011, 18, .	0.7	6
120	Design of an ka-band mode converter. , 2011, , .		0
121	Recent Developments on High-Power Gyrotrons—Introduction to This Special Issue. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 241-252.	1.2	43
122	Design of a New Wide Bandwidth TE01-Mode Converter. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 1307-1313.	1.2	14
123	A Review on the Applications of High Power, High Frequency Microwave Source: Gyrotron. Journal of Fusion Energy, 2011, 30, 257-276.	0.5	136
124	Generating 0.42 THz radiation from a second harmonic gyrotron. Science Bulletin, 2011, 56, 3572-3574.	1.7	3
125	Terahertz gyrotrons. , 2011, , .		3
126	Numerical Simulations of Nonlinear Dynamics of Electron Cyclotron Maser with a Straight Beam. Chinese Physics Letters, 2011, 28, 117702.	1.3	1

#	Article	IF	CITATIONS
127	Auroral magnetospheric cyclotron emission processes: numerical and experimental simulations. Plasma Physics and Controlled Fusion, 2011, 53, 074015.	0.9	12
128	The self-consistent nonlinear theory of electron cyclotron maser based on anomalous Doppler effect. Applied Physics Letters, 2011, 98, 261502.	1.5	15
129	Cyclotron maser radiation from inhomogeneous plasmas. Physics of Plasmas, 2011, 18, 022902.	0.7	12
130	Theoretical study on a 0.6 THz third harmonic gyrotron. Physics of Plasmas, 2011, 18, .	0.7	8
131	Broadband conversion of TE01 mode for the coaxial gyrotron at low terahertz. Physics of Plasmas, 2012, 19, 032117.	0.7	5
132	Numerical simulation of a W-band four-cavity gyroklystron amplifier. Physics of Plasmas, 2012, 19, 033104.	0.7	7
133	Experiments on beam plasma interactions and EM waves in magnetized plasmas. , 2012, , .		0
134	Advances in gyro-amplifier research. , 2012, , .		1
135	Interaction of charged particles with localized electrostatic waves in a magnetized plasma. Physical Review E, 2012, 85, 016404.	0.8	4
136	Modeling and simulation of a 250 GHz metal PBG waveguide for gyrotron amplifier. , 2012, , .		0
137	Characterization of forward-wave interaction in a frequency tunable gyrotron. , 2012, , .		0
138	Linear and nonlinear behaviors of gyrotron backward wave oscillators. Physics of Plasmas, 2012, 19, .	0.7	8
139	A Feasibility Study of Beam-Wave Interaction in 670 GHz Gyrotron for Radioactive Material Detection Application. Japanese Journal of Applied Physics, 2012, 51, 076705.	0.8	5
140	Experimental study from linear to chaotic regimes on a terahertz-frequency gyrotron oscillator. Physics of Plasmas, 2012, 19, .	0.7	82
141	A Ka-Band Second Harmonic Gyroklystron Amplifier. IEEE Transactions on Plasma Science, 2012, 40, 2099-2104.	0.6	7
142	Nonlinear theory for a terahertz gyrotron with a special cross-section interaction cavity. Physics of Plasmas, 2012, 19, .	0.7	9
143	Preliminary design of a W-band third harmonic gyrotron. , 2012, , .		0
144	Improved design of an output structure for W-band Gyro-TWT. , 2012, , .		0

#	ARTICLE	IF	CITATIONS
145	Analysis of reflections of the output port on saturated power in TE01 gyrotron traveling wave amplifier. , 2012, , .		0
146	Harmonic mode competition in a terahertz gyrotron backward-wave oscillator. Physics of Plasmas, 2012, 19, .	0.7	18
147	PIC simulation of a W-band gyroklystron amplifier. , 2012, , .		0
148	Some physics issues of THz gyrotrons. , 2012, , .		0
149	Design and Experiment of a Q-band Gyro-TWT Loaded With Lossy Dielectric. IEEE Transactions on Electron Devices, 2012, 59, 3612-3617.	1.6	66
150	Competition between the forward-wave and backward-wave in a W-band gyrotron backward wave oscillator (Gyro-BWO). , 2012, , .		1
151	A study of sub-terahertz and terahertz gyrotron oscillators. Physics of Plasmas, 2012, 19, .	0.7	37
152	Development of a Magnetic Cusp Gun for Terahertz Harmonic Gyrodevices. IEEE Transactions on Electron Devices, 2012, 59, 3635-3640.	1.6	25
153	Numerical simulations of a co-harmonic gyrotron. Journal Physics D: Applied Physics, 2012, 45, 065105.	1.3	11
154	TIME-DEPENDENT NONLINEAR THEORY AND NUMERICAL SIMULATION OF 94 GHZ COMPLEX CAVITY GYROTRON. Progress in Electromagnetics Research M, 2012, 25, 141-155.	0.5	0
155	PROPAGATION CHARACTERISTICS OF A VARIANT OF DISC-LOADED CIRCULAR WAVEGUIDE. Progress in Electromagnetics Research M, 2012, 26, 23-37.	0.5	7
156	Development and Applications of High—Frequency Gyrotrons in FIR FU Covering the sub-THz to THz Range. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33, 667-694.	1.2	66
157	Linear wave dispersion relation of a magnetized relativistic rectilinear electron beam-dielectric system. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 650-653.	1.7	2
158	Analysis of Low Frequency Oscillations in Magnetron Injection Guns. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33, 141-148.	1.2	0
159	Heating of ions by high frequency electromagnetic waves in magnetized plasmas. Physics of Plasmas, 2013, 20, 072507.	0.7	1
160	Laboratory astrophysics: Investigation of planetary and astrophysical maser emission. Space Science Reviews, 2013, 178, 695-713.	3.7	40
161	Mode selection on cavity accumulation of coherent undulator synchrotron radiation. Journal of the Korean Physical Society, 2013, 62, 849-852.	0.3	2
162	Design of a High-Harmonic Gyrotron With a Permanent Magnet System. IEEE Transactions on Electron Devices, 2013, 60, 3570-3575.	1.6	8

\sim		<u> </u>		
Сіта	ΔTIO	N R	'FD(JDT
	110			

#	Article	IF	CITATIONS
163	Nanosecond Pulses in a THz Gyrotron Oscillator Operating in a Mode-Locked Self-Consistent <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Q</mml:mi></mml:math> -Switch Regime. Physical Review Letters, 2013, 111, 205101.	2.9	35
164	Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier. Physical Review Letters, 2013, 111, 235101.	2.9	100
165	Millimeter and terahertz wave absorption in a lossy conducting layer. Physics of Plasmas, 2013, 20, 103301.	0.7	3
166	Design of a W-band Gyro-TWT Amplifier With a Lossy Ceramic-Loaded Circuit. IEEE Transactions on Electron Devices, 2013, 60, 2388-2394.	1.6	57
167	Design of a Ka-band gyro-TWT amplifier for broadband operation. Physics of Plasmas, 2013, 20, 073110.	0.7	1
168	Design of a W-band TE <inf>01</inf> mode gyro-TWT amplifier with a lossy ceramic-loaded circuit. , 2013, , .		0
169	Design and simulation of 94 GHz metal PBG waveguide. , 2013, , .		0
170	The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread. Annals of Physics, 2013, 339, 588-595.	1.0	3
171	High Power Wideband Gyrotron Backward Wave Oscillator Operating towards the Terahertz Region. Physical Review Letters, 2013, 110, 165101.	2.9	146
172	Influence of Annular Beam Displacement on the Performance of a High-Power Gyrotron. IEEE Transactions on Plasma Science, 2013, 41, 872-878.	0.6	11
173	3D PIC simulation of starting process of oscillation in a 42 GHz gyrotron. , 2013, , .		1
174	Numerical and laboratory simulations of auroral acceleration. Physics of Plasmas, 2013, 20, 102901.	0.7	3
175	Nonstationary oscillation of gyrotron backward wave oscillators with cylindrical interaction structure. Physics of Plasmas, 2013, 20, .	0.7	2
176	Enhancing the efficiency of slow-wave electron cyclotron masers with the tapered refractive index. Physics of Plasmas, 2013, 20, 043107.	0.7	2
177	Modeling and simulations of high-power microwave devices using the CHIPIC code. Journal of Plasma Physics, 2013, 79, 69-86.	0.7	10
178	UNSTABLE ELECTROMAGNETIC MODES IN STRONGLY MAGNETIZED PLASMAS. International Journal of Modern Physics B, 2013, 27, 1350151.	1.0	0
179	Analysis and PIC simulation of a Gyrotron travelling wave tube amplifier. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, 12, 307-324.	0.4	4
180	TRIODE MAGNETRON INJECTION GUN FOR 132 GHZ GYROTRON FOR 200 MHZ DNP-NMR APPLICATION. Progress in Electromagnetics Research C, 2013, 45, 191-201.	0.6	4

