Extraordinary Mobility in Semiconducting Carbon Nan

Nano Letters 4, 35-39 DOI: 10.1021/nl034841q

Citation Report

#	Article	IF	CITATIONS
1	Carbon Nanotube Schottky Diodes for High Frequency Applications. , 0, , .		0
3	Real Space Observation of Double-Helix DNA Structure Using a Low Temperature Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1999, 38, L606-L607.	0.8	51
4	The nanostructure and electrical properties of SWNT bundle networks grown by an Âall-laser growth process for nanoelectronic device applications. Nanotechnology, 2004, 15, S534-S539.	1.3	21
5	Transport in nanotubes:â€∫Effect of remote impurity scattering. Physical Review B, 2004, 70, .	1.1	17
6	Self-assembled carbon-nanotube-based field-effect transistors. Applied Physics Letters, 2004, 85, 5025-5027.	1.5	16
7	Simulation of Semiconductor Processes and Devices 2004. , 2004, , .		3
8	Optical and electronic characteristics of single walled carbon nanotubes and silicon nanoclusters by tetrahertz spectroscopy. Journal of Applied Physics, 2004, 96, 6685-6689.	1.1	29
9	Phonon-limited transport in carbon nanotubes using the Monte Carlo method. , 2004, , .		1
10	Numerical Performance Analysis of Carbon Nanotube (CNT) Embedded MOSFETs. , 2004, , 153-156.		1
11	Properties and applications of high-mobility semiconducting nanotubes. Journal of Physics Condensed Matter, 2004, 16, R553-R580.	0.7	135
12	Carbon Nanotube Electronics and Optoelectronics. MRS Bulletin, 2004, 29, 403-410.	1.7	109
13	AC and DC characteristics of carbon nanotube field-effect transistors. , 0, , .		0
14	Single- and multiwalled carbon nanotube networks and bundles assembled on microelectrodes. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2004, 218, 17-23.	0.1	3
15	Growth of nanotubes and chemical sensor applications. , 2004, , .		2
16	Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials, 2004, 4, 86-92.	13.3	889
17	Simple Route to Large-Scale Ordered Arrays of Liquid-Deposited Carbon Nanotubes. Nano Letters, 2004, 4, 603-606.	4.5	128
18	Electrical Properties of 0.4 cm Long Single-Walled Carbon Nanotubes. Nano Letters, 2004, 4, 2003-2007.	4.5	195
19	Functionalized carbon nanotubes and device applications. Journal of Physics Condensed Matter, 2004, 16, R901-R960.	0.7	104

TATION REPO

#	Article	IF	CITATIONS
20	Macroelectronic applications of carbon nanotube networks. Solid-State Electronics, 2004, 48, 1753-1756.	0.8	38
21	Single-walled carbon nanotube aggregates for solution-processed field effect transistors. Chemical Physics Letters, 2004, 394, 110-113.	1.2	75
22	Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method. Carbon, 2004, 42, 2263-2267.	5.4	138
23	Synthesis of Aligned Arrays of Millimeter Long, Straight Single-Walled Carbon Nanotubes. Chemistry of Materials, 2004, 16, 3414-3416.	3.2	65
24	Highly Efficient Gating and Doping of Carbon Nanotubes with Polymer Electrolytes. Nano Letters, 2004, 4, 927-931.	4.5	144
25	p-Channel, n-Channel Thin Film Transistors and pâ^'n Diodes Based on Single Wall Carbon Nanotube Networks. Nano Letters, 2004, 4, 2031-2035.	4.5	284
26	Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study. Nanotechnology, 2004, 15, 1095-1102.	1.3	216
27	Multimode Transport in Schottky-Barrier Carbon-Nanotube Field-Effect Transistors. Physical Review Letters, 2004, 92, 226802.	2.9	96
28	1â^•f noise in single-walled carbon nanotube devices. Applied Physics Letters, 2004, 85, 4172-4174.	1.5	128
29	Semi-empirical SPICE models for carbon nanotube FET logic. , 0, , .		41
29 30	Semi-empirical SPICE models for carbon nanotube FET logic. , 0, , . Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films. Nano Letters, 2004, 4, 1643-1647.	4.5	41 447
29 30 31	Semi-empirical SPICE models for carbon nanotube FET logic., 0,,. Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films. Nano Letters, 2004, 4, 1643-1647. Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters, 2004, 4, 2513-2517.	4.5 4.5	41 447 1,012
29 30 31 32	Semi-empirical SPICE models for carbon nanotube FET logic., 0,,. Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films. Nano Letters, 2004, 4, 1643-1647. Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters, 2004, 4, 2513-2517. Patterning Techniques and Semiconductor Materials for Flexible Electronics., 2005,, 195-217.	4.5 4.5	41 447 1,012 2
29 30 31 32 33	Semi-empirical SPICE models for carbon nanotube FET logic., 0, , . Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films. Nano Letters, 2004, 4, 1643-1647. Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters, 2004, 4, 2513-2517. Patterning Techniques and Semiconductor Materials for Flexible Electronics., 2005, , 195-217. Photodetector based on networks of carbon nanotubes on decomposed SOI., 2005, ,.	4.5 4.5	41 447 1,012 2 6
29 30 31 32 33 33	Semi-empirical SPICE models for carbon nanotube FET logic.,0,,. Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films. Nano Letters, 2004, 4, 1643-1647. Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters, 2004, 4, 2513-2517. Patterning Techniques and Semiconductor Materials for Flexible Electronics., 2005, , 195-217. Photodetector based on networks of carbon nanotubes on decomposed SOL, 2005,,. Calculations of electric capacitance in carbon and BN nanotubes, and zigzag nanographite (BN, BCN) ribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 628-632.	4.5	 41 447 1,012 2 6 3
29 30 31 32 33 34	Semi-empirical SPICE models for carbon nanotube FET logic., 0, , . Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films. Nano Letters, 2004, 4, 1643-1647. Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters, 2004, 4, 2513-2517. Patterning Techniques and Semiconductor Materials for Flexible Electronics., 2005, , 195-217. Photodetector based on networks of carbon nanotubes on decomposed SOI., 2005, , . Calculations of electric capacitance in carbon and BN nanotubes, and zigzag nanographite (BN, BCN) ribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 628-632. Highly oriented planar arrays of SWCNTs grown onto HOPG substrates by means of an â€all-laser〙 process. Chemical Physics Letters, 2005, 413, 182-187.	4.5 4.5 1.3	 41 447 1,012 2 6 3 5
 29 30 31 32 33 34 35 36 	Semi-empirical SPICE models for carbon nanotube FET logic.,0,,. Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films. Nano Letters, 2004, 4, 1643-1647. Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters, 2004, 4, 2513-2517. Patterning Techniques and Semiconductor Materials for Flexible Electronics., 2005, , 195-217. Photodetector based on networks of carbon nanotubes on decomposed SOL, 2005, ,. Calculations of electric capacitance in carbon and BN nanotubes, and zigzag nanographite (BN, BCN) ribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 628-632. Highly oriented planar arrays of SWCNTs grown onto HOPG substrates by means of an a€all-lasera€™ process. Chemical Physics Letters, 2005, 413, 182-187. Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis. Nanotechnology, 2005, 16, 2245-2250.	4.5 4.5 1.3 1.2	 41 447 1,012 2 6 3 5 58

ARTICLE IF CITATIONS # The logical choice for electronics?. Nature Materials, 2005, 4, 649-650. 38 13.3 55 Electroactive Polymer-Based Devices for e-Textiles in Biomedicine. IEEE Transactions on Information 3.6 Technology in Biomedicine, 2005, 9, 295-318. Quantum Modeling and Proposed Designs of CNT-Embedded Nanoscale MOSFETs. IEEE Transactions on 40 1.6 32 Electron Devices, 2005, 52, 577-584. Comparing Carbon Nanotube Transistorsâ€"The Ideal Choice: A Novel Tunneling Device Design. IEEE 291 Transactions on Electron Devices, 2005, 52, 2568-2576. Control of Carrier Density by a Solution Method in Carbon-Nanotube Devices. Advanced Materials, 42 11.1 89 2005, 17, 2430-2434. Synthesis and Electronic Properties of Individual Single-Walled Carbon Nanotube/Polypyrrole Composite Nanocables. Advanced Materials, 2005, 17, 2727-2732. 11.1 Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surface 44 3.8 177 Science Reports, 2005, 58, 1-1. Guided Growth of Large-Scale, Horizontally Aligned Arrays of Single-Walled Carbon Nanotubes and Their Use in Thin-Film Transistors. Small, 2005, 1, 1110-1116. 5.2 A novel measurement technique for demonstrating carbon nanotube FET operation at microwave 0 46 frequencies., 2005,,. Transport Properties of Charge Carriers in Single-Walled Carbon Nanotubes by Flash-Photolysis Time-Resolved Microwave Conductivity Technique. AIP Conference Proceedings, 2005, , . Role of Hydrogen in Dry Etching of Silicon Carbide Using Inductively and Capacitively Coupled Plasma. 49 0.8 6 Japanese Journal of Applied Physics, 2005, 44, 3817-3821. Electric Capacitance as Nanocondensers in Zigzag Nanographite Ribbons and Zigzag Carbon Nanotubes. Japanese Journal of Applied Physics, 2005, 44, 5068-5072. 0.8 High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Applied Physics Letters, 51 1.5 239 2005, 86, 033105. Electron-phonon scattering and ballistic behavior in semiconducting carbon nanotubes. Applied Physics Letters, 2005, 87, 172112. 1.5 Spectroscopic characterization of single-walled carbon nanotubes carrier-doped by encapsulation of 53 1.1 34 TCNQ. Physical Review B, 2005, 71, . Carrier transport and light-spot movement in carbon-nanotube infrared emitters. Applied Physics Letters, 2005, 86, 023105. Electric-Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon Nanotubes. Physical 55 2.9 80 Review Letters, 2005, 95, 236803. Bimolecular recombination on carbon nanotubes. Physical Review B, 2005, 71, . 1.1

#	Article	IF	CITATIONS
57	Transport Properties of Wide Band Gap Nanotubes. , 0, , .		0
58	Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors. Applied Physics Letters, 2005, 86, 243502.	1.5	118
59	Orientational self-assembled field-effect transistors based on a single-walled carbon nanotube. Applied Physics Letters, 2005, 87, 243102.	1.5	7
60	Two-Dimensional Carbon Nanotube Networks: A Transparent Electronic Material. Materials Research Society Symposia Proceedings, 2005, 905, 1.	0.1	2
61	Properties of Chemically Modified Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
62	Functional Single-Wall Carbon Nanotube NanohybridsAssociating SWNTs with Water-Soluble Enzyme Model Systems. Journal of the American Chemical Society, 2005, 127, 9830-9838.	6.6	186
63	Nanotube technology for microwave applications. , 2005, , .		14
64	Integration of Cell Membranes and Nanotube Transistors. Nano Letters, 2005, 5, 841-845.	4.5	49
65	Selective Matching of Catalyst Element and Carbon Source in Single-Walled Carbon Nanotube Synthesis on Silicon Substrates. Journal of Physical Chemistry B, 2005, 109, 2632-2637.	1.2	52
66	Electronically Selective Chemical Functionalization of Carbon Nanotubes:Â Correlation between Raman Spectral and Electrical Responses. Journal of the American Chemical Society, 2005, 127, 11460-11468.	6.6	110
67	Microwave Transport in Metallic Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 1403-1406.	4.5	122
68	Electronic Properties of Single-Walled Carbon Nanotube Networks. Journal of the American Chemical Society, 2005, 127, 5990-5995.	6.6	363
69	Low-field semiclassical carrier transport in semiconducting carbon nanotubes. Physical Review B, 2005, 71, .	1.1	62
70	Electron-Phonon Interaction and Transport in Semiconducting Carbon Nanotubes. Physical Review Letters, 2005, 94, 086802.	2.9	299
71	High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts. Nano Letters, 2005, 5, 345-348.	4.5	453
72	Electrical contacts to carbon nanotubes down to 1nm in diameter. Applied Physics Letters, 2005, 87, 173101.	1.5	205
73	Carbon Nanotube Schottky Diodes Using Tiâ^'Schottky and Ptâ^'Ohmic Contacts for High Frequency Applications. Nano Letters, 2005, 5, 1469-1474.	4.5	187
74	Transparent and Flexible Carbon Nanotube Transistors. Nano Letters, 2005, 5, 757-760.	4.5	512

#	Article	IF	CITATIONS
75	In Vivo Fluorescence Detection of Glucose Using a Single-Walled Carbon Nanotube Optical Sensor:Â Design, Fluorophore Properties, Advantages, and Disadvantages. Analytical Chemistry, 2005, 77, 7556-7562.	3.2	250
76	The Role of Metalâ^'Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors. Nano Letters, 2005, 5, 1497-1502.	4.5	621
77	Organic Nanodielectrics for Low Voltage Carbon Nanotube Thin Film Transistors and Complementary Logic Gates. Journal of the American Chemical Society, 2005, 127, 13808-13809.	6.6	120
78	Polymer Electrolyte Gating of Carbon Nanotube Network Transistors. Nano Letters, 2005, 5, 905-911.	4.5	165
79	Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors. Physical Review Letters, 2005, 95, 146805.	2.9	447
80	Carbon Nanotube Electronics and Optoelectronics. Nanoscience and Technology, 2005, , 227-251.	1.5	16
81	Manipulation of carbon nanotubes using AC dielectrophoresis. Applied Physics Letters, 2005, 86, 153116.	1.5	127
82	21ÂÂFullerenes. Annual Reports on the Progress of Chemistry Section A, 2005, 101, 429.	0.8	4
83	High-performance dual-gate carbon nanotube FETs with 40-nm gate length. IEEE Electron Device Letters, 2005, 26, 823-825.	2.2	107
84	Electrically Excited, Localized Infrared Emission from Single Carbon Nanotubes. Nano Letters, 2006, 6, 1425-1433.	4.5	64
85	High-performance ZnO nanowire field effect transistors. Applied Physics Letters, 2006, 89, 133113.	1.5	223
86	Carbon nanotube films for transparent and plastic electronics. Journal of Materials Chemistry, 2006, 16, 3533.	6.7	542
87	ELECTRICAL TRANSPORT PROPERTIES AND FIELD EFFECT TRANSISTORS OF CARBON NANOTUBES. Nano, 2006, 01, 1-13.	0.5	142
88	Carbon nanotube field-effect transistor for GHz operation. , 2006, , .		1
89	Quantum Electron Transport in Carbon Nanotubes: Velocity Oscillations and Length Dependence. , 2006, , .		1
90	Self-assembled electrical circuits and their electronic properties. Faraday Discussions, 2006, 131, 325-335.	1.6	6
91	Preferential Destruction of Metallic Single-Walled Carbon Nanotubes by Laser Irradiation. Journal of Physical Chemistry B, 2006, 110, 7316-7320.	1.2	143
92	Threshold voltage dispersion and impurity scattering limited mobility in carbon nanotube field effect transistors with randomly doped reservoirs. Solid-State Device Research Conference, 2008 ESSDERC 2008 38th European, 2006, , .	0.0	6

#	Article	IF	CITATIONS
93	Noise-Enhanced Detection of Subthreshold Signals With Carbon Nanotubes. IEEE Nanotechnology Magazine, 2006, 5, 613-627.	1.1	60
94	Localized growth of suspended SWCNTs by means of an "all-laser" process and their direct integration into nanoelectronic devices. IEEE Nanotechnology Magazine, 2006, 5, 237-242.	1.1	6
95	Effect of Oxygen Absorption on Contact Resistance between Metal and Carbon Nano Tubes (CNTs). International Power Modulator Symposium and High-Voltage Workshop, 2006, , .	0.0	1
96	Carbon nanotubes: enhancing the polymer building blocks for intelligent materials. Journal of Materials Chemistry, 2006, 16, 3598.	6.7	64
97	Active properties of carbon nanotube field-effect transistors deduced from S parameters measurements. IEEE Nanotechnology Magazine, 2006, 5, 335-342.	1.1	25
98	Liquid-Crystalline Processing of Highly Oriented Carbon Nanotube Arrays for Thin-Film Transistors. Nano Letters, 2006, 6, 1443-1448.	4.5	157
99	Quantitative theory of nanowire and nanotube antenna performance. IEEE Nanotechnology Magazine, 2006, 5, 314-334.	1.1	330
100	Low-Frequency Current Fluctuations in Individual Semiconducting Single-Wall Carbon Nanotubes. Nano Letters, 2006, 6, 930-936.	4.5	122
101	Organic Light-Emitting Diodes Having Carbon Nanotube Anodes. Nano Letters, 2006, 6, 2472-2477.	4.5	331
102	Mobility in Semiconducting Carbon Nanotubes at Finite Carrier Density. Nano Letters, 2006, 6, 205-208.	4.5	49
103	Effect of Diameter Variation in a Large Set of Carbon Nanotube Transistors. Nano Letters, 2006, 6, 1364-1368.	4.5	61
104	DNA Functionalization of Carbon Nanotubes for Ultrathin Atomic Layer Deposition of High κ Dielectrics for Nanotube Transistors with 60 mV/Decade Switching. Journal of the American Chemical Society, 2006, 128, 3518-3519.	6.6	188
105	pH-Dependent Electron-Transport Properties of Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 23736-23741.	1.2	42
106	Shear Modulated Percolation in Carbon Nanotube Composites. Journal of Physical Chemistry B, 2006, 110, 12289-12292.	1.2	47
107	Relative Optical Absorption of Metallic and Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 4686-4690.	1.2	26
108	Optical limiters and photovoltaic devices based on C60, carbon nanotubes and their nanocomposites. , 2006, , 611-631.		5
109	ã,«ãf¼ãfœãf³ãfŠãfŽãfãf¥ãf¼ãf–ãf^ãf©ãf³ã,ã,¹ã,¿. Hyomen Gijutsu/Journal of the Surface Finishing Socie	ty of lapar	n, 20 06, 57, 3

#	Article	IF	CITATIONS
111	Carbon nanotube electronics and devices. , 2006, , 83-117.		12
112	A flexible thin-film transistor with high field-effect mobility by using carbon nanotubes. , 2006, , .		1
113	Nanotube electronics and optoelectronics. Materials Today, 2006, 9, 46-54.	8.3	249
114	Dynamic response of carbon nanotube field-effect transistors analyzed by S-parameters measurement. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 294-296.	1.7	5
115	Bioinspired Detection of Light Using a Porphyrin-Sensitized Single-Wall Nanotube Field Effect Transistor. Nano Letters, 2006, 6, 2031-2036.	4.5	211
116	Tuning from Thermionic Emission to Ohmic Tunnel Contacts via Doping in Schottky-Barrier Nanotube Transistors. Nano Letters, 2006, 6, 2158-2162.	4.5	57
117	Organic solar cells with carbon nanotube network electrodes. Applied Physics Letters, 2006, 88, 233506.	1.5	936
118	Possible role of charge transport in enhanced carbon nanotube growth. Applied Physics A: Materials Science and Processing, 2006, 85, 109-116.	1.1	7
119	Reversible Control of Carbon Nanotube Aggregation for a Glucose Affinity Sensor. Angewandte Chemie - International Edition, 2006, 45, 8138-8141.	7.2	137
121	Integration of carbon nanotubes with semiconductor technology: fabrication of hybrid devices by Ill–V molecular beam epitaxy. Semiconductor Science and Technology, 2006, 21, S10-S16.	1.0	13
122	Optical Observation of Carrier Accumulation in Single-Walled Carbon Nanotube Transistors. Japanese Journal of Applied Physics, 2006, 45, L1190-L1192.	0.8	8
123	NANA. ACM Journal on Emerging Technologies in Computing Systems, 2006, 2, 1-30.	1.8	32
124	High-speed thin-film transistor on flexible substrate fabricated at room temperature. Electronics Letters, 2006, 42, 1365.	0.5	19
125	FET Properties of Surface Silylated Single Wall Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2006, 963, 1.	0.1	0
126	Patterned Carbon Nanotube Thin-Film Transistors with Transfer-Print Assembly. Materials Research Society Symposia Proceedings, 2006, 963, 1.	0.1	9
127	Solution-Processed Single-Walled Carbon Nanotube Transistors with High Mobility and Large On/Off Ratio. Japanese Journal of Applied Physics, 2006, 45, 6524-6527.	0.8	28
128	Nonvolatile Carbon Nanotube Memory Device With Molecular Charge Storage. Materials Research Society Symposia Proceedings, 2006, 938, 1.	0.1	0
129	Contact resistance modulation in carbon nanotube devices investigated by four-probe experiments. Applied Physics Letters, 2006, 88, 053118.	1.5	18

#	Article	IF	CITATIONS
130	Band structure modulation by carrier doping in random-network carbon nanotube transistors. Applied Physics Letters, 2006, 89, 013112.	1.5	11
131	Hooge's constant for carbon nanotube field effect transistors. Applied Physics Letters, 2006, 88, 203116.	1.5	89
132	Carbon nanotube field-effect transistor operation at microwave frequencies. Applied Physics Letters, 2006, 88, 113103.	1.5	57
133	Source of 1â^•f noise in carbon nanotube devices. Journal of Applied Physics, 2006, 100, 013505.	1.1	26
134	Deep levels in the band gap of the carbon nanotube with vacancy-related defects. Applied Physics Letters, 2006, 88, 193107.	1.5	45
135	Charge-injection-induced dynamic screening and origin of hysteresis in field-modulated transport in single-wall carbon nanotubes. Applied Physics Letters, 2006, 89, 162108.	1.5	65
136	Improvements in the device characteristics of random-network single-walled carbon nanotube transistors by using high-lº gate insulators. Applied Physics Letters, 2006, 89, 203505.	1.5	13
137	Schottky diodes from asymmetric metal-nanotube contacts. Applied Physics Letters, 2006, 88, 133501.	1.5	84
138	Photogating carbon nanotube transistors. Journal of Applied Physics, 2006, 100, 084306.	1.1	52
139	Memory effects of carbon nanotubes as charge storage nodes for floating gate memory applications. Applied Physics Letters, 2006, 88, 113104.	1.5	47
140	CARBON NANOTUBE FIELD-EFFECT TRANSISTORS. International Journal of High Speed Electronics and Systems, 2006, 16, 897-912.	0.3	32
141	K-band Carbon Nanotube FET Operation. , 2006, , .		0
142	SINGLE-WALLED CARBON NANOTUBES: APPLICATIONS IN HIGH FREQUENCY ELECTRONICS. International Journal of High Speed Electronics and Systems, 2006, 16, 977-999.	0.3	14
143	Electrodeposition of polyfluorene on a carbon nanotube electrode. Nanotechnology, 2007, 18, 115702.	1.3	10
144	Fabrication and Evaluation of Carbon Nanotube-Parylene Functional Composite-Films. , 2007, , .		6
145	Nanotoxicology. , 0, , .		70
146	Surface potential analyses of single-walled carbon nanotube/metal interfaces. Journal of Applied Physics, 2007, 101, 014311.	1.1	6
147	Carbon contacted nanotube field effect transistors. Applied Physics Letters, 2007, 90, 103112.	1.5	10

#	ARTICLE	IF	CITATIONS
148	Self-consistent ensemble Monte Carlo simulations show terahertz oscillations in single-walled carbon nanotubes. Journal of Applied Physics, 2007, 102, .	1.1	11
149	Terahertz Current Oscillations in Single-Walled Zigzag Carbon Nanotubes. Physical Review Letters, 2007, 98, 166803.	2.9	25
150	Shot noise of a multiwalled carbon nanotube field effect transistor. Physical Review B, 2007, 75, .	1.1	11
151	Negative photoconduction of planar heterogeneous random network of ZnO-carbon nanotubes. Applied Physics Letters, 2007, 91, .	1.5	15
152	Band-gap renormalization in carbon nanotubes: Origin of the ideal diode behavior in carbon nanotubepâ^'nstructures. Physical Review B, 2007, 75, .	1.1	33
153	Transfer printing as a method for fabricating hybrid devices on flexible substrates. , 2007, 6658, 141.		8
154	SINGLE-WALLED CARBON NANOTUBES: APPLICATIONS IN HIGH FREQUENCY ELECTRONICS. Selected Topics in Electornics and Systems, 2007, , 95-117.	0.2	0
155	Carbon Nanotube Field-Effect Transistors: An Assessment. Solid State Phenomena, 2007, 121-123, 503-506.	0.3	0
157	A longwave infrared transparent flexible electronics by printing at room temperature. , 2007, , .		0
158	Charge Carrier Mobility in Films of Carbon-Nanotube- Polymer Composites. Journal of Physics: Conference Series, 2007, 61, 1152-1156.	0.3	23
159	Quantum transport properties of carbon nanotube field-effect transistors with electron-phonon coupling. Physical Review B, 2007, 76, .	1.1	14
160	Electron Transport and Velocity Oscillations in a Carbon Nanotube. IEEE Nanotechnology Magazine, 2007, 6, 469-474.	1.1	66
161	A novel graphene channel field effect transistor with Schottky tunneling source and drain. , 2007, , .		3
162	Nano- and Microstructured Semiconductor Materials for Macroelectronics. , 2007, , 375-400.		1
163	Determination of Transport Properties in Chromium Disilicide Nanowires via Combined Thermoelectric and Structural Characterizations. Nano Letters, 2007, 7, 1649-1654.	4.5	131
164	Atomic layer deposited Al2O3 for gate dielectric and passivation layer of single-walled carbon nanotube transistors. Applied Physics Letters, 2007, 90, 163108.	1.5	64
165	Deformation potential carrier-phonon scattering in semiconducting carbon nanotube transistors. Applied Physics Letters, 2007, 90, 062110.	1.5	36
166	A high-speed thin-film transistor printed on flexible substrate using an electronic-grade carbon nanotube aqeous solution. , 2007, , .		0

