Ca2+/Calmodulin Modulates TRPV1 Activation by Capsa

Journal of General Physiology 123, 53-62 DOI: 10.1085/jgp.200308906

Citation Report

#	Article	IF	CITATIONS
1	Vanilloid Receptor 1 Regulates Multiple Calcium Compartments and Contributes to Ca2+-induced Ca2+ Release in Sensory Neurons. Journal of Biological Chemistry, 2004, 279, 16377-16387.	1.6	127
2	Biochemical pharmacology of the vanilloid receptor TRPV1. An update. FEBS Journal, 2004, 271, 1814-1819.	0.2	286
3	Identification and characterization of a Ca2+-sensitive interaction of the vanilloid receptor TRPV1 with tubulin. Journal of Neurochemistry, 2004, 91, 1092-1103.	2.1	86
4	TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. European Journal of Pharmacology, 2004, 500, 231-241.	1.7	157
5	The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. European Journal of Pharmacology, 2004, 500, 351-369.	1.7	233
6	The Effects of Intraarticular Resiniferatoxin in Experimental Knee-Joint Arthritis. Anesthesia and Analgesia, 2005, 101, 1433-1439.	1.1	53
7	TRP channels: An overview. Cell Calcium, 2005, 38, 233-252.	1.1	688
8	Calcium-dependent and independent mechanisms of capsaicin receptor (TRPV1)-mediated cytokine production and cell death in human bronchial epithelial cells. Journal of Biochemical and Molecular Toxicology, 2005, 19, 266-275.	1.4	74
9	Structure-function analysis of TRPV channels. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 371, 285-294.	1.4	37
10	Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflugers Archiv European Journal of Physiology, 2005, 451, 105-115.	1.3	172
11	Structure and function of TRPV1. Pflugers Archiv European Journal of Physiology, 2005, 451, 143-150.	1.3	353
12	Regulation of the Ca2+ Sensitivity of the Nonselective Cation Channel TRPM4. Journal of Biological Chemistry, 2005, 280, 6423-6433.	1.6	252
13	Functional Interactions Between A' Helices in the C-linker of Open CNG Channels. Journal of General Physiology, 2005, 125, 335-344.	0.9	23
14	Regulation of Ca2+-dependent Desensitization in the Vanilloid Receptor TRPV1 by Calcineurin and cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 2005, 280, 13424-13432.	1.6	254
15	Functional Recovery from Desensitization of Vanilloid Receptor TRPV1 Requires Resynthesis of Phosphatidylinositol 4,5-Bisphosphate. Journal of Neuroscience, 2005, 25, 4835-4843.	1.7	188
16	Structural determinants of TRPV1 functionality. , 2005, , 25-37.		0
17	Pain TRPs. Neuron, 2005, 46, 9-12.	3.8	114
18	Gating of TRP channels: a voltage connection?. Journal of Physiology, 2005, 567, 35-44.	1.3	244

#	Article	IF	CITATIONS
19	Capsaicin. Evidence - Based Integrative Medicine, 2005, 2, 147-166.	0.2	25
20	Advances in the development of TRPV1 antagonists. Expert Opinion on Therapeutic Patents, 2006, 16, 783-795.	2.4	14
21	Structure–function relationship of the TRP channel superfamily. , 2006, , 61-90.		148
23	Modulation of temperature-sensitive TRP channels. Seminars in Cell and Developmental Biology, 2006, 17, 638-645.	2.3	114
24	Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCÎμ-mediated phosphorylation at S800. Pain, 2006, 123, 106-116.	2.0	143
25	TRP channels and Ca2+ signaling. Cell Calcium, 2006, 40, 261-275.	1.1	128
26	Chapter 4 TRPV1: A Polymodal Sensor in the Nociceptor Terminal. Current Topics in Membranes, 2006, , 113-150.	0.5	8
27	4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to) Tj ETQq1 1 0.7	84314 rgB 4.1	T /Overlock
28	Physiology and Pharmacology of the Vanilloid Receptor. Current Neuropharmacology, 2006, 4, 1-15.	1.4	86
29	Calmodulin Contributes to Gating Control in Olfactory Calcium-activated Chloride Channels. Journal of General Physiology, 2006, 127, 737-748.	0.9	34
30	Phosphoinositide 3-Kinase Binds to TRPV1 and Mediates NGF-stimulated TRPV1 Trafficking to the Plasma Membrane. Journal of General Physiology, 2006, 128, 509-522.	0.9	342
31	TRPV1 Antagonists Elevate Cell Surface Populations of Receptor Protein and Exacerbate TRPV1-Mediated Toxicities in Human Lung Epithelial Cells. Toxicological Sciences, 2006, 89, 278-286.	1.4	35
32	Chapter 6 Gating, Sensitization, and Desensitization of TRPV1. Current Topics in Membranes, 2006, , 181-197.	0.5	2
33	INSIGHTS ON TRP CHANNELS FROM IN VIVO STUDIES INDROSOPHILA. Annual Review of Physiology, 2006, 68, 649-684.	5.6	73
34	The Ankyrin Repeats of TRPV1 Bind Multiple Ligands and Modulate Channel Sensitivity. Neuron, 2007, 54, 905-918.	3.8	377
35	Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience, 2007, 149, 144-154.	1.1	60
36	ATP binding site on the C-terminus of the vanilloid receptor. Archives of Biochemistry and Biophysics, 2007, 465, 389-398.	1.4	15
37	Molecular Sensors for Cardiovascular Homeostasis. , 2007, , .		1

