A generalized Omori's law for earthquake aftershock de

Geophysical Research Letters 31, n/a-n/a DOI: 10.1029/2004gl019808

Citation Report

#	Article	IF	CITATIONS
1	Model for the Distribution of Aftershock Interoccurrence Times. Physical Review Letters, 2005, 95, 218501.	2.9	99
2	Relation between mainshock rupture process and Omori's law for aftershock moment release rate. Geophysical Journal International, 2005, 163, 1039-1048.	1.0	66
3	Correlations in aftershock and seismicity patterns. Tectonophysics, 2006, 413, 53-62.	0.9	16
4	Modelling fundamental waiting time distributions for earthquake sequences. Tectonophysics, 2006, 424, 195-208.	0.9	18
5	Physics of the Omori law: Inferences from interevent time distributions and pore pressure diffusion modeling. Tectonophysics, 2006, 424, 209-222.	0.9	12
6	Scaling Properties of the Parkfield Aftershock Sequence. Bulletin of the Seismological Society of America, 2006, 96, 2472-0.	1.1	9
7	Oscillatory regime of aftershocks of the 1984 Ddzhirgatal earthquake: Implications for the internal dynamics of an unstable geological system. Izvestiya, Physics of the Solid Earth, 2006, 42, 13-26.	0.2	1
8	Can Damage Mechanics Explain Temporal Scaling Laws in Brittle Fracture and Seismicity?. Pure and Applied Geophysics, 2006, 163, 1031-1045.	0.8	18
9	Aftershock Detection Thresholds as a Function of Time: Results from the ANZA Seismic Network following the 31 October 2001 ML 5.1 Anza, California, Earthquake. Bulletin of the Seismological Society of America, 2007, 97, 780-792.	1.1	15
10	Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan. Journal of Geophysical Research, 2007, 112, .	3.3	139
11	Quantifying early aftershock activity of the 2004 mid-Niigata Prefecture earthquake (Mw6.6). Journal of Geophysical Research, 2007, 112, .	3.3	87
12	Decay of aftershock activity for Japanese earthquakes. Journal of Geophysical Research, 2007, 112, .	3.3	39
13	BASS, an alternative to ETAS. Geophysical Research Letters, 2007, 34, .	1.5	73
14	Dynamical scaling and generalized Omori law. Geophysical Research Letters, 2007, 34, .	1.5	30
15	Complexity and Earthquakes. , 2007, , 675-700.		2
16	Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling. Geophysical Journal International, 2007, 169, 1009-1027.	1.0	141
17	Probabilistic aftershock hazard assessment II: application of strong ground motion simulations. Journal of Seismology, 2008, 12, 65-78.	0.6	10
18	Probabilistic aftershock hazard assessment I: numerical testing of methodological features. Journal of Seismology, 2008, 12, 53-64.	0.6	3

#	Article	IF	CITATIONS
19	The partitioning of radiated energy and the largest aftershock of seismic sequences occurred in the northeastern Italy and western Slovenia. Journal of Seismology, 2008, 12, 343-354.	0.6	20
20	A Review of Earthquake Statistics: Fault and Seismicity-Based Models, ETAS and BASS. Pure and Applied Geophysics, 2008, 165, 1003-1024.	0.8	23
21	Self-similar branching of aftershock sequences. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 933-943.	1.2	26
22	Comparison of early aftershock sequences for the 2004 Mid-Niigata and 2007 Noto Hanto earthquakes in central Japan. Earth, Planets and Space, 2008, 60, 151-154.	0.9	5
23	A Very Close Look at a Moderate Earthquake near Sudbury, Ontario. Seismological Research Letters, 2008, 79, 119-131.	0.8	16
24	Missing data in aftershock sequences: Explaining the deviations from scaling laws. Physical Review E, 2008, 78, 041115.	0.8	18
25	Network of recurrent events for the Olami-Feder-Christensen model. Physical Review E, 2008, 77, 066107.	0.8	14
26	Intraplate Seismicity of a Recently Deglaciated Shield Terrane: A Case Study from Northern Ontario, Canada. Bulletin of the Seismological Society of America, 2008, 98, 2828-2848.	1.1	26
27	Characteristics of the October 2005 Microearthquake Swarm and Reactivation of Similar Event Seismic Swarms over Decadal Time Periods near Socorro, New Mexico. Bulletin of the Seismological Society of America, 2008, 98, 93-105.	1.1	19
28	Loading rates in California inferred from aftershocks. Nonlinear Processes in Geophysics, 2008, 15, 245-263.	0.6	16
29	Implications of an inverse branching aftershock sequence model. Physical Review E, 2009, 79, 016101.	0.8	0
30	CPS measurements of postseismic deformation due to October 8, 2005 Kashmir earthquake. Journal of Seismology, 2009, 13, 415-420.	0.6	13
31	Omori-Utsu Law c-Values Associated with Recent Moderate Earthquakes in Japan. Bulletin of the Seismological Society of America, 2009, 99, 884-891.	1.1	76
32	Common dependence on stress for the two fundamental laws of statistical seismology. Nature, 2009, 462, 642-645.	13.7	124
33	Statistical Properties of Mine Tremor Aftershocks. Pure and Applied Geophysics, 2010, 167, 107-117.	0.8	8
34	Patterns of seismic sequences in the Levant—interpretation of historical seismicity. Journal of Seismology, 2010, 14, 339-367.	0.6	18
35	Spatiotemporal characteristics of aftershock sequences in the South Iceland Seismic Zone: interpretation in terms of pore pressure diffusion and poroelasticity. Geophysical Journal International, 2010, 183, 1104-1118.	1.0	10
36	Intraplate seismicity in Canada: a graph theoretic approach to data analysis and interpretation. Nonlinear Processes in Geophysics, 2010, 17, 513-527.	0.6	6