#	Article	IF	CITATIONS
167	Fabrication of Carbon Nanotube Field-Effect Transistors by Fluidic Alignment Technique. IEEE Nanotechnology Magazine, 2007, 6, 481-484.	1.1	22
168	Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistorsâ€. Journal of Physical Chemistry C, 2007, 111, 17879-17886.	1.5	135
169	Modification of transparent and conducting single wall carbon nanotube thin films via bromine functionalization. Applied Physics Letters, 2007, 90, 092114.	1.5	42
170	Printed Multilayer Superstructures of Aligned Single-Walled Carbon Nanotubes for Electronic Applications. Nano Letters, 2007, 7, 3343-3348.	4.5	204
171	Selective Suppression of Conductance in Metallic Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 4866-4867.	6.6	24
172	Double-Walled Carbon Nanotube Solar Cells. Nano Letters, 2007, 7, 2317-2321.	4.5	321
173	Magnetoconductance of Carbon Nanotubepâ ``nJunctions. Physical Review Letters, 2007, 99, 247204.	2.9	15
174	Ultrafast Spectroscopy of Carbon Nanotubes. Topics in Applied Physics, 2007, , 321-353.	0.4	15
175	Electrical Transport in Single-Wall Carbon Nanotubes. Topics in Applied Physics, 2007, , 455-493.	0.4	83
176	Injecting and controlling spins in organic materials. Journal of Materials Chemistry, 2007, 17, 4455.	6.7	79
177	Carbon nanotubeâ€enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007, 110, 2654-2665.	2.0	381
178	Transfer Printing of Submicrometer Patterns of Aligned Carbon Nanotubes onto Functionalized Electrodes. Small, 2007, 3, 616-621.	5.2	27
179	Carbon-based electronics. Nature Nanotechnology, 2007, 2, 605-615.	15.6	2,272
180	High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnology, 2007, 2, 230-236.	15.6	985
181	Printable high-speed thin-film transistor on flexible substrate using carbon nanotube solution. Micro and Nano Letters, 2007, 2, 96.	0.6	24
182	Nonequilibrium Green's Function Treatment of Phonon Scattering in Carbon-Nanotube Transistors. IEEE Transactions on Electron Devices, 2007, 54, 2339-2351.	1.6	154
183	Fabrication and characterization of the performance of multi-channel carbon-nanotube field-effect transistors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 474-479.	0.9	17
184	FET properties of chemically modified carbon nanotubes. Journal of Physics and Chemistry of Solids, 2008, 69, 1206-1208.	1.9	10

#	Article	IF	Citations
185	Contact and phonon scattering effects on quantum transport properties of carbon-nanotube field-effect transistors. Applied Surface Science, 2008, 254, 7600-7603.	3.1	6
186	Singleâ€Walled Carbonâ€Nanotube Networks on Largeâ€Area Glass Substrate by the Dipâ€Coating Method. Small, 2008, 4, 2255-2261.	5.2	77
187	Carbon nanotube transistors – chemical functionalization and device characterization. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 633-646.	0.8	68
188	Inâ€situ observation on Raman spectra and transport properties of singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2209-2211.	0.7	1
189	Lightâ€Induced Charge Transfer in Pyrene/CdSeâ€SWNT Hybrids. Advanced Materials, 2008, 20, 939-946.	11.1	165
190	Nanotube–Silicon Heterojunction Solar Cells. Advanced Materials, 2008, 20, 4594-4598.	11.1	210
192	Anderson localization in semiconducting carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1371-1373.	1.3	2
193	Influence of capacitive effects on the dynamic of a CNTFET by Monte Carlo method. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2294-2298.	1.3	11
194	CVD growth of high density SWNTs network on surface using iron phosphide nanorods as catalyst precursor. Chemical Physics Letters, 2008, 464, 49-53.	1.2	3
195	Removal of entrapped iron compounds from isothermally treated catalytic chemical vapor deposition derived multi-walled carbon nanotubes. Carbon, 2008, 46, 391-396.	5.4	18
196	Supramolecular Functionalization of Single-Walled Carbon Nanotubes with Conjugated Polyelectrolytes and Their Patterning on Surfaces. Macromolecules, 2008, 41, 9869-9874.	2.2	44
197	Sorting out Semiconducting Single-Walled Carbon Nanotube Arrays by Preferential Destruction of Metallic Tubes Using Xenon-Lamp Irradiation. Journal of Physical Chemistry C, 2008, 112, 3849-3856.	1.5	95
198	Charge transport in polymer compositions including nanocrystals. High Energy Chemistry, 2008, 42, 576-577.	0.2	0
199	Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 2008, 3, 206-209.	15.6	2,730
200	Computationally Efficient Physics-Based Compact CNTFET Model for Circuit Design. IEEE Transactions on Electron Devices, 2008, 55, 1317-1327.	1.6	77
201	Carbon Nanotubes for High-Performance Electronics—Progress and Prospect. Proceedings of the IEEE, 2008, 96, 201-211.	16.4	325
202	Hybrid density functional study of armchair SiC nanotubes. Physical Review B, 2008, 77, .	1.1	96
203	Self-Assembled Carbon Nanotubes on Gold:  Polarization-Modulated Infrared Reflectionâ^'Absorption Spectroscopy, High-Resolution X-ray Photoemission Spectroscopy, and Near-Edge X-ray Absorption Fine Structure Spectroscopy Study. Langmuir, 2008, 24, 3235-3243.	1.6	25

ARTICLE IF CITATION 204 High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric. New Journal of Physics, 2008, 10, 103019. 1.2 21 205 Effects of diffusion on photocurrent generation in single-walled carbon nanotube films. Applied physics Letters, 2008, 92, 243510. 33 207 Single Carbon Nanotube Transistor at CHz Frequency. Nano Letters, 2008, 8, 525-528. 4.5 68 208 Carbon nanotube-modified electrodes for solar energy conversion. Energy and Environmental Science, 2008, 1, 120. 176 Origins of <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"> 56 56</mml:math>
204High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric. New Journal of Physics, 2008, 10, 103019.1.221205Effects of diffusion on photocurrent generation in single-walled carbon nanotube films. Applied Physics Letters, 2008, 92, 243510.1.533207Single Carbon Nanotube Transistor at GHz Frequency. Nano Letters, 2008, 8, 525-528.4.568208Carbon nanotube-modified electrodes for solar energy conversion. Energy and Environmental Origins of <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML">15.6176</mml:math>
205Effects of diffusion on photocurrent generation in single-walled carbon nanotube films. Applied1.533207Single Carbon Nanotube Transistor at GHz Frequency. Nano Letters, 2008, 8, 525-528.4.568208Carbon nanotube-modified electrodes for solar energy conversion. Energy and Environmental Science, 2008, 1, 120.15.6176Origins of <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"></mml:math>
207 Single Carbon Nanotube Transistor at GHz Frequency. Nano Letters, 2008, 8, 525-528. 4.5 68 208 Carbon nanotube-modified electrodes for solar energy conversion. Energy and Environmental Science, 2008, 1, 120. 15.6 176 Origins of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"
208Carbon nanotube-modified electrodes for solar energy conversion. Energy and Environmental Science, 2008, 1, 120.15.6176Origins of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"
Origins of <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"></mml:math>
display="inline"> <mml:mrow><mml:mn>1â•xa•f</mml:mn></mml:mrow> 4/mml:maters nois in individual semiconducting carbon nanotube field-effect transistors. Physical Review B, 2008, 77, .
210 Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 2008, 100, 016602. 2.9 2,919
211Identifying the Mechanism of Biosensing with Carbon Nanotube Transistors. Nano Letters, 2008, 8,4.5431591-595.
212 Microwave rectification by a carbon nanotube Schottky diode. Applied Physics Letters, 2008, 93, . 1.5 32
213Transport in Nanostructures. Nanostructure Science and Technology, 2008, , 115-169.0.1201
 Enhanced Subthreshold Slopes in Large Diameter Single Wall Carbon Nanotube Field Effect 1.1 16
Highly resilient field emission from aligned single-walled carbon nanotube arrays chemically attached to n-type silicon. Journal of Materials Chemistry, 2008, 18, 5753.
216Carbon nanotube Schottky diode: an atomic perspective. Nanotechnology, 2008, 19, 115203.1.323
217Non-oxidizing Purification Method for Large Volumes of Long, Undamaged Single-Walled Carbon1.524217Nanotubes. Journal of Physical Chemistry C, 2008, 112, 19186-19192.1.524
219 Measurement of Carrier Mobility in Silicon Nanowires. Nano Letters, 2008, 8, 1566-1571. 4.5 113
220Time-Dependent Wave-Packet Diffusion Method for Quantum Transport Calculation: From Diffusive to Ballistic Regimes. Applied Physics Express, 0, 1, 123002.1.120
221 High-speed transparent flexible electronics. Proceedings of SPIE, 2008, , . 0.8 0

222

#	Article	IF	CITATIONS
224	Large scale 3D vertical assembly of single-wall carbon nanotubes at ambient temperatures. Nanotechnology, 2008, 19, 455309.	1.3	15
225	Detection of nucleic acid hybridization via oxide-gated carbon nanotube field-effect transistors. , 2008, , .		1
226	Bias-induced doping engineering with ionic adsorbates on single-walled carbon nanotube thin film transistors. New Journal of Physics, 2008, 10, 113013.	1.2	3
227	A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay. Nanotechnology, 2008, 19, 325201.	1.3	12
228	Facile fabrication of suspended as-grown carbon nanotube devices. Applied Physics Letters, 2008, 93, 113112.	1.5	29
229	Air-stable n-type operation of Gd-contacted carbon nanotube field effect transistors. Applied Physics Letters, 2008, 93, .	1.5	16
230	Carbon nanotube formation by laser direct writing. Applied Physics Letters, 2008, 93, 023108.	1.5	2
231	All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz. Applied Physics Letters, 2008, 93, .	1.5	139
232	Sensitivity of Carbon Nanotube Transistors to a Charged Dielectric Coating. IEEE Sensors Journal, 2008, 8, 1028-1035.	2.4	1
233	Radio frequency analog electronics based on carbon nanotube transistors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1405-1409.	3.3	185
236	Electronic Devices. , 2009, , 75-136.		3
237	Regioregular poly(3-hexyl-thiophene) helical self-organization on carbon nanotubes. Applied Physics Letters, 2009, 95, 013304.	1.5	45
238	Multiband Mobility in Semiconducting Carbon Nanotubes. IEEE Electron Device Letters, 2009, 30, 1078-1080.	2.2	60
239	Top-down approach to align single-walled carbon nanotubes on silicon substrate. Applied Physics Letters, 2009, 94, .	1.5	22
240	Ink-Jet Printing of a Single-Walled Carbon Nanotube Thin Film Transistor. Japanese Journal of Applied Physics, 2009, 48, 06FF03.	0.8	25
241	Writing simple RF electronic devices on paper with carbon nanotube ink. Nanotechnology, 2009, 20, 375203.	1.3	44
242	Efficient terahertz generation by carbon nanotubes within the limited space-charge accumulation regime. Journal of Applied Physics, 2009, 105, 094316.	1.1	7
243	FET Characteristic of Chemically-Modified CNT. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	2

#	Article	IF	CITATIONS
244	p H -dependent conductance behaviors of layer-by-layer self-assembled carboxylated carbon nanotube multilayer thin-film sensors. Journal of Vacuum Science & Technology B, 2009, 27, 842-848.	1.3	37
245	Attofarad resolution capacitance–voltage measurement of nanometer scale field effect transistors utilizing ambient noise. Nanotechnology, 2009, 20, 335203.	1.3	8
246	The performance ofin situgrown Schottky-barrier single wall carbon nanotube field-effect transistors. Nanotechnology, 2009, 20, 085709.	1.3	4
247	Transport properties of field effect transistors with randomly networked single walled carbon nanotubes grown by plasma enhanced chemical vapour deposition. Journal Physics D: Applied Physics, 2009, 42, 175106.	1.3	4
248	Transport properties of carbon nanotubes. Physics-Uspekhi, 2009, 52, 209-224.	0.8	69
249	Restorable Type Conversion of Carbon Nanotube Transistor Using Pyrolytically Controlled Antioxidizing Photosynthesis Coenzyme. Advanced Functional Materials, 2009, 19, 2553-2559.	7.8	59
250	Ultrathin Films of Singleâ€Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects. Advanced Materials, 2009, 21, 29-53.	11.1	994
251	Carbonâ€Based Fieldâ€Effect Transistors for Nanoelectronics. Advanced Materials, 2009, 21, 2586-2600.	11.1	235
252	Macroscopic Singleâ€Walledâ€Carbonâ€Nanotube Fiber Selfâ€Assembled by Dipâ€Coating Method. Advanced Materials, 2009, 21, 4357-4361.	11.1	37
253	Synthesis, Structure, and Properties of Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2009, 21, 4565-4583.	11.1	123
254	Deposition of silver nanoparticles on single wall carbon nanotubes via a self assembled block copolymer micelles. Reactive and Functional Polymers, 2009, 69, 552-557.	2.0	14
255	Applications of carbon materials in photovoltaic solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1461-1470.	3.0	318
256	Enhancing Solar Cell Efficiencies through 1-D Nanostructures. Nanoscale Research Letters, 2009, 4, .	3.1	259
257	Functionalised multiâ€walled carbon nanotubes for epoxy nanocomposites with improved performance. Polymer International, 2009, 58, 1002-1009.	1.6	20
258	Nanoelectromagnetics: Circuit and Electromagnetic Properties of Carbon Nanotubes. Small, 2009, 5, 884-906.	5.2	121
259	AFM tackles osteoarthritis. Nature Nanotechnology, 2009, 4, 144-145.	15.6	25
260	Nanotube inks make their mark. Nature Nanotechnology, 2009, 4, 143-144.	15.6	7
261	Nanotube electronics for radiofrequency applications. Nature Nanotechnology, 2009, 4, 811-819.	15.6	269

#	Article	IF	CITATIONS
262	Novel attributes in scaling issues of carbon nanotube field-effect transistors. Microelectronics Journal, 2009, 40, 5-9.	1.1	16
263	Selective sensing of hydrogen sulphide using silver nanoparticle decorated carbon nanotubes. Sensors and Actuators B: Chemical, 2009, 138, 189-192.	4.0	70
264	Modeling of carbon nanotube field-effect transistor with nanowelding treatment. Microelectronics Journal, 2009, 40, 1681-1685.	1.1	6
265	Mono-distributed single-walled carbon nanotube channel in field effect transistors (FETs) using electrostatic atomization deposition. Journal of Colloid and Interface Science, 2009, 338, 266-269.	5.0	3
266	Effect of a square wave on an assembly of multi-walled carbon nanotubes using AC dielectrophoresis. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1137-1142.	1.3	14
267	Investigation of the performance and band-to-band tunneling effect of a new double-halo-doping carbon nanotube field-effect transistor. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1767-1771.	1.3	26
268	Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Advances in Colloid and Interface Science, 2009, 150, 63-89.	7.0	92
269	Wafer-Scale Fabrication of Separated Carbon Nanotube Thin-Film Transistors for Display Applications. Nano Letters, 2009, 9, 4285-4291.	4.5	390
270	Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates. Nano Letters, 2009, 9, 3137-3141.	4.5	516
271	Scalable Light-Induced Metal to Semiconductor Conversion of Carbon Nanotubes. Nano Letters, 2009, 9, 3592-3598.	4.5	48
272	Electrophysical properties of poly(N-vinylcarbazole)-carbon nanotubes composite films. Polymer Science - Series A, 2009, 51, 182-186.	0.4	7
273	Almost Perfectly Symmetric SWCNT-Based CMOS Devices and Scaling. ACS Nano, 2009, 3, 3781-3787.	7.3	100
274	Direct Growth of Bent Carbon Nanotubes on Surface Engineered Sapphire. Journal of Physical Chemistry C, 2009, 113, 13121-13124.	1.5	11
275	The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors. Nanotechnology, 2009, 20, 175203.	1.3	32
276	Dip-Pen Nanolithography of Electrical Contacts to Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 3543-3551.	7.3	33
277	Self-Assembled Nanoparticle-Nanotube Structures (nanoPaNTs) Based on Antenna Chemistry of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 18863-18869.	1.5	5
278	Overview of Carbon Nanotubes for High Frequency Electronics. , 2009, , .		0
279	Effect of the Chemical Functionalization on Charge Transport in Carbon Nanotubes at the Mesoscopic Scale. Nano Letters, 2009, 9, 940-944.	4.5	118

ARTICLE IF CITATIONS A Scanning Probe Microscopy Based Assay for Single-Walled Carbon Nanotube Metallicity. Nano 280 4.5 55 Letters, 2009, 9, 1668-1672. Preferential elimination of metallic single-walled carbon nanotubes using microwave irradiation. 1.3 34 Nanotechnology, 2009, 20, 065707. 282 Carbon nanotube transparent electrodes: A case for photovoltaics., 2009,,. 1 Controlling high-mobility conduction in SrTiO3 by oxide thin film deposition. Applied Physics Letters, 2009, 94, 012113. Species enrichment of SWNTs with pyrene alkylamide derivatives: is the alkyl chain length important?. 284 1.3 12 Nanotechnology, 2009, 20, 305601. Transparent Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible 7.3 Substrates. ACS Nano, 2009, 3, 73-79. Ink-Jet Printing of Carbon Nanotube Thin-Film Transistors on Flexible Plastic Substrates. Applied 286 1.1 75 Physics Express, 0, 2, 025005. On-Film Formation of Bi Nanowires with Extraordinary Electron Mobility. Nano Letters, 2009, 9, 18-22. 4.5 Multi-Walled Carbon Nanotubes Grown from Chemical Vapor: Links between Atomic near Range Order 288 1.5 10 and Growth Parameters. Journal of Physical Chemistry C, 2009, 113, 4307-4314. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube 289 networks by water-assisted plasma-enhanced chemical vapor deposition. Nanotechnology, 2009, 20, 1.3 295201. Carbon Nanotube Field-Effect Transistors. Integrated Circuits and Systems, 2009, , 63-86. 290 0.2 1 Carbon Nanotube Electronics. Integrated Circuits and Systems, 2009, , . Adaptive Logic Circuits with Doping-Free Ambipolar Carbon Nanotube Transistors. Nano Letters, 2009, 292 4.5 109 9, 1401-1405. Reduction-Controlled Viologen in Bisolvent as an Environmentally Stable n-Type Dopant for Carbon 6.6 Nanotubes. Journal of the American Chemical Society, 2009, 131, 327-331. 294 Avalanche, joule breakdown and hysteresis in carbon nanotube transistors., 2009, , . 8 Reduction of hysteresis in mobility measurements of carbon nanotube transistors by pulsed I–V characterization., 2009,,. Charge Transport in Interpenetrating Networks of Semiconducting and Metallic Carbon Nanotubes. 296 4.5 151Nano Letters, 2009, 9, 1866-1871. Graphene for VLSI: FET and interconnect applications., 2009, , .

CITATION REPORT

#

#	Article	IF	Citations
298	High-Speed Memory from Carbon Nanotube Field-Effect Transistors with High-κ Gate Dielectric. Nano Letters, 2009, 9, 643-647.	4.5	82
299	Density Enhancement of Aligned Single-Walled Carbon Nanotube Thin Films on Quartz Substrates by Sulfur-Assisted Synthesis. Nano Letters, 2009, 9, 3646-3650.	4.5	54
301	Carbon-based electronics. , 2009, , 174-184.		17
303	Quantum confined systems. , 0, , 28-115.		0
304	Fully printed phased-array antenna for space communications. Proceedings of SPIE, 2009, , .	0.8	9
305	Organic / IV, III-V Semiconductor Hybrid Solar Cells. Energies, 2010, 3, 313-334.	1.6	67
306	Functionalization of carboxylated multiwall nanotubes with imidazole derivatives and their toxicity investigations. International Journal of Nanomedicine, 2010, 5, 907.	3.3	27
307	Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells. Journal of Materials Chemistry, 2010, 20, 7034.	6.7	26
308	Dissociating Excitons Photogenerated in Semiconducting Carbon Nanotubes at Polymeric Photovoltaic Heterojunction Interfaces. ACS Nano, 2010, 4, 5657-5664.	7.3	117
309	Ballistic transport in nanowires and carbon nanotubes. , 2010, , .		0
310	DNA and carbon nanotubes as medicine. Advanced Drug Delivery Reviews, 2010, 62, 633-649.	6.6	180
311	Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 2010, 110, 5790-5844.	23.0	889
312	Electron Transport in Carbon Nanotubes. Annual Review of Condensed Matter Physics, 2010, 1, 1-25.	5.2	59
313	A process for high yield and high performance carbon nanotube field effect transistors. Microelectronics Reliability, 2010, 50, 666-669.	0.9	7
314	Energy dissipation and transport in nanoscale devices. Nano Research, 2010, 3, 147-169.	5.8	952
315	Performance Optimization of MOS-Like Carbon Nanotube FETs With Realistic Contacts. IEEE Transactions on Electron Devices, 2010, 57, 3153-3162.	1.6	6
316	Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed CMOS Electronics. IEEE Transactions on Electron Devices, 2010, 57, 3137-3143.	1.6	127
317	Growth of Singleâ€Walled Carbon Nanotubes from Tellurium Nanoparticles by Alcohol CVD. Chemical Vapor Deposition, 2010, 16, 136-142.	1.4	4

ARTICLE IF CITATIONS # Aligned, Ultralong Singleâ€Walled Carbon Nanotubes: From Synthesis, Sorting, to Electronic Devices. 318 11.1 120 Advanced Materials, 2010, 22, 2285-2310. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 2010, 22, 11.1 8,959 3906-3924. Analytical modeling of high performance single-walled carbon nanotube field-effect-transistor. 321 1.1 16 Microelectronics Journal, 2010, 41, 579-584. Patterned ZnO nanorods network transistor fabricated by low-temperature hydrothermal process. 1.1 Microelectronic Engineering, 2010, 87, 1483-1486. Diode properties of nanotube networks. Thin Solid Films, 2010, 518, 5014-5017. 323 0.8 1 Improving the adhesion of carbon nanotubes to a substrate using microwave treatment. Carbon, 2010, 48, 805-812. 324 5.4 Fabrication of single-walled carbon nanotube Schottky diode with gold contacts modified by 325 5.4 9 asymmetric thiolate molecules. Carbon, 2010, 48, 1298-1304. Diameter―and Metallicityâ€Selective Enrichment of Singleâ€Walled Carbon Nanotubes Using 5.2 14 Polymethacrylates with Pendant Aromatic Functional Groups. Small, 2010, 6, 1311-1320. 327 Materials for Information Technology. International Journal of Materials Research, 2010, 101, 149-154. 0.1 14 Charge conversion effects of carbon nanotube network transistors by temperature for Al2O3 gate 1.5 dielectric formation. Applied Physics Letters, 2010, 97, 032117. Dielectrophoretic addressable deposition of arc-SWCNTs for high-throughput screening FET arrays., 329 0 2010,,. High-speed non-cryogenic cooled infrared sensors using carbon nanotubes., 2010, , . Order-Nelectron transport calculations from ballistic to diffusive regimes by a time-dependent 331 wave-packet diffusion method: Application to transport properties of carbon nanotubes. Physical 1.1 34 Review B, 2010, 82, . Universal transition between inductive and capacitive admittance of metallic single-walled carbon 332 1.1 nanotubes. Physical Review B, 2010, 82, . Contact resistance of flexible, transparent carbon nanotube films with metals. Applied Physics 333 1.5 21 Letters, 2010, 97, . Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Applied Physics Letters, 2010, 334 1.5 96,043501. 335 Carbon nanotube nanoelectronics and macroelectronics., 2010,,. 0 Effects of surfactants on spinning carbon nanotube fibers by an electrophoretic method. Science and 2.8 Technology of Advanced Materials, 2010, 11, 065005.