#	Article	IF	CITATIONS
39	Design and Synthesis of Indole-Based Peptoids as Potent Noncompetitive Antagonists of Transient Receptor Potential Vanilloid 1. Journal of Medicinal Chemistry, 2007, 50, 6133-6143.	2.9	19
40	On the Mechanism of TBA Block of the TRPV1 Channel. Biophysical Journal, 2007, 92, 3901-3914.	0.2	42
41	Neurokinin-1 Receptor Enhances TRPV1 Activity in Primary Sensory Neurons via PKCε: A Novel Pathway for Heat Hyperalgesia. Journal of Neuroscience, 2007, 27, 12067-12077.	1.7	173
42	Anti-calmodulins and Tricyclic Adjuvants in Pain Therapy Block the TRPV1 Channel. PLoS ONE, 2007, 2, e545.	1.1	24
43	Changes in Osmolality Sensitize the Response to Capsaicin in Trigeminal Sensory Neurons. Journal of Neurophysiology, 2007, 97, 2001-2015.	0.9	45
45	Potentiation of glutamatergic synaptic transmission by protein kinase C-mediated sensitization of TRPV1 at the first sensory synapse. Journal of Physiology, 2007, 581, 631-647.	1.3	110
46	Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. Journal of Physiology, 2007, 583, 175-193.	1.3	236
47	TRPV1 expressionâ€dependent initiation and regulation of filopodia. Journal of Neurochemistry, 2007, 103, 1319-1333.	2.1	52
48	ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium, 2007, 42, 427-438.	1.1	197
49	Molecular Modeling of the Full-length Human TRPV1 Channel in Closed and Desensitized States. Journal of Membrane Biology, 2008, 223, 161-172.	1.0	53
50	Phospholipase C Mediated Modulation of TRPV1 Channels. Molecular Neurobiology, 2008, 37, 153-163.	1.9	91
51	Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton. FEBS Journal, 2008, 275, 4684-4699.	2.2	34
52	The pharmacological challenge to tame the transient receptor potential vanilloidâ€1 (TRPV1) nocisensor. British Journal of Pharmacology, 2008, 155, 1145-1162.	2.7	152
53	Differential expression of ionic conductances in interstitial cells of Cajal in the murine gastric antrum. Journal of Physiology, 2008, 586, 859-873.	1.3	20
54	TRP channels entering the structural era. Journal of Physiology, 2008, 586, 3565-3575.	1.3	85
55	Feedback mechanisms in the regulation of intracellular calcium ([Ca2+]i) in the peripheral nociceptive system: Role of TRPV-1 and pain related receptors. Cell Calcium, 2008, 43, 215-227.	1.1	27
56	Painful toxins acting at TRPV1. Toxicon, 2008, 51, 163-173.	0.8	47
57	Ionic interactions are essential for TRPV1 C-terminus binding to calmodulin. Biochemical and Biophysical Research Communications, 2008, 375, 680-683.	1.0	27