#	Article	IF	CITATIONS
181	A computational efficient simulation tool for gyrotrons. , 2014, , .		0
182	G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit. Physics of Plasmas, 2014, 21, .	0.7	7
183	Review of Gyrotron Traveling-Wave Tube Amplifiers. , 2014, , 1-25.		0
184	Effects of electrons misalign on the output power of backward wave oscillation modes in Gyro-TWT. , 2014, , .		0
185	Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam. Physics of Plasmas, 2014, 21, 083104.	0.7	1
186	A compact normal magnet for high power millimeter-wave gyrotrons: The electropermagnet. , 2014, , .		2
187	An analytical study on the diffraction quality factor of open cavities. Physics of Plasmas, 2014, 21, .	0.7	18
188	Efficiency enhancement of anomalous-Doppler electron cyclotron masers with tapered magnetic field. Physics of Plasmas, 2014, 21, 023117.	0.7	3
189	3D PiC code investigations of Auroral Kilometric Radiation mechanisms. Journal of Physics: Conference Series, 2014, 511, 012051.	0.3	0
190	Theory and Experiment of a W-Band Tunable Gyrotron Oscillator. IEEE Transactions on Electron Devices, 2014, 61, 1781-1788.	1.6	21
191	The Gyrotron at 50: Historical Overview. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35, 325-381.	1.2	185
192	The Single Particle Theory of Backward-Wave Amplifications Based on Electron Cyclotron Maser with a Rectilinear Beam. Plasma Science and Technology, 2014, 16, 12-16.	0.7	0
193	Moment-based, self-consistent linear analysis of gyrotron oscillators. Physics of Plasmas, 2014, 21, 043105.	0.7	11
194	Analysis of backward-wave oscillation in Gyro-TWT by steady-state multimode theory. , 2014, , .		1
195	Mechanisms of amplification of short electromagnetic pulses in gyroresonance traveling-wave tubes. Journal of Communications Technology and Electronics, 2014, 59, 798-804.	0.2	0
196	Self-consistent Nonlinear Analysis and 3D Particle-In-Cell Simulation of a W-band Gyro-TWT. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35, 799-812.	1.2	9
197	Design and Experimental Study of a High-Gain <i>W</i> -Band Gyro-TWT With Nonuniform Periodic Dielectric Loaded Waveguide. IEEE Transactions on Electron Devices, 2014, 61, 2564-2569.	1.6	81
198	Design of a Novel Dual-Band Gyro-TWT. IEEE Transactions on Electron Devices, 2014, 61, 3858-3863.	1.6	12

ARTICLE IF CITATIONS # A W-band Third Harmonic Gyrotron with an Iris Cavity. Journal of Infrared, Millimeter, and Terahertz 199 1.2 6 Waves, 2014, 35, 458-467. Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers., 2014,,. 201 Fundamental Theory of the Electron Cyclotron Maser., 2014, , 27-60. 3 Design and Experiment of a 220/420-GHz Gyrotron for Nondestructive Evaluation. IEEE Transactions on Electron Devices, 2014, 61, 2531-2537. Broadband ultra-low-voltage terahertz gyrotron., 2015,,. 203 1 Optimal Design and Thermal Analysis of Undepressed Collectors for 35-GHz Gyro-TWTs. IEEE Transactions on Electron Devices, 2015, 62, 2652-2656. 204 1.6 205 The Maser., 2015, , 87-140. 0 Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube 206 with helically corrugated waveguide. Physics of Plasmas, 2015, 22, . Generation of broadband terahertz radiation using a backward wave oscillator and 207 96 1.5 pseudospark-sourced electron beam. Applied Physics Letters, 2015, 107, . A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic 209 field. Physics of Plasmas, 2015, 22, 113105. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic 210 4 0.7 band gap cavity gyrotron oscillator. Physics of Plasmas, 2015, 22, 093102. Theoretical study on mode competition between fundamental and second harmonic modes in a 0.42 THz gyrotron with gradually tapered complex cavity. Physics of Plasmas, 2015, 22, . Time-dependent nonlinear analysis of gyro-TWT amplifier., 2015,,. 212 0 Some recent progresses on electron cyclotron maser research., 2015, , . Modal analysis and efficient coupling of TE_01 mode in small-core THz Bragg fibers. Optics Express, 214 1.7 15 2015, 23, 27266. Enhancing spoof surface-plasmons with gradient metasurfaces. Scientific Reports, 2015, 5, 8772. 36 Terahertz electron cyclotron maser interactions with an axis-encircling electron beam. Physics of 216 0.7 3 Plasmas, 2015, 22, . Design and efficient coupling of TE<inf>01</inf> mode in small-core THz Bragg fiber., 2015, , .

#	Article	IF	Citations
218	Design of a magnetron injection gun with low velocity spread for 0.56THz third harmonic gyrotron. , 2015, , .		0
219	Broadband Continuous Frequency Tuning in a Terahertz Gyrotron With Tapered Cavity. IEEE Transactions on Electron Devices, 2015, 62, 4278-4284.	1.6	14
220	Effect of self-fields on the electron cyclotron maser instability in a dielectric loaded waveguide. European Physical Journal D, 2015, 69, 1.	0.6	0
221	Generation of ultrashort microwave pulses in gyro-TWT with saturable cyclotron absorber in the feedback loop. , 2015, , .		Ο
222	Design and simulation of a magnetron injected electronic gun for 0.4 THz gyrotron. , 2015, , .		1
223	Absolute Instability near the Band Edge of Traveling-Wave Amplifiers. Physical Review Letters, 2015, 115, 124801.	2.9	31
224	Study of broadband quasi-optical mode converter for THz gyrotron. , 2015, , .		0
225	Novel self-consistent linear theory of a gyrotron oscillator and experimental validation. , 2015, , .		0
226	Study on a high-efficiency low-voltage tunable terahertz gyrotron. , 2015, , .		0
227	Absolute instability at the band edges in linear beam traveling wave tubes. , 2015, , .		0
228	Design of a Novel MIG for a 140-GHz 2-kW Confocal Gyrotron Traveling-Wave Tube. IEEE Transactions on Electron Devices, 2015, 62, 3832-3836.	1.6	2
229	A normal electropermagnet for high power millimeter-wave gyrotrons. , 2015, , .		2
230	Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence. Physics of Plasmas, 2015, 22, .	0.7	15
231	Study of an Eighth-Harmonic Large-Orbit Gyrotron in the Terahertz Band. IEEE Transactions on Plasma Science, 2015, 43, 506-514.	0.6	10
232	Hollow core photonic crystal for terahertz gyrotron oscillator. Journal Physics D: Applied Physics, 2015, 48, 045104.	1.3	4
233	Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity. Physics of Plasmas, 2015, 22, .	0.7	9
234	Design and Simulation Analysis of a Magnetron Injection Gun for a 0.42 THz Second Harmonic Gyrotron. Journal of Fusion Energy, 2015, 34, 1385-1391.	0.5	7
235	Nonstationary oscillations in gyrotrons revisited. Physics of Plasmas, 2015, 22, 053113.	0.7	16