#	Article	IF	CITATIONS
337	Efficient fabrication of wafer scale thin film of individualized single-walled carbon nanotubes by dual-nozzle spin casting. Review of Scientific Instruments, 2010, 81, 063905.	0.6	1
338	Low-Voltage Operation of Ink-Jet-Printed Single-Walled Carbon Nanotube Thin Film Transistors. Japanese Journal of Applied Physics, 2010, 49, 02BD09.	0.8	21
339	Bending tests of carbon nanotube thin-film transistors on flexible substrate. , 2010, , .		4
340	Relationship between carbon nanotube density and hysteresis characteristics of carbon nanotube random network-channel field effect transistors. Journal of Applied Physics, 2010, 107, 094501.	1.1	13
341	Selective fabrication of quasi-parallel single-walled carbon nanotubes on silicon substrates. Nanotechnology, 2010, 21, 395602.	1.3	5
342	Investigations of niobium carbide contact for carbon-nanotube-based devices. Nanotechnology, 2010, 21, 095201.	1.3	7
343	The effect of acoustic phonon scattering on the carrier mobility in the semiconducting zigzag single wall carbon nanotubes. Applied Physics Letters, 2010, 96, 183108.	1.5	45
344	Inkjet printed organic transistors for sustainable electronics. , 2010, , .		7
345	Evaluation of Transparent Carbon Nanotube Networks of Homogeneous Electronic Type. ACS Nano, 2010, 4, 1377-1384.	7.3	59
347	Patterning of Single-Walled Carbon Nanotube Films on Flexible, Transparent Plastic Substrates. Langmuir, 2010, 26, 598-602.	1.6	45
348	Exciton Diffusion in Air-Suspended Single-Walled Carbon Nanotubes. Physical Review Letters, 2010, 104, 247402.	2.9	94
349	Transfer and Alignment of Random Single-Walled Carbon Nanotube Films by Contact Printing. ACS Nano, 2010, 4, 933-938.	7.3	39
350	Influence of Electrolyte Composition on Liquid-Gated Carbon Nanotube and Graphene Transistors. Journal of the American Chemical Society, 2010, 132, 17149-17156.	6.6	162
351	Importance of Controlling Nanotube Density for Highly Sensitive and Reliable Biosensors Functional in Physiological Conditions. ACS Nano, 2010, 4, 6914-6922.	7.3	78
352	Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology, 2010, 21, 085702.	1.3	100
353	Theoretical Study of Moiré Pattern in Scanning Tunneling Microscopy Images of Carbon Nanotubes on Metallic Substrate. Japanese Journal of Applied Physics, 2010, 49, 08LB02.	0.8	Ο
354	Large Signal Operation of Small Band-Gap Carbon Nanotube-Based Ambipolar Transistor: A High-Performance Frequency Doubler. Nano Letters, 2010, 10, 3648-3655.	4.5	36
355	Printed, Sub-3V Digital Circuits on Plastic from Aqueous Carbon Nanotube Inks. ACS Nano, 2010, 4, 4388-4395.	7.3	362

#	Article	IF	CITATIONS
356	High-Performance Field Effect Transistors from Solution Processed Carbon Nanotubes. ACS Nano, 2010, 4, 6659-6664.	7.3	29
357	Hygroscopic Effects on AuCl ₃ -Doped Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 11618-11622.	1.5	33
358	Macroelectronic Integrated Circuits Using High-Performance Separated Carbon Nanotube Thin-Film Transistors. ACS Nano, 2010, 4, 7123-7132.	7.3	136
359	Efficient Electron Transfer in Functional Assemblies of Pyridine-Modified NQDs on SWNTs. ACS Nano, 2010, 4, 324-330.	7.3	45
360	Wide Contact Structures for Low-Noise Nanochannel Devices Based on a Carbon Nanotube Network. ACS Nano, 2010, 4, 7612-7618.	7.3	12
361	Polypyrrole-carbon nanotube composite films synthesized through gas-phase polymerization. Synthetic Metals, 2010, 160, 814-818.	2.1	54
362	Computational methods for design of organic materials with high charge mobility. Chemical Society Reviews, 2010, 39, 423-434.	18.7	412
363	Self-consistent ac quantum transport using nonequilibrium Green functions. Physical Review B, 2010, 81, .	1.1	30
364	Progress in Carbon Nanotube Electronics and Photonics. MRS Bulletin, 2010, 35, 306-313.	1.7	79
365	Fabrication and Characterization of Electrospun PLGA/MWNTs/ Hydroxyapatite Biocomposite Scaffolds for Bone Tissue Engineering. Journal of Bioactive and Compatible Polymers, 2010, 25, 241-259.	0.8	73
366	Functional Yield Estimation of Carbon Nanotube-Based Logic Gates in the Presence of Defects. IEEE Nanotechnology Magazine, 2010, 9, 687-700.	1.1	18
367	Electrical conductivity modeling and experimental study of densely packed SWCNT networks. Nanotechnology, 2010, 21, 195703.	1.3	33
368	Electrochemical Patterning of Transparent Single-Walled Carbon Nanotube Films on Plastic Substrates. Langmuir, 2010, 26, 9136-9141.	1.6	13
369	Synthesis of Bandgap-Controlled Semiconducting Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 1012-1018.	7.3	55
370	Water transport through nanoporous materials: Porous silicon and single walled carbon nanotubes. , 2010, , .		1
371	Development of Quantum Device Simulator, NEMO-VN2. , 2010, , .		0
372	Improve variability in carbon nanotube FETs by scaling. , 2010, , .		0
373	Yield enhancement by tube redundancy in CNFET-based circuits. , 2010, , .		5

	CITATION	Report	
#	Article	IF	CITATIONS
374	The complex band structure for armchair graphene nanoribbons. Chinese Physics B, 2010, 19, 117105.	0.7	11
375	Single Carbon Nanotube Schottky Diode Microwave Rectifiers. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2726-2732.	2.9	15
376	Routing with graphene nanoribbons. , 2011, , .		16
377	On the accuracy of classical and long wavelength approximations for phonon transport in graphene. Journal of Applied Physics, 2011, 110, .	1.1	33
378	Creation of Individual Defects at Extremely High Proton Fluences in Carbon Nanotube \$p{-}n\$ Diodes. IEEE Transactions on Nuclear Science, 2011, 58, 2898-2903.	1.2	12
379	Metal Contact Engineering and Registration-Free Fabrication of Complementary Metal-Oxide Semiconductor Integrated Circuits Using Aligned Carbon Nanotubes. ACS Nano, 2011, 5, 1147-1153.	7.3	66
380	Timing yield estimation of carbon nanotube-based digital circuits in the presence of nanotube density variation and metallic-nanotubes. , 2011, , .		5
381	Synthesis and characterization of N- and P- doped tin oxide nanowires. , 2011, , .		1
382	Chemically Doped Random Network Carbon Nanotube p–n Junction Diode for Rectifier. ACS Nano, 2011, 5, 9817-9823.	7.3	64
383	Efficient Charge Separation in Multidimensional Nanohybrids. Nano Letters, 2011, 11, 4562-4568.	4.5	34
385	Long-Term Stability of Metallic Iron inside Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 21083-21087.	1.5	8
386	Doping and Dedoping in SWCNT Film by the Spontaneous Redox Process. Journal of Physical Chemistry C, 2011, 115, 18327-18332.	1.5	6
387	Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale, 2011, 3, 1361.	2.8	86
388	Radio Frequency and Linearity Performance of Transistors Using High-Purity Semiconducting Carbon Nanotubes. ACS Nano, 2011, 5, 4169-4176.	7.3	72
389	AC Field-Induced Polymer Electroluminescence with Single Wall Carbon Nanotubes. Nano Letters, 2011, 11, 966-972.	4.5	68
390	Role of Anions in the AuCl ₃ -Doping of Carbon Nanotubes. ACS Nano, 2011, 5, 1236-1242.	7.3	149
391	EFFECTIVE MOBILITY MODEL OF GRAPHENE NANORIBBON IN PARABOLIC BAND ENERGY. Modern Physics Letters B, 2011, 25, 739-745.	1.0	8
392	Thermoelectric Properties of Ultrasmall Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 21996-22001.	1.5	21

#	Article	IF	CITATIONS
393	Electronic conduction in polymers, carbon nanotubes and graphene. Chemical Society Reviews, 2011, 40, 3786.	18.7	186
394	A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array. Sensors, 2011, 11, 9300-9312.	2.1	18
395	Electronic and Optoelectronic Properties and Applications of Carbon Nanotubes. , 2011, , 480-498.		0
396	Ultrahigh Density Alignment of Carbon Nanotube Arrays by Dielectrophoresis. ACS Nano, 2011, 5, 1739-1746.	7.3	190
397	Resonance Energy Transfer (RET)-Induced Intermolecular Pairing Force: A Tunable Weak Interaction and Its Application in SWNT Separation. Journal of Physical Chemistry A, 2011, 115, 8155-8166.	1.1	8
399	Carbon Nanotube Field Effect Transistors with Suspended Graphene Gates. Nano Letters, 2011, 11, 3569-3575.	4.5	21
400	Nanotechnology Research Directions for Societal Needs in 2020. , 2011, , .		202
401	Unipolar Sequential Circuits Based on Individual-Carbon-Nanotube Transistors and Thin-Film Carbon Resistors. ACS Nano, 2011, 5, 7525-7531.	7.3	10
402	Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions. ACS Nano, 2011, 5, 2593-2600.	7.3	833
403	Semiconductor-On-Insulator Materials for Nanoelectronics Applications. Engineering Materials, 2011,	0.3	69
404	Single-walled carbon nanotubes as base material for THz photoconductive switching: a theoretical study from input power to output THz emission. Optics Express, 2011, 19, 15077.	1.7	22
405	Carbon Nanotubes: How Strong Is Their Bond with the Substrate?. ACS Nano, 2011, 5, 780-787.	7.3	67
406	Fullerenes, Carbon Nanotubes, and Graphene for Molecular Electronics. Topics in Current Chemistry, 2011, 312, 127-174.	4.0	23
407	Fully Printed Separated Carbon Nanotube Thin Film Transistor Circuits and Its Application in Organic Light Emitting Diode Control. Nano Letters, 2011, 11, 5301-5308.	4.5	189
408	Efficient photovoltage multiplication in carbon nanotubes. Nature Photonics, 2011, 5, 672-676.	15.6	133
409	Surfactant-Free Water-Processable Photoconductive All-Carbon Composite. Journal of the American Chemical Society, 2011, 133, 4940-4947.	6.6	200
411	All-printed CNT transistors with high on-off ratio and bias-invariant transconductance. , 2011, , .		1
413	Growth Position and Chirality Control of Single-Walled Carbon Nanotubes. IEICE Transactions on Electronics, 2011, E94-C, 1861-1866.	0.3	2

#	Article	IF	Citations
414	A carbon nanotube immunosensor for <i>Salmonella</i> . AIP Advances, 2011, 1, .	0.6	29
415	Electrical circuits from capillary flow driven evaporation deposition of carbon nanotube ink in non-porous V-grooves. Journal of Colloid and Interface Science, 2011, 363, 425-430.	5.0	12
416	Electrical conductivity of well-exfoliated single-walled carbon nanotubes. Carbon, 2011, 49, 5124-5131.	5.4	10
417	Graphene: learning from carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 919-929.	6.7	43
418	The effect of amine protonation on the electrical properties of spin-assembled single-walled carbon nanotube networks. Nanotechnology, 2011, 22, 125201.	1.3	9
419	Induced electro-optic effects in single-walled carbon nanotubes. I. Polarizability of metallic nanotubes. Physical Review B, 2011, 83, .	1.1	11
420	Electron-positron annihilation in carbon nanotubes. Inorganic Materials: Applied Research, 2011, 2, 186-191.	0.1	3
421	Photosensitization of carbon nanotubes using dye aggregates. Journal of Physics Condensed Matter, 2011, 23, 202204.	0.7	4
423	Facile fabrication of all-SWNT field-effect transistors. Nano Research, 2011, 4, 580-588.	5.8	13
424	Ultrahigh density modulation of aligned single-walled carbon nanotube arrays. Nano Research, 2011, 4, 931-937.	5.8	17
425	Semiconducting carbon nanotube/fullerene blended heterojunctions for photovoltaic near-infrared photon harvesting. Nano Research, 2011, 4, 1174-1179.	5.8	58
426	A one-dimensional extremely covalent material: monatomic carbon linear chain. Nanoscale Research Letters, 2011, 6, 577.	3.1	24
427	Theoretical studies of oneâ€dimensional C ₃₆ coplanar polymers. Physica Status Solidi (B): Basic Research, 2011, 248, 969-973.	0.7	21
428	Separation of singleâ€walled carbon nanotubes with aromatic group functionalized polymethacrylates and building blocks contribution to the enrichment. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 949-960.	2.4	3
429	Temperature Performance of Dopingâ€Free Topâ€Gate CNT Fieldâ€Effect Transistors: Potential for Low―and Highâ€Temperature Electronics. Advanced Functional Materials, 2011, 21, 1843-1849.	7.8	24
430	Array of Singleâ€Walled Carbon Nanotube Intrajunction Devices Fabricated via Type Conversion by Partial Coating with βâ€Nicotinamide Adenine Dinucleotide. Advanced Functional Materials, 2011, 21, 2515-2521.	7.8	8
431	Graphene Versus Carbon Nanotubes in Electronic Devices. Advanced Functional Materials, 2011, 21, 3806-3826.	7.8	232
432	Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Advanced Materials, 2011, 23, 1482-1513.	11.1	1,963

		CITATION REPORT		
#	Article		IF	CITATIONS
435	Strategy for Carrier Control in Carbon Nanotube Transistors. ChemSusChem, 2011, 4,	890-904.	3.6	13
436	Spectroscopic studies and electrical properties of transparent conductive films fabrica surfactant-stabilized single-walled carbon nanotube suspensions. Carbon, 2011, 49, 4	ted by using 301-4313.	5.4	47
437	Effects of Interface Recombination on the Performance of SWCNTGaAs Heterojunction Procedia Engineering, 2011, 8, 275-279.	n Solar Cell.	1.2	5
438	Energetics and electronic structures of pyridine-type defects in nitrogen-doped carbon Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 677-680.	nanotubes.	1.3	44
439	Doping-free fabrication of n-type random network single-walled carbon nanotube field transistor with yttrium contacts. Physica E: Low-Dimensional Systems and Nanostruct 1365-1370.	effect ures, 2011, 43,	1.3	7
440	Multi-Excitation-Laser Raman Analysis of Chirality-Controlled Single-Walled Carbon Na Free Electron Laser Irradiation during Growth. Japanese Journal of Applied Physics, 201	notubes with 1, 50, 01BJ13.	0.8	2
441	Enhanced Charge Mobility in Polymer Nanocomposites Incorporating Donor–Accept Japanese Journal of Applied Physics, 2011, 50, 01BJ19.	or Interfaces.	0.8	0
442	Study on Device Parameters of Carbon Nanotube Field Electron Transistors to Realize Subthreshold Slope of Less than 60 mV/Decade. Japanese Journal of Applied Physics, 2	Steep 011, 50, 04DN01.	0.8	9
443	Carbon nanotube nanoelectronic devices compatible with transmission electron micro Nanotechnology, 2011, 22, 245305.	iscopy.	1.3	7
444	Change in carbon nanofiber resistance from ambient to vacuum. AIP Advances, 2011,	1, 022102.	0.6	12
445	Structure and stability of hydrogen atom adsorbed on nitrogen-doped carbon nanotub Physics: Conference Series, 2011, 302, 012006.	pes. Journal of	0.3	24
446	Coherent injection and control of ballistic charge currents in single-walled carbon nand graphite. Physical Review B, 2011, 83, .	ptubes and	1.1	6
447	Electrical characteristics of carbon nanofibers in air and vacuum. , 2011, , .			1
448	AC conductivity of metallic carbon nanotubes (CNTs) exposed to a DC field. , 2011, , .			1
449	Periodic oscillation of photocurrents in single-walled carbon nanotubes. Applied Physic 2011, 99, 223103.	:s Letters,	1.5	1
450	Direct growth of single walled carbon nanotubes on paper. , 2011, , .			2
451	Schottky barriers in carbon nanotube-metal contacts. Journal of Applied Physics, 2011	, 110, .	1.1	162
452	Analysis of yield improvement techniques for CNFET-based logic gates. , 2011, , .			2

#	Article	IF	CITATIONS
453	Multiple negative differential resistance and the modulation in a nanotubelike fullerene D5h(1)-C90. Applied Physics Letters, 2011, 98, 163107.	1.5	6
454	Simulation of diode characteristics of carbon nanotube field-effect transistors with symmetric source and drain contacts. Europhysics Letters, 2011, 95, 68007.	0.7	2
455	General theories for the electrical transport properties of carbon nanotubes. Nanotechnology, 2011, 22, 315705.	1.3	7
456	All-Carbon Composite for Photovoltaics. Materials Research Society Symposia Proceedings, 2011, 1344, 1.	0.1	0
457	p–n homo-junction arrays of aligned single walled carbon nanotubes fabricated by selective patterning of polyethyleneimine film. Nanotechnology, 2011, 22, 385302.	1.3	3
458	Carbon nanotubes in neural interfacing applications. Journal of Neural Engineering, 2011, 8, 011001.	1.8	93
459	A fast and low-power microelectromechanical system-based non-volatile memory device. Nature Communications, 2011, 2, 220.	5.8	61
460	SEMICONDUCTING CARBON NANOTUBE PHOTOVOLTAIC PHOTODETECTORS. International Journal of High Speed Electronics and Systems, 2011, 20, 687-695.	0.3	9
461	Printing technology and advantage of purified semiconducting carbon nanotubes for thin film transistor fabrication on plastic films. , 2011, , .		1
462	PHOTON-ASSISTED TRANSPORT IN CARBON NANOTUBE MESOSCOPIC DEVICE. International Journal of Nanoscience, 2011, 10, 419-426.	0.4	2
463	Controlled assembly of CdSe/MWNT hybrid material and its fast photoresponse with wavelength selectivity. Nanotechnology, 2011, 22, 165201.	1.3	19
464	Physical and Electrical Characteristics of Carbon Nanotube Network Field-Effect Transistors Synthesized by Alcohol Catalytic Chemical Vapor Deposition. Journal of Nanomaterials, 2011, 2011, 1-7.	1.5	1
465	Graphene on Ag films for reflectively conductive layer ohmic contacts to p-type GaN in GaN-based light-emitting diodes. Proceedings of SPIE, 2012, , .	0.8	0
466	Fine Patterning of Inkjet-Printed Single-Walled Carbon-Nanotube Thin-Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 06FD15.	0.8	5
467	A general approach for high yield fabrication of CMOS-compatible all-semiconducting carbon nanotube field effect transistors. Nanotechnology, 2012, 23, 125201.	1.3	12
468	Positive gate bias stress instability of carbon nanotube thin film transistors. Applied Physics Letters, 2012, 101, 053504.	1.5	17
469	Investigation of the improved performance in a graphene/polycrystalline BiFeO3/Pt photovoltaic heterojunction: Experiment, modeling, and application. Journal of Applied Physics, 2012, 112, .	1.1	23
470	Decoherence-induced surface hopping. Journal of Chemical Physics, 2012, 137, 22A545.	1.2	491

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
471	Recent Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications. Journal of Nanomaterials, 2012, 2012, 1-15.	1.5	66
472	INVESTIGATION OF TIME-RATED DEFECT FORMATION, INFRARED ABSORPTION AND TRANSPORT CHARACTERISTICS OF SINGLE-WALLED CARBON NANOTUBES WET-PROCESSED IN PHOSPHORIC ACID. Nano, 2012, 07, 1250026.	0.5	2
473	Optimization of Source/Drain Doping Level of Carbon Nanotube Field-Effect Transistors to Suppress OFF-State Leakage Current while Keeping Ideal ON-State Current. Japanese Journal of Applied Physics, 2012, 51, 06FD27.	0.8	0
474	A doping-free approach to carbon nanotube electronics and optoelectronics. AIP Advances, 2012, 2, .	0.6	25
475	Carbon nanotube structure, synthesis, and applications. , 0, , 1-37.		2
476	Print Fabrication and Characterization of CNT Transistors on Plastic Films. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 281-284.	0.1	1
477	Optical Signature of Charge Transfer in n-Type Carbon Nanotube Transistors Doped with Printable Organic Molecules. Applied Physics Express, 2012, 5, 125102.	1.1	6
478	Patent Basics Every Researcher and Engineer Should Know. , 2012, , 1-16.		Ο
479	Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 2012, 1, 534-551.	8.2	628
480	Photovoltaic Device Performance of Single-Walled Carbon Nanotube and Polyaniline Films on n-Si: Device Structure Analysis. ACS Applied Materials & Interfaces, 2012, 4, 363-368.	4.0	25
481	Tipâ€Induced Charging of Free Standing Semiconductor Nanowires and Carbon Nanotubes. Israel Journal of Chemistry, 2012, 52, 1073-1080.	1.0	0
482	Quantum Transport in Nanowires and Nanographene. , 2012, , .		5
483	Carbon nanotube arrays based high-performance infrared photodetector [Invited]. Optical Materials Express, 2012, 2, 839.	1.6	93
484	Using Nitrile Functional Groups to Replace Amines for Solution-Deposited Single-Walled Carbon Nanotube Network Films. ACS Nano, 2012, 6, 4845-4853.	7.3	16
485	Vertical self-assembly of modified multiwalled carbon nanotubes on gold surfaces induced by chitosan and Tween. Chemical Communications, 2012, 48, 1910.	2.2	4
486	Hybrid effect of gas flow and light excitation in carbon/silicon Schottky solar cells. Journal of Materials Chemistry, 2012, 22, 3330.	6.7	12
487	An overview on the state-of-the-art of Carbon-based radio-frequency electronics. , 2012, , .		6
488	Self-Aligned T-Gate High-Purity Semiconducting Carbon Nanotube RF Transistors Operated in Quasi-Ballistic Transport and Quantum Capacitance Regime. ACS Nano, 2012, 6, 6936-6943.	7.3	26

ARTICLE IF CITATIONS Highly Effective Separation of Semiconducting Carbon Nanotubes verified <i>via</i> 489 7.3 61 Devices Fabricated Using Dip-Pen Nanolithography. ACS Nano, 2012, 6, 2487-2496. Highly Uniform Thin-Film Transistors Printed on Flexible Plastic Films with Morphology-Controlled 1.1 Carbón Nanotube Network Channels. Applied Physics Express, 2012, 5, 055102. Twistable and bendable actuator: a CNT/polymer sandwich structure driven by thermal gradient. 491 1.3 46 Nanotechnology, 2012, 23, 075501. Carbon nanotube-based flexible transparent electrode films hybridized with self-assembling PEDOT. 24 Synthetic Metals, 2012, 162, 1279-1284. Electronic and optoelectronic nano-devices based on carbon nanotubes. Journal of Physics 493 0.7 87 Condensed Matter, 2012, 24, 313202. Theoretical Investigation of Traveling-Wave Amplification in Metallic Carbon Nanotubes Biased by a DC Field. IEEE Nanotechnology Magazine, 2012, 11, 463-471. 494 1.1 Applications of chirality-sorted individual single-wall carbon nanotube devices. Journal of Materials 495 6.7 15 Chemistry, 2012, 22, 7083. Impact energy dependence of defect formation in single-walled carbon nanotubes. Chemical Physics Letters, 2012, 541, 92-95. 496 1.2 Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Advanced 497 11.1 727 Materials, 2012, 24, 5284-5318. High Performance Ambipolar Fieldâ€Effect Transistor of Random Network Carbon Nanotubes. Advanced 11.1 109 Materials, 2012, 24, 6147-6152. Electrical conductivity of zigzag carbon nanotubes including Holstein polarons. European Physical 499 12 0.6 Journal B, 2012, 85, 1. Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature 3.1 sólution process. Nanoscale Research Letters, 2012, 7, 281. Enrichment of Semiconducting Single-Walled Carbon Nanotubes by Carbothermic Reaction for Use in 501 7.3 27 All-Nanotube Field Effect Transistors. ACS Nano, 2012, 6, 9657-9661. Functionalized Carbon Nanotubes and Their Enhanced Polymers., 2012, , 439-478. Conductivity enhancement of silicon nanowires. Journal of the Korean Physical Society, 2012, 61, 503 0.3 0 1990-1993. Ambipolar operation of hybrid SiC-carbon nanotube based thin film transistors for logic circuits 504 applications. Applied Physics Letters, 2012, 101, 043121. TEMPERATURE DEPENDENCE OF ELECTRICAL RESISTANCE OF INDIVIDUAL CARBON NANOTUBES AND CARBON 505 1.0 31 NANOTUBES NETWORK. Modern Physics Letters B, 2012, 26, 1250136. Fast and Selective Room-Temperature Ammonia Sensors Using Silver Nanocrystal-Functionalized 164 Carbon Nanotubes. ACS Applied Materials & amp; Interfaces, 2012, 4, 4898-4904.