#	Article	IF	CITATIONS
58	Novel Gating and Sensitizing Mechanism of Capsaicin Receptor (TRPV1). Journal of Biological Chemistry, 2008, 283, 9377-9387.	1.6	50
59	Mechanism of Ca ²⁺ -dependent desensitization in TRP channels. Channels, 2008, 2, 125-129.	1.5	50
60	The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. Journal of Clinical Investigation, 2008, 118, 763-76.	3.9	134
61	Determinants of Molecular Specificity in Phosphoinositide Regulation. Journal of Biological Chemistry, 2008, 283, 26208-26216.	1.6	101
62	IP3 Receptor Binds to and Sensitizes TRPV4 Channel to Osmotic Stimuli via a Calmodulin-binding Site. Journal of Biological Chemistry, 2008, 283, 31284-31288.	1.6	82
63	TRPV1: On the Road to Pain Relief. Current Molecular Pharmacology, 2008, 1, 255-269.	0.7	157
64	TRPV1: A Target for Next Generation Analgesics. Current Neuropharmacology, 2008, 6, 151-163.	1.4	98
65	The Endoplasmic Reticulum of Dorsal Root Ganglion Neurons Contains Functional TRPV1 Channels. Journal of Biological Chemistry, 2009, 284, 32591-32601.	1.6	76
66	Linoleic acid inhibits TRP channels with intrinsic voltage sensitivity: Implications on the mechanism of linoleic acid action. Channels, 2009, 3, 164-166.	1.5	20
67	Interaction with Phosphoinositides Confers Adaptation onto the TRPV1 Pain Receptor. PLoS Biology, 2009, 7, e1000046.	2.6	81
68	The Transient Receptor Potential Vanilloid-1 Channel in Thermoregulation: A Thermosensor It Is Not. Pharmacological Reviews, 2009, 61, 228-261.	7.1	216
69	Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. Journal of General Physiology, 2009, 133, 525-546.	0.9	128
70	Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium, 2009, 45, 554-565.	1.1	81
71	Peculiarities of Ion Channels and Modulation of Their Functions in Neurons Belonging to the Nociceptive System. Neurophysiology, 2009, 41, 201-210.	0.2	1
72	Structure–functional intimacies of transient receptor potential channels. Quarterly Reviews of Biophysics, 2009, 42, 201-246.	2.4	155
73	Cross-inhibition between native and recombinant TRPV1 and P2X3 receptors. Pain, 2009, 143, 26-36.	2.0	48
74	PP2B/calcineurin-mediated desensitization of TRPV1 does not require AKAP150. Biochemical Journal, 2010, 432, 549-556.	1.7	35
75	Modern concepts on the mechanisms of encoding visceral nociceptive stimuli. Human Physiology, 2010, 36, 107-117.	0.1	1

ΓΙΤΛΤΙΟΝΙ ΠΓΟΟΟΤ		-	
		IVF	

#	Article	IF	CITATIONS
76	The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation. , 2010, 125, 181-195.		147
77	Visceral hypersensitivity induced by activation of transient receptor potential vanilloid type 1 is mediated through the serotonin pathway in rat colon. European Journal of Pharmacology, 2010, 647, 75-83.	1.7	27
78	TRPV1 splice variants: structure and function. Frontiers in Bioscience - Landmark, 2010, 15, 872.	3.0	50
79	Role for Cannabinoid Receptors in Human Proximal Tubular Hypertrophy. Cellular Physiology and Biochemistry, 2010, 26, 879-886.	1.1	55
80	Ca ²⁺ -Dependent Desensitization of TRPV2 Channels Is Mediated by Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate. Journal of Neuroscience, 2010, 30, 13338-13347.	1.7	102
81	International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family. Pharmacological Reviews, 2010, 62, 381-404.	7.1	502
82	Constitutive Activity of TRP Channels. Methods in Enzymology, 2010, 484, 591-612.	0.4	14
83	Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1. Cardiovascular Research, 2011, 91, 492-501.	1.8	115
84	Localization of the PIP2 Sensor of TRPV1 Ion Channels. Journal of Biological Chemistry, 2011, 286, 9688-9698.	1.6	112
85	Complex Regulation of TRPV1 and Related Thermo-TRPs: Implications for Therapeutic Intervention. Advances in Experimental Medicine and Biology, 2011, 704, 491-515.	0.8	56
86	TRPV1 and TRPA1 in Pulmonary Vagal Afferents and their Relations to Airway Sensitivity. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2011, 10, 18-30.	1.1	2
87	Role of the transient receptor potential vanilloid 1 in inflammation and sepsis. Journal of Inflammation Research, 2011, 4, 67.	1.6	42
88	Role of Myeloid-Derived Suppressor Cells in Amelioration of Experimental Autoimmune Hepatitis Following Activation of TRPV1 Receptors by Cannabidiol. PLoS ONE, 2011, 6, e18281.	1.1	103
89	A "Cute" Desensitization of TRPV1. Current Pharmaceutical Biotechnology, 2011, 12, 122-129.	0.9	76
90	TRPM8 acute desensitization is mediated by calmodulin and requires PIP ₂ : distinction from tachyphylaxis. Journal of Neurophysiology, 2011, 106, 3056-3066.	0.9	51
91	Alcohol-Binding Sites in Distinct Brain Proteins: The Quest for Atomic Level Resolution. Alcoholism: Clinical and Experimental Research, 2011, 35, no-no.	1.4	41
92	Transient receptor potential vanilloid 1 channels modulate the synaptic effects of TNF-α and of IL-1β in experimental autoimmune encephalomyelitis. Neurobiology of Disease, 2011, 43, 669-677.	2.1	56
93	Tolerability of NGX-4010, a capsaicin 8% dermal patch, following pretreatment with lidocaine 2.5%/prilocaine 2.5% cream in patients with post-herpetic neuralgia. BMC Anesthesiology, 2011, 11, 25.	0.7	27