#	Article	IF	CITATIONS
236	Theoretical Study on a 0.4-THz Second Harmonic Gyrotron. IEEE Transactions on Plasma Science, 2015, 43, 1688-1693.	0.6	8
237	Nonlinear Investigation and 3-D Particle Simulation of Second-Harmonic Gyro-TWT With a Mode Selective Circuit. IEEE Transactions on Electron Devices, 2015, 62, 1641-1647.	1.6	2
238	A Numerical Study on Finite-Bandwidth Resonances of High-Order Axial Modes (HOAM) in a Gyrotron Cavity. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 628-653.	1.2	5
239	Combined Resonances in Cyclotron Masers With Periodic Slow-Wave Structures. IEEE Transactions on Plasma Science, 2015, 43, 804-814.	0.6	13
240	Conformal Cross-Flow Axis-Encircling Electron Beam for Driving THz Harmonic Gyrotron. IEEE Electron Device Letters, 2015, 36, 960-962.	2.2	9
241	A Helical-Waveguide Gyro-TWT at the Third Cyclotron Harmonic. IEEE Transactions on Electron Devices, 2015, 62, 3387-3392.	1.6	13
242	High-Efficiency Excitation of a Third-Harmonic Gyrotron. IEEE Transactions on Electron Devices, 2015, 62, 3399-3405.	1.6	18
243	Theoretical Study of a Fourth-Harmonic 400-GHz Gyrotron Backward-Wave Oscillator. IEEE Transactions on Electron Devices, 2015, 62, 207-212.	1.6	13
244	Broadband Tunable Pre-Bunched Electron Cyclotron Maser for Terahertz Application. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 236-243.	2.0	30
245	Design and measurement of a TE13 input converter for high order mode gyrotron travelling wave amplifiers. Physics of Plasmas, 2016, 23, .	0.7	9
246	A 0.33-THz second-harmonic frequency-tunable gyrotron. Chinese Physics B, 2016, 25, 029401.	0.7	3
247	Spontaneous emission and spectral properties of radiation by relativistic electrons in a gyro-klystron and optical-klystron undulator. Journal of Synchrotron Radiation, 2016, 23, 430-435.	1.0	1
248	Simulation of a 300GHz confocal gyro-traveling wave amplifier. , 2016, , .		0
249	Numerical modelling of rectangular TE <inf>10</inf> to circular TE <inf>11</inf> terahertz mode couplers. , 2016, , .		0
250	Simulation of rectangular TE <inf>10</inf> to circular TE <inf>11</inf> terahertz mode converters. , 2016, , .		0
251	Time-dependent, multimode interaction analysis of the gyroklystron amplifier. Physics of Plasmas, 2016, 23, 083124.	0.7	3
252	Developing a 0.33-THz broadband pulse gyrotron. , 2016, , .		0
253	Magnetron Injection Gun Design for Multifrequency Band Operations. IEEE Transactions on Electron Devices, 2016, 63, 3719-3724.	1.6	6

#	Article	IF	Citations
254	Converting symmetric mode into ultra-high-order asymmetric mode. , 2016, , .		0
255	Broadband and high-purity Ku-band circular TE <inf>01</inf> -mode converter. , 2016, , .		3
256	Novel linear analysis for a gyrotron oscillator based on a spectral approach. Physics of Plasmas, 2016, 23, .	0.7	10
257	High harmonic terahertz confocal gyrotron with nonuniform electron beam. Physics of Plasmas, 2016, 23, .	0.7	11
258	Investigation of the Influence of Electron Beam Quality on the Operation in 0.42-THz Second Harmonic Gyrotron. IEEE Transactions on Plasma Science, 2016, 44, 749-754.	0.6	6
259	Design Study of a 372-GHz Higher Order Mode Input Coupler. IEEE Transactions on Electron Devices, 2016, , 1-7.	1.6	18
260	Analytical and PIC Simulation Studies of a Megawatt Class Gyrotwystron Amplifier. IEEE Transactions on Electron Devices, 2016, 63, 4104-4112.	1.6	4
261	Wideband Circular TE ₂₁ and TE ₀₁ Mode Converters With Same Exciting Topologies. IEEE Transactions on Electron Devices, 2016, 63, 4088-4095.	1.6	29
262	Design and Microwave Measurement of a Novel Compact TE \$_{0n}\$ /TE \$_{1n'}\$ -Mode Converter. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4108-4116.	2.9	24
263	Design and Stability Studies of Second-Harmonic Gyro-TWT Amplifier Using Wedge-Shaped Lossy Ceramic Rod-Loaded Mode Selective RF Interaction Circuit. IEEE Transactions on Plasma Science, 2016, 44, 2340-2347.	0.6	3
264	Terahertz Gyrotron Broadband Tuning Based on Local Field Shaping in a Low- <inline-formula> <tex-math notation="LaTeX">\$Q\$ </tex-math> </inline-formula> Cavity. IEEE Transactions on Electron Devices, 2016, 63, 4081-4087.	1.6	5
265	Numerical Optimization of the Cusp Gun for a \$W\$ -Band Second-Harmonic Gyro-TWA. IEEE Transactions on Electron Devices, 2016, 63, 4473-4478.	1.6	2
266	Investigation on Mode Competition Between the Fundamental and Second-Harmonic Modes in the Complex Gyrotron. IEEE Transactions on Plasma Science, 2016, 44, 1063-1068.	0.6	8
267	A study of a G-band low-voltage harmonic multiplying gyrotron traveling-wave amplifier. , 2016, , .		0
268	Large bore electropermagnets for high power millimeter-wave gyrotrons. , 2016, , .		4
269	A Millimeter Wave High-Order TE13 Mode Converter. IEEE Transactions on Electron Devices, 2016, 63, 2907-2911.	1.6	11
270	Integral staggered point-matching method for millimeter-wave reflective diffraction gratings on electron cyclotron heating systems. Fusion Engineering and Design, 2016, 108, 55-59.	1.0	3
271	Spontaneous emission of radiation by relativistic electrons in a gyro-klystron. Radiation Physics and Chemistry, 2016, 120, 38-43.	1.4	1