#	Article	IF	CITATIONS
507	Field emission and strain engineering of electronic properties in boron nitride nanotubes. Nanotechnology, 2012, 23, 105702.	1.3	36
508	Light Energy Conversion at Carbon Nanotubes - Organic and Inorganic Interfaces: Photovoltaics, Photodetectors and Bolometers. , 2012, , 1-68.		3
509	Fundamental Performance Limits of Carbon Nanotube Thin-Film Transistors Achieved Using Hybrid Molecular Dielectrics. ACS Nano, 2012, 6, 7480-7488.	7.3	142
510	Graphene-based ambipolar electronics for radio frequency applications. Science Bulletin, 2012, 57, 2956-2970.	1.7	22
511	Extremely Bendable, High-Performance Integrated Circuits Using Semiconducting Carbon Nanotube Networks for Digital, Analog, and Radio-Frequency Applications. Nano Letters, 2012, 12, 1527-1533.	4.5	292
512	Nanotubes throw their heat around. Nature Nanotechnology, 2012, 7, 280-281.	15.6	3
513	Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 2012, 8, 1130-1166.	5.2	1,304
514	Highâ€Performance Photoconductive Channels Based on (Carbon Nanotube)–(CdS Nanowire) Hybrid Nanostructures. Small, 2012, 8, 1650-1656.	5.2	13
515	Growth of Horizontally Aligned Single-Walled Carbon Nanotubes on the Singular R-Plane (10–11) of Quartz. Journal of Physical Chemistry C, 2012, 116, 6805-6808.	1.5	12
516	Controllable photoelectron transfer in CdSe nanocrystal–carbon nanotube hybrid structures. Nanoscale, 2012, 4, 742-746.	2.8	15
517	Self-Aligned Carbon Nanotube Thin-Film Transistors on Flexible Substrates With Novel Source–Drain Contact and Multilayer Metal Interconnection. IEEE Nanotechnology Magazine, 2012, 11, 44-50.	1.1	16
518	Bulk Purification and Deposition Methods for Selective Enrichment in High Aspect Ratio Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 9352-9361.	6.6	10
519	Towards solution processed all-carbon solar cells: a perspective. Energy and Environmental Science, 2012, 5, 7810.	15.6	87
520	TiO ₂ Composing with Pristine, Metallic or Semiconducting Singleâ€Walled Carbon Nanotubes: Which Gives the Best Performance for a Dye‧ensitized Solar Cell. ChemPhysChem, 2012, 13, 2566-2572.	1.0	31
521	Comprehensive Approach to Intrinsic Charge Carrier Mobility in Conjugated Organic Molecules, Macromolecules, and Supramolecular Architectures. Accounts of Chemical Research, 2012, 45, 1193-1202.	7.6	318
522	Carbon Nanotube-Based Photoconductive Switches for THz Detection: An Assessment of Capabilities and Limitations. IEEE Photonics Journal, 2012, 4, 970-985.	1.0	11
523	First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale, 2012, 4, 4348.	2.8	551
524	Direct synthesis of self-aligned single-walled carbon nanotubes on paper. Carbon, 2012, 50, 1179-1185.	5.4	7

ARTICLE IF CITATIONS # Conformal coating of titanium suboxide on carbon nanotube networks by atomic layer deposition for 525 5.4 34 inverted organic photovoltaic cells. Carbon, 2012, 50, 4483-4488. Vertically aligned carbon nanotube field-effect transistors. Carbon, 2012, 50, 4628-4632. 5.4 Layer-by-layer self-assembly and electrochemistry: Applications in biosensing and bioelectronics. 527 5.3 201 Biosensors and Bioelectronics, 2012, 31, 1-10. Preparation of Cul particles and their applications in carbon nanotube-Si heterojunction solar cells. Materials Letters, 2012, 79, 106-108. Electronic substrate-mediated interactions. Surface Science Reports, 2012, 67, 19-81. 529 3.8 68 Conformal Ink-Jet Printed \$C\$-Band Phased-Array Antenna Incorporating Carbon Nanotube Field-Effect Transistor Based Reconfigurable True-Time Delay Lines. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 179-184. Effect of the metal work function on the electrical properties of carbon nanotube network 531 0.3 2 transistors. Journal of the Korean Physical Society, 2012, 60, 1680-1684. Allâ€Printed Carbon Nanotube finFETs on Plastic Substrates for Highâ€Performance Flexible Electronics. 11.1 36 Advanced Materials, 2012, 24, 358-361. High-performance doping-free carbon-nanotube-based CMOS devices and integrated circuits. Science 533 1.7 14 Bulletin, 2012, 57, 135-148. 534 Doping-free carbon nanotube optoelectronic devices. Science Bulletin, 2012, 57, 149-156. 1.7 Freestanding single-walled carbon nanotube bundle networks: Fabrication, properties and 535 1.7 25 composites. Science Bulletin, 2012, 57, 205-224. Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics. 5.8 Nano Research, 2012, 5, 33-42. Figure of merit based maximization of the quantum efficiency of (single-wall-carbon-nanotubes/n-type) Tj ETQq0 0 Q gBT /Overlock 10 T 537 †Inorganics-in-Organics': recent developments and outlook for 4G polymer solar cells. Nanoscale, 2.8 147 2013, 5, 8411. A comparative analysis of thin-film transistors using aligned and random-network carbon nanotubes. 539 0.8 4 Journal of Nanoparticle Research, 2013, 15, 1. Atomic layer deposition of high-<i>k</i>dielectrics on single-walled carbon nanotubes: a Raman study. 540 19 Nanotechnology, 2013, 24, 245703. Flexible Supercapacitors – Development of Bendable Carbon Architectures. ACS Symposium Series, 541 0.5 5 2013, , 101-141. Aligned carbon nanotubes: from controlled synthesis to electronic applications. Nanoscale, 2013, 5, 542 2.8 9483.

#	Article	IF	CITATIONS
543	Charge Transfer Structure–Reactivity Dependence of Fullerene–Single-Walled Carbon Nanotube Heterojunctions. Journal of the American Chemical Society, 2013, 135, 11901-11910.	6.6	20
544	Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. Physical Chemistry Chemical Physics, 2013, 15, 14896.	1.3	102
546	Functionalization of carboxylated multi-wall carbon nanotubes with 3,5-diphenyl pyrazole and an investigation of their toxicity. New Carbon Materials, 2013, 28, 199-207.	2.9	18
547	The structural and electronic properties of (10,0) zigzag Single-Wall Carbon Nanotubes modified by thiophene groups. Chemical Physics Letters, 2013, 584, 177-181.	1.2	2
548	Key issues and recent progress of high efficient organic light-emitting diodes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 17, 69-104.	5.6	83
549	Scalable, non-invasive glucose sensor based on boronic acid functionalized carbon nanotube transistors. Applied Physics Letters, 2013, 102, .	1.5	73
550	First-principles study of mechanical properties of one-dimensional carbon nanotube intramolecular junctions. Computational Materials Science, 2013, 70, 1-7.	1.4	27
551	Inkjet printing of palladium source and drain electrodes on individual single-wall carbon nanotubes to fabricate field effect transistors. RSC Advances, 2013, 3, 23658.	1.7	1
552	Noise properties of carbon nanotube FETs with top-and side-gate geometries: Effect of gamma irradiation. , 2013, , .		1
553	Functionalization of short multi-walled carbon nanotubes with creatinine and aromatic aldehydes via microwave and thermal methods and their influence on the MKN45 and MCF7 cancer cells. Comptes Rendus Chimie, 2013, 16, 838-844.	0.2	16
554	Fast flexible electronics with strained silicon nanomembranes. Scientific Reports, 2013, 3, 1291.	1.6	100
555	Evaluating Bandgap Distributions of Carbon Nanotubes via Scanning Electron Microscopy Imaging of the Schottky Barriers. Nano Letters, 2013, 13, 5556-5562.	4.5	24
556	Growth of a cup-stacked carbon nanotube carpet with a superhydrophobic surface. New Carbon Materials, 2013, 28, 295-299.	2.9	9
558	Non-covalently functionalized single walled carbon nanotube/poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) nanocomposites for organic photovoltaic cell. Synthetic Metals, 2013, 181, 92-97.	2.1	11
559	Multi-CNTFETs for power device applications: Investigation of CCVD grown CNTs by means of atomic force microscopy. , 2013, , .		2
560	High-performance carbon nanotube network transistors fabricated using a hole punching technique. Journal of Materials Chemistry C, 2013, 1, 4087.	2.7	3
561	Carbon nanotube solar cells. , 2013, , 241-269.		13
562	Simulation methodology for 2D random network of CNTs field-effect transistors. , 2013, , .		3

#	Article	IF	CITATIONS
563	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 2013, 42, 2824-2860.	18.7	1,105
565	Measuring the thermal boundary resistance of van der Waals contacts using an individual carbon nanotube. Journal of Physics Condensed Matter, 2013, 25, 025301.	0.7	1
566	A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5, 1727.	2.8	1,037
568	A neural network approach to classify inversion regions of high mobility ultralong channel single walled carbon nanotube field-effect transistors for sensing applications. , 2013, , .		2
569	Fused Porphyrin–Single-Walled Carbon Nanotube Hybrids: Efficient Formation and Photophysical Characterization. ACS Nano, 2013, 7, 3466-3475.	7.3	67
570	A Review of Carbon Nanotube―and Grapheneâ€Based Flexible Thinâ€Film Transistors. Small, 2013, 9, 1188-1205.	5.2	268
571	Highly sensitive room temperature carbon monoxide detection using SnO ₂ nanoparticle-decorated semiconducting single-walled carbon nanotubes. Nanotechnology, 2013, 24, 025503.	1.3	27
572	Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement. Particulate Science and Technology, 2013, 31, 427-442.	1.1	150
573	Carbon nanotube electronics – moving forward. Chemical Society Reviews, 2013, 42, 2592-2609.	18.7	276
574	Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective proteindetection. Biosensors and Bioelectronics, 2013, 42, 186-192.	5.3	40
575	Enhancing extraction of photogenerated excitons from semiconducting carbon nanotube films as photocurrent. Chemical Physics, 2013, 413, 29-34.	0.9	52
576	Doping single-walled carbon nanotubes with surfactant peptides containing electron-donor substituents and nitrogen heterocycles. Carbon, 2013, 57, 88-98.	5.4	27
577	Carbon Nanotube Photoelectronic and Photovoltaic Devices and their Applications in Infrared Detection. Small, 2013, 9, 1225-1236.	5.2	92
578	Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy and Environmental Science, 2013, 6, 879.	15.6	87
579	Inkjet printing of aligned single-walled carbon-nanotube thin films. Applied Physics Letters, 2013, 102, .	1.5	29
580	T-Gate Aligned Nanotube Radio Frequency Transistors and Circuits with Superior Performance. ACS Nano, 2013, 7, 4343-4350.	7.3	46
581	Low Resistivity Tin-Doped Copper Nanowires. IEEE Electron Device Letters, 2013, 34, 529-531.	2.2	0
582	Electromechanical properties of graphene transparent conducting films for flexible electronics. Current Applied Physics, 2013, 13, 1331-1334.	1.1	27

#	Article	IF	CITATIONS
583	Investigation of the humidity-dependent conductance of single-walled carbon nanotube networks. Journal of Applied Physics, 2013, 113, .	1.1	13
584	Laser-assisted solid-state synthesis of carbon nanotube/silicon core/shell structures. Nanotechnology, 2013, 24, 255604.	1.3	3
585	Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly(ethylene terephthalate) around their low percolation threshold. Nanotechnology, 2013, 24, 055707.	1.3	47
586	Design length scales for carbon nanotube photoabsorber based photovoltaic materials and devices. Journal of Applied Physics, 2013, 113, 204504.	1.1	17
587	1% solar cells derived from ultrathin carbon nanotube photoabsorbing films. Applied Physics Letters, 2013, 102, .	1.5	76
588	Grapheneâ€Based Materials for Hydrogen Generation from Lightâ€Driven Water Splitting. Advanced Materials, 2013, 25, 3820-3839.	11.1	704
589	Metallic Single-walled Carbon Nanotubes for Electrically Conductive Materials and Devices. RSC Nanoscience and Nanotechnology, 2013, , 182-211.	0.2	1
590	Chapter 3. Photoelectrical Responses of Carbon Nanotube–Polymer Composites. RSC Nanoscience and Nanotechnology, 2013, , 51-71.	0.2	0
591	Millimeter Wave Ring Oscillator Using Carbon Nano-Tube Field Effect Transistor in 150 GHz and Beyond. Circuits and Systems, 2013, 04, 157-164.	0.1	1
592	The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology. Nanoscale, 2013, 5, 6207.	2.8	141
593	Synthesis of carbon nano-fibers on p-Si having improved temperature sensing capability. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 83-88.	1.7	2
594	Pyrolyzed Carbon Film Diodes. ACS Applied Materials & amp; Interfaces, 2013, 5, 10673-10681.	4.0	5
595	STUDY ON SMALL-SIGNAL IMPEDANCE OF SINGLE-WALLED ZIGZAG CARBON NANOTUBES IN TERAHERTZ FREQUENCY REGIME. International Journal of Modern Physics B, 2013, 27, 1350105.	1.0	1
596	Carbon Nanotube FET Technology for Radio-Frequency Electronics: State-of-the-Art Overview. IEEE Journal of the Electron Devices Society, 2013, 1, 9-20.	1.2	82
597	Functionalization and Toxicity Effect of Multi-walled Carbon Nanotubes with Urea Derivatives <i>via</i> Microwave Irradiation. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 568-578.	1.0	10
598	A routing algorithm for graphene nanoribbon circuit. ACM Transactions on Design Automation of Electronic Systems, 2013, 18, 1-18.	1.9	16
599	Carbon Nanotube Based Multifunctional Ambipolar Transistors for AC Applications. Advanced Functional Materials, 2013, 23, 446-450.	7.8	11
600	Carbon nanotube macroelectronics: toward system-on-plastic. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	CITATIONS
601	Anomalous intrinsic viscosity of octadecylamine-functionalised carbon nanotubes in suspension. Journal of Chemical Physics, 2013, 138, 244902.	1.2	5
602	Progress in Imidazolium Ionic Liquids Assisted Fabrication of Carbon Nanotube and Graphene Polymer Composites. Polymers, 2013, 5, 847-872.	2.0	78
603	Rapid Single-Stage Separation of Micrometer-Long and High-Purity Semiconducting Carbon Nanotubes by Gel Filtration. Applied Physics Express, 2013, 6, 065101.	1.1	8
604	Bulk Heterojunction Photovoltaic Devices Based on a Poly(2-Methoxy, 5-Octoxy)-1, 4-Phenylenevinylene-Single Walled Carbon Nanotube-ZnSe Quantum Dots Active Layer. Chinese Physics Letters, 2013, 30, 107801.	1.3	2
605	Variability and Reliability of Single-Walled Carbon Nanotube Field Effect Transistors. Electronics (Switzerland), 2013, 2, 332-367.	1.8	14
606	Future Prospect of Nanoelectronic Devices. Lecture Notes in Electrical Engineering, 2013, , 171-279.	0.3	1
607	Selected Advances in Nanoelectronic Devices. Lecture Notes in Electrical Engineering, 2013, , .	0.3	5
608	Thermoplastic Nanocomposites with Carbon Nanotubes. Engineering Materials, 2013, , 19-60.	0.3	25
609	Processing of pristine single and multiwalled carbon nanotubes as different stacking layers in bulk heterojunction solar cells. Materials Research Society Symposia Proceedings, 2013, 1537, 1.	0.1	0
610	Synthesis of Isatin Derivative on the Short Multiwalled Carbon Nanotubes and Their Effect on the MKN-45 and SW742 Cancer Cells. Journal of Chemistry, 2013, 2013, 1-7.	0.9	7
611	An ultra-low leakage current single carbon nanotube diode with split-gate and asymmetric contact geometry. Applied Physics Letters, 2013, 103, .	1.5	26
612	Static and low frequency noise characterization of N-type random network of carbon nanotubes thin film transistors. Journal of Applied Physics, 2013, 114, .	1.1	9
613	High-Mobility, Flexible Carbon Nanotube Thin-Film Transistors Fabricated by Transfer and High-Speed Flexographic Printing Techniques. Applied Physics Express, 2013, 6, 085101.	1.1	28
614	Protein Multilayer Architectures on Electrodes for Analyte Detection. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 253-298.	0.6	4
615	Phonon Scattering and Electron Transport in Single Wall Carbon Nanotube. , 2013, , .		43
616	Potential of carbon nanotube field effect transistors for analogue circuits. Journal of Engineering, 2013, 2013, 70-76.	0.6	7
617	System-Level Design Considerations for Carbon Nanotube Electromechanical Resonators. Journal of Sensors, 2013, 2013, 1-12.	0.6	0
619	Short time Modification of Carboxylated Multi-wall Nanotubes with Amino uracil derivative. Oriental Journal of Chemistry, 2014, 30, 1379-1383.	0.1	2

#	Article	IF	Citations
620	Oxygen-Carbon Nanotubes as a Chemotherapy Sensitizer for Paclitaxel in Breast Cancer Treatment. PLoS ONE, 2014, 9, e104209.	1.1	11
621	Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization. Beilstein Journal of Nanotechnology, 2014, 5, 2081-2091.	1.5	7
623	Highly conductive PEDOT:PTS films interfacially polymerized using electro spray deposition and enhanced by plasma doping. Japanese Journal of Applied Physics, 2014, 53, 035501.	0.8	1
624	Single Event Effects in Carbon Nanotube-Based Field Effect Transistors Under Energetic Particle Radiation. IEEE Transactions on Nuclear Science, 2014, 61, 2839-2846.	1.2	8
625	p-i-n solar cell modeling with graphene as electrode. , 2014, , .		0
626	Electrical conductivity of metal-carbon nanotube structures: Effect of length and doping. Bulletin of Materials Science, 2014, 37, 1047-1051.	0.8	5
627	Enhancement of electrical, thermal and mechanical properties of carbon nanotube additive Se 85 Te 10 Ag 5 glassy composites. Materials Letters, 2014, 136, 445-448.	1.3	20
628	Phase aggregation and morphology effects on nanocarbon optoelectronics. Nanotechnology, 2014, 25, 485601.	1.3	4
629	High performance transistors via aligned polyfluorene-sorted carbon nanotubes. Applied Physics Letters, 2014, 104, .	1.5	79
630	Advantages of flattened electrode in bottom contact single-walled carbon nanotube field-effect transistor. Applied Physics Letters, 2014, 105, .	1.5	7
631	Electrical conductivity of poly(3,4-ethylenedioxythiophene):p-toluene sulfonate films hybridized with reduced graphene oxide. Nanoscale Research Letters, 2014, 9, 644.	3.1	14
632	Hybrid Structure for Solar Cells Based on SWCNT/CdS. Nano Hybrids, 2014, 8, 15-26.	0.3	0
633	Transition from Tubes to Sheets—A Comparison of the Properties and Applications of Carbon Nanotubes and Graphene. , 2014, , 519-568.		2
634	A Printable CNT-Based FM Passive Wireless Sensor Tag on a Flexible Substrate With Enhanced Sensitivity. IEEE Sensors Journal, 2014, 14, 1193-1197.	2.4	17
635	Application and Future Challenges of Functional Nanocarbon Hybrids. Advanced Materials, 2014, 26, 2295-2318.	11.1	290
636	Amphoteric Nature of Sn in CdS Nanowires. Nano Letters, 2014, 14, 518-523.	4.5	32
637	Highly conductive PEDOT:PSS electrode films hybridized with gold-nanoparticle-doped-carbon nanotubes. Synthetic Metals, 2014, 192, 23-28.	2.1	22
638	Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors. Advanced Materials, 2014, 26, 4247-4252.	11.1	130

#	Article	IF	CITATIONS
639	Nonideal Diode Behavior and Bandgap Renormalization in Carbon Nanotube p-n Junctions. IEEE Nanotechnology Magazine, 2014, 13, 41-45.	1.1	9
640	Carbon nanomaterials for nerve tissue stimulation and regeneration. Materials Science and Engineering C, 2014, 34, 35-49.	3.8	99
641	Impact of the Substrate Material on the RF Performance of Carbon-Nanotube Transistors. IEEE Nanotechnology Magazine, 2014, 13, 123-135.	1.1	1
642	25th Anniversary Article: Carbon Nanotube―and Grapheneâ€Based Transparent Conductive Films for Optoelectronic Devices. Advanced Materials, 2014, 26, 1958-1991.	11.1	350
643	High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors. ACS Nano, 2014, 8, 2609-2617.	7.3	91
644	Review of carbon nanotube nanoelectronics and macroelectronics. Semiconductor Science and Technology, 2014, 29, 073001.	1.0	106
645	What Currently Limits Charge Carrier Mobility in Crystals of Molecular Semiconductors?. Israel Journal of Chemistry, 2014, 54, 595-620.	1.0	97
646	SDC-CNTFET: STEPWISE DOPING CHANNEL DESIGN IN CARBON NANOTUBE FIELD EFFECT TRANSISTORS FOR IMPROVING SHORT CHANNEL EFFECTS IMMUNITY. International Journal of Modern Physics B, 2014, 28, 1450048.	1.0	13
647	Low-frequency noise in individual carbon nanotube field-effect transistors with top, side and back gate configurations: effect of gamma irradiation. Nanotechnology, 2014, 25, 035703.	1.3	7
648	Triton assisted fabrication of uniform semiconducting single-walled carbon nanotube networks for highly sensitive gas sensors. Carbon, 2014, 66, 369-376.	5.4	17
649	Spice model design for carbon nanotube field effect transistor (CNTFET). , 2014, , .		2
650	Nucleation of Graphene and Its Conversion to Single-Walled Carbon Nanotubes. Nano Letters, 2014, 14, 6104-6108.	4.5	67
651	Dependence of annealing temperature on cluster formation during in situ growth of CNTs. , 2014, , .		0
653	Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes. Journal of Physical Chemistry Letters, 2014, 5, 4207-4212.	2.1	156
654	Polyfluorene-Sorted, Carbon Nanotube Array Field-Effect Transistors with Increased Current Density and High On/Off Ratio. ACS Nano, 2014, 8, 11614-11621.	7.3	142
655	Experimental Measurement of the Binding Configuration and Coverage of Chirality-Sorting Polyfluorenes on Carbon Nanotubes. Journal of Physical Chemistry Letters, 2014, 5, 3742-3749.	2.1	41
656	Effect of annealing on the microwave characteristics of carbon nanotubes and the nanocomposite materials based on them. Technical Physics, 2014, 59, 873-878.	0.2	6
657	Artificial Neural Network Based CNTFETs Modeling. Applied Mechanics and Materials, 0, 667, 390-395.	0.2	2
#	Article	IF	CITATIONS
-----	---	------	-----------
658	Role of HF in Oxygen Removal from Carbon Nanotubes: Implications for High Performance Carbon Electronics. Nano Letters, 2014, 14, 6179-6184.	4.5	32
659	Intraexciton Transitions Observed in High Stability Doped Single-Wall Carbon Nanotube Films and Solutions. Journal of Physical Chemistry C, 2014, 118, 25253-25260.	1.5	5
660	Charge carrier mobility in organic molecular materials probed by electromagnetic waves. Physical Chemistry Chemical Physics, 2014, 16, 11093-11113.	1.3	130
661	Plasmas for environmental issues: from hydrogen production to 2D materials assembly. Plasma Sources Science and Technology, 2014, 23, 063002.	1.3	76
662	Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors. Nanoscale, 2014, 6, 8956-8961.	2.8	6
663	Highly Stable Carbon Nanotube Top ate Transistors with Tunable Threshold Voltage. Advanced Materials, 2014, 26, 4588-4593.	11.1	53
664	Graphene Fieldâ€Effect Transistor and Its Application for Electronic Sensing. Small, 2014, 10, 4042-4065.	5.2	184
666	Interpretation of Ostwald ripening of catalytic nanoparticles based on the radial breathing mode in single-walled carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 64, 183-187.	1.3	3
667	Carbon nanotube networks on different platforms. Carbon, 2014, 79, 1-18.	5.4	115
668	A New Approach Towards Acid Catalysts with High Reactivity Based on Graphene Nanosheets. ChemCatChem, 2014, 6, 2354-2363.	1.8	69
669	Design of Surfactant–Substrate Interactions for Roll-to-Roll Assembly of Carbon Nanotubes for Thin-Film Transistors. Journal of the American Chemical Society, 2014, 136, 11188-11194.	6.6	60
670	Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping. Accounts of Chemical Research, 2014, 47, 2446-2456.	7.6	236
671	Effects of Parylene Coating on Electron Transport in Pristine Suspended Carbon Nanotube Field-Effect-Transistors. IEEE Transactions on Electron Devices, 2014, 61, 3539-3545.	1.6	2
672	Hall effect in carbon nanotube thin films. Synthetic Metals, 2014, 198, 84-87.	2.1	5
673	Electrical transport properties of small diameter single-walled carbon nanotubes aligned on ST-cut quartz substrates. Nanoscale Research Letters, 2014, 9, 374.	3.1	4
674	Using unsorted single-wall carbon nanotubes to enhance mobility of diketopyrrolopyrrole-quarterthiophene copolymer in thin-film transistors. Organic Electronics, 2014, 15, 2639-2646.	1.4	5
675	Highly Stretchable Carbon Nanotube Transistors with Ion Gel Gate Dielectrics. Nano Letters, 2014, 14, 682-686.	4.5	152
676	Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Letters, 2014, 14, 5561-5568.	4.5	1,073