#	Article	IF	CITATIONS
94	Calcium-dependent decrease in the single-channel conductance of TRPV1. Pflugers Archiv European Journal of Physiology, 2011, 462, 681-691.	1.3	26
95	Characterization of calmodulin binding domains in TRPV2 and TRPV5 C-tails. Amino Acids, 2011, 40, 741-748.	1.2	45
96	AKAP150-Mediated TRPV1 Sensitization is Disrupted by Calcium/Calmodulin. Molecular Pain, 2011, 7, 1744-8069-7-34.	1.0	17
97	A fast solution switching system with temperature control for single cell measurements. Journal of Neuroscience Methods, 2011, 199, 35-42.	1.3	3
98	TRPV1 Signaling: Mechanistic Understanding and Therapeutic Potential. Current Topics in Medicinal Chemistry, 2011, 11, 2180-2191.	1.0	22
99	TRP Channel Gating Physiology. Current Topics in Medicinal Chemistry, 2011, 11, 2131-2150.	1.0	41
100	C-terminal Dimerization Activates the Nociceptive Transduction Channel Transient Receptor Potential Vanilloid 1. Journal of Biological Chemistry, 2011, 286, 40601-40607.	1.6	28
101	Role of Transient Receptor Potential Vanilloid 1 in Inflammation and Autoimmune Diseases. Pharmaceuticals, 2012, 5, 837-852.	1.7	45
102	Calmodulin and S100A1 Protein Interact with N Terminus of TRPM3 Channel. Journal of Biological Chemistry, 2012, 287, 16645-16655.	1.6	43
103	Distinct properties of Ca2+–calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. Journal of General Physiology, 2012, 140, 541-555.	0.9	94
104	Agonist- and Ca2+-dependent Desensitization of TRPV1 Channel Targets the Receptor to Lysosomes for Degradation. Journal of Biological Chemistry, 2012, 287, 19462-19471.	1.6	114
105	Structural and Biochemical Consequences of Disease-Causing Mutations in the Ankyrin Repeat Domain of the Human TRPV4 Channel. Biochemistry, 2012, 51, 6195-6206.	1.2	84
106	6.4 Biophysics of TRP Channels. , 2012, , 68-107.		2
107	TRP-Mediated Cytoskeletal Reorganization: Implications for Disease and Drug Development. Methods in Pharmacology and Toxicology, 2012, , 13-39.	0.1	3
108	TRPV1 as a Polymodal Sensor: Potential to Discover TRPV1 Antagonists Selective for Specific Activating Modalities. Methods in Pharmacology and Toxicology, 2012, , 221-235.	0.1	1
109	Integrative Binding Sites within Intracellular Termini of TRPV1 Receptor. PLoS ONE, 2012, 7, e48437.	1.1	16
110	TRPV1 in Cell Signaling: Molecular Mechanisms of Function and Modulation. , 2012, , 69-102.		1
111	Calcium influx through the TRPV1 channel of endothelial cells (ECs) correlates with a stronger adhesion between monocytes and ECs. Advances in Medical Sciences, 2012, 57, 224-229.	0.9	19