#	Article	IF	CITATIONS
272	Proof-of-Principle Experiment on High-Power Gyrotron Traveling-Wave Tube With a Microwave System for Driving and Extracting Power Through One Window. IEEE Microwave and Wireless Components Letters, 2016, 26, 288-290.	2.0	19
273	Design Study of a Fundamental Mode Input Coupler for a 372-GHz Gyro-TWA I: Rectangular-to-Circular Coupling Methods. IEEE Transactions on Electron Devices, 2016, 63, 497-503.	1.6	37
274	A review on the sub-THz/THz gyrotrons. Infrared Physics and Technology, 2016, 76, 38-51.	1.3	55
275	Gyro-TWT Using a Metal PBC Waveguide as Its RF Circuit—Part I: Analysis and Design. IEEE Transactions on Electron Devices, 2016, 63, 2118-2124.	1.6	3
276	The Nonlinear Designs and Experiments on a 0.42-THz Second Harmonic Gyrotron With Complex Cavity. IEEE Transactions on Electron Devices, 2017, 64, 564-570.	1.6	23
277	Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit. Annals of Physics, 2017, 378, 440-447.	1.0	0
278	An Output Coupler for a W-Band High Power Wideband Gyroamplifier. IEEE Transactions on Electron Devices, 2017, 64, 1763-1766.	1.6	24
279	A W-Band TE ₁₂ -Mode Input Converter With Nonuniform Bragg Cavities. IEEE Transactions on Plasma Science, 2017, 45, 649-653.	0.6	8
280	Propagation Characteristics of Confocal Waveguides Based on Spheroidal Functions for a \${W}\$ -Band Gyro-TWT. IEEE Transactions on Electron Devices, 2017, 64, 1781-1786.	1.6	9
281	Automatic Hot Test of Gyrotron-Traveling Wave Tubes by Adaptive PID Feedback Control. IEEE Transactions on Electron Devices, 2017, 64, 1310-1314.	1.6	14
282	On the evaluation of Pierce parameters C and Q in a traveling wave tube. Physics of Plasmas, 2017, 24, .	0.7	15
283	A parametric investigation on the cyclotron maser instability driven by ring-beam electrons with intrinsic Alfvén waves. Physics of Plasmas, 2017, 24, 052902.	0.7	4
284	Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser. Physics of Plasmas, 2017, 24, .	0.7	12
285	The design of a multi-harmonic step-tunable gyrotron. Physics of Plasmas, 2017, 24, .	0.7	3
286	Multimode Steady-State Analysis for a Gyrotron Traveling Wave Amplifier Based on a Distributed Loss-Loaded Metal Cylindrical Waveguide. IEEE Transactions on Electron Devices, 2017, 64, 543-549.	1.6	7
287	Terahertz Broadband-Tunable Minigyrotron With a Pulse Magnet. IEEE Transactions on Electron Devices, 2017, 64, 527-535.	1.6	18
288	Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region. Physical Review Letters, 2017, 119, 184801.	2.9	100
289	A 0.4-THz Second Harmonic Gyrotron with Quasi-Optical Confocal Cavity. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38, 1457-1470.	1.2	15

#	Article	IF	CITATIONS
290	Theoretical investigation on a multifrequency multimode gyrotron at <italic>Ka</italic> -band. IEEE Transactions on Plasma Science, 2017, 45, 2955-2961.	0.6	10
291	Reflection influence on the operation of a 0.42ÂTHz second harmonic gyrotron with complex cavity. Vacuum, 2017, 145, 128-135.	1.6	2
292	Broadband rectangular TE <i>n</i> mode exciter with H-plane power dividers for 100 GHz confocal gyro-devices. Review of Scientific Instruments, 2017, 88, 074701.	0.6	10
293	Broadband terahertz-power extracting by using electron cyclotron maser. Scientific Reports, 2017, 7, 7265.	1.6	25
294	Simulation of transverse field sweeping system and thermal analysis of an undepreesed collector for a gyrotron. Journal of Electromagnetic Waves and Applications, 2017, 31, 1376-1385.	1.0	1
295	Orbital Angular Momentum (OAM) of Rotating Modes Driven by Electrons in Electron Cyclotron Masers. Scientific Reports, 2017, 7, 3372.	1.6	23
296	The influences of beam quality and Ohmic loss on the beam-wave interaction in a 420 GHz second-harmonic complex-cavity gyrotron. Europhysics Letters, 2017, 118, 38002.	0.7	4
297	Experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum tube. Applied Physics Letters, 2017, 110, 263507.	1.5	3
298	Design of a Broadband Quasi-Optical Mode Converter for \$W\$ -Band Gyro-TWTs. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 28-35.	2.9	18
299	Systematic analysis of a compact terahertz pulse gyrotron oscillator. , 2017, , .		Ο
300	Nonlinear oscillations of TM-mode gyrotrons. Physics of Plasmas, 2017, 24, .	0.7	5
301	An improved terahertz transmission line with Gaussian mode filtering and beam shaping for DNP-NMR. , 2017, , .		1
302	Electron acceleration efficiency enhancement with tapered magnetic field by circularly polarized microwave. , 2017, , .		0
303	Observation of Mode Competition in Operation of a 420 GHz, TE _{17.4} Second Harmonic Gyrotron With Complex Cavity. IEEE Transactions on Electron Devices, 2017, 64, 4700-4705.	1.6	8
304	Design of a TE <inf>10</inf> -to-TE <inf>61</inf> mode coupler for a 372 GHz gyrotron travelling wave amplifier. , 2017, , .		0
305	Design of a W-band Gyro-TWT with high velocity ratio and low voltage. , 2017, , .		Ο
306	Cusp Guns for Helical-Waveguide Gyro-TWTs of a High-Gain High-Power W-Band Amplifier Cascade. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 447-455.	1.2	7
307	A scheme to enhance the conversion efficiency of slowâ€wave electron cyclotron masers in the large signal approximation. Contributions To Plasma Physics, 2018, 58, 311-317.	0.5	1

#	Article	IF	CITATIONS
308	Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 183-194.	1.2	5
309	High-performance 16-way Ku-band radial power combiner based on the TE01-circular waveguide mode. Review of Scientific Instruments, 2018, 89, 034703.	0.6	13
310	Time-Domain Multimode Analysis of a Terahertz Gyro-TWT Amplifier. IEEE Transactions on Electron Devices, 2018, 65, 1550-1557.	1.6	12
311	Frequency pulling in a low-voltage medium-power gyrotron. Physics of Plasmas, 2018, 25, 043103.	0.7	2
312	Design and Experiment of a High Power and Broadband Ku-Band TE11 Mode Gyro-TWT. IEEE Transactions on Electron Devices, 2018, 65, 1962-1968.	1.6	11
313	Automatic Hot-Test System for High Average/Continuous-Wave Power Gyro-TWTs. IEEE Transactions on Electron Devices, 2018, 65, 1139-1145.	1.6	6
314	Fast-Wave Devices. , 0, , 659-693.		2
315	Design and Simulation of a Broadband <inline-formula> <tex-math notation="LaTeX">\$Ka\$ </tex-math> </inline-formula> -Band Gyrotron Traveling-Wave Tube With a Fully Dielectric-Loaded Circuit. IEEE Transactions on Electron Devices, 2018, 65, 1969-1975.	1.6	10
316	Analysis of some periodic structures of microwave tubes: part II: analysis of disc-loaded fast-wave circular waveguide structures for gyro-travelling-wave tubes. Journal of Electromagnetic Waves and Applications, 2018, 32, 1465-1500.	1.0	2
317	Controllable Thermal-Frequency Tuning of a Terahertz Gyrotron. IEEE Transactions on Electron Devices, 2018, 65, 695-703.	1.6	11
318	Advances in High-Field DNP Methods. , 2018, , 91-134.		3
319	A Method to Further Improve the Efficiency of Gyrotron Traveling Tube. , 2018, , .		0
320	Frequency-Stabilized Terahertz Gyrotron Backward-Wave Oscillator During Electronic Tuning Process. , 2018, , .		0
321	Gain and bandwidth of the TM-mode gyrotron amplifiers. Physics of Plasmas, 2018, 25, .	0.7	9
322	Analytic Exploration of the Accuracy of Pierce's Three-Wave Beam-Wave Interaction Theory of Traveling-Wave Tubes. IEEE Transactions on Plasma Science, 2018, 46, 2505-2511.	0.6	2
323	Terahertz rectangular corrugated transmission line with Gaussian mode filtering for DNPâ€NMR. IET Microwaves, Antennas and Propagation, 2018, 12, 2080-2084.	0.7	0
324	Design of a Kaâ€band MWâ€level high efficiency gyroklystron for accelerators. IET Microwaves, Antennas and Propagation, 2018, 12, 1752-1757.	0.7	9
325	Input coupling systems for millimetreâ€wave gyrotron travelling wave amplifiers. IET Microwaves, Antennas and Propagation, 2018, 12, 1748-1751.	0.7	4