#	Article	IF	CITATIONS
37	Multiple-Time Scaling and Universal Behavior of the Earthquake Interevent Time Distribution. Physical Review Letters, 2010, 104, 158501.	2.9	46
38	Spatiotemporal correlations of aftershock sequences. Journal of Geophysical Research, 2010, 115, .	3.3	8
39	Nonextensivity and natural time: The case of seismicity. Physical Review E, 2010, 82, 021110.	0.8	114
40	Statistical Analysis of the 2002 Mw 7.9 Denali Earthquake Aftershock Sequence. Bulletin of the Seismological Society of America, 2011, 101, 2662-2674.	1.1	12
41	Short-Term Earthquake Forecasting Using Early Aftershock Statistics. Bulletin of the Seismological Society of America, 2011, 101, 297-312.	1.1	23
42	A fractal model of earthquake occurrence: Theory, simulations and comparisons with the aftershock data. Journal of Physics: Conference Series, 2011, 319, 012004.	0.3	15
43	Natural time analysis of the Centennial Earthquake Catalog. Chaos, 2012, 22, 023123.	1.0	37
44	Predictability of the coherent-noise model and its applications. Physical Review E, 2012, 85, 051136.	0.8	8
45	Statistical analysis of the 2010 <i>M</i> _W 7.1 Darfield Earthquake aftershock sequence. New Zealand Journal of Geology, and Geophysics, 2012, 55, 305-311.	1.0	26
46	Including Foreshocks and Aftershocks in Time-Independent Probabilistic Seismic-Hazard Analyses. Bulletin of the Seismological Society of America, 2012, 102, 909-917.	1.1	57
47	Radiated energy evolution during seismic sequences. Physics of the Earth and Planetary Interiors, 2012, 196-197, 49-61.	0.7	0
48	Bayesian analysis of the modified Omori law. Journal of Geophysical Research, 2012, 117, .	3.3	48
49	Order parameter fluctuations in natural time and <i>b</i> -value variation before large earthquakes. Natural Hazards and Earth System Sciences, 2012, 12, 3473-3481.	1.5	28
50	Statistical Variability and Tokunaga Branching of Aftershock Sequences Utilizing BASS Model Simulations. Pure and Applied Geophysics, 2013, 170, 155-171.	0.8	14
51	Aftershock Statistics of the 1999 Chi–Chi, Taiwan Earthquake and the Concept of Omori Times. Pure and Applied Geophysics, 2013, 170, 221-228.	0.8	6
52	Magnitude correlations in the Olami-Feder-Christensen model. Europhysics Letters, 2013, 102, 59002.	0.7	10
53	Scaling Properties of Aftershock Sequences in Algeria-Morocco Region. , 2013, , .		2
54	Scale free properties in a network-based integrated approach to earthquake pattern analysis. Nonlinear Processes in Geophysics, 2014, 21, 427-438.	0.6	6