#	Article	IF	CITATIONS
112	Phosphoinositide Sensitivity of Ion Channels, a Functional Perspective. Sub-Cellular Biochemistry, 2012, 59, 289-333.	1.0	33
113	Functional interactions between NMDA receptors and TRPV1 in trigeminal sensory neurons mediate mechanical hyperalgesia in the rat masseter muscle. Pain, 2012, 153, 1514-1524.	2.0	64
114	Effects of TRPV4 cation channel activation on the primary bladder afferent activities of the rat. Neurourology and Urodynamics, 2012, 31, 148-155.	0.8	60
115	Functionally Important Amino Acid Residues in the Transient Receptor Potential Vanilloid 1 (TRPV1) Ion Channel - An Overview of the Current Mutational Data. Molecular Pain, 2013, 9, 1744-8069-9-30.	1.0	68
116	Artemin, a Glial Cell Line-Derived Neurotrophic Factor Family Member, Induces TRPM8-Dependent Cold Pain. Journal of Neuroscience, 2013, 33, 12543-12552.	1.7	96
117	Calmodulin inhibitors suppress calcium signaling from serotonin receptors in smooth muscle cells and abolish vasoconstrictive response on intravenous introduction of serotonin. Biology Bulletin, 2013, 40, 377-385.	0.1	1
118	TRP Channels and Pain. Annual Review of Cell and Developmental Biology, 2013, 29, 355-384.	4.0	927
119	TRP channels and analgesia. Life Sciences, 2013, 92, 415-424.	2.0	105
120	Regulation of transient receptor potential channels by the phospholipase C pathway. Advances in Biological Regulation, 2013, 53, 341-355.	1.4	59
121	Carboxyl-terminal Domain of Transient Receptor Potential Vanilloid 1 Contains Distinct Segments Differentially Involved in Capsaicin- and Heat-induced Desensitization. Journal of Biological Chemistry, 2013, 288, 35690-35702.	1.6	38
122	Transient Receptor Potentials (TRPs) and Anaphylaxis. Current Allergy and Asthma Reports, 2013, 13, 93-100.	2.4	13
123	The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1). Journal of Physiology, 2013, 591, 3109-3121.	1.3	91
124	Molecular Mechanism of TRP Channels. , 2013, 3, 221-242.		284
125	A study to investigate capsaicin-induced pressure response in vagotomized rats. Indian Journal of Pharmacology, 2013, 45, 365.	0.4	4
126	Novel Methodology to Identify TRPV1 Antagonists Independent of Capsaicin Activation. Journal of Biomolecular Screening, 2013, 18, 544-555.	2.6	9
127	Coarse Architecture of the Transient Receptor Potential Vanilloid 1 (TRPV1) Ion Channel Determined by Fluorescence Resonance Energy Transfer. Journal of Biological Chemistry, 2013, 288, 29506-29517.	1.6	40
128	Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization. American Journal of Physiology - Renal Physiology, 2013, 305, G638-G648.	1.6	31
130	Subgroup-Elimination Transcriptomics Identifies Signaling Proteins that Define Subclasses of TRPV1-Positive Neurons and a Novel Paracrine Circuit. PLoS ONE, 2014, 9, e115731.	1.1	37

#	Article	IF	CITATIONS
131	TRPV1. Handbook of Experimental Pharmacology, 2014, 222, 207-245.	0.9	137
132	Annexin 1: A glucocorticoidâ€inducible protein that modulates inflammatory pain. European Journal of Pain, 2014, 18, 338-347.	1.4	25
133	IB4â€binding sensory neurons in the adult rat express a novel 3′ UTRâ€extended isoform of <i>CaMK4</i> that is associated with its localization to axons. Journal of Comparative Neurology, 2014, 522, 308-336.	0.9	17
134	Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, 2014, , .	0.9	24
135	Lipid Modulation of Thermal Transient Receptor Potential Channels. Current Topics in Membranes, 2014, 74, 135-180.	0.5	11
136	Chemical composition, antioxidant and antinociceptive properties of <i>Litchi chinensis</i> leaves. Journal of Pharmacy and Pharmacology, 2014, 66, 1796-1807.	1.2	25
137	Capsaicin as a Therapeutic Molecule. , 2014, , .		11
138	Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold. Journal of General Physiology, 2014, 143, 75-90.	0.9	44
139	Probing Structure and Function of Ion Channels Using Limited Proteolysis and Microfluidics. Journal of the American Chemical Society, 2014, 136, 14875-14882.	6.6	3
140	Activation of TRPV1 mediates thymic stromal lymphopoietin release via the Ca ²⁺ /NFAT pathway in airway epithelial cells. FEBS Letters, 2014, 588, 3047-3054.	1.3	29
141	Ca-Activated Chloride Channels. , 2015, , 497-508.		1
142	The pain receptor TRPV1 displays agonist-dependent activation stoichiometry. Scientific Reports, 2015, 5, 12278.	1.6	45
143	Propofol-induced pain sensation involves multiple mechanisms in sensory neurons. Pflugers Archiv European Journal of Physiology, 2015, 467, 2011-2020.	1.3	26
144	The importance of TRPV1-sensitisation factors for the development of neuropathic pain. Molecular and Cellular Neurosciences, 2015, 65, 1-10.	1.0	81
145	Functional diversity and evolutionary dynamics of thermoTRP channels. Cell Calcium, 2015, 57, 214-221.	1.1	65
146	Ca ²⁺ Binding Protein S100A1 Competes with Calmodulin and PIP2 for Binding Site on the C-Terminus of the TPRV1 Receptor. ACS Chemical Neuroscience, 2015, 6, 386-392.	1.7	18
147	Phosphoinositide regulation of TRPV1 revisited. Pflugers Archiv European Journal of Physiology, 2015, 467, 1851-1869.	1.3	71
148	A channelopathy mechanism revealed by direct calmodulin activation of TrpV4. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9400-9405.	3.3	25