#	Article	IF	CITATIONS
677	Processing of nanostructured polymers and advanced polymeric based nanocomposites. Materials Science and Engineering Reports, 2014, 85, 1-46.	14.8	190
678	Advances in Conceptual Electronic Nanodevices based on 0D and 1D Nanomaterials. Nano-Micro Letters, 2014, 6, 1-19.	14.4	32
679	Carbon nanotubes and graphene towards soft electronics. Nano Convergence, 2014, 1, 15.	6.3	112
680	Semiconducting Carbon Nanotube Aerogel Bulk Heterojunction Solar Cells. Small, 2014, 10, 3299-3306.	5.2	52
681	Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite based thin films for Schottky diode application. Materials Chemistry and Physics, 2014, 147, 867-877.	2.0	23
682	Template-directed synthesis of pyrite (FeS ₂) nanorod arrays with an enhanced photoresponse. Journal of Materials Chemistry A, 2014, 2, 9496-9505.	5.2	58
683	Flexible Power Fabrics Made of Carbon Nanotubes for Harvesting Thermoelectricity. ACS Nano, 2014, 8, 2377-2386.	7.3	208
684	Device Area Scaleâ€Up and Improvement of SWNT/Si Solar Cells Using Silver Nanowires. Advanced Energy Materials, 2014, 4, 1400186.	10.2	35
685	Efficiency evaluation in solar cell by chemically processed hierarchically stacked debundled pristine carbon nanotubes. Electrochimica Acta, 2014, 130, 406-411.	2.6	1
686	Alignment-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Journal of Physics and Chemistry of Solids, 2014, 75, 808-817.	1.9	44
687	Solution-processed flexible transparent conductors based on carbon nanotubes and silver grid hybrid films. Nanoscale, 2014, 6, 4560-4565.	2.8	22
688	Outlook and Emerging Semiconducting Materials for Ambipolar Transistors. Advanced Materials, 2014, 26, 1176-1199.	11.1	216
689	Nanoscale Phenomena in Oxide Heterostructures. Annual Review of Materials Research, 2014, 44, 117-149.	4.3	121
690	VLSI-Compatible Carbon Nanotube Doping Technique with Low Work-Function Metal Oxides. Nano Letters, 2014, 14, 1884-1890.	4.5	63
691	PFO–BPy solubilizers for SWNTs: Modelling of polymers from oligomers. Physica Status Solidi (B): Basic Research, 2014, 251, 2407-2412.	0.7	6
692	Recent progress in parallel fabrication of individual single walled carbon nanotube devices using dielectrophoresis. Materials Express, 2014, 4, 263-278.	0.2	11
693	Shape ontrolled, Selfâ€Wrapped Carbon Nanotube 3D Electronics. Advanced Science, 2015, 2, 1500103.	5.6	32
694	Trap-limited carrier recombination in single-walled carbon nanotube heterojunctions with fullerene acceptor layers. Physical Review B, 2015, 91, .	1.1	31

#	Article	IF	CITATIONS
695	Understanding the doping effects on the structural and electrical properties of ultrathin carbon nanotube networks. Journal of Applied Physics, 2015, 118, 215305.	1.1	15
696	Scalability of carbon-nanotube-based thin film transistors for flexible electronic devices manufactured using an all roll-to-roll gravure printing system. Scientific Reports, 2015, 5, 14459.	1.6	54
697	Thermally Driven Large Nâ€Type Voltage Responses from Hybrids of Carbon Nanotubes and Poly(3,4â€ethylenedioxythiophene) with Tetrakis(dimethylamino)ethylene. Advanced Materials, 2015, 27, 6855-6861.	11.1	171
698	Selecting Semiconducting Singleâ€Walled Carbon Nanotubes with Narrow Bandgap Naphthalene Diimideâ€Based Polymers. Advanced Electronic Materials, 2015, 1, 1500074.	2.6	27
699	Grapheneâ€Based Fibers: A Review. Advanced Materials, 2015, 27, 5113-5131.	11.1	261
700	Polyazines and Polyazomethines with Didodecylthiophene Units for Selective Dispersion of Semiconducting Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 5858-5864.	7.8	26
701	Recent Progress in Obtaining Semiconducting Singleâ€Walled Carbon Nanotubes for Transistor Applications. Advanced Materials, 2015, 27, 7908-7937.	11.1	67
702	The effect of molecular weight on the separation of semiconducting singleâ€walled carbon nanotubes using poly(2,7â€carbazole)s. Journal of Polymer Science Part A, 2015, 53, 2510-2516.	2.5	27
703	Precision printing and optical modeling of ultrathin SWCNT/C ₆₀ heterojunction solar cells. Nanoscale, 2015, 7, 6556-6566.	2.8	40
704	Transfer of vertically aligned carbon nanotube arrays onto flexible substrates for gecko-inspired dry adhesive application. RSC Advances, 2015, 5, 46749-46759.	1.7	26
705	Growth of Vertically Aligned Carbon Nanotube Arrays on Al Substrates through Controlled Diffusion of Catalyst. Journal of Physical Chemistry C, 2015, 119, 15636-15642.	1.5	19
706	Largeâ€Area Assembly of Densely Aligned Singleâ€Walled Carbon Nanotubes Using Solution Shearing and Their Application to Fieldâ€Effect Transistors. Advanced Materials, 2015, 27, 2656-2662.	11.1	123
707	Quantum Solitons in Solid Matter. , 2015, , 169-242.		0
708	Properties of electrophoretically deposited single wall carbon nanotube films. Thin Solid Films, 2015, 589, 278-285.	0.8	6
709	Fabrication of thin-film transistor based on self-assembled single-walled carbon nanotube network. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 451-456.	1.3	7
710	Energy Alignment of Frontier Orbitals and Suppression of Charge Recombinations in P3HT/SWNT. Journal of Physical Chemistry C, 2015, 119, 26258-26265.	1.5	7
711	Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today, 2015, 10, 737-758.	6.2	111
712	Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing. Nanotechnology, 2015, 26, 395301.	1.3	11

	Сітаті	on Report	
#	ARTICLE High sensitivity, ultra-broadband SWNT-graphene hybrid photodetector, , 2015, , ,	IF	CITATIONS
/10			0
714	Selective Breakdown of Metallic Pathways in Doubleâ€Walled Carbon Nanotube Networks. Small, 2015, 11, 96-102.	5.2	10
715	Breakdown of metallic single-wall carbon nanotube paths by NiO nanoparticle point etching for high performance thin film transistors. Nanoscale, 2015, 7, 1280-1284.	2.8	3
716	High sensitive and selective flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs. Sensors and Actuators B: Chemical, 2015, 210, 1-8.	4.0	114
717	Flexible Light-Emitting Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2015, 7, 3462-3467.	4.0	19
718	Indium Oxide—Single-Walled Carbon Nanotube Composite for Ethanol Sensing at Room Temperature. Journal of Physical Chemistry Letters, 2015, 6, 712-717.	2.1	34
719	Nâ€Type Conjugated Polymerâ€Enabled Selective Dispersion of Semiconducting Carbon Nanotubes for Flexible CMOSâ€Like Circuits. Advanced Functional Materials, 2015, 25, 1837-1844.	7.8	32
720	Building interconnects in carbon nanotube networks with metal halides for transparent electrodes. Carbon, 2015, 87, 61-69.	5.4	24
721	Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nature Communications, 2015, 6, 6305.	5.8	135
723	Significant Enhancement of Infrared Photodetector Sensitivity Using a Semiconducting Singleâ€Walled Carbon Nanotube/C ₆₀ Phototransistor. Advanced Materials, 2015, 27, 759-765.	11.1	133
724	Carbon Nanotube Feedback-Gate Field-Effect Transistor: Suppressing Current Leakage and Increasing On/Off Ratio. ACS Nano, 2015, 9, 969-977.	7.3	75
725	Variability and reliability analysis of CNFET technology: Impact of manufacturing imperfections. Microelectronics Reliability, 2015, 55, 358-366.	0.9	21
726	Graphene for nanoelectronics. Japanese Journal of Applied Physics, 2015, 54, 040102.	0.8	31
727	Temperatureâ€Dependent Electrical Transport in Polymerâ€Sorted Semiconducting Carbon Nanotube Networks. Advanced Functional Materials, 2015, 25, 105-110.	7.8	39
728	Fabrication of flexible, transparent and conductive films from single-walled carbon nanotubes with high aspect ratio using poly((furfuryl methacrylate)-co-(2-(dimethylamino)ethyl methacrylate)) as a new polymeric dispersant. Nanoscale, 2015, 7, 6745-6753.	2.8	25
729	Revealing high room and low temperatures mobilities of 2D holes in a strained Ge quantum well heterostructures grown on a standard Si(0 0 1) substrate. Solid-State Electronics, 2015, 110, 35-39.	0.8	15
730	Green chemical functionalization of single-wall carbon nanotube with methylimidazolium dicyanamid ionic liquid: A first principle computational exploration. Journal of Molecular Liquids, 2015, 211, 498-505.	2.3	13
731	Effect of Induction on the Dispersion of Semiconducting and Metallic Single-Walled Carbon Nanotubes Using Conjugated Polymers. Macromolecules, 2015, 48, 5155-5161.	2.2	35

#	ARTICLE	IF	CITATIONS
732	Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Applied Catalysis B: Environmental, 2015, 179, 574-582.	10.8	117
733	Strong Carbon Nanotube Fibers by Drawing Inspiration from Polymer Fiber Spinning. ACS Nano, 2015, 9, 7392-7398.	7.3	115
734	Enhancement of ambipolar characteristics in single-walled carbon nanotubes using C60 and fabrication of logic gates. Applied Physics Letters, 2015, 106, 103501.	1.5	10
735	Single-walled carbon nanotube networks for flexible and printed electronics. Semiconductor Science and Technology, 2015, 30, 074001.	1.0	91
736	Interface effects in SWCNT/GaAs heterojunction solar cell: A simulation study. Optik, 2015, 126, 1057-1060.	1.4	2
737	Highly uniform carbon nanotube nanomesh network transistors. Nano Research, 2015, 8, 1320-1326.	5.8	17
738	Functionalized Graphene as an Electron ascade Acceptor for Airâ€Processed Organic Ternary Solar Cells. Advanced Functional Materials, 2015, 25, 3870-3880.	7.8	67
739	Carbon nanomaterials for photovoltaic process. Nano Energy, 2015, 15, 490-522.	8.2	47
740	Free-standing carbon nanotube–titania photoactive sheets. Journal of Colloid and Interface Science, 2015, 448, 148-155.	5.0	4
741	Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes. Nanoscale, 2015, 7, 6805-6812.	2.8	16
742	Heterogeneous Photocatalysts Based on Organic/Inorganic Semiconductor. , 2015, , 43-96.		3
743	Recent development in 2D materials beyond graphene. Progress in Materials Science, 2015, 73, 44-126.	16.0	1,152
744	Carbon Nanotubes for Dye-Sensitized Solar Cells. Small, 2015, 11, 2963-2989.	5.2	122
746	Ordered and Highly Conductive Carbon Nanotube Nanoâ€Networks in a Semiconducting Polymer Film by Solution Processing. Advanced Electronic Materials, 2015, 1, 1400030.	2.6	2
747	Tough Electrodes: Carbon Nanotube Fibers as the Ultimate Current Collectors/Active Material for Energy Management Devices. Chemistry of Materials, 2015, 27, 6901-6917.	3.2	63
748	Carbon Nanotube Flexible and Stretchable Electronics. Nanoscale Research Letters, 2015, 10, 1013.	3.1	119
749	Compact Formulas for the Electrical Resistance of Semiconducting and Metallic Single Wall Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 899-905.	1.0	8
750	Tailoring the photophysical properties of carbon nanotubes by photonic nanostructures. Modern Physics Letters B, 2015, 29, 1530004.	1.0	6

ARTICLE IF CITATIONS Functional Nanomaterial Devices., 2015, , 155-193. 0 751 Improved dispersibility of multi-wall carbon nanotubes with reversible addition-fragmentation chain 1.6 transfer polymer modification. Polymer International, 2015, 64, 1219-1224. Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. 753 5.8 258 Nature Communications, 2015, 6, 8589. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using 754 bilayer dielectrics. Nanoscale, 2015, 7, 17693-17701. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode 755 1.5 4 based transistors arrays. Applied Physics Letters, 2015, 107, 033103. Electrical characteristics of the carbon nanotube field-effect transistors with extended contacts obtained within ab-initio based model., 2015,,. Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in 757 5.8 28 flexible supercapacitors. Nano Research, 2015, 8, 3430-3445. Carbonaceous materials as substitutes for conventional dye-sensitized solar cell counter electrodes. 5.2 Journal of Materials Chemistry A, 2015, 3, 20849-20862. Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics. Applied 759 29 1.5 Physics Letters, 2015, 107, . Organic Electronics Materials and Devices., 2015, , . Atomistic Modeling of Suspended Carbon Nanotube Field Effect Transistors Under Proton Radiation. 761 1.2 5 IEEE Transactions on Nuclear Science, 2015, 62, 2881-2887. New materials and advances in making electronic skin for interactive robots. Advanced Robotics, 2015, 1.1 29, 1359-1373. Highly Uniform and Stable n-Type Carbon Nanotube Transistors by Using Positively Charged Silicon 763 4.5 92 Nitride Thin Films. Nano Letters, 2015, 15, 392-397. Diameter dependence of the optoelectronic properties of single walled carbon nanotubes determined 764 5.4 by ellipsometry. Carbon, 2015, 83, 32-39. Microwave-Assisted Functionalization of Carboxylated Multi-walled Carbon Nanotubes with Isatin 765 1.0 1 Derivatives. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 332-338. Multiferroicity of Carbonâ€Based Chargeâ€Transfer Magnets. Advanced Materials, 2015, 27, 734-739. 11.1 Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectronic Engineering, 2015, 767 1.1 191 132, 192-206. Flexible electronics based on inorganic nanowires. Chemical Society Reviews, 2015, 44, 161-192. 18.7 429

#	Article	IF	CITATIONS
769	Reduced graphene oxide composites with MWCNTs and single crystalline hematite nanorhombohedra for applications in water purification. International Journal of Hydrogen Energy, 2015, 40, 767-778.	3.8	39
771	Electronic and Optoelectronic Properties and Applications of Carbon Nanotubes. , 2016, , .		0
772	Electrospun Graphene Oxide-Based Nanofibres. , 0, , .		9
773	Horizontally Aligned Carbon Nanotube Based Biosensors for Protein Detection. Bioengineering, 2016, 3, 23.	1.6	21
774	Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells. Nanomaterials, 2016, 6, 52.	1.9	38
775	Change in the electrical characteristics of single-walled carbon nanotube networks under photoresist treatment. Journal of the Korean Physical Society, 2016, 69, 681-686.	0.3	0
776	Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications. Progress in Materials Science, 2016, 83, 270-329.	16.0	169
777	Inkjet Printed Singleâ€Walled Carbon Nanotube Based Ambipolar and Unipolar Transistors for Highâ€Performance Complementary Logic Circuits. Advanced Electronic Materials, 2016, 2, 1600094.	2.6	48
778	An optimized geometry-physics based compact model of CNTFET. Materials Today: Proceedings, 2016, 3, 2295-2304.	0.9	0
779	Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors. Advanced Functional Materials, 2016, 26, 2078-2084.	7.8	328
780	Scalable spray deposition process for highly uniform and reproducible CNT-TFTs. Flexible and Printed Electronics, 2016, 1, 045002.	1.5	21
781	Direct Preparation of Carbon Nanotube Intramolecular Junctions on Structured Substrates. Scientific Reports, 2016, 6, 38032.	1.6	11
782	Optimization of CNFET op amp for high frequency operation in sub-10-nm node. , 2016, , .		0
783	Importance of network density of nanotube: Effect on nitrogen dioxide gas sensing by solid state resistive sensor. AIP Conference Proceedings, 2016, , .	0.3	1
784	An experimental study of nonlinear behaviour of capacitance in graphene/carbon nanotube hybrid films. EPJ Applied Physics, 2016, 74, 30401.	0.3	0
785	High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes. Applied Physics Letters, 2016, 108, 233105.	1.5	18
786	First-principles calculations reveal controlling principles for carrier mobilities in semiconductors. Semiconductor Science and Technology, 2016, 31, 115016.	1.0	8
787	Doped carbon nanostructure for cold-field emission guns: Structural and EELS studies. , 2016, , .		0

\sim		<u> </u>	
	TION	REDC) D L

#	Article	IF	CITATIONS
788	Growth of single-walled carbon nanotubes from Ag15 cluster catalysts. Science Bulletin, 2016, 61, 917-920.	4.3	12
789	Photoluminescence Imaging of Polyfluorene Surface Structures on Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton Transport. ACS Nano, 2016, 10, 11449-11458.	7.3	11
790	Single-ion adsorption and switching in carbon nanotubes. Nature Communications, 2016, 7, 10475.	5.8	23
791	Carbon nanotube intramolecular p-i-n junction diodes with symmetric and asymmetric contacts. Scientific Reports, 2016, 6, 22203.	1.6	11
792	The modification of benzene adsorption on zigzag single-wall carbon nanotubes by carboxylation. Materials Research Express, 2016, 3, 125010.	0.8	5
793	Thermionic refrigeration at CNT-CNT junctions. Applied Physics Letters, 2016, 109, 163901.	1.5	1
794	Ink-jet printed semiconducting carbon nanotube ambipolar transistors and inverters with chemical doping technique using polyethyleneimine. Applied Physics Letters, 2016, 109, .	1.5	11
795	Controllable Hysteresis and Threshold Voltage of Single-Walled Carbon Nano-tube Transistors with Ferroelectric Polymer Top-Gate Insulators. Scientific Reports, 2016, 6, 23090.	1.6	5
796	Influences of Sr-90 beta-ray irradiation on electrical characteristics of carbon nanoparticles. Journal of Applied Physics, 2016, 119, 124510.	1.1	8
797	A p-i-n junction diode based on locally doped carbon nanotube network. Scientific Reports, 2016, 6, 23319.	1.6	10
798	Performance Enhancement of Polymerâ€Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling. Advanced Energy Materials, 2016, 6, 1501345.	10.2	25
799	Towards an optimal contact metal for CNTFETs. Nanoscale, 2016, 8, 10240-10251.	2.8	54
800	Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells. Nano Convergence, 2016, 3, 8.	6.3	32
801	Ultrasound-promoted one-pot four-component synthesis of novel biologically active 3-aryl-2,4-dithioxo-1,3,5-triazepane-6,7-dione and their toxicity investigation. Journal of Sulfur Chemistry, 2016, 37, 613-621.	1.0	11
802	Indium-free organic thin-film solar cells using a plasmonic electrode. Journal Physics D: Applied Physics, 2016, 49, 185106.	1.3	10
803	Performance analysis of junctionless carbon nanotube field effect transistors using NEGF formalism. Modern Physics Letters B, 2016, 30, 1650125.	1.0	4
804	CARBON NANOTUBE FLEXIBLE ELECTRONICS. , 2016, , 1-44.		0
805	An experimental investigation of the physical properties of the graphene/multi-walled carbon nanotubes composite. International Journal of Heat and Mass Transfer, 2016, 99, 432-440.	2.5	2

#	Article	IF	CITATIONS
806	Influence of regiochemistry in the selective dispersion of metallic carbon nanotubes using electron poor conjugated polymers. Polymer Chemistry, 2016, 7, 3832-3837.	1.9	8
807	Recent advances in flexible organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 9116-9142.	2.7	254
808	Carbon Nanotube Based Gas Sensors toward Breath Analysis. ChemPlusChem, 2016, 81, 1248-1265.	1.3	70
809	All arbon Thinâ€Film Transistors as a Step Towards Flexible and Transparent Electronics. Advanced Electronic Materials, 2016, 2, 1600229.	2.6	32
810	Recent Development of Carbon Nanotube Transparent Conductive Films. Chemical Reviews, 2016, 116, 13413-13453.	23.0	391
811	Probing the Diameter Limit of Single Walled Carbon Nanotubes in SWCNT: Fullerene Solar Cells. Advanced Energy Materials, 2016, 6, 1600890.	10.2	50
812	Ternary Polymer–Perylenediimide–Carbon Nanotube Photovoltaics with High Efficiency and Stability under Super-Solar Irradiation. ACS Energy Letters, 2016, 1, 548-555.	8.8	35
813	Ï€-Conjugated polymers with pendant coumarins: design, synthesis, characterization, and interactions with carbon nanotubes. Canadian Journal of Chemistry, 2016, 94, 759-768.	0.6	5
814	Design and manufacture of TNT explosives detector sensors based on CNTFET. Sensor Review, 2016, 36, 414-420.	1.0	9
815	Chirality Specific Triplet Exciton Dynamics in Highly Enriched (6,5) and (7,5) Carbon Nanotube Networks. Journal of Physical Chemistry C, 2016, 120, 19778-19784.	1.5	8
816	Influence of Polymer Electronics on Selective Dispersion of Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2016, 22, 14560-14566.	1.7	37
817	Nanostructured transparent conductive films: Fabrication, characterization and applications. Materials Science and Engineering Reports, 2016, 109, 1-101.	14.8	104
818	CNTs and Graphene-Based Diodes for Microwave and Millimeter-Wave Circuits on Flexible Substrates. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 1766-1775.	1.4	23
819	Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers. Chemical Physics Letters, 2016, 662, 35-41.	1.2	43
820	Physical properties of low-dimensional <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>s</mml:mi><mml:mi>p</mml:mi>carbon nanostructures. Reviews of Modern Physics, 2016, 88, .</mml:mrow></mml:msup></mml:mrow></mml:math>	/> ፤@≄ nl:m	ro v sox mml:n
821	A numerical study on the influence of interface recombination on performance of carbon nanotube/GaAs solar cells. Optical and Quantum Electronics, 2016, 48, 1.	1.5	5
822	Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review. Nanotechnology, 2016, 27, 332002.	1.3	24
824	Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nature Communications, 2016, 7, 11160.	5.8	75

	CITATION	Report	
#	ARTICLE	IF	Citations
825	array photoanode. Chemical Research in Chinese Universities, 2016, 32, 979-984.	1.3	0
826	Chapter 8 Roles of Reduced Graphene Oxide in Improving Photocatalytic Hydrogen Generation Performance over Metal Sulphide Nanocomposites. , 2016, , 331-368.		0
827	Carbon Nanotube TFTs. , 2016, , 1145-1183.		0
828	Review—Methods in Improving the Performance of Carbon Nanotube Field Effect Transistors. ECS Journal of Solid State Science and Technology, 2016, 5, M131-M140.	0.9	23
829	Sorting centimetre-long single-walled carbon nanotubes. Scientific Reports, 2016, 6, 30836.	1.6	3
830	Photo-FETs: Phototransistors Enabled by 2D and 0D Nanomaterials. ACS Photonics, 2016, 3, 2197-2210.	3.2	217
831	Raman mapping investigation of single-walled carbon nanotube bending in bottom-contact field-effect-transistor devices. Journal of Applied Physics, 2016, 120, 094302.	1.1	0
832	Crystalline structure of TiC ultrathin layers formed on highly oriented pyrolytic graphite by chemical reaction from Ti/graphite system. Japanese Journal of Applied Physics, 2016, 55, 06JE02.	0.8	4
833	Anomalous Carrier Transport in Ambipolar Fieldâ€Effect Transistor of Large Diameter Singleâ€Walled Carbon Nanotube Network. Advanced Electronic Materials, 2016, 2, 1500222.	2.6	15
834	Comparative review of carbon nanotube FETs. , 2016, , .		3
835	Stretchable carbon nanotube conductors and their applications. Korean Journal of Chemical Engineering, 2016, 33, 2771-2787.	1.2	23
836	Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz. ACS Nano, 2016, 10, 6782-6790.	7.3	63
837	Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials. Nanoscale, 2016, 8, 13437-13444.	2.8	15
838	Supramolecular interactions of fluorene-based copolymers containing 3,4-propylenedioxythiophene and phenazine units with SWNTs. Polymer Chemistry, 2016, 7, 5241-5248.	1.9	11
839	Length-Sorted, Large-Diameter, Polyfluorene-Wrapped Semiconducting Single-Walled Carbon Nanotubes for High-Density, Short-Channel Transistors. ACS Nano, 2016, 10, 1888-1895.	7.3	72
840	Aromatic stabilization of functionalized corannulene cations. Physical Chemistry Chemical Physics, 2016, 18, 11781-11791.	1.3	19
841	Radio frequency transistors based on ultra-high purity semiconducting carbon nanotubes with superior extrinsic maximum oscillation frequency. Nano Research, 2016, 9, 363-371.	5.8	26
842	Semiconducting single-walled carbon nanotubes as interfacial modification layers for organic-Si solar cells. Organic Electronics, 2016, 28, 205-209.	1.4	6