#	Article	IF	CITATIONS
55	-exponential relaxation of the expected avalanche size in the coherent noise model. Physica A: Statistical Mechanics and Its Applications, 2014, 407, 216-225.	1.2	9
56	Time-dependent brittle creep as a mechanism for time-delayed wellbore failure. International Journal of Rock Mechanics and Minings Sciences, 2014, 70, 400-406.	2.6	40
57	Goal Tree Success Tree–Dynamic Master Logic Diagram and Monte Carlo simulation for the safety and resilience assessment of a multistate system of systems. Engineering Structures, 2014, 59, 411-433.	2.6	23
58	Bayesian confidence intervals for the magnitude of the largest aftershock. Geophysical Research Letters, 2014, 41, 6380-6388.	1.5	10
59	Analogies Between the Cracking Noise of Ethanol-Dampened Charcoal and Earthquakes. Physical Review Letters, 2015, 115, 025503.	2.9	52
60	Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes. Scientific Reports, 2014, 4, 3886.	1.6	8
61	Minima of the fluctuations of the order parameter of global seismicity. Chaos, 2015, 25, 063110.	1.0	17
62	Complexity and Earthquakes. , 2015, , 627-653.		9
63	Assessment of Seismic Performance of Buildings with Incorporation of Aftershocks. Journal of Performance of Constructed Facilities, 2015, 29, .	1.0	42
64	Aspects of Structure in Earthquake Networks. Pure and Applied Geophysics, 2015, 172, 1865-1878.	0.8	1
65	Generalized Omori–Utsu law for aftershock sequences in southern California. Geophysical Journal International, 2015, 201, 965-978.	1.0	58
66	Sustained acoustic emissions following tensile crack propagation in a crystalline rock. International Journal of Fracture, 2015, 193, 87-98.	1.1	37
67	A new expression for the earthquake interevent time distribution. Geophysical Journal International, 2015, 202, 219-223.	1.0	13
68	A Comparison of Seismicity Characteristics and Fault Structure Between Stick–Slip Experiments and Nature. Pure and Applied Geophysics, 2015, 172, 2247-2264.	0.8	34
69	Near-Field ETAS Constraints and Applications to Seismic Hazard Assessment. Pure and Applied Geophysics, 2015, 172, 2277-2293.	0.8	8
70	E-DECIDER: Using Earth Science Data and Modeling Tools to Develop Decision Support for Earthquake Disaster Response. Pure and Applied Geophysics, 2015, 172, 2305-2324.	0.8	7
71	Background seismicity in Boso Peninsula, Japan: Longâ€ŧerm acceleration, and relationship with slow slip events. Geophysical Research Letters, 2016, 43, 5671-5679.	1.5	20
72	A tentative model for the explanation of BÃ¥th law using the order parameter of seismicity in natural time. Earthquake Science, 2016, 29, 311-319.	0.4	7

		CITATION REPORT		
#	Article		IF	CITATIONS
73	Power-law rheology controls aftershock triggering and decay. Scientific Reports, 2016,	6, 36668.	1.6	16
74	Aftershock Decay Rates in the Iranian Plateau. Pure and Applied Geophysics, 2016, 173	, 2305-2324.	0.8	12
75	Bayesian estimation of the Modified Omori Law parameters for the Iranian Plateau. Jour Seismology, 2016, 20, 953-970.	nal of	0.6	10
76	Apparent triggering function of aftershocks resulting from rateâ€dependent incomplet earthquake catalogs. Journal of Geophysical Research: Solid Earth, 2016, 121, 6499-65	eness of 09.	1.4	50
77	How Long is an Aftershock Sequence?. Pure and Applied Geophysics, 2016, 173, 2295-	2304.	0.8	7
78	Statistical physics approach to earthquake occurrence and forecasting. Physics Reports 1-91.	s, 2016, 628,	10.3	137
79	Rateâ€Dependent Incompleteness of Earthquake Catalogs. Seismological Research Let 337-344.	ters, 2016, 87,	0.8	99
80	Oscillatory tendency of interevent direction in earthquake sequences. Physica A: Statist Mechanics and Its Applications, 2017, 478, 120-130.	tical	1.2	1
81	Power-law relaxation in human violent conflicts. European Physical Journal B, 2017, 90,	1.	0.6	2
82	Longer aftershocks duration in extensional tectonic settings. Scientific Reports, 2017,	7, 16403.	1.6	22
83	Depth dependent stress revealed by aftershocks. Nature Communications, 2017, 8, 13	17.	5.8	45
84	Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zon (western branch, East African Rift system). Journal of African Earth Sciences, 2017, 134	nation model , 831-855.	0.9	44
85	Spatial Evaluation and Verification of Earthquake Simulators. Pure and Applied Geophys 2279-2293.	sics, 2017, 174,	0.8	5
86	An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Complexity, 2017, 2017, 1-27.	e Time Series.	0.9	12
87	The M w  = 5.8 14 August 2016 middle Sakhalin earthquake on a boundary be (Amurian) plates. Journal of Seismology, 2018, 22, 943-955.	tween Okhotsk and Euras:	ian 0.6	4
88	Probabilistic aftershock hazard analysis, two case studies in West and Northwest Iran. J Seismology, 2018, 22, 137-152.	ournal of	0.6	6
89	Constraining the magnitude of the largest event in a foreshock–main shock–afters Geophysical Journal International, 2018, 212, 1-13.	hock sequence.	1.0	19
90	Detection of Gutenberg–Richter bâ€Value Changes in Earthquake Time Series. Bullet Seismological Society of America, 2018, 108, 2778-2787.	in of the	1.1	9