#	Article	IF	CITATIONS
326	Quasi-Optical Orthomode Splitters for Input–Output of a Powerful <inline-formula> <tex-math notation="LaTeX">\${W}\$ </tex-math> </inline-formula> -Band Gyro-TWT. IEEE Transactions on Electron Devices, 2018, 65, 4600-4606.	1.6	6
327	Experimental Study of a 330-GHz Pulse Gyrotron with Broadband Operation. , 2018, , .		0
328	Investigation on High Average Power Operations of Gyro-TWTs With Dielectric-Loaded Waveguide Circuits. IEEE Transactions on Electron Devices, 2018, 65, 3012-3018.	1.6	23
329	Amplification of Frequency-Swept Signals in a -Band Gyrotron Travelling Wave Amplifier. IEEE Electron Device Letters, 2018, 39, 1077-1080.	2.2	21
330	Simulation and Experiment of PID Applied to the Automatic Voltage Control of Gyrotron Traveling Wave Tubes. IEEE Transactions on Plasma Science, 2018, 46, 2446-2451.	0.6	2
331	5-way radial power combiner at W-band by stacked waveguide micromachining. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 905, 91-95.	0.7	17
332	Terahertz Frequency- and Mode-Insensitive Broadband Quasi-optical Converter Antenna System. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 1065-1078.	1.2	0
333	Investigation on the optimal magnetic field of a cusp electron gun for a W-band gyro-TWA. Physics of Plasmas, 2018, 25, .	0.7	13
334	Comparative demonstration of multimode steady-state theory for the Gyro-TWT based on a distributed loss-loaded metal cylindrical waveguide. , 2018, , .		1
335	PIC simulation of a W-band gyro-TWT amplifier. , 2018, , .		0
336	Electronic-Tuning Frequency Stabilization of a Terahertz Gyrotron Oscillator. IEEE Transactions on Electron Devices, 2018, 65, 3466-3473.	1.6	5
337	Development of High-Efficiency Gyro-TWT With a Nonuniform Dielectric-Loaded Circuit. IEEE Transactions on Electron Devices, 2019, 66, 2764-2770.	1.6	2
338	Terahertz Gyro-BWO Using a High-Order Whispering-Gallery mode. , 2019, , .		0
339	Design of Radial Power Combiners Based on TE 01 Circular Waveguide Mode. , 0, , .		0
340	Development of a THz Broadband Mini-Gyrotron. , 2019, , .		0
341	Tapered Cavity Measurement for 42-GHz, 200-kW Gyrotron. IEEE Transactions on Plasma Science, 2019, 47, 3148-3154.	0.6	2
342	Electron rf Oscillator Based on Self-Excitation of a Talbot-Type Supermode in an Oversized Cavity. Physical Review Applied, 2019, 12, .	1.5	20
343	A 90° Oversized Broadband TE ₀₁ -to-TM ₁₁ Mode Converter for High-Power Transmission Line. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 4692-4699.	2.9	8

#	Article	IF	CITATIONS
344	Stability and Multimode Simulation Studies of \${W}\$ -Band Uniformly Dielectric-Loaded Gyrotron Traveling-Wave Tube Amplifier. IEEE Transactions on Electron Devices, 2019, 66, 5305-5312.	1.6	4
345	Frequency-Tunable Reflective Gyro-BWO. , 2019, , .		0
346	PID Modeling and Experiment of the Hot Test of Gyrotron Traveling Wave Tubes. IEEE Transactions on Plasma Science, 2019, 47, 2812-2817.	0.6	0
347	Design of a High-Gain \$X\$ -Band Megawatt Gyrotron Traveling-Wave Tube. IEEE Transactions on Plasma Science, 2019, 47, 2818-2822.	0.6	4
348	Design of a Broad-band Circular Waveguide TE \hat{A}^{o} 21 Mode Generator for Cold Test of Gyro-TWT. , 2019, , .		1
349	Effect of cyclotron resonance on â€~hot' dispersion in a staggered double metallic grating sheet beam travelling wave tube. Plasma Science and Technology, 2019, 21, 085505.	0.7	0
350	Harmonic terahertz gyrotron with a double confocal quasi-optical cavity. Physics of Plasmas, 2019, 26, 043109.	0.7	14
351	Experiment of a High-Power Sub-THz Gyrotron Operating in High-Order Axial Modes. IEEE Transactions on Electron Devices, 2019, 66, 2752-2757.	1.6	22
352	Design of a Ku-Band High-Purity Transducer for the TM ₀₁ Circular Waveguide Mode by Means of T-Type Junctions. IEEE Access, 2019, 7, 450-456.	2.6	7
353	Investigation of high-order mode excitation in a terahertz second-harmonic gyro-BWO. Physics of Plasmas, 2019, 26, .	0.7	0
354	Terahertz Broadband Whispering-Gallery Mode Gyrotron Backward-Wave Oscillator. IEEE Transactions on Electron Devices, 2019, 66, 2389-2395.	1.6	9
355	Design and Experiment of a High Average Power Ku-Band TE ₀₁ Mode Gyro-TWT. IEEE Transactions on Electron Devices, 2019, 66, 1559-1566.	1.6	11
356	Design of a TE ₀₁ -Mode Waveguide Bend Based on an Elliptical Waveguide Structure. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 906-914.	2.9	12
357	Input/Output System for Millimeter Wave Gyro-TWT. , 2019, , .		1
358	Simulation of Sweeping System of Collector for The 140GHz Gyrotron. , 2019, , .		0
359	Study of 1-THz 4th-Harmonic Gyrotron. , 2019, , .		0
360	TM-Mode Gyrotrons. , 2019, , .		0
361	Design and Simulation Study of Wraparound Couplers for Gyrotron Travelling Wave Amplifiers. , 2019, , .		0