#	Article	IF	CITATIONS
149	A combined coarse-grained and all-atom simulation of TRPV1 channel gating and heat activation. Journal of General Physiology, 2015, 145, 443-456.	0.9	37
150	The G Protein–Coupled Receptor–Transient Receptor Potential Channel Axis: Molecular Insights for Targeting Disorders of Sensation and Inflammation. Pharmacological Reviews, 2015, 67, 36-73.	7.1	131
151	TRPV1: A Target for Rational Drug Design. Pharmaceuticals, 2016, 9, 52.	1.7	85
152	Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules, 2016, 21, 844.	1.7	285
153	Identification of FDAâ€approved drugs that target hepatitis B virus transcription. Journal of Viral Hepatitis, 2016, 23, 191-201.	1.0	16
154	Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons. Journal of Physiology, 2016, 594, 1627-1642.	1.3	18
155	Competitive inhibition of TRPV1–calmodulin interaction by vanilloids. FEBS Letters, 2016, 590, 2768-2775.	1.3	8
156	Evolution of Heat Sensors Drove Shifts in Thermosensation between Xenopus Species Adapted to Different Thermal Niches. Journal of Biological Chemistry, 2016, 291, 11446-11459.	1.6	37
157	Transient Receptor Potential Vanilloid 1 Regulates Mitochondrial Membrane Potential and Myocardial Reperfusion Injury. Journal of the American Heart Association, 2016, 5, .	1.6	37
158	Exploring functional roles of TRPV1 intracellular domains with unstructured peptide-insertion screening. Scientific Reports, 2016, 6, 33827.	1.6	10
159	Anti-nociceptive and desensitizing effects of olvanil on capsaicin-induced thermal hyperalgesia in the rat. BMC Pharmacology & Toxicology, 2016, 17, 31.	1.0	17
160	Polymodal Transient Receptor Potential Vanilloid Type 1 Nocisensor. Advances in Protein Chemistry and Structural Biology, 2016, 104, 81-125.	1.0	38
161	Phosphoinositide signaling in somatosensory neurons. Advances in Biological Regulation, 2016, 61, 2-16.	1.4	18
162	A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory. Channels, 2016, 10, 20-32.	1.5	5
163	Presynaptic inhibition of transient receptor potential vanilloid type 1 (TRPV1) receptors by noradrenaline in nociceptive neurons. Journal of Physiology, 2017, 595, 2639-2660.	1.3	26
164	Full-Spectral Multiplexing of Bioluminescence Resonance Energy Transfer in Three TRPV Channels. Biophysical Journal, 2017, 112, 87-98.	0.2	16
165	Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temperature, 2017, 4, 141-152.	1.7	42
166	Ephedra Herb extract activates/desensitizes transient receptor potential vanilloid 1 and reduces capsaicin-induced pain. Journal of Natural Medicines, 2017, 71, 105-113.	1.1	10