#	Article	IF	CITATIONS
91	Strong ground motion from the November 12, 2017, M 7.3 Kermanshah earthquake in western Iran. Journal of Seismology, 2018, 22, 1339-1358.	0.6	19
92	Spatiotemporal Clustering of Seismic Occurrence and Its Implementation in Forecasting Models. , 2018, , 61-93.		1
93	Natural Time Analysis of Seismic Time Series. , 2018, , 199-235.		3
94	Creeplike behavior in athermal threshold dynamics: Effects of disorder and stress. Physical Review E, 2018, 97, 062149.	0.8	7
95	Stochastic procedure for the simulation of synthetic main shockâ€ e ftershock ground motion sequences. Earthquake Engineering and Structural Dynamics, 2018, 47, 2275-2296.	2.5	29
96	Hierarchical block model for earthquakes. Physical Review E, 2018, 97, 062130.	0.8	8
97	Statistical modelling of co-seismic knickpoint formation and river response to fault slip. Earth Surface Dynamics, 2019, 7, 681-706.	1.0	5
98	Laboratory Modeling of Aftershock Sequences: Stress Dependences of the Omori and Gutenberg–Richter Parameters. Izvestiya, Physics of the Solid Earth, 2019, 55, 124-137.	0.2	14
99	Seismic cycles, earthquakes, landslides and sediment fluxes: Linking tectonics to surface processes using a reduced-complexity model. Geomorphology, 2019, 339, 87-103.	1.1	47
100	Post Seismic Catalog Incompleteness and Aftershock Forecasting. Geosciences (Switzerland), 2019, 9, 355.	1.0	14
101	Updated California Aftershock Parameters. Seismological Research Letters, 2019, 90, 262-270.	0.8	28
102	Residual Strain Mechanism of Aftershocks and Exponents of the Modified Omori's Law. Journal of Geophysical Research: Solid Earth, 2019, 124, 175-194.	1.4	4
103	The 15 February 2014 MwÂ4.1 South Carolina Earthquake Sequence: Aftershock Productivity, Hypocentral Depths, and Stress Drops. Seismological Research Letters, 2020, 91, 452-464.	0.8	6
104	Non-trivial avalanches triggered by shear banding in compression of metallic glass foams. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, .	1.0	3
105	Magnitude correlations in a self-similar aftershock rates model of seismicity. Nonlinear Processes in Geophysics, 2020, 27, 1-9.	0.6	0
106	Variability of ETAS Parameters in Global Subduction Zones and Applications to Mainshock–Aftershock Hazard Assessment. Bulletin of the Seismological Society of America, 2020, 110, 191-212.	1.1	10
107	Global models for short-term earthquake forecasting and predictive skill assessment. European Physical Journal: Special Topics, 2021, 230, 425-449.	1.2	19
108	Statistics and Forecasting of Aftershocks During the 2019 Ridgecrest, California, Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020887.	1.4	12