#	Article	IF	CITATIONS
362	Investigation of the Effect of Electron Beam Quality on a 0.68-THz Second Harmonic Gyrotron. IEEE Transactions on Plasma Science, 2019, 47, 5153-5158.	0.6	4
363	A High-Current Large-Orbit Gyro-Like Relativistic Backward-Wave Oscillator. IEEE Transactions on Plasma Science, 2019, 47, 4944-4949.	0.6	1
364	Design of Collectors for High Average/Continuous-Wave Power Gyro-Devices. IEEE Transactions on Electron Devices, 2019, 66, 1512-1518.	1.6	3
365	Deep Reinforcement Learning with Adaptive Update Target Combination. Computer Journal, 2020, 63, 995-1003.	1.5	2
366	Nonadiabatic Effects on Beam-Quality Parameters for Frequency-Tunable Gyrotrons. IEEE Transactions on Electron Devices, 2020, 67, 341-346.	1.6	4
367	Theoretical Study of a \${W}\$ -Band-Covering Frequency-Tunable Gyrotron. IEEE Transactions on Electron Devices, 2020, 67, 659-666.	1.6	3
368	State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1-140.	1.2	223
369	Design and Measurement of a Broadband Compact TE ₁₁ Mode Input Coupler for an X-Band Gyrotron Traveling Wave Tube. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4554-4559.	2.9	8
370	Supermodes of oversized Talbot-type cavities. Journal of Applied Physics, 2020, 128, 114502.	1.1	5
371	Demonstration of a Selective Oversized Cavity in a Terahertz Second-Harmonic Gyrotron. IEEE Electron Device Letters, 2020, 41, 1412-1415.	2.2	29
372	Zones of soft and hard self-excitation in gyrotrons: Generalized approach. Physics of Plasmas, 2020, 27, .	0.7	7
372 373	Zones of soft and hard self-excitation in gyrotrons: Generalized approach. Physics of Plasmas, 2020,	0.7	7 8
	Zones of soft and hard self-excitation in gyrotrons: Generalized approach. Physics of Plasmas, 2020, 27, . Magnetron Injection Gun for High-Power Gyroklystron. IEEE Transactions on Electron Devices, 2020,		
373	 Zones of soft and hard self-excitation in gyrotrons: Generalized approach. Physics of Plasmas, 2020, 27, . Magnetron Injection Gun for High-Power Gyroklystron. IEEE Transactions on Electron Devices, 2020, 67, 5151-5157. CW Operation of a W-Band High-Gain Helical-Waveguide Gyrotron Traveling-Wave Tube. IEEE Electron 	1.6	8
373 374	Zones of soft and hard self-excitation in gyrotrons: Ceneralized approach. Physics of Plasmas, 2020, 27, . Magnetron Injection Gun for High-Power Gyroklystron. IEEE Transactions on Electron Devices, 2020, 67, 5151-5157. CW Operation of a W-Band High-Gain Helical-Waveguide Gyrotron Traveling-Wave Tube. IEEE Electron Device Letters, 2020, 41, 773-776.	1.6 2.2	8 46
373 374 375	Zones of soft and hard self-excitation in gyrotrons: Generalized approach. Physics of Plasmas, 2020, 27, . Magnetron Injection Gun for High-Power Gyroklystron. IEEE Transactions on Electron Devices, 2020, 67, 5151-5157. CW Operation of a W-Band High-Gain Helical-Waveguide Gyrotron Traveling-Wave Tube. IEEE Electron Device Letters, 2020, 41, 773-776. Recent theory of traveling-wave tubes: a tutorial-review. Plasma Research Express, 2020, 2, 023001.	1.6 2.2 0.4	8 46 17
373 374 375 376	 Zones of soft and hard self-excitation in gyrotrons: Generalized approach. Physics of Plasmas, 2020, 27, . Magnetron Injection Gun for High-Power Gyroklystron. IEEE Transactions on Electron Devices, 2020, 67, 5151-5157. CW Operation of a W-Band High-Gain Helical-Waveguide Gyrotron Traveling-Wave Tube. IEEE Electron Device Letters, 2020, 41, 773-776. Recent theory of traveling-wave tubes: a tutorial-review. Plasma Research Express, 2020, 2, 023001. Investigation on Ku-Band Dual-State Gyro-TWT. IEEE Transactions on Plasma Science, 2020, , 1-6. Terahertz Ultralow-Voltage Gyrotron With Upstream Output. IEEE Transactions on Plasma Science, 	1.6 2.2 0.4 0.6	8 46 17 4

#	Article	IF	CITATIONS
380	Spatial distributions of plasma potential and density in electron cyclotron resonance ion source. Plasma Sources Science and Technology, 2020, 29, 065010.	1.3	10
381	Generating High-Power Continuous-Frequency Tunable Sub-Terahertz Radiation From a Quasi-Optical Gyrotron With Confocal Waveguide. IEEE Electron Device Letters, 2020, 41, 613-616.	2.2	13
382	A Circular TE ₀₂ Mode Generator With High Purity for Gyro-TWT Study. IEEE Microwave and Wireless Components Letters, 2020, 30, 137-140.	2.0	9
383	Microwave System of Transverse Output for a High-Power \${W}\$ -Band Gyro-TWT. IEEE Transactions on Electron Devices, 2020, 67, 1221-1226.	1.6	7
384	Cyclotron Resonance Maser With Zigzag Quasi-Optical Transmission Line: Concept and Modeling. IEEE Transactions on Electron Devices, 2021, 68, 5846-5850.	1.6	17
385	Reflective Gyrotron Backward-Wave Oscillator With Piecewise Frequency Tunability. IEEE Transactions on Electron Devices, 2021, 68, 324-329.	1.6	12
386	Microwave Measurement of a Compact Circular TE ₁₁ Mode Coupler Loaded With Ridges. IEEE Transactions on Electron Devices, 2021, 68, 359-363.	1.6	2
387	Frequency Tuning Characteristics of a High-Power Sub-THz Gyrotron with Quasi-Optical Cavity. Electronics (Switzerland), 2021, 10, 526.	1.8	4
388	Floquet maser. Science Advances, 2021, 7, .	4.7	36
389	The role of radio frequency scattering in high-energy electron losses from minimum-B ECR ion source. Plasma Physics and Controlled Fusion, 2021, 63, 045007.	0.9	13
390	Investigation on a 220 GHz Quasi-Optical Antenna for Wireless Power Transmission. Electronics (Switzerland), 2021, 10, 634.	1.8	2
391	Design Procedure for a Broadband TE11/HE11 Mode Converter for High-Power Radar Applications. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 380-390.	1.2	3
392	W-band circular TM11 mode converter for gyrotrons. Review of Scientific Instruments, 2021, 92, 053540.	0.6	1
393	Linear and Nonlinear Characteristics of a Low-Voltage Gyrotron Backward-Wave Oscillator in the Subterahertz Range. IEEE Transactions on Plasma Science, 2021, 49, 1557-1563.	0.6	0
394	Efficient magnetic-coupling excitation of LSSPs on high-Q multilayer planar-circular-grating resonators. Optics Express, 2021, 29, 25189.	1.7	5
395	Investigation of Oversized Circular Waveguides With Deformed Cross Section for Gradual TE ₀₁ Mode Bends. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3173-3183.	2.9	4
396	Design and simulation of a W-band gyrotron traveling wave amplifier. Journal of Electromagnetic Waves and Applications, 0, , 1-12.	1.0	0
397	Design and Preliminary Experiment of W-Band Broadband TEO2 Mode Gyro-TWT. Electronics (Switzerland), 2021, 10, 1950.	1.8	15