#	Article	IF	CITATIONS
167	TRPV1 Channels in Immune Cells and Hematological Malignancies. Advances in Pharmacology, 2017, 79, 173-198.	1.2	41
168	Mobility disorders and pain, interrelations that need new research concepts and advanced clinical commitments. European Journal of Translational Myology, 2017, 27, 7179.	0.8	18
169	Sensory Stimulation Treatments for Oropharyngeal Dysphagia. Medical Radiology, 2018, , 763-779.	0.0	4
170	KChIP3 N-Terminal 31-50 Fragment Mediates Its Association with TRPV1 and Alleviates Inflammatory Hyperalgesia in Rats. Journal of Neuroscience, 2018, 38, 1756-1773.	1.7	22
171	Heat activation is intrinsic to the pore domain of TRPV1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E317-E324.	3.3	55
172	Capsaicin prevents mitochondrial damage, protects cardiomyocytes subjected to anoxia/reoxygenation injury mediated by 14-3-3î-/Bcl-2. European Journal of Pharmacology, 2018, 819, 43-50.	1.7	31
173	Identification of clustered phosphorylation sites in PKD2L1: how PKD2L1 channel activation is regulated by cyclic adenosine monophosphate signaling pathway. Pflugers Archiv European Journal of Physiology, 2018, 470, 505-516.	1.3	7
174	Acute effect of different concentrations of cayenne pepper cataplasm on sensory-motor functions and serum levels of inflammation-related biomarkers in healthy subjects. European Journal of Translational Myology, 2018, 28, 7333.	0.8	5
175	Human carbonic anhydrase-8 AAV8 gene therapy inhibits nerve growth factor signaling producing prolonged analgesia and anti-hyperalgesia in mice. Gene Therapy, 2018, 25, 297-311.	2.3	6
176	Ca2+ Regulation of TRP Ion Channels. International Journal of Molecular Sciences, 2018, 19, 1256.	1.8	63
177	Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants, 2018, 7, 93.	2.2	71
178	Involvement of TRPV1 Channels in Energy Homeostasis. Frontiers in Endocrinology, 2018, 9, 420.	1.5	78
179	Verification and spatial mapping of TRPV1 and TRPV4 expression in the embryonic and adult mouse lens. Experimental Eye Research, 2019, 186, 107707.	1.2	28
180	Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells, 2019, 8, 1232.	1.8	54
181	Nitric oxide upregulates microglia phagocytosis and increases transient receptor potential vanilloid type 2 channel expression on the plasma membrane. Glia, 2019, 67, 2294-2311.	2.5	23
182	Ligands Exert Biased Activity to Regulate Sigma 1 Receptor Interactions With Cationic TRPA1, TRPV1, and TRPM8 Channels. Frontiers in Pharmacology, 2019, 10, 634.	1.6	18
183	Channels. , 2019, , 91-109.		0
184	Photostimulation and thermotaxis of sperm: Overview and practical implications in porcine reproduction. Theriogenology, 2019, 137, 8-14.	0.9	10

#	Article	IF	CITATIONS
185	Protein Structure and Modeling. , 2019, , .		3
186	The Role of Toxins in the Pursuit for Novel Analgesics. Toxins, 2019, 11, 131.	1.5	25
187	Long-Term Diabetic Microenvironment Augments the Decay Rate of Capsaicin-Induced Currents in Mouse Dorsal Root Ganglion Neurons. Molecules, 2019, 24, 775.	1.7	7
188	Partners in Crime: Towards New Ways of Targeting Calcium Channels. International Journal of Molecular Sciences, 2019, 20, 6344.	1.8	6
189	The Contribution of the Ankyrin Repeat Domain of TRPV1 as a Thermal Module. Biophysical Journal, 2020, 118, 836-845.	0.2	23
190	Red LED Light Acts on the Mitochondrial Electron Chain of Mammalian Sperm via Light-Time Exposure-Dependent Mechanisms. Cells, 2020, 9, 2546.	1.8	12
191	TRPV1 Channel: A Noxious Signal Transducer That Affects Mitochondrial Function. International Journal of Molecular Sciences, 2020, 21, 8882.	1.8	20
192	TRP Channels Role in Pain Associated With Neurodegenerative Diseases. Frontiers in Neuroscience, 2020, 14, 782.	1.4	46
193	Sustained laryngeal transient receptor potential vanilloid 1 activation inhibits mechanically induced swallowing in anesthetized rats. American Journal of Physiology - Renal Physiology, 2020, 319, G412-G419.	1.6	2
194	6-Paradol and its glucoside improve memory disorder in mice. Food and Function, 2020, 11, 9892-9902.	2.1	2
195	Pepper. , 2020, , 223-238.		6
196	The role of Piper chaba Hunt. and its pure compound, piperine, on TRPV1 activation and adjuvant effect. BMC Complementary Medicine and Therapies, 2020, 20, 134.	1.2	7
197	Extracellular-Ca2+-Induced Decrease in Small Molecule Electrotransfer Efficiency: Comparison between Microsecond and Nanosecond Electric Pulses. Pharmaceutics, 2020, 12, 422.	2.0	9
198	TRPV1: Structure, Endogenous Agonists, and Mechanisms. International Journal of Molecular Sciences, 2020, 21, 3421.	1.8	71
199	Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. , 2020, 208, 107474.		83
200	Lack of relationship between epidermal denervation by capsaicin and incisional pain behaviours: A laser scanning confocal microscopy study in rats. European Journal of Pain, 2020, 24, 1197-1208.	1.4	9
201	Proximal C-Terminus Serves as a Signaling Hub for TRPA1 Channel Regulation via Its Interacting Molecules and Supramolecular Complexes. Frontiers in Physiology, 2020, 11, 189.	1.3	14
202	TRPV1-Targeted Drugs in Development for Human Pain Conditions Drugs 2021 81 7-27	40	91 _