#	Article	IF	CITATIONS
843	Deformable devices with integrated functional nanomaterials for wearable electronics. Nano Convergence, 2016, 3, 4.	6.3	54
844	Work function-tunable transparent electrodes based on all graphene-based materials for organic–graphene photodetectors. RSC Advances, 2016, 6, 19372-19376.	1.7	10
845	Record efficiency of air-stable multi-walled carbon nanotube/silicon solar cells. Carbon, 2016, 101, 226-234.	5.4	39
846	Dynamics of charge migration in poly(para-phenylene vinylene) films and nanocomposites with single walled carbon nanotubes. Journal of Physics Condensed Matter, 2016, 28, 045304.	0.7	Ο
847	Fabrication of individual carbon nanotubes and their arrays in a transmission electron microscope. Carbon, 2016, 100, 435-440.	5.4	6
848	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	5.2	185
849	Selective dispersion of single-walled carbon nanotubes with electron-rich fluorene-based copolymers. RSC Advances, 2016, 6, 25733-25740.	1.7	15
850	Photoinduced Absorption within Single-Walled Carbon Nanotube Systems. Journal of Physical Chemistry C, 2016, 120, 1926-1935.	1.5	12
851	Nano-Bioelectronics. Chemical Reviews, 2016, 116, 215-257.	23.0	530
852	Ag nanoparticle-decorated single wall carbon nanotube films for photovoltaic applications. Materials for Renewable and Sustainable Energy, 2016, 5, 1.	1.5	24
853	The superimental study of the effect of microways on the physical properties of multi-valled earbon		
	nanotubes. Materials Research Bulletin, 2016, 73, 247-255.	2.7	5
855	Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon, 2016, 96, 768-777.	2.7 5.4	5
855 856	Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon, 2016, 96, 768-777. Effects of fabrication method of Al2O3 buffer layer on Rh-catalyzed growth of single-walled carbon nanotubes by alcohol-gas-source chemical vapor deposition. Journal of Crystal Growth, 2017, 468, 114-118.	2.7 5.4 0.7	5 301 2
855 856 857	The experimental study of the effect of microwave on the physical properties of multi-walled carbon nanotubes. Materials Research Bulletin, 2016, 73, 247-255. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon, 2016, 96, 768-777. Effects of fabrication method of Al2O3 buffer layer on Rh-catalyzed growth of single-walled carbon nanotubes by alcohol-gas-source chemical vapor deposition. Journal of Crystal Growth, 2017, 468, 114-118. 100% internal quantum efficiency in polychiral single-walled carbon nanotube bulk heterojunction/silicon solar cells. Carbon, 2017, 114, 402-410.	2.7 5.4 0.7 5.4	5 301 2 31
855 856 857 858	The experimental study of the effect of microwave on the physical properties of multi-walled carbon nanotubes. Materials Research Bulletin, 2016, 73, 247-255. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon, 2016, 96, 768-777. Effects of fabrication method of Al2O3 buffer layer on Rh-catalyzed growth of single-walled carbon nanotubes by alcohol-gas-source chemical vapor deposition. Journal of Crystal Growth, 2017, 468, 114-118. 100% internal quantum efficiency in polychiral single-walled carbon nanotube bulk heterojunction/silicon solar cells. Carbon, 2017, 114, 402-410. Plasmonâ€Induced Enhancement of Infrared Detection Using a Carbon Nanotube Diode. Advanced Optical Materials, 2017, 5, 1600865.	 2.7 5.4 0.7 5.4 3.6 	5 301 2 31 9
855 856 857 858 859	The experimental study of the effect of hitclowave of the physical properties of hitcl-walled carbon nanotubes. Materials Research Bulletin, 2016, 73, 247-255. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon, 2016, 96, 768-777. Effects of fabrication method of Al2O3 buffer layer on Rh-catalyzed growth of single-walled carbon nanotubes by alcohol-gas-source chemical vapor deposition. Journal of Crystal Growth, 2017, 468, 114-118. 100% internal quantum efficiency in polychiral single-walled carbon nanotube bulk heterojunction/silicon solar cells. Carbon, 2017, 114, 402-410. Plasmonâ€Induced Enhancement of Infrared Detection Using a Carbon Nanotube Diode. Advanced Optical Materials, 2017, 5, 1600865. Flexible and Stretchable Microwave Microelectronic Devices and Circuits. IEEE Transactions on Electron Devices, 2017, 64, 1881-1893.	2.7 5.4 0.7 5.4 3.6	5 301 2 31 9 42
855 856 857 858 859	The experimental study of the effect of microwave of the physical properties of multi-walled carbon nanotubes. Materials Research Bulletin, 2016, 73, 247-255. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon, 2016, 96, 768-777. Effects of fabrication method of Al2O3 buffer layer on Rh-catalyzed growth of single-walled carbon nanotubes by alcohol-gas-source chemical vapor deposition. Journal of Crystal Growth, 2017, 468, 114-118. 100% internal quantum efficiency in polychiral single-walled carbon nanotube bulk heterojunction/silicon solar cells. Carbon, 2017, 114, 402-410. Plasmonâ€Induced Enhancement of Infrared Detection Using a Carbon Nanotube Diode. Advanced Optical Materials, 2017, 5, 1600865. Flexible and Stretchable Microwave Microelectronic Devices and Circuits. IEEE Transactions on Electron Devices, 2017, 64, 1881-1893. Low temperature growth of single-walled carbon nanotubes from Rh catalysts. Carbon, 2017, 116, 128-132.	2.7 5.4 0.7 5.4 3.6 1.6 5.4	5 301 2 31 9 42 19

#	Article	IF	CITATIONS
863	Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. Journal of Materials Chemistry C, 2017, 5, 3130-3138.	2.7	137
864	2-D Graphene and White Graphene. , 2017, , 387-410.		0
865	Effects of electrical conductivity on the formation and annihilation of positronium in porous materials. Physical Chemistry Chemical Physics, 2017, 19, 7659-7667.	1.3	17
866	An air gap moderates the performance of nanowire array transistors. Nanotechnology, 2017, 28, 125204.	1.3	4
867	A review on recent advances of CNTs as gas sensors. Sensor Review, 2017, 37, 127-136.	1.0	87
868	Enhanced ambipolar charge transport in staggered carbon nanotube field-effect transistors for printed complementary-like circuits. Current Applied Physics, 2017, 17, 541-547.	1.1	7
869	Novel approach to enhance efficiency of hybrid silicon-based solar cells via synergistic effects of polymer and carbon nanotube composite film. Nano Energy, 2017, 33, 436-444.	8.2	54
870	Recent progresses on solution-processed silver nanowire based transparent conducting electrodes for organic solar cells. Materials Today Chemistry, 2017, 3, 60-72.	1.7	57
871	Role of Defects as Exciton Quenching Sites in Carbon Nanotube Photovoltaics. Journal of Physical Chemistry C, 2017, 121, 8310-8318.	1.5	24
872	A Novel Electro Conductive Graphene/Silicon-Dioxide Thermo-Electric Generator. IOP Conference Series: Materials Science and Engineering, 2017, 184, 012025.	0.3	1
873	Carbon nanomaterials in tribology. Carbon, 2017, 119, 150-171.	5.4	329
874	CNFET-based voltage rectifier circuit for biomedical implantable applications. Journal of Semiconductors, 2017, 38, 025003.	2.0	0
875	Bonding characteristics and electronic structures of the contact interfaces between group 13 metals and carbon nanotubes. Carbon, 2017, 119, 365-370.	5.4	3
876	High-concentration shear-exfoliated colloidal dispersion of surfactant–polymer-stabilized few-layer graphene sheets. Journal of Materials Science, 2017, 52, 8321-8337.	1.7	47
877	Pyroproteinâ€Based Electronic Textiles with High Stability. Advanced Materials, 2017, 29, 1605479.	11.1	42
878	Synthesis of single-walled carbon nanotubes from atomic-layer-deposited Co3O4 and Co3O4/Fe2O3 catalyst films. Carbon, 2017, 121, 389-398.	5.4	18
879	Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chemical Society Reviews, 2017, 46, 3661-3715.	18.7	153
880	Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting. ACS Energy Letters, 2017, 2, 1598-1613.	8.8	82

\sim			_		
(\Box)	τάτι	ION	' IZ F	PC) R T

#	Article	IF	CITATIONS
881	Fabrication of durable and flexible single-walled carbon nanotube transparent conductive films. RSC Advances, 2017, 7, 19267-19272.	1.7	19
882	Negative differential resistance and switching behavior in single wall bamboo-shape carbon nanotubes based molecular device: A first-principles study nanoscale device design. Materials Research Bulletin, 2017, 91, 148-154.	2.7	7
883	Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2017, 9, 12743-12749.	4.0	28
884	Low Hysteresis Carbon Nanotube Transistors Constructed via a General Dry-Laminating Encapsulation Method on Diverse Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 14292-14300.	4.0	13
885	Effect of magnetic field on carbon nanotubes and graphene structure synthesized at low pressure via arc discharge process. AIP Conference Proceedings, 2017, , .	0.3	14
886	Multifunctional Organicâ€&emiconductor Interfacial Layers for Solutionâ€Processed Oxideâ€&emiconductor Thinâ€Film Transistor. Advanced Materials, 2017, 29, 1607055.	11.1	47
887	High-performance nanotube-enhanced perovskite photodetectors. Scientific Reports, 2017, 7, 45543.	1.6	41
888	Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments. Organic Electronics, 2017, 45, 182-189.	1.4	66
889	Separation and optical identification of semiconducting and metallic singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2017, 254, 1600659.	0.7	18
890	Switching function of the diphenylacetylene molecule between carbon nanotubes & carbon chain: A DFT study. Superlattices and Microstructures, 2017, 101, 101-108.	1.4	4
891	Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells. Chemical Record, 2017, 17, 681-699.	2.9	83
892	Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Research, 2017, 10, 1880-1887.	5.8	64
893	Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM. Nano Research, 2017, 10, 1896-1902.	5.8	11
894	A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO ₂ and utilization of nanocarbon materials. Dalton Transactions, 2017, 46, 15615-15627.	1.6	20
895	Semiconducting carbon nanotube network thin-film transistors with enhanced inkjet-printed source and drain contact interfaces. Applied Physics Letters, 2017, 111, 173108.	1.5	14
896	Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. Macromolecules, 2017, 50, 8002-8009.	2.2	13
897	Review of Electronics Based on Single-Walled Carbon Nanotubes. Topics in Current Chemistry, 2017, 375, 75.	3.0	43
898	Real-time cure behaviour monitoring of polymer composites using a highly flexible and sensitive CNT buckypaper sensor. Composites Science and Technology, 2017, 152, 181-189.	3.8	49

#	ARTICLE	IF	CITATIONS
899	nanowire. Molecular Crystals and Liquid Crystals, 2017, 651, 250-258.	0.4	2
900	Biaxially stretchable carbon nanotube transistors. Journal of Applied Physics, 2017, 122, 124901.	1.1	15
901	Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors. Nanotechnology, 2017, 28, 435201.	1.3	21
902	Carbon Fibers and Their Thermal Transporting Properties. , 2017, , 135-184.		8
903	Graphene as a functional layer for semiconducting carbon nanotube transistor sensors. Carbon, 2017, 125, 49-55.	5.4	13
904	Graphene Electrodes as Barrier-Free Contacts for Carbon Nanotube Field-Effect Transistors. IEEE Transactions on Electron Devices, 2017, 64, 4335-4339.	1.6	17
905	Aggregated Single-Walled Carbon Nanotubes Absorb and Deform Dopamine-Related Proteins Based on Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 2017, 9, 32452-32462.	4.0	24
906	Photocurrent spectroscopy of dye-sensitized carbon nanotubes. Nanoscale, 2017, 9, 11205-11213.	2.8	9
907	Effects of Al2O3 Type on Activity of Al2O3-Supported Rh Catalysts in Single-Walled Carbon Nanotubes Growth by CVD. MRS Advances, 2017, 2, 89-95.	0.5	0
908	Advanced carbon nanotubes functionalization. Journal of Physics Condensed Matter, 2017, 29, 423003.	0.7	36
909	Electronic Muscles and Skins: A Review of Soft Sensors and Actuators. Chemical Reviews, 2017, 117, 11239-11268.	23.0	418
910	Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chemical Science, 2017, 8, 7292-7305.	3.7	78
911	Investigation of Etching Behavior of Single-Walled Carbon Nanotubes Using Different Etchants. Journal of Physical Chemistry C, 2017, 121, 27655-27663.	1.5	11
912	Measurement of Active Nanoelectronic Devices. , 0, , 187-202.		0
913	A silver nanowire mesh overcoated protection layer with graphene oxide as a transparent electrode for flexible organic solar cells. RSC Advances, 2017, 7, 52914-52922.	1.7	46
914	Flexible diodes for radio frequency (RF) electronics: a materials perspective. Semiconductor Science and Technology, 2017, 32, 123002.	1.0	64
915	Nanocarbon materials fabricated using plasmas. Reviews of Modern Plasma Physics, 2017, 1, 1.	2.2	28
916	Nanotube Alignment Mechanism in Floating Evaporative Self-Assembly. Langmuir, 2017, 33, 13407-13414.	1.6	33

#	Article	IF	CITATIONS
917	Carbon materials for enhancing charge transport in the advancements of perovskite solar cells. Journal of Power Sources, 2017, 361, 259-275.	4.0	66
918	Electrical Conductance of a Zig Zag Carbon Nanotube in the Presence of a Few Vacancies Using Recursive Green's Function Method. ECS Journal of Solid State Science and Technology, 2017, 6, M92-M96.	0.9	0
919	Spectroscopic study of X-ray absorption near-edge structure of chemical states of Pt catalyst during growth of single-walled carbon nanotubes. Journal of Crystal Growth, 2017, 468, 155-158.	0.7	1
920	Carbon Photodetectors: The Versatility of Carbon Allotropes. Advanced Energy Materials, 2017, 7, 1601574.	10.2	44
921	Electrical properties of carbon-nanotube-network transistors in air after gamma irradiation. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 86, 297-302.	1.3	5
922	Carbon Nanotubes in Thinâ€Film Solar Cells. Advanced Energy Materials, 2017, 7, 1601205.	10.2	25
923	Patent Basics Every Researcher and Engineer Should Know. , 2017, , 480-495.		0
924	High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors. Nano Research, 2017, 10, 276-283.	5.8	13
925	Analysis of electrostatic doped Schottky barrier carbon nanotube FET for low power applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 1762-1768.	1.1	12
926	Electron transport of suspended quasi-metallic carbon nanotube transistors in split gate configuration. , 2017, , .		1
927	Purification of 1.9-nm-diameter semiconducting single-wall carbon nanotubes by temperature-controlled gel-column chromatography and its application to thin-film transistor devices. Japanese Journal of Applied Physics, 2017, 56, 065102.	0.8	13
928	Transparent all-carbon-nanotube thin-film transistors. , 2017, , .		2
929	Carbon-Based Materials: Recent Advances, Challenges, and Perspectives. , 2017, , .		12
930	Fabrication and Characterization of MWCNT-Based Bridge Devices. IEEE Nanotechnology Magazine, 2017, 16, 1037-1046.	1.1	4
931	Directed Assembly of Carbon Nanotubes. , 2017, , 27-45.		0
932	Variability in Output Characteristics of Single-Walled Carbon Nanotube Thin-Film Transistors. IEEE Nanotechnology Magazine, 2018, 17, 353-361.	1.1	11
933	Bias-induced modulation of ultrafast carrier dynamics in metallic single-walled carbon nanotubes. Physical Review B, 2018, 97, .	1.1	4
934	Carbon nanomaterials for non-volatile memories. Nature Reviews Materials, 2018, 3, .	23.3	87

#	Article	IF	CITATIONS
935	Effect of metal oxide charge transfer layers on the photovoltaic performance of carbon nanotube heterojunction solar cells. Materials Letters, 2018, 220, 249-252.	1.3	9
937	Printed Thin-Film Transistors: Research from China. ACS Applied Materials & Interfaces, 2018, 10, 25902-25924.	4.0	65
938	Directâ€Patterning SWCNTs Using Dip Pen Nanolithography for SWCNT/Silicon Solar Cells. Small, 2018, 14, 1800247.	5.2	13
939	Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response. Applied Nanoscience (Switzerland), 2018, 8, 1053-1058.	1.6	13
940	New heterojunction solar cells using copper oxide ingrained MWCNT: Fabrication and performance analysis. Solar Energy, 2018, 166, 195-202.	2.9	3
941	Feln ₂ S ₄ Nanocrystals: A Ternary Metal Chalcogenide Material for Ambipolar Fieldâ€Effect Transistors. Advanced Science, 2018, 5, 1800068.	5.6	18
942	A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites. Composites Part B: Engineering, 2018, 147, 104-113.	5.9	128
943	Semiconducting SWNTs sorted by polymer wrapping: How pure are they?. Applied Physics Letters, 2018, 112, 072106.	1.5	14
944	Observation of carbon nanotube filament bridging induced by gas discharge breakdown between electrodes. Japanese Journal of Applied Physics, 2018, 57, 01AF09.	0.8	5
945	Mechanical behavior of a novel carbon-based nanostructured aluminum material. Computational Materials Science, 2018, 144, 193-209.	1.4	6
946	A critical review of experimental results on low temperature charge transport in carbon nanotubes based composites. Reviews in Physics, 2018, 3, 15-25.	4.4	24
947	In situ XANES Analysis of Co and Ni Catalysts during Single-Walled Carbon Nanotube Growth. MRS Advances, 2018, 3, 13-18.	0.5	Ο
948	Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. ACS Nano, 2018, 12, 627-634.	7.3	57
949	Electrical parameters retrieval of carbon nanoparticle-based metal semiconductor metal structure by standard methods and beta-ray-induced charge. Radiation Effects and Defects in Solids, 2018, 173, 367-376.	0.4	Ο
950	Controlled Growth of MoS ₂ Nanosheets on 2D Nâ€Đoped Graphdiyne Nanolayers for Highly Associated Effects on Water Reduction. Advanced Functional Materials, 2018, 28, 1707564.	7.8	119
951	Preparation of multi-walled carbon nanotubes/n-Si heterojunction photodetector by arc discharge technique. Optik, 2018, 164, 395-401.	1.4	9
952	Recent Progress on the Dispersion and the Strengthening Effect of Carbon Nanotubes and Graphene-Reinforced Metal Nanocomposites: A Review. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 1-46.	6.8	112
953	The 88-Inch Cyclotron: A one-stop facility for electronics radiation and detector testing. Measurement: Journal of the International Measurement Confederation, 2018, 127, 580-587.	2.5	11

#	Article	IF	CITATIONS
954	Copper matrix nanocomposites based on carbon nanotubes or graphene. Materials Chemistry Frontiers, 2018, 2, 22-35.	3.2	52
955	Design and analysis of a gate-all-around CNTFET-based SRAM cell. Journal of Computational Electronics, 2018, 17, 138-145.	1.3	20
956	Roomâ€Temperatureâ€Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1705541.	7.8	69
957	Polymer-based doping control for performance enhancement of wet-processed short-channel CNTFETs. Nanotechnology, 2018, 29, 035203.	1.3	5
958	Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science, 2018, 64, 219-253.	15.8	184
959	Status and Development of Transfer Printing in Textiles—A Review. AATCC Journal of Research, 2018, 5, 1-18.	0.3	6
961	Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale, 2018, 10, 22087-22139.	2.8	62
962	Potential of one-dimensional blue phosphorene nanotubes as a water splitting photocatalyst. Journal of Materials Chemistry A, 2018, 6, 21087-21097.	5.2	37
963	A 1MHz-BW 45dB-SNDR CNT analog front-end design. , 2018, , .		0
964	Response of carbon nanotube film transistor to the THz radiation. EPJ Web of Conferences, 2018, 195, 05012.	0.1	0
965	Electric-field-induced formation of carbon nanotube filaments. , 2018, , .		0
966	Carbon Nanotubes for Quantum Dot Photovoltaics with Enhanced Light Management and Charge Transport. ACS Photonics, 2018, 5, 4854-4863.	3.2	4
967	Carbon Nanomaterials: Potential Risks to Human Health and the Environment. , 2018, , 237-252.		0
968	RF Characterization of NiO and TiO ₂ Based Metal-Insulator-Metal (MIM) Diodes on Flexible Substrates. IEEE Access, 2018, 6, 55653-55660.	2.6	6
969	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	7.3	388
970	Enrichment of Metallic Carbon Nanotubes Using a Two-Polymer Extraction Method. ACS Omega, 2018, 3, 16238-16245.	1.6	13
971	High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2018, 10, 36304-36311.	4.0	64
972	Solar Decolorization of Methylene Blue by Magnetic MgFe2O4-MWCNT/Ag3VO4 Visible Active Photocatalyst. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	4

#	Article	IF	CITATIONS
974	Development and Application of Carbonâ€Layerâ€Stabilized, Nitrogenâ€Doped, Bambooâ€Like Carbon Nanotube Catalysts in CO ₂ Hydrogenation. ChemistryOpen, 2018, 7, 789-796.	0.9	9
975	Fabrication, electrical characterization and mechanical flexibility test of back gated carbon nanotube thin film transistors on polyimide substrate. Materials Research Express, 2018, 5, 126304.	0.8	1
977	Low Molecular Weight Polypyrmidine for Release and Size Controlled Process of Single-Walled Carbon Nanotubes. Fibers and Polymers, 2018, 19, 927-933.	1.1	3
978	A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Applied Physics Reviews, 2018, 5, 021303.	5.5	223
979	Self-powered nanodevices for fast UV detection and energy harvesting using core-shell nanowire geometry. Nano Energy, 2018, 51, 294-299.	8.2	39
980	Inkjet-Printed Flexible MEMS Switches for Phased-Array Antennas. International Journal of Antennas and Propagation, 2018, 2018, 1-10.	0.7	6
981	Experimental and Computational Aspects of Electronic Properties of Carbon-Based Polymer Nanocomposites. , 2018, , 175-198.		0
982	Promoting Dual Electronic and Ionic Transport in PEDOT by Embedding Carbon Nanotubes for Large Thermoelectric Responses. ACS Applied Materials & Interfaces, 2018, 10, 23891-23899.	4.0	43
983	Transparent Low Electrostatic Charge Films Based on Carbon Nanotubes and Polypropylene. Homopolymer Cast Films. Polymers, 2018, 10, 55.	2.0	6
984	Magnetoresistance and valley degree of freedom in bulk bismuth. Journal of Physics Condensed Matter, 2018, 30, 313001.	0.7	24
985	Instantaneous Magnetically Assembled and Hydrophilic Photonic Crystals with Controlled Diffraction Colors. Journal of Physical Chemistry C, 2018, 122, 18021-18028.	1.5	19
986	Flexible n-type thermoelectric composite films with enhanced performance through interface engineering and post-treatment. Nanotechnology, 2018, 29, 275403.	1.3	14
987	Molecular Beam Epitaxy of High Mobility Silicon, Silicon Germanium and Germanium Quantum Well Heterostructures. , 2018, , 37-54.		8
988	"Click―generation of a conjugated polymer library for SWNT dispersion. Journal of Polymer Science Part A, 2018, 56, 2053-2058.	2.5	10
989	Carbon-Based Polymer Nanocomposite for Photovoltaic Devices. , 2018, , 559-584.		3
990	Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chemical Society Reviews, 2018, 47, 4781-4859.	18.7	205
991	Hydrogen-Evolving CNT-Photocatalysts for Effective Use of Solar Energy. Nanostructure Science and Technology, 2019, , 205-218.	0.1	1
992	Temperature-dependent Electrical Characterization of Single and Dual-gate Flexible Carbon Nanotube Thin Film Transistors. IETE Journal of Research, 2019, , 1-11.	1.8	0

	CITATION RE	PORT	
#	ARTICLE	IF	Citations
993	transistors. AEU - International Journal of Electronics and Communications, 2019, 110, 152874.	1.7	13
994	High-performance single-wall carbon nanotube transparent conductive films. Journal of Materials Science and Technology, 2019, 35, 2447-2462.	5.6	51
995	Microsecond charge separation at heterojunctions between transition metal dichalcogenide monolayers and single-walled carbon nanotubes. Materials Horizons, 2019, 6, 2103-2111.	6.4	17
996	Carbon Nanomaterials and Two-Dimensional Transition Metal Dichalcogenides (2D TMDCs). Advanced Structured Materials, 2019, , 165-245.	0.3	4
997	Carbon Nanotube-Perovskite Composites for Ultrasensitive Broadband Photodiodes. ACS Applied Nano Materials, 2019, 2, 4974-4982.	2.4	18
998	Conformal High-K Dielectric Coating of Suspended Single-Walled Carbon Nanotubes by Atomic Layer Deposition. Nanomaterials, 2019, 9, 1085.	1.9	7
999	Flexible Grapheneâ€; Grapheneâ€Oxideâ€; and Carbonâ€Nanotubeâ€Based Supercapacitors and Batteries. Annal Der Physik, 2019, 531, 1800507.	en 0.9	44
1000	Carbon Materials in Perovskite Solar Cells: Prospects and Future Challenges. Energy and Environmental Materials, 2019, 2, 107-118.	7.3	72
1001	Investigation of Magnetic Properties of γ-Fe2O3 NP-Decorated Carbon Nanostructured Mats. Jom, 2019, 71, 3142-3150.	0.9	3
1002	Progress of Photodetectors Based on the Photothermoelectric Effect. Advanced Materials, 2019, 31, e1902044.	11.1	132
1003	All-carbon hybrids for high-performance electronics, optoelectronics and energy storage. Science China Information Sciences, 2019, 62, 1.	2.7	6
1004	A Bendable, Stretchable Transistor with Aligned Carbon Nanotube Films. Advanced Materials Interfaces, 2019, 6, 1900945.	1.9	15
1005	Global Photocurrent Generation in Phototransistors Based on Singleâ€Walled Carbon Nanotubes toward Highly Sensitive Infrared Detection. Advanced Optical Materials, 2019, 7, 1900597.	3.6	15
1006	Two-Dimensional Materials in Biosensing and Healthcare: From <i>In Vitro</i> Diagnostics to Optogenetics and Beyond. ACS Nano, 2019, 13, 9781-9810.	7.3	259
1007	Carbon Nanotube Assembly and Integration for Applications. Nanoscale Research Letters, 2019, 14, 220.	3.1	199
1008	Solvent-Mediated Affinity of Polymer-Wrapped Single-Walled Carbon Nanotubes for Chemically Modified Surfaces. Langmuir, 2019, 35, 12492-12500.	1.6	8
1009	Single-walled carbon nanotube growth at low temperature by alcohol gas source method using Co catalyst: enhancement effects of Al ₂ O ₃ buffer layer on carbon nanotube yield. Transactions of the Materials Research Society of Japan, 2019, 44, 65-68.	0.2	0
1010	Broadening of van Hove Singularities Measured by Photoemission Spectroscopy of Single- and Mixed-Chirality Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 26683-26694.	1.5	4