#	Article	IF	CITATIONS
110	Symptomatic discretization of small earthquake clusters reveals seismic coupling to 2017 Bodrum earthquake (Mw 6.6) in the Gulf of Gökova (SW corner of Turkey): Viscous-compliant seismogenesis over back-arc setting. Journal of African Earth Sciences, 2021, 177, 104156.	0.9	3
111	Immediate Foreshocks Indicating Cascading Rupture Developments for 527ÂM 0.9 to 5.4 Ridgecrest Earthquakes. Geophysical Research Letters, 2021, 48, e2021GL095704.	1.5	16
112	Aftershock Statistics. , 0, , 1051-1076.		2
113	Earthquake productivity law. Geophysical Journal International, 2020, 222, 1264-1269.	1.0	28
114	The 31 March 2020 MwÂ6.5 Stanley, Idaho, Earthquake: Seismotectonics and Preliminary Aftershock Analysis. Seismological Research Letters, 2021, 92, 663-678.	0.8	14
115	Application of Omori's Decay Law to the 2001 Bhuj Aftershock Sequence for Kachchh Region of Western India. Open Journal of Earthquake Research, 2015, 04, 94-101.	0.9	3
116	Statistical properties of earthquakes clustering. Nonlinear Processes in Geophysics, 2008, 15, 333-338.	0.6	13
117	Correlated earthquakes in a self-organized model. Nonlinear Processes in Geophysics, 2009, 16, 233-240.	0.6	9
118	A fault and seismicity based composite simulation in northern California. Nonlinear Processes in Geophysics, 2011, 18, 955-966.	0.6	9
119	A Review of Earthquake Statistics: Fault and Seismicity-Based Models, ETAS and BASS. , 2008, , 1003-1024.		1
120	Natural Time Analysis of Seismicity. , 2011, , 247-289.		0
121	Chaotic behavior of seismic mechanisms: experiment and observation. Annals of Geophysics, 2012, 55, .	0.5	0
122	Spatial Evaluation and Verification of Earthquake Simulators. Pageoph Topical Volumes, 2018, , 85-99.	0.2	0
123	Statistical Properties of Aftershocks for Ahar-Varzeghan Twin Earthquakes on 11 August 2012, NW Iran, and Investigation of Seismicity of North Tabriz Fault. International Journal of Geosciences, 2018, 09, 106-118.	0.2	0
124	Seismicity characterization of oceanic earthquakes in the Mexican territory. Solid Earth, 2020, 11, 791-806.	1.2	4
125	Triggered Seismicity in Northern Algeria from a Statistical Modeling. Civil Engineering and Architecture, 2020, 8, 1491-1496.	0.2	0
126	OKSP: A Novel Deep Learning Automatic Event Detection Pipeline for Seismic Monitoring in Costa Rica. , 2021, , .		1
127	Aftershock patterns of the 2021 Mw 6.3 Northern Thessaly (Greece) earthquake. Journal of Seismology, 2022, 26, 201.	0.6	8

#	Article	IF	CITATIONS
128	Prospective and Retrospective Evaluation of the U.S. Geological Survey Public Aftershock Forecast for the 2019–2021 Southwest Puerto Rico Earthquake and Aftershocks. Seismological Research Letters, 2022, 93, 620-640.	0.8	9
129	The aftershock sequence at a deep nickel mine: temporal and spatial distribution, magnitude distribution, and aftershock decay following major events. Acta Geophysica, 0, , 1.	1.0	0
130	Exponential decay law of acoustic emission and microseismic activities caused by disturbances associated with multilevel loading and mining blast. Transactions of Nonferrous Metals Society of China, 2021, 31, 3549-3563.	1.7	2
131	Embracing Data Incompleteness for Better Earthquake Forecasting. Journal of Geophysical Research: Solid Earth, 2021, 126, .	1.4	11
134	Heralds of Future Volcanism: Swarms of Microseismicity Beneath the Submarine Kolumbo Volcano Indicate Opening of Nearâ€Vertical Fractures Exploited by Ascending Melts. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	7
135	Are Large Earthquakes Preferentially Triggered by Other Large Events?. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
136	Seismically active structures of the Main Himalayan Thrust revealed before, during and after the 2015 <i>M</i> w 7.9 Gorkha earthquake in Nepal. Geophysical Journal International, 2022, 232, 451-471.	1.0	5
137	Case ontrol Study on a Decade of Groundâ€Based Magnetometers in California Reveals Modest Signal 24–72Âhr Prior to Earthquakes. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	8
138	Mw ≥ 5 aftershocks of the 2008 Sichuan earthquake: Analysis of temporal variation of Omori Law p-value. Frontiers in Earth Science, 0, 10, .	0.8	2
140	Development of a Bayesian event tree for short-term eruption onset forecasting at Taupŕvolcano. Journal of Volcanology and Geothermal Research, 2022, 432, 107687.	0.8	5
141	The Case of the Velocity Field Imaging in Mine—The Prediction of Rock Instability Risk. , 2023, , 323-345.		0
142	Earthquake Nowcasting: Retrospective Testing in Greece. Entropy, 2023, 25, 379.	1.1	2
143	Evidence of Fluid Induced Earthquake Swarms From High Resolution Earthquake Relocation in the Main Ethiopian Rift. Geochemistry, Geophysics, Geosystems, 2023, 24, .	1.0	2
145	Applications ofÂNatural Time Analysis toÂDisaster Prediction inÂOther Disciplines indexNatural Time. , 2023, , 293-340.		0