ARTICLE IF CITATIONS Evaporation characteristics of metallic materials for vacuum electron devices. AIP Advances, 2021, 11, 0.6 1 095020. Broadband and High Power Meta-Surface Dielectric Window for W-Band Gyrotron Traveling Wave 2.2 Tubes. IEEE Electron Device Letters, 2021, 42, 1386-1389. Design and Measurement of a Broadband Beryllium Oxide Window With High Power Handling 2 1.6 Capability. IEEE Transactions on Electron Devices, 2021, 68, 4711-4716. Terahertz gyrotrons with inhomogeneous magnetic fields to suppress mode competition and enhance 1.1 efficiency. Journal of Applied Physics, 2021, 129, . Shadowing of the operating mode by sidebands in gyrotrons with diode-type electron guns. Physics of 0.7 2 Plasmas, 2021, 28, 013110. Millimetreâ€wave design and verification of a metaâ€surface dielectric window made of polytetrafluoroethylene in Kaâ€and Qâ€band. IET Microwaves, Antennas and Propagation, 2020, 14, 2007-2010. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band. Physics of Plasmas, 0.7 4 2015, 22, Enhancement of Oil Recovery via Direct Current., 2012,,. ANALYSIS OF A CIRCULAR WAVEGUIDE LOADED WITH DIELECTRIC AND METAL DISCS. Progress in 1.6 26 Electromagnetics Research, 2011, 111, 253-269. Study on evaporation from alloys used in microwave vacuum electron devices. Wuli Xuebao/Acta 0.2 Physica Sinica, 2016, 65, 068502. A Feasibility Study of Beam-Wave Interaction in 670 GHz Gyrotron for Radioactive Material Detection 0.8 6 Application. Japanese Journal of Applied Physics, 2012, 51, 076705. A Broadband Quasi-Optical Mode Converter for Sub-Terahertz Confocal Gyrotron Devices. IEEE 1.6 Transactions on Electron Devices, 2021, , 1-5. Updates on the Development of MW-level Ka-band Gyroklystron., 2021,,. 0 Design and Simulation Investigations of W-Band Second Harmonic Periodically Dielectric-Loaded Gyro-TWT. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2.1 0, , 1-9. Study and design of a quasi-optical mode converter for W-band whispering-gallery mode gyrotron. 0.2 3 Wuli Xuebao/Acta Physica Sinica, 2010, 59, 2512. Beam-wave interaction analysis of gyrotron-traveling-wave tube based on a lossy dielectric-lined waveguide. Wuli Xuebao/Acta Physica Sinica, 2010, 59, 4612. Analysis of the Gyro-Back Wave Oscillations of the TE<SUB>21</SUB> Mode. Dianzi Yu Xinxi 0.10 Xuebao/Journal of Electronics and Information Technology, 2010, 32, 459-463.

CITATION REPORT

416A Mode-selective-circuit Gyrotron-traveling-wave Amplifier with High Stability. Dianzi Yu Xinxi0.10416Xuebao/Journal of Electronics and Information Technology, 2010, 32, 1986-1991.0.10

#

398

400

402

404

405

406

407

408

409

411

413

414

#	Article	IF	CITATIONS
417	Design of a Single-anode Magnetron-injected-gun for the 3mm GYRO-TWT Amplifiers. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2011, 30, 1507-1510.	0.1	2
418	Research on the mode competition in a w-band lossy ceramic-loaded gyrotron backward-wave oscillator. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 070703.	0.2	1
419	Study on 220 GHz third harmonic photonic band gap cavity gyrotron oscillator. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 118401.	0.2	1
420	A Lossy Ceramic-Loaded Millimeter-Wave Gyro-TWT Amplifier. , 2014, , 121-150.		0
421	Instability Competition in an Ultrahigh Gain Gyro-TWT Amplifier. , 2014, , 91-120.		0
422	Exploring New Mechanisms for High Power Millimeter-Wave Gyrotron Amplifiers. , 2014, , 151-173.		1
423	Technologies Related to Gyrotron Amplifiers. , 2014, , 175-192.		0
424	Multimode steady-state theory for Gyro-TWT and simulation of mode competition. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 208401.	0.2	2
425	Compact linac-drivenÂlight sources utilizing mm-period RF undulators. , 2017, , .		1
426	Comparative demonstration of multimode steady-state theory for the gyrotron traveling-wave tube based on a distributed loss-loaded metal cylindrical waveguide. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 018402.	0.2	0
427	Auto-Testing System Based on Labwindows / CVI for the Hot Test of Gyrotron Traveling Wave Tubes. , 2018, , .		1
428	Development of a millimeter-period rf undulator. Physical Review Accelerators and Beams, 2019, 22, .	0.6	6
429	TECHNOLOGY, DEVELOPMENT STATUS AND APPLICATIONS OF THE SHORT PULSES GYROTRON TRAVELING -WAVE-TUBE. , 2020, 5, 571-578.		0
430	Terahertz harmonic gyrotron based on spoof surface plasmon. , 2020, , .		1
431	Design and Simulation of an Ultra-Bandwidth Ka-Band Gyro-TWT with a Curved Output Stage. , 2020, , .		0
432	Nonlinear Theory and Simulation of Terahertz Gyrotron Devices. , 2020, , .		0
433	Design of second harmonic terahertz gyrotron cavity based on double confocal waveguide. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 068401.	0.2	0
434	Nonlinear and Self-Consistent Formulation for TM-mode Gyrotrons. , 2021, , .		0

ARTICLE IF CITATIONS # Universal Subterahertz Large-Orbit Gyrotron: Operation at the Second and Third Cyclotron 435 0.1 0 Harmonics. Radiophysics and Quantum Electronics, 2020, 63, 321-331. Design of an Ultra-Low Spread Magnetic Cusp Gun Based on the Compensation Principle., 2021, , . Selective mode filtering for gyrotron traveling-wave tube systems. Journal of Electromagnetic Waves 437 1.0 1 and Applications, 2022, 36, 1089-1101. Development of a Magnetic Cusp Gun for a 1-THz Harmonic Gyrotron. IEEE Transactions on Electron Devices, 2021, 68, 6505-6511. The Development of broadband millimeter-wave and terahertz gyro-TWAs. Terahertz Science & 439 0.5 2 Technology, 2020, 13, 90-111. Research on Broadband High-power Compact Oversized TE01 Hexa-polar Waveguide Bend., 2020, , . 441 0.22-THz Frequency-Tunable Gyrotron with Transverse Sliced Cavity., 2020,,. 0 Exciting Circular TM₁₁ Mode Using Symmetric Probes Based on Ridge Gap Waveguide. IEEE 442 Transactions on Microwave Theory and Techniques, 2022, 70, 334-342. Influence of the Output Window Reflection on the Performance of <i>W</i>-Band Gyrotron Traveling 443 1.6 10 Wave Tubes. IEEE Transactions on Electron Devices, 2022, 69, 1416-1422. Frequency-Tunable Second Harmonic Gyrotron With Selective Cavity: Design and Simulations. IEEE 444 1.6 Transactions on Electron Devices, 2022, 69, 1402-1408. Non-thermal electron velocity distribution functions due to 3D kinetic magnetic reconnection for 445 2 0.7 solar coronal plasma conditions. Physics of Plasmas, 2022, 29, . Design and Simulation Investigations of Stagger-Tuned W-Band Gyro-Twystron. IEEE Transactions on 446 1.6 Electron Devices, 2022, 69, 777-784. Mode Excitation in Gyrotrons With Triode-Type Electron Guns. IEEE Transactions on Electron Devices, 447 1.6 1 2022, 69, 785-791. Development of a 1-THz Fourth-Harmonic Gyrotron., 2021, , . 448 Design and Cold Test of a G-Band 10-kW-Level Pulse TE₀₁-Mode Gyrotron Traveling-Wave 449 1.6 17 Tube. IEEE Transactions on Electron Devices, 2022, 69, 2668-2674. Acceleration of a charged particle in the Redmond field. AIP Advances, 2022, 12, . Self-consistent modeling of the electronâ€"cyclotron maser interaction in lossy structures based on a 451 0.7 0 full-wave Green's function approach. Physics of Plasmas, 2022, 29, 033103. Design of a 330-GHz Frequency-Tunable Gyrotron With a Prebunched Circuit. IEEE Transactions on 1.6 Electron Devices, 2022, 69, 2058-2065.