#	Article	IF	CITATIONS
1011	How a Solid Catalyst Determines the Chirality of the Single-Wall Carbon Nanotube Grown on It. Journal of Physical Chemistry Letters, 2019, 10, 735-741.	2.1	21
1012	Strain induced NDR and rectification behavior of the Î ³ -graphyne nanotubes. Materials Research Express, 2019, 6, 045050.	0.8	8
1013	Recent Advances in Organic Thermoelectric Materials: Principle Mechanisms and Emerging Carbon-Based Green Energy Materials. Polymers, 2019, 11, 167.	2.0	79
1014	Dielectric relaxation behaviors and dissipation characteristics of colloidal nanocarbon (graphene) Tj ETQq1 1 0.78	34314 rgB ⁻ 1.1	Г /Overlock
1015	Significant Stretchability Enhancement of a Crack-Based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 7405-7414.	4.0	243
1016	Molecular Dynamics of Chirality Definable Growth of Single-Walled Carbon Nanotubes. ACS Nano, 2019, 13, 6506-6512.	7.3	11
1017	Stretchable Transparent Conductors: from Micro/Macromechanics to Applications. Advanced Materials, 2019, 31, e1900756.	11.1	52
1018	Advances in Highâ€Performance Carbonâ€Nanotube Thinâ€Film Electronics. Advanced Electronic Materials, 2019, 5, 1900122.	2.6	27
1020	Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects. Nature Reviews Chemistry, 2019, 3, 375-392.	13.8	124
1021	Transparent Conducting Electrodes for Quantum Dots Light Emitting Diodes. Israel Journal of Chemistry, 2019, 59, 729-746.	1.0	8
1022	Single-Walled Carbon Nanotubes. Topics in Current Chemistry Collections, 2019, , .	0.2	20
1023	Electrochemical biosensor for methyl parathion based on single-walled carbon nanotube/glutaraldehyde crosslinked acetylcholinesterase-wrapped bovine serum albumin nanocomposites. Analytica Chimica Acta, 2019, 1074, 131-141.	2.6	73
1024	Understanding Stochasticity in Carbon Nanotube Manufacturing. , 2019, , 31-64.		0
1025	Conductivity Mechanisms in CNT Yarn. , 2019, , 447-464.		1
1026	PECVD grown silicon nitride ultra-thin films for CNTFETs. Semiconductor Science and Technology, 2019, 34, 065018.	1.0	2
1027	Altering the Schottky Barrier Height and Conductance by Using Metal Nanoparticles in Carbon Nanotubes-Based Devices. IEEE Transactions on Electron Devices, 2019, 66, 2789-2794.	1.6	5
1028	Channel length scaling of over 100% biaxially stretchable carbon nanotube transistors. Applied Physics Letters, 2019, 114, .	1.5	4
1029	Elongation and resistance change of carbon nanotube filaments formed by gas discharge breakdown. Japanese Journal of Applied Physics, 2019, 58, SAAE05.	0.8	3

#	Article	IF	CITATIONS
1030	Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials. Chinese Physics B, 2019, 28, 017302.	0.7	24
1031	Printed Diodes: Materials Processing, Fabrication, and Applications. Advanced Science, 2019, 6, 1801653.	5.6	71
1032	Valueâ€Added Recycling of Inexpensive Carbon Sources to Graphene and Carbon Nanotubes. Advanced Sustainable Systems, 2019, 3, 1800016.	2.7	20
1033	Characterization of contact resistances in ceramic-coated vertically aligned carbon nanotube arrays. RSC Advances, 2019, 9, 7266-7275.	1.7	2
1034	Materials for Photovoltaics: State of Art and Recent Developments. International Journal of Molecular Sciences, 2019, 20, 976.	1.8	185
1035	Flexible 64 × 64 Pixel AMOLED Displays Driven by Uniform Carbon Nanotube Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 11699-11705.	4.0	33
1036	Films of filled single-wall carbon nanotubes as a new material for high-performance air-sustainable transparent conductive electrodes operating in a wide spectral range. Nanoscale, 2019, 11, 6755-6765.	2.8	17
1037	Comparison Between Functionalized Graphene and Carbon Nanotubes. , 2019, , 177-204.		17
1038	Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration. Royal Society Open Science, 2019, 6, 181605.	1.1	37
1039	A Facile and Efficient Protocol for Preparing Residual-Free Single-Walled Carbon Nanotube Films for Stable Sensing Applications. Nanomaterials, 2019, 9, 471.	1.9	21
1040	Practical Mobility Estimations for Transistors With 1-D Channels Based on the Landauer–Büttiker Equation. IEEE Nanotechnology Magazine, 2019, 18, 345-350.	1.1	1
1041	Characterising exfoliated few-layer graphene interactions in co-processed nanofibrillated cellulose suspension via water retention and dispersion rheology. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 242, 37-51.	1.7	4
1042	High Performance Polymer Thermoelectric Composite Achieved by Carbon-Coated Carbon Nanotubes Network. ACS Applied Energy Materials, 2019, 2, 2427-2434.	2.5	34
1043	Gap states controlled transmission through 1D metal-nanotube junctions. Carbon, 2019, 146, 106-115.	5.4	0
1044	Novel approach to fabrication of DNA Biosensor Based on a Carboxylated Graphene Oxide Decorated with Fe3O4 NPs for the Detection of Typhoidal Salmonella. International Journal of Electrochemical Science, 2019, 14, 1248-1269.	0.5	10
1045	Flexible Carbon Nanotube Sensors with Screen Printed and Interdigitated Electrodes. , 2019, , .		1
1046	Anthanthrene-based conjugated polymers for the dispersion of single-walled carbon nanotubes. Polymer Chemistry, 2019, 10, 6440-6446.	1.9	7
1047	Simulation studies on effect of CNT physical parameters on carbon nanotube thin-film transistors (CN-TFTS). ISSS Journal of Micro and Smart Systems, 2019, 8, 135-141.	1.0	0

#	Article	IF	CITATIONS
1048	Ultrathin Metal Films as the Transparent Electrode in ITOâ€Free Organic Optoelectronic Devices. Advanced Optical Materials, 2019, 7, 1800778.	3.6	133
1049	Low-temperature synthesis of single-walled carbon nanotubes with Co catalysts via alcohol catalytic chemical vapor deposition under high vacuum. Materials Today Communications, 2019, 19, 51-55.	0.9	8
1050	Dielectric based charge carrier tuning for CNT CMOS inverters. Semiconductor Science and Technology, 2019, 34, 015015.	1.0	2
1051	Substrateâ€Wide Confined Shear Alignment of Carbon Nanotubes for Thin Film Transistors. Advanced Electronic Materials, 2019, 5, 1800593.	2.6	34
1052	Carbon nanotubes assisting interchain charge transport in semiconducting polymer thin films towards much improved charge carrier mobility. Science China Materials, 2019, 62, 813-822.	3.5	6
1053	An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. Journal of Carbon Research, 2019, 5, 3.	1.4	128
1054	Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology, 2019, 30, 132001.	1.3	32
1055	Tuning the electronic structure of single-walled carbon nanotube by high-pressure H ₂ exposure. Nanotechnology, 2019, 30, 065201.	1.3	1
1056	Monitoring the drilling process of GFRP laminates with carbon nanotube buckypaper sensor. Composite Structures, 2019, 208, 114-126.	3.1	13
1057	In-situ synthesis of flexible hybrid composite films for improved thermoelectric performance. Chemical Engineering Journal, 2019, 357, 547-558.	6.6	30
1058	Carbon nanotube field effect transistors: toward future nanoscale electronics. International Journal of Computers and Applications, 2019, 41, 149-164.	0.8	16
1059	Quantum simulation of a junctionless carbon nanotube field-effect transistor under torsional strain. Superlattices and Microstructures, 2020, 138, 106239.	1.4	6
1060	Thermal, electrical, and sensing properties of rubber nanocomposites. , 2020, , 149-175.		10
1061	Electrical responses of a carbon nanotube thin-film transistor to MeV proton irradiation in air. Radiation Effects and Defects in Solids, 2020, 175, 440-449.	0.4	1
1062	Design and performance analysis of wrap-gate CNTFET-based ring oscillators for IoT applications. The Integration VLSI Journal, 2020, 70, 116-125.	1.3	12
1063	Printable Semiconductors for Backplane TFTs of Flexible OLED Displays. Advanced Functional Materials, 2020, 30, 1904588.	7.8	136
1064	Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, optoelectronics, and thermoelectrics. Journal Physics D: Applied Physics, 2020, 53, 063001.	1.3	19
1065	Functionalized single-walled carbon-nanotube-blended P3HT-based high performance memory behavior thin-film transistor devices. Nanotechnology, 2020, 31, 075201.	1.3	8

# 1066	ARTICLE Fast and Ultraclean Approach for Measuring the Transport Properties of Carbon Nanotubes. Advanced Functional Materials, 2020, 30, 1907150.	IF 7.8	CITATIONS
1067	Design of nano-modified PVDF matrices for lead-free piezocomposites: Graphene vs carbon nanotube nano-additions. Mechanics of Materials, 2020, 142, 103275.	1.7	14
1068	Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications. Journal of Materials Science, 2020, 55, 2682-2724.	1.7	207
1069	Self-standing Substrates. Engineering Materials, 2020, , .	0.3	2
1070	Carbon nanotube electronics for IoT sensors. Nano Futures, 2020, 4, 012001.	1.0	40
1071	Electrical conductivity and ammonia sensing studies on polythiophene/MWCNTs nanocomposites. Materialia, 2020, 14, 100868.	1.3	35
1072	Flexible Integrated Circuits Based on Carbon Nanotubes. Accounts of Materials Research, 2020, 1, 88-99.	5.9	18
1073	Study of uniformly doped nano scale single-walled CNTFET under dark and illuminated conditions. Microelectronics Journal, 2020, 104, 104889.	1.1	4
1074	Thermoelectric Energy Harvesters: A Review of Recent Developments in Materials and Devices for Different Potential Applications. Topics in Current Chemistry, 2020, 378, 48.	3.0	52
1075	Carbon Nanomaterials for Halide Perovskitesâ€Based Hybrid Photodetectors. Advanced Materials Technologies, 2020, 5, 2000643.	3.0	9
1076	Microstructural modulation of organic passivation layers for metal oxide semiconductors to achieve high bias stability. Journal of Materials Chemistry C, 2020, 8, 11209-11222.	2.7	6
1077	Resistance change characteristics of spray-deposited carbon nanotube thin film with bending deformation. Japanese Journal of Applied Physics, 2020, 59, SGGH07.	0.8	3
1078	A Polymer/Carbonâ€Nanotube Ink as a Boronâ€Dopant/Inorganicâ€Passivation Free Carrier Selective Contact for Silicon Solar Cells with over 21% Efficiency. Advanced Functional Materials, 2020, 30, 2004476.	7.8	29
1079	Printed carbon nanotube thin-film transistors: progress on printable materials and the path to applications. Nanoscale, 2020, 12, 23371-23390.	2.8	26
1080	Benefits, Problems, and Solutions of Silver Nanowire Transparent Conductive Electrodes in Indium Tin Oxide (ITO)â€Free Flexible Solar Cells. Advanced Energy Materials, 2020, 10, 2002536.	10.2	151
1081	Origin of the electrocatalytic activity in carbon nanotube fiber counter-electrodes for solar-energy conversion. Nanoscale Advances, 2020, 2, 4400-4409.	2.2	9
1082 1083	Carbon Nanotube Detectors and Spectrometers for the Terahertz Range. Crystals, 2020, 10, 601. First-principles study of bulk and two-dimensional structures of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi><mml:mi> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi><mml:mi> xmlns:mml="normal">MnBi</mml:mi> family of materials <mml:math< td=""><td>1.0</td><td>3</td></mml:math<></mml:mi></mml:math 	1.0	3

#	Article	IF	CITATIONS
1084	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
1085	Device Architecture for Visible and Near-Infrared Photodetectors Based on Two-Dimensional SnSe2 and MoS2: A Review. Micromachines, 2020, 11, 750.	1.4	19
1086	Strengthened Complementary Metal–Oxide–Semiconductor Logic for Small-Band-Gap Semiconductor-Based High-Performance and Low-Power Application. ACS Nano, 2020, 14, 15267-15275.	7.3	17
1088	Micro visible photodetectors based on single wall carbon nanotubes/graphene hybrid films. , 2020, , .		Ο
1089	Encapsulation effect of Ï€ â€conjugated quaterthiophene on the radial breathing and tangential modes of semiconducting and metallic singleâ€walled carbon nanotubes. Journal of Computational Chemistry, 2020, 41, 2420-2428.	1.5	6
1091	Fabrication of ribbon-like films of orientation-controlled carbon nanotube/polymer composite using a robotic dispenser. Applied Physics Express, 2020, 13, 065503.	1.1	3
1092	The Effects of Next-to-Nearest Neighbor Hopping Amplitude on Electrical Properties of Graphene Like Nanotube Structure. ECS Journal of Solid State Science and Technology, 2020, 9, 051002.	0.9	3
1093	High yield production of ultrathin fibroid semiconducting nanowire of Ta2Pd3Se8. Nano Research, 2020, 13, 1627-1635.	5.8	16
1094	High-Temperature-Annealed Flexible Carbon Nanotube Network Transistors for High-Frequency Wearable Wireless Electronics. ACS Applied Materials & Interfaces, 2020, 12, 26145-26152.	4.0	20
1095	Carbon nanotube field effect transistors–based gas sensors. , 2020, , 171-183.		12
1096	Ultra-sensitive, highly selective and completely reversible ammonia sensor based on polythiophene/SWCNT nanocomposite. Materialia, 2020, 10, 100704.	1.3	29
1097	Gate Spacer Investigation for Improving the Speed of High-Frequency Carbon Nanotube-Based Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 27461-27466.	4.0	10
1098	Smart carbon nanotubes for drug delivery system: A comprehensive study. Journal of Drug Delivery Science and Technology, 2020, 58, 101811.	1.4	61
1099	SWCNT–porphyrin nano-hybrids selectively activated by ultrasound: an interesting model for sonodynamic applications. RSC Advances, 2020, 10, 21736-21744.	1.7	8
1100	UVâ€light mediated decomposition of a polyester for enrichment and release of semiconducting carbon nanotubes. Journal of Polymer Science, 2020, 58, 1965-1972.	2.0	3
1101	Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000193.	1.2	5
1102	Optical Phonon Scattering Dominated Transport in Individual Suspended Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2020, 257, 2000103.	0.7	1
1103	Comparative Study on the Photovoltaic Properties of ZnX (X = S, Se, Te) QD/CNT Inorganic/Organic Hybrid Nanocomposites. Journal of Physical Chemistry C, 2020, 124, 7652-7660.	1.5	12

#	ARTICLE	IF	CITATIONS
1104	Conference Series: Materials Science and Engineering, 2020, 744, 012032.	0.3	0
1105	Providing Time to Transfer: Longer Lifetimes Lead to Improved Energy Transfer in Films of Semiconducting Carbon Nanotubes. Journal of Physical Chemistry Letters, 2020, 11, 6016-6024.	2.1	13
1106	Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Communications Materials, 2020, 1, .	2.9	40
1107	Coral reef-like functionalized self-assembled monolayers for network formation of carbon nanotube with diameter selectivity. Carbon, 2020, 161, 599-611.	5.4	5
1108	Solution-Processed Mixed-Dimensional Hybrid Perovskite/Carbon Nanotube Electronics. ACS Nano, 2020, 14, 3969-3979.	7.3	30
1109	Zâ€6cheme Photocatalytic Systems for Solar Water Splitting. Advanced Science, 2020, 7, 1903171.	5.6	295
1110	RKKY interaction in doped nanotubes: A full band study. Solid State Communications, 2020, 309, 113822.	0.9	1
1111	Thin dielectric-layer-enabled low-voltage operation of fully printed flexible carbon nanotube thin-film transistors. Nanotechnology, 2020, 31, 235301.	1.3	19
1112	Energy and power densities of novel composite electrode driven by synergy of poly(3,4-ethylene) Tj ETQq0 0 0 rg Journal of Power Sources, 2020, 458, 228052.	BT /Overlo 4.0	ock 10 Tf 50 4 17
1113	Macroscopic yarns of FeCl3-intercalated collapsed carbon nanotubes with high doping and stability. Carbon, 2021, 173, 311-321.	5.4	14
1114	Performance enhancement and mechanism exploration of all-carbon-nanotube memory with hydroxylation and dehydration through supercritical carbon dioxide. Carbon, 2021, 173, 97-104.	5.4	11
1115	Flexible and Stretchable Microwave Electronics: Past, Present, and Future Perspective. Advanced Materials Technologies, 2021, 6, 2000759.	3.0	39
1116	Characterization of CNT and It's carrier mobility dependency on diameter in Back-Gated CNT-FET. Materials Today: Proceedings, 2021, 45, 3869-3873.	0.9	1
1117	Effect of Metal Oxide Nanoparticles on Carbon Nanotube Device Characteristics. Journal of Electronic Materials, 2021, 50, 528-536.	1.0	1
1118	Nanoscale Patterning of Carbon Nanotubes: Techniques, Applications, and Future. Advanced Science, 2021, 8, 2001778.	5.6	48
1119	Efficient porous carbon/CdS composite photocatalyst for dye degradation. Journal of Materials Science: Materials in Electronics, 2021, 32, 337-346.	1.1	7
1120	Interwoven scaffolded porous titanium oxide nanocubes/carbon nanotubes framework for high-performance sodium-ion battery. Journal of Energy Chemistry, 2021, 59, 38-46.	7.1	25
1121	High-sensitive flexural sensors for health monitoring of composite materials using embedded carbon nanotube (CNT) buckypaper. Composite Structures, 2021, 261, 113280.	3.1	27

#	Article	IF	Citations
1122	Recently-explored top electrode materials for transparent organic solar cells. Synthetic Metals, 2021, 271, 116582.	2.1	24
1123	Improved stabilisation of graphite nanoflake dispersions using hydrothermally-produced nanocellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125668.	2.3	4
1124	Charge Transport in Highâ€Mobility Fieldâ€Effect Transistors Based on Inkjet Printed Random Networks of Polymer Wrapped Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2021, 31, 2006895.	7.8	18
1126	Chemical and topographical patterns combined with solution shear for selective-area deposition of highly-aligned semiconducting carbon nanotubes. Nanoscale Advances, 2021, 3, 1767-1775.	2.2	2
1127	Carbon-Based Electrodes for Perovskite Photovoltaics. Advances in Sustainability Science and Technology, 2021, , 387-418.	0.4	2
1128	Carbon Nanomaterials for Emerging Electronic Devices and Sensors. Advances in Sustainability Science and Technology, 2021, , 215-258.	0.4	0
1129	Humidity Effects According to the Type of Carbon Nanotubes. IEEE Access, 2021, 9, 6810-6816.	2.6	9
1130	Principles of carbon nanotube dielectrophoresis. Nano Research, 2021, 14, 2188-2206.	5.8	14
1132	Recent Progress in Electrospinning Technologies for Graphene-Based Materials. Carbon Nanostructures, 2021, , 1-34.	0.1	0
1133	Recent progress for nanotechnology-based flexible sensors for biomedical applications. , 2021, , 379-428.		1
1134	Bandgap oupled Template Autocatalysis toward the Growth of Highâ€Purity sp ² Nanocarbons. Advanced Science, 2021, 8, 2003078.	5.6	8
1135	Photo-electrical response of nanocomposites from single-walled carbon nanotubes incorporated in tris(keto-hydrozone) discotic mesogen. Journal of Physics: Conference Series, 2021, 1762, 012011.	0.3	4
1136	Chemical-free and scalable process for the fabrication of a uniform array of liquid-gated CNTFET, evaluated by KCl electrolyte. Scientific Reports, 2021, 11, 3979.	1.6	2
1137	Interaction of Luminescent Defects in Carbon Nanotubes with Covalently Attached Stable Organic Radicals. ACS Nano, 2021, 15, 5147-5157.	7.3	17
1138	Advanced Electrical Conductors: An Overview and Prospects of Metal Nanocomposite and Nanocarbon Based Conductors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000704.	0.8	20
1139	Green Fabrication of (6,5)Carbon Nanotube/Protein Transistor Endowed with Specific Recognition. Advanced Electronic Materials, 2021, 7, 2001114.	2.6	11
1140	Facile Solvent Mixing Strategy for Extracting Highly Enriched (6,5)Single-Walled Carbon Nanotubes in Improved Yield. Bulletin of the Chemical Society of Japan, 2021, 94, 1166-1171.	2.0	4
1141	PCB mounted sensor with high sensitivity SWNT-Based devices for gas sensing applications. Microelectronics Journal, 2021, 111, 105043.	1.1	1

#	Article	IF	CITATIONS
1142	Beyond Color: The New Carbon Ink. Advanced Materials, 2021, 33, e2005890.	11.1	17
1143	Recent progress of integrated circuits and optoelectronic chips. Science China Information Sciences, 2021, 64, 1.	2.7	56
1144	Van der Waals Integration Based on Twoâ€Dimensional Materials for Highâ€Performance Infrared Photodetectors. Advanced Functional Materials, 2021, 31, 2103106.	7.8	112
1145	CNTFET â€based active grounded inductor using positive and negative current conveyors and applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, 34, e2895.	1.2	10
1146	Dielectric Hole Collector toward Boosting Charge Transfer of CsPbBr ₃ Hybrid Nanogenerator by Coupling Triboelectric and Photovoltaic Effects. Advanced Functional Materials, 2021, 31, 2101348.	7.8	30
1147	Review of Sorted Metallic Singleâ€Walled Carbon Nanotubes. Advanced Materials Interfaces, 2021, 8, 2002106.	1.9	9
1148	Electrical and mechanical properties of high electrical conductivity CNT/Cuâ€yarns with Br doping and Cu encapsulation. Nano Select, 0, , .	1.9	1
1149	Charge transfer evidence in donor–acceptor singleâ€walled carbon nanotubes filled with sexithiophene oligomers: Nanotube diameter dependence. Journal of Raman Spectroscopy, 2021, 52, 1381-1394.	1.2	9
1150	Carbon Nanotube-Based Ion-Sensitive Field-Effect Transistors with an On-Chip Reference Electrode Toward Wearable Sodium Sensing. ACS Applied Electronic Materials, 2021, 3, 2580-2588.	2.0	16
1151	Cleanly Removable Surfactant for Carbon Nanotubes. Chemistry of Materials, 2021, 33, 4551-4557.	3.2	14
1152	Nanowire-enabled bioelectronics. Nano Today, 2021, 38, 101135.	6.2	31
1153	A Survey Describing Beyond Si Transistors and Exploring Their Implications for Future Processors. ACM Journal on Emerging Technologies in Computing Systems, 2021, 17, 1-44.	1.8	7
1154	Near-infrared photodetection using random networks of single-walled carbon nanotubes with asymmetrical work-function electrodes. Materials Research Express, 2021, 8, 066303.	0.8	2
1155	An efficient reliability estimation method for CNTFETâ€based logic circuits. ETRI Journal, 2021, 43, 728-745.	1.2	1
1156	Application of nanofluids for enhanced waste heat recovery: A review. Nano Energy, 2021, 84, 105871.	8.2	93
1157	Progress in light-to-frequency conversion circuits based on low dimensional semiconductors. Nano Research, 2021, 14, 2938-2964.	5.8	4
1158	Enhanced light absorption and through-thickness heat conduction of vertically aligned transferable carbon nanotube/silicone rubber composite films. Materials Chemistry and Physics, 2021, 267, 124690.	2.0	8
1159	A Metaâ€Analysis of Conductive and Strong Carbon Nanotube Materials. Advanced Materials, 2021, 33, e2008432.	11.1	72

#	Article	IF	CITATIONS
1160	Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning. Npj Computational Materials, 2021, 7, .	3.5	19
1161	Energy Harvesting Schemes for Wearable Devices. AEU - International Journal of Electronics and Communications, 2021, 138, 153888.	1.7	37
1162	Numerical study of highly efficient tin-based perovskite solar cell with MoS ₂ hole transport layer. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76, 1045-1059.	0.7	5
1163	Current Stateâ€ofâ€ŧheâ€Art in the Interface/Surface Modification of Thermoelectric Materials. Advanced Energy Materials, 2021, 11, 2101877.	10.2	37
1164	Ant Lion Optimizer for Suppression of Ambipolar Conduction in Schottky Barrier Carbon Nanotube Field Effect Transistors. Silicon, 0, , 1.	1.8	2
1165	Investigation for conductance behavior of single walled carbon nanotubes decorated with UNCD and graphitic spherules using STM/STS. Applied Surface Science Advances, 2021, 5, 100107.	2.9	0
1166	The Effects of Hydrogen Annealing on Carbon Nanotube Field-Effect Transistors. Nanomaterials, 2021, 11, 2481.	1.9	0
1167	Stable Organic Passivated Carbon Nanotube–Silicon Solar Cells with an Efficiency of 22%. Advanced Science, 2021, 8, e2102027.	5.6	12
1168	Single-Walled Carbon Nanotube Thin Film with High Semiconducting Purity by Aerosol Etching toward Thin-Film Transistors. ACS Applied Nano Materials, 2021, 4, 9673-9679.	2.4	5
1170	On the role of surface oxygen during nascent single-walled carbon nanotube cap spreading and tube nucleation on iron catalysts. Carbon, 2021, 184, 470-478.	5.4	6
1171	The potential of SWCNTs to extend the IR-absorption of silicon solar cells. Carbon, 2021, 184, 828-835.	5.4	9
1172	Rapid annealing and cooling induced surface cleaning of semiconducting carbon nanotubes for high-performance thin-film transistors. Carbon, 2021, 184, 764-771.	5.4	14
1173	Induced magnetization in armchair and Zig-zag CNTs on adsorbing transition metals. Journal of Magnetism and Magnetic Materials, 2021, 538, 168287.	1.0	1
1174	Advancement and challenges in MOSFET scaling. Materials Science in Semiconductor Processing, 2021, 134, 106002.	1.9	67
1175	Properties of silicon–carbon (CNTs/graphene) hybrid nanoparticles. , 2022, , 45-64.		0
1176	Carrier Transport in Nanotubes and Nanowires. , 2021, , 831-877.		0
1177	The Electrical Properties of Single-walled Carbon Nanotubes. Journal of Physics: Conference Series, 2021, 1748, 052005.	0.3	0
1178	Critical Path Tube Redundancy for Power Minimization in CNFET Circuits With Variations. IEEE Nanotechnology Magazine, 2021, 20, 598-609.	1.1	0

~				
(т	ATIO	NIV	'FD	$\cap DT$
	ALIO			

#	Article	IF	CITATIONS
1180	Single–Walled Carbon Nanotubes for High Performance Thin Film Electronics. Integrated Circuits and Systems, 2009, , 211-246.	0.2	3
1181	Solution Cast Films of Carbon Nanotubes for Transparent Conductors and Thin Film Transistors. Kluwer International Series in Electronic Materials: Science and Technology, 2009, , 297-328.	0.3	5
1182	Nanoscale Photovoltaics and the Terawatt Challenge. Nanostructure Science and Technology, 2013, , 77-116.	0.1	1
1183	Carbon Nanotube TFTs. , 2012, , 751-776.		1
1184	Ohmic and Schottky Contact CNTFET: Transport Properties and Device Performance Using Semi-classical and Quantum Particle Simulation. Engineering Materials, 2011, , 215-235.	0.3	3
1185	Design and analysis of dynamically configurable electrostatic doped carbon nanotube tunnel FET. Microelectronics Journal, 2019, 85, 17-24.	1.1	15
1186	Development of a robust fabrication process for single silicon nanowire-based omega gate transistors on polyamide substrate. Semiconductor Science and Technology, 2021, 36, 025003.	1.0	3
1187	Charge structure factors of doped armchair nanotubes in the presence of electron–phonon interaction. Chinese Physics B, 2020, 29, 096501.	0.7	1
1188	Resistive Analysis of Scattering-Dependent Electrical Transport in Single-Wall Carbon-Nanotube Networks. IEEE Transactions on Electron Devices, 2020, 67, 5676-5684.	1.6	10
1100			
1189	Aligned array FETs as a route toward THz nanotube transistors. , 2005, , .		7
1189	Aligned array FETs as a route toward THz nanotube transistors. , 2005, , . An Analytical Model for Ballistic Carbon Nanotube Field Effect Transistor Applicable to Circuit Simulators. ECS Journal of Solid State Science and Technology, 2017, 6, M109-M113.	0.9	7
1189 1190 1191	Aligned array FETs as a route toward THz nanotube transistors. , 2005, , . An Analytical Model for Ballistic Carbon Nanotube Field Effect Transistor Applicable to Circuit Simulators. ECS Journal of Solid State Science and Technology, 2017, 6, M109-M113. Reviewâ€"State-of-the-Art Organic Solar Cells based on Carbon Nanotubes and Graphene. ECS Journal of Solid State Science and Technology, 2020, 9, 105004.	0.9	7 1 8
1189 1190 1191 1192	Aligned array FETs as a route toward THz nanotube transistors. , 2005, , . An Analytical Model for Ballistic Carbon Nanotube Field Effect Transistor Applicable to Circuit Simulators. ECS Journal of Solid State Science and Technology, 2017, 6, M109-M113. Reviewâ€"State-of-the-Art Organic Solar Cells based on Carbon Nanotubes and Graphene. ECS Journal of Solid State Science and Technology, 2020, 9, 105004. Carbon nanotube antennas analysis and applications: review. Advances in Nano Research, 2013, 1, 13-27.	0.9 0.9 0.9	7 1 8 7
1189 1190 1191 1192 1193	Aligned array FETs as a route toward THz nanotube transistors., 2005, , . An Analytical Model for Ballistic Carbon Nanotube Field Effect Transistor Applicable to Circuit Simulators. ECS Journal of Solid State Science and Technology, 2017, 6, M109-M113. Reviewâ€"State-of-the-Art Organic Solar Cells based on Carbon Nanotubes and Graphene. ECS Journal of Solid State Science and Technology, 2020, 9, 105004. Carbon nanotube antennas analysis and applications: review. Advances in Nano Research, 2013, 1, 13-27. Calculating the electronic transmission properties of semiconducting carbon nanotube Schottky diodes with increase in diameter. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2012, 15, 268-275.	0.9 0.9 0.9 0.3	7 1 8 7 1
1189 1190 1191 1192 1193 1194	Aligned array FETs as a route toward THz nanotube transistors., 2005, , . An Analytical Model for Ballistic Carbon Nanotube Field Effect Transistor Applicable to Circuit Simulators. ECS Journal of Solid State Science and Technology, 2017, 6, M109-M113. Reviewâ€"State-of-the-Art Organic Solar Cells based on Carbon Nanotubes and Graphene. ECS Journal of Solid State Science and Technology, 2020, 9, 105004. Carbon nanotube antennas analysis and applications: review. Advances in Nano Research, 2013, 1, 13-27. Calculating the electronic transmission properties of semiconducting carbon nanotube Schottky diodes with increase in diameter. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2012, 15, 268-275. The Drift Response to a High-Electric-Field in Carbon Nanotubes. Current Nanoscience, 2010, 6, 492-495.	0.9 0.9 0.9 0.3 0.7	7 1 8 7 1 1
1189 1190 1191 1192 1193 1194 1195	Aligned array FETs as a route toward THz nanotube transistors., 2005, , . An Analytical Model for Ballistic Carbon Nanotube Field Effect Transistor Applicable to Circuit Simulators. ECS Journal of Solid State Science and Technology, 2017, 6, M109-M113. Reviewâ€"State-of-the-Art Organic Solar Cells based on Carbon Nanotubes and Graphene. ECS Journal of Solid State Science and Technology, 2020, 9, 105004. Carbon nanotube antennas analysis and applications: review. Advances in Nano Research, 2013, 1, 13-27. Calculating the electronic transmission properties of semiconducting carbon nanotube Schottky diodes with increase in diameter. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2012, 15, 268-275. The Drift Response to a High-Electric-Field in Carbon Nanotubes. Current Nanoscience, 2010, 6, 492-495. Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis. International Journal of Materials Research, 2007, 9, 742-748.	0.9 0.9 0.9 0.3 0.7 0.1	7 1 8 7 1 1 11
1189 1190 1191 1192 1193 1194 1195 1197	Aligned array FETs as a route toward THz nanotube transistors., 2005, , . An Analytical Model for Ballistic Carbon Nanotube Field Effect Transistor Applicable to Circuit Simulators. ECS Journal of Solid State Science and Technology, 2017, 6, M109-M113. Reviewâ€"State-of-the-Art Organic Solar Cells based on Carbon Nanotubes and Graphene. ECS Journal of Solid State Science and Technology, 2020, 9, 105004. Carbon nanotube antennas analysis and applications: review. Advances in Nano Research, 2013, 1, 13-27. Calculating the electronic transmission properties of semiconducting carbon nanotube Schottky diodes with increase in diameter. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2012, 15, 268-275. The Drift Response to a High-Electric-Field in Carbon Nanotubes. Current Nanoscience, 2010, 6, 492-495. Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis. International Journal of Materials Research, 2007, 98, 742-748. Single Wall Carbon Nanotube Films Produced by Arc Discharge. Korean Journal of Materials Research, 2008, 18, 253-258.	0.9 0.9 0.9 0.3 0.7 0.1	7 1 8 7 1 1 11 12 8

#	Article	IF	CITATIONS
1199	Advances in Conceptual Electronic Nanodevices based on 0D and 1D Nanomaterials. Nano-Micro Letters, 2013, 6, 1.	14.4	4
1200	Carbon nanomaterials in organic photovoltaic cells. Carbon Letters, 2011, 12, 194-206.	3.3	8
1201	Enhanced Charge Mobility in Polymer Nanocomposites Incorporating Donor–Acceptor Interfaces. Japanese Journal of Applied Physics, 2011, 50, 01BJ19.	0.8	1
1202	Study on Device Parameters of Carbon Nanotube Field Electron Transistors to Realize Steep Subthreshold Slope of Less than 60 mV/Decade. Japanese Journal of Applied Physics, 2011, 50, 04DN01.	0.8	3
1203	Fine Patterning of Inkjet-Printed Single-Walled Carbon-Nanotube Thin-Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 06FD15.	0.8	4
1204	Multiwall carbon nanotubes: A review on synthesis and applications. Nanoscience and Nanotechnology - Asia, 2021, 11, .	0.3	0
1205	Advances and Frontiers in Singleâ€Walled Carbon Nanotube Electronics. Advanced Science, 2021, 8, e2102860.	5.6	9
1206	Introductory Chapter: Introduction to Carbon Nanotubes- Redefining the World of Electronics. , 0, , .		0
1207	From Quantum Models to Novel Effects to New Applications: Theory of Nanotube Devices. Nanoscience and Technology, 2005, , 1-39.	1.5	2
1208	Monte Carlo Modeling of Schottky Contacts on Semiconducting Carbon Nanotubes. , 2007, , 313-316.		2
1209	Band Structure and Electron Transport Physics of One-Dimensional SWNTs. Integrated Circuits and Systems, 2009, , 1-42.	0.2	2
1211	Multi-Excitation-Laser Raman Analysis of Chirality-Controlled Single-Walled Carbon Nanotubes with Free Electron Laser Irradiation during Growth. Japanese Journal of Applied Physics, 2011, 50, 01BJ13.	0.8	0
1212	Selective Separation of Semiconducting Single-Walled Carbon Nanotubes via Microwave Irradiation. Applied Science and Convergence Technology, 2011, 20, 294-299.	0.3	0
1213	Carbon Nanotube Hybrids for Renewable Energy. Journal of Nanomedicine & Nanotechnology, 2012, 03,	1.1	0
1214	Study on transport characteristics of CNTFET with HALO-LDD doping structure based on NEGF quantum theory. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 107302.	0.2	1
1215	DNA-Directed Assembly of Multicomponent Single-Walled Carbon Nanotube Devices. The Electrical Engineering Handbook, 2012, , 1017-1036.	0.2	0
1216	Optimization of Source/Drain Doping Level of Carbon Nanotube Field-Effect Transistors to Suppress OFF-State Leakage Current while Keeping Ideal ON-State Current. Japanese Journal of Applied Physics, 2012, 51, 06FD27.	0.8	0
1217	Logic Devices. Lecture Notes in Electrical Engineering, 2013, , 5-28.	0.3	0

#		IF	CITATIONS
	Carbon Nanotubes for Photovoltaics. Advances in Chemical and Materials Engineering Book Series,	0.2	0
1217	2014, , 268-311.	0.2	0
1220	Carbon Nanotube TFTs. , 2015, , 1-33.		Ο
1221	All-carbon photodetectors. , 2015, , .		0
1224	Carbon Nanotube Sensing in Food Safety and Quality Analysis. Food Chemistry, Function and Analysis, 2017, , 272-298.	0.1	1
1225	Concepts in Photochemical Water Splitting. Electrochemical Energy Storage and Conversion, 2017, , 41-84.	0.0	0
1226	Electronic and Optical Properties of Graphite-Related Systems. , 0, , .		2
1227	Carbon nanotube electronics and devices. , 2018, , 83-118.		1
1228	Graphene-Based Materials for Flexible Supercapacitors. Engineering Materials, 2020, , 297-326.	0.3	2
1229	Study on Graphene Oxide-Modified Polyacrylonitrile Hollow Fiber Membrane. Integrated Ferroelectrics, 2020, 207, 62-74.	0.3	0
1230	Reliability Estimation of CNTFET-based Combinational Logic Circuits. , 2020, , .		0
1231	Building a Bridge for Carbon Nanotubes from Nanoscale Structure to Macroscopic Application. Journal of the American Chemical Society, 2021, 143, 18805-18819.	6.6	25
1232	Chemistry and Physics of Carbon Nanotube Structures. , 2021, , 1-19.		0
1233	CHAPTER 3. Properties and Applications of Carbon Nanotubes. RSC Nanoscience and Nanotechnology, 2021, , 164-239.	0.2	0
1234	Surface Modification of Textiles with Nanomaterials for Flexible Electronics Applications. Textile Science and Clothing Technology, 2020, , 1-42.	0.4	3
1235	Fabrication and Electrochemical Modeling of CNT-Based BioFET for Cholesterol Detection. Lecture Notes in Electrical Engineering, 2020, , 429-437.	0.3	0
1236	Carbon Nanotube and Polyacrylonitrile Nanofiber Devices for Sensing Applications. Journal of Electronic Materials, 2022, 51, 207.	1.0	2
1237	Synthesis of Carbon Nanotubes by Floating Catalyst Chemical Vapor Deposition and Their Applications. Advanced Functional Materials, 2022, 32, 2108541.	7.8	63
1238	Can Laminated Carbon Challenge Gold? Toward Universal, Scalable, and Low ost Carbon Electrodes for Perovskite Solar Cells. Advanced Materials Technologies, 2022, 7, 2101148.	3.0	14

#	Article	IF	CITATIONS
1239	The application of one-dimensional nanostructures in terahertz frequency devices. Applied Physics Reviews, 2021, 8, .	5.5	17
1240	Single wall carbon nanotubes growth over cobalt-iron mesoporous MCM-41 bimetallic catalyst under methane chemical vapor deposition, an experimental and DFT evaluation. Universitas Scientiarum, 2020, 25, 227-246.	0.2	0
1241	Introduction to Information-Carriers and Transport Models. Advances in Computer and Electrical Engineering Book Series, 0, , 1-71.	0.2	0
1242	Carrier Transport in Nanotubes and Nanowires. Advances in Computer and Electrical Engineering Book Series, 0, , 334-378.	0.2	0
1244	Graphene and Carbon Nanotubes for Electronics Nanopackaging. IEEE Open Journal of Nanotechnology, 2021, 2, 120-128.	0.9	10
1245	Harnessing solar radiation for potential algal biomass production. , 2022, , 421-449.		1
1246	Recent progress of transparent conductive electrodes in the construction of efficient flexible organic solar cells. International Journal of Energy Research, 2022, 46, 4071-4087.	2.2	10
1247	Nanomaterials in transistors. , 2021, , .		0
1248	Highly Efficient Response of Ammonia Gas Sensor Based on Surfactant Free Sortedâ€5emiconducting Singleâ€Walled Carbon Nanotubes at Room Temperature. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	5
1249	Field-induced self-assembly formation of carbon nanotube filaments triggered via gas discharge breakdown. Vacuum, 2022, 198, 110877.	1.6	2
1250	Stable nanotube construction conditions and electronic properties of possible Si double-walled nanotubes (nin,min)@(6,mout) (nin =3, 4) by SCC-DFTB calculations. Materials Chemistry and Physics, 2022, 277, 125545.	2.0	3
1251	Hall effect in gated single-wall carbon nanotube films. Scientific Reports, 2022, 12, 101.	1.6	1
1252	Recent advances on graphene-based materials as cathode materials in lithium-sulfur batteries. International Journal of Hydrogen Energy, 2022, 47, 8630-8657.	3.8	21
1253	Predicting the structure configuration and Raman analysis of caffeine molecules encapsulated into single-walled carbon nanotubes: Evidence for charge transfer. Solar Energy, 2022, 232, 204-211.	2.9	5
1254	Carbon nanotubes in perovskite-based optoelectronic devices. Matter, 2022, 5, 448-481.	5.0	19
1256	Signal enhancement strategies. , 2022, , 123-168.		0
1257	Carbon based electronic technology in post-Moore era: progress, applications and challenges. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 068503.	0.2	4
1258	Recent Advances in Structure Separation of Singleâ€Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. Advanced Science, 2022, 9, e2200054.	5.6	39

#	Article	IF	CITATIONS
1259	Detection of Environmentally Toxic Molecules Using Carbon Nanotubes: A First-Principles Theoretical Study. Journal of the Electrochemical Society, 2022, 169, 037512.	1.3	0
1260	Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure. Nature Communications, 2022, 13, 1835.	5.8	27
1261	Patterned Sandwich-Type Silver Nanowire-Based Flexible Electrode by Photolithography. ACS Applied Materials & Interfaces, 2021, 13, 61463-61472.	4.0	11
1262	Carbon-Nanotube-Encapsulated-Sulfur Cathodes for Lithium–Sulfur Batteries: Integrated Computational Design and Experimental Validation. Nano Letters, 2022, 22, 441-447.	4.5	12
1267	Recent progress in electron–phonon interaction of twoâ€dimensional materials. Nano Select, 2022, 3, 1112-1122.	1.9	5
1268	Sensors for Volatile Organic Compounds. ACS Nano, 2022, 16, 7080-7115.	7.3	129
1269	Single layer aligned semiconducting single-walled carbon nanotube array with high linear density. Nanotechnology, 2022, 33, 375301.	1.3	2
1270	A simple simulation-derived descriptor for the deposition of polymer-wrapped carbon nanotubes on functionalized substrates. Soft Matter, 0, , .	1.2	0
1271	Bicyclic-ring base doping induces n-type conduction in carbon nanotubes with outstanding thermal stability in air. Nature Communications, 2022, 13, .	5.8	26
1273	Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform. Materials, 2022, 15, 4935.	1.3	6
1274	Effect of multi-walled carbon nanotubes on DC electrical conductivity and acetone vapour sensing properties of polypyrrole. Carbon Trends, 2022, 9, 100193.	1.4	9
1275	Formation of carbon nanotube yarn by gas discharge breakdown. Japanese Journal of Applied Physics, 0, , .	0.8	0
1276	Metal supported graphene catalysis: A review on the benefits of nanoparticular supported specialty sp2 carbon catalysts on enhancing the activities of multiple chemical transformations. Carbon Trends, 2022, 9, 100196.	1.4	22
1277	A readout circuit for CNTFET-based infrared image sensor. , 2022, , .		0
1278	Functionalization of polyfluoreneâ€wrapped carbon nanotubes using thermally cleavable side hains. Journal of Polymer Science, 0, , .	2.0	2
1279	Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. Micromachines, 2022, 13, 1257.	1.4	40
1280	Overview and Outlook on Graphene and Carbon Nanotubes in Perovskite Photovoltaics from Singleâ€Junction to Tandem Applications. Advanced Functional Materials, 2022, 32, .	7.8	14
1281	Cas Sensors Based on Single-Wall Carbon Nanotubes. Molecules, 2022, 27, 5381.	1.7	22

# 1282	ARTICLE Photonic encryption by optical activity in Kerr-like carbon-based nanofluids with plasmonic nanoparticles. Journal of Molecular Liquids, 2022, 367, 120424.	IF 2.3	Citations
1283	Plasma produced by carbon nanotube-generated electron beam. , 2022, , 21-35.		0
1284	A polarization-sensitive photothermoelectric photodetector based on mixed-dimensional SWCNT–MoS ₂ heterostructures. Nanoscale Advances, 2022, 4, 5290-5296.	2.2	3
1285	Introduction to carbon nanotubes and nanoribbons. , 2022, , 231-251.		0
1286	Switching Effects in Plasmonic Circuits Based on Thin Metal Films and Nanostructures with High Photoconductivity. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2022, 130, 303-309.	0.2	1
1287	Self-Consistent and Full-Wave Analysis of Carbon-Nanotube Matrices for Multi-Channel Charge Confinement. , 2022, , .		0
1288	Subthreshold Schottky-contacted carbon nanotube network film field-effect transistors for ultralow-power electronic applications. Nanotechnology, 2022, 33, 505206.	1.3	1
1289	Charge Transport in Functionalized Octopus-Shaped Multi-Walled Carbon Nanotube/Graphene Hybrids: Implications for Extremely Stretchable Conductors. ACS Applied Nano Materials, 2022, 5, 16298-16314.	2.4	1
1290	Quick and surfactant-free dispersion of various carbon nanoparticles in aqueous solution as casting technique for devices. Chemical Engineering Journal Advances, 2022, 12, 100413.	2.4	3
1291	Controlled Preparation of Single-Walled Carbon Nanotubes as Materials for Electronics. ACS Central Science, 2022, 8, 1490-1505.	5.3	12
1292	Ab initio Methods for Electronic Transport in Semiconductors and Nanostructures. Springer Handbooks, 2023, , 1515-1558.	0.3	0
1293	High performance carbon nanotubes thin film transistors by selective ferric chloride doping. Journal of Information Display, 2023, 24, 109-118.	2.1	0
1294	Sulfonated graphene nanomaterials for membrane antifouling, pollutant removal, and production of chemicals from biomass: a review. Environmental Chemistry Letters, 2023, 21, 1093-1116.	8.3	6
1295	Nanoscale Mapping of Carrier Mobilities in the Ballistic Transports of Carbon Nanotube Networks. ACS Nano, 2022, 16, 21626-21635.	7.3	4
1296	Rare earth free oxide nano-composite of SrTi0.85Nb0.15O3 and CNT for potential n-type thermoelectrics. Carbon, 2023, 202, 207-213.	5.4	8
1297	Single-chirality of single-walled carbon nanotubes (SWCNTs) through chromatography and its potential biological applications. New Journal of Chemistry, 2023, 47, 992-1022.	1.4	1
1298	A review of the synthesis, fabrication, and recent advances in mixed dimensional heterostructures for optoelectronic devices applications. Applied Materials Today, 2023, 30, 101717.	2.3	6
1299	Chemistry and Physics of Carbon Nanotube Structures. , 2022, , 89-107.		0

#	Article	IF	CITATIONS
1300	Performance Limit of Gate-All-Around <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"> <mml:mi>Si</mml:mi></mml:math> Nanowire Field-Effect Transistors: An <i>Ab Initio</i> Quantum Transport Simulation. Physical Review Applied, 2022, 18, .	1.5	9
1301	Wavelength-dependent negative/positive photoresponses in single-walled carbon nanotube/PbS quantum dot mixed-dimensional heterostructures. Optical and Quantum Electronics, 2023, 55, .	1.5	0
1302	Total-Ionizing-Dose Effects and Low-Frequency Noise in N-Type Carbon Nanotube Field-Effect Transistors With HfOâ,, Gate Dielectrics. IEEE Transactions on Nuclear Science, 2023, 70, 449-455.	1.2	1
1303	Novel materials-based devices to mitigate challenges. , 2023, , 119-157.		0
1304	Prospects and future perspectives of electronic materials for solar energy applications. , 2023, , 281-296.		0
1305	High-performance diodes based on black phosphorus/carbon nanomaterial heterostructures. Nanoscale Advances, 0, , .	2.2	1
1306	Understanding electron transport on hybrid perovskite/carbon allotropes for energy conversion and storage applications: A first principles study. Solar Energy, 2023, 255, 180-190.	2.9	0
1307	Decoration of Polyfluorene-Wrapped Carbon Nanotubes with Photocleavable Side-Chains. Molecules, 2023, 28, 1471.	1.7	0
1308	Pseudo-break imaging of carbon nanotubes for determining elastic bending energies. Nano Research, 0, , .	5.8	1
1309	Comparison study of vibration frequencies and electronic properties by quantum mechanical calculation for open geodesic polyarene molecules. AIP Conference Proceedings, 2023, , .	0.3	0
1310	Flexible, Low-Cost, and Room Temperature Ammonia Sensor Based on Polypyrrole and Functionalized MWCNT Nanocomposites in Extreme Bending Conditions. ACS Applied Polymer Materials, 2023, 5, 1945-1954.	2.0	10
1311	2D Material Infrared Photonics and Plasmonics. ACS Nano, 2023, 17, 4134-4179.	7.3	30
1312	High-Performance Shortwave Infrared Detector Based on Multilayer Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2023, 15, 13508-13516.	4.0	2
1313	A density functional theory study of van der Waals interaction in carbon nanotubes. Journal of the Chinese Chemical Society, 2023, 70, 759-769.	0.8	1
1314	Characteristics of spark plasma sintered nanocarbon materials. Journal of the Society of Materials Engineering for Resources of Japan, 2022, 32, 1-6.	0.2	0
1315	Carbon nanotube network film-based field-effect transistor interface state optimization by ambient air annealing. Journal of Applied Physics, 2023, 133, .	1.1	1
1317	Rational and key strategies toward enhancing the performance of graphene/silicon solar cells. Materials Advances, 2023, 4, 1876-1899.	2.6	1
1318	A review of nitrogen-doped carbon materials for lithium-ion battery anodes. New Carbon Materials, 2023, 38, 247-278.	2.9	7

#	Article	IF	CITATIONS
1319	Carbon Nanomaterials from Biomass for Solar Energy Conversion and Storage. Green Energy and Technology, 2023, , 301-329.	0.4	0
1347	CNT-PUFs: Highly Robust Physical Unclonable Functions Based on Carbon Nanotubes. , 2023, , .		1
1354	Carrier density and delocalization signatures in doped carbon nanotubes from quantitative magnetic resonance. Nanoscale Horizons, 0, , .	4.1	0
1361	Low power Circuit Design Using Dynamic GDI Technique in CNTFET Technology. , 2023, , .		0
1362	Radiation-Induced Synthesis of Carbon Nanostructures. , 2023, , 1-60.		0