#	Article	IF	CITATIONS
453	Gyro-TWT and Gyro-BWO with a Microwave Circuit in the Form of Zigzag Quasi-optical Transmission Line. , 2021, , .		4
454	Nonlinear and self-consistent single-mode formulation for TM-mode gyrotrons. Physical Review E, 2021, 104, 065205.	0.8	2
455	Study of Broadband-Frequency-Tuning THz Gyrotrons. , 2020, , .		0
456	High Average Power Test of a W-Band Broadband Gyrotron Traveling Wave Tube. IEEE Electron Device Letters, 2022, 43, 950-953.	2.2	20
457	Detailed Investigation on Nonstationary Behavior in a Frequency-Tunable Gyrotron. IEEE Transactions on Electron Devices, 2022, 69, 3400-3406.	1.6	4
458	Beam dynamic study of a Ka-band microwave undulator and its potential drive sources. Scientific Reports, 2022, 12, 7071.	1.6	1
459	Broad-frequency range of a 250ÂGHz medium-power gyrotron traveling-wave amplifier with a distributed-loss structure. AIP Advances, 2022, 12, .	0.6	1
460	Entrainment, stopping, and transmission of microwave solitons of self-induced transparency in counter-propagating magnetized electron beam. Chaos, 2022, 32, 053123.	1.0	1
461	Design of a 1-THz Fourth-Harmonic Gyrotron Driven by Axis-Encircling Electron Beam. IEEE Transactions on Electron Devices, 2022, 69, 3393-3399.	1.6	1
462	Status and Ongoing Development of a kW-level Broadband W-band Gyro-TWA. , 2022, , .		0
463	Design and PIC Simulation of Ka-Band Periodically Loaded High Gain Gyro-Twystron. IEEE Transactions on Electron Devices, 2022, 69, 4553-4562.	1.6	0
464	Floquet Spin Amplification. Physical Review Letters, 2022, 128, .	2.9	13
465	Boosted excitation of the fifth cyclotron harmonic based on frequency multiplication in conventional gyrotrons. Physical Review E, 2022, 106, .	0.8	6
466	Self-consistent formation and steady-state characterization of trapped high-energy electron clouds in the presence of a neutral gas background. Physics of Plasmas, 2022, 29, 082105.	0.7	1
467	Development and Initial Experimental Results of a Terahertz Pulsed Field Gyrotron in the WHMFC. IEEE Transactions on Electron Devices, 2022, 69, 5242-5247.	1.6	7
468	Experimental Investigations on Effects of Operation Parameters on a 263-GHz Gyrotron. IEEE Transactions on Electron Devices, 2022, 69, 5256-5261.	1.6	4
469	Study of the Frequency Self-Modulation in Gyro-TWT Based on Two -Band Amplifiers <i></i> . IEEE Transactions on Electron Devices, 2022, 69, 6348-6351.	1.6	2
470	Optimization of a Cusp Gun With a Grid for a Terahertz Gyrotron Traveling-Wave Amplifier. IEEE Transactions on Electron Devices, 2022, 69, 6318-6321.	1.6	2

#	Article	IF	CITATIONS
472	Design and Simulation of High-Power K-band Gyro-TWT. , 2022, , .		0
473	Forward-Wave Enhanced Radiation in the Terahertz Electron Cyclotron Maser. Chinese Physics B, 0, , .	0.7	0
474	Synthesis of two quasi-optical polarizers for the multi-frequency high-power millimeter wave system. Review of Scientific Instruments, 2022, 93, 104707.	0.6	0
475	Experiment and Power Capacity Investigation for a <i>Ku</i> -Band Continuous-Wave Gyro-TWT. IEEE Transactions on Electron Devices, 2022, 69, 7039-7045.	1.6	7
476	Simulation and Measurement of an Interaction Structure With Distributed Radiation Coupling Circuit for a High-Power Ku-Band Gyro-TWT. IEEE Transactions on Electron Devices, 2022, 69, 7067-7073.	1.6	1
477	Gain and Bandwidth Improvement Studies of Millimeter Wave Periodically Dielectric Loaded Gyro-Twystron Amplifier. IEEE Transactions on Electron Devices, 2022, , 1-8.	1.6	0
478	Design and Preliminary Experiment of Room-Temperature Bitter Magnet for Compact Gyrotron. IEEE Transactions on Electron Devices, 2022, , 1-6.	1.6	1
479	Excitation and Suppression of the Frequency Self-Modulation Instability in a W-band Gyro-TWT. Journal of Infrared, Millimeter, and Terahertz Waves, 0, , .	1.2	0
480	Theory and measurement of the single and hybrid-mode excitation and evolution in a lossy-dielectric-loaded waveguide. Journal of Electromagnetic Waves and Applications, 2023, 37, 510-523.	1.0	1
481	Auroral kilometric radiation—The electron cyclotron maser paradigm. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	2
482	Terahertz cyclotron emission from two-dimensional Dirac fermions. Nature Photonics, 2023, 17, 244-249.	15.6	5
483	A Cascaded <i>W</i> Band Gyro-TWT With the Configuration of Coaxial and Circular Waveguides. IEEE Transactions on Electron Devices, 2023, 70, 1906-1911.	1.6	0
484	Coherent Combining of Phase-Steerable High Power Microwaves Generated by Two X-Band Triaxial Klystron Amplifiers with Pulsed Magnetic Fields. Physical Review Letters, 2023, 130, .	2.9	3
485	First self-consistent simulations of trapped electron clouds in a gyrotron gun and comparison with experiments. Physics of Plasmas, 2023, 30, 030702.	0.7	0
486	Long Pulse and High Duty Operation of a W-Band Gyrotron Traveling Wave Tube. IEEE Electron Device Letters, 2023, 44, 829-832.	2.2	4
487	Simulation Study on a Planar Quasi-Optical Waveguide Circuit for a W-Band Gyro-TWT With Stability Improvement. IEEE Transactions on Electron Devices, 2023, , 1-7.	1.6	0
488	Development of Terahertz Harmonic Gyrotron. , 2022, , .		0
489	Design and Measurement of a Terahertz High-Order Circular TE13 Mode Converter. Lecture Notes in Electrical Engineering, 2023, , 722-729.	0.3	0

#	Article	IF	CITATIONS
490	Design of a high power, W band, sub-THz source based on generalized non-linear theory. AIP Conference Proceedings, 2023, , .	0.3	0
492	Machine Learning Based Predictive Maintenance ofÂPharmaceutical Industry Equipment. Lecture Notes in Networks and Systems, 2023, , 497-514.	0.5	1
494	Development of a Terahertz Harmonic Gyrotron. , 2023, , .		0
495	Suppression of parasitic modes in gyrotrons with an additional resonator coil. , 2023, , .		0
499	Study of a 0.34THz Confocal Gyrotron Traveling Wave Tube. , 2023, , .		0
500	Recent Test Results on the Terahertz Gyrotron under Development in the WHMFC. , 2023, , .		0
506	Universal CUSP-Type Electron Gun for Helical Gyro-TWTs for DNP-NMR Applications. , 2023, , .		0
510	Multi-Physical Parameter Particle Simulation Analysis of Ka Band Gyro-TWT. , 2022, , .		0
511	Design of an Ultra-Broadband Meta-Surface Output Window for W-Band Confocal Gyro-Amplifiers. , 2022, , .		0
512	A Broadband TE ₀₁ Mode Input Coupler for Ka-band MW-level Coaxial Gyrotron Travelling Wave Tubes. , 2022, , .		1