		LPORT	
#	Article	IF	CITATIONS
203	FXYD6 promotes thermal nociception by regulating TRPV1. Molecular Pain, 2021, 17, ???.	1.0	1
204	Anti-Inflammatory and Analgesic Effects of TRPV1 Polypeptide Modulator APHC3 in Models of Osteo- and Rheumatoid Arthritis. Marine Drugs, 2021, 19, 39.	2.2	19
205	The distribution of the iron oxide nanoparticles modified with polyethylene glycol in rat brains. Materials Chemistry and Physics, 2021, 260, 124108.	2.0	3
206	Beyond Neuronal Heat Sensing: Diversity of TRPV1 Heat-Capsaicin Receptor-Channel Functions. Frontiers in Cellular Neuroscience, 2020, 14, 612480.	1.8	32
207	The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. , 2021, 11, 1831-1869.		17
208	Role and Modulation of TRPV1 in Mammalian Spermatozoa: An Updated Review. International Journal of Molecular Sciences, 2021, 22, 4306.	1.8	12
209	Effects of capsaicin on laying performance, follicle development, and ovarian antioxidant capacity in aged laying ducks. Poultry Science, 2021, 100, 100901.	1.5	9
210	Prodromal sensory neuropathy in <i>Pink1^{â^`/â^`}SNCAsup>A53T</i> double mutant Parkinson mice. Neuropathology and Applied Neurobiology, 2021, 47, 1060-1079.	1.8	8
211	TRPV1: Role in Skin and Skin Diseases and Potential Target for Improving Wound Healing. International Journal of Molecular Sciences, 2021, 22, 6135.	1.8	42
212	High-Throughput Screening of TRPV1 Ligands in the Light of the Bioluminescence Resonance Energy Transfer Technique. Molecular Pharmacology, 2021, 100, 237-257.	1.0	6
213	Varied temporal expression patterns of trigeminal TRPA1 and TRPV1 and the neuropeptide CGRP during orthodontic force-induced pain. Archives of Oral Biology, 2021, 128, 105170.	0.8	7
214	Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation. Journal of Molecular Biology, 2021, 433, 166931.	2.0	31
215	The mechanism of Annexin A1 to modulate TRPV1 and nociception in dorsal root ganglion neurons. Cell and Bioscience, 2021, 11, 167.	2.1	16
216	The Calcium Channel α2δ1 Subunit: Interactional Targets in Primary Sensory Neurons and Role in Neuropathic Pain. Frontiers in Cellular Neuroscience, 2021, 15, 699731.	1.8	9
217	Activity of the yeast vacuolar TRP channel TRPY1 is inhibited by Ca2+–calmodulin binding. Journal of Biological Chemistry, 2021, 297, 101126.	1.6	6
218	Pharmacological use of transient receptor potential (TRP) ion channel agonists in neurological disease and aging. , 2021, , 343-353.		0
219	Vanilloid (TRPV1) and Other Transient Receptor Potential Channels. , 0, , 175-213.		1
222	TRPV1 as a Molecular Transducer for Salt and Water Homeostasis. , 2007, , 110-132.		1

#	Article	IF	Citations
223	Pharmacology of the Capsaicin Receptor, Transient Receptor Potential Vanilloid Type-1 Ion Channel. , 2014, 68, 39-76.		44
224	Nociception and TRP Channels. , 2007, , 489-505.		50
225	TRPV2. Handbook of Experimental Pharmacology, 2014, 222, 247-272.	0.9	46
227	Structural Insights into the Function of TRP Channels. Frontiers in Neuroscience, 2006, , 349-360.	0.0	3
228	TRPV1 Receptors and Signal Transduction. Frontiers in Neuroscience, 2006, , 69-84.	0.0	27
229	Understanding diverse TRPV1 signaling – an update. F1000Research, 2019, 8, 1978.	0.8	8
230	Interdomain Interactions Control Ca2+-Dependent Potentiation in the Cation Channel TRPV4. PLoS ONE, 2010, 5, e10580.	1.1	42
231	Nociception and TRP Channels. CNS and Neurological Disorders, 2004, 3, 479-485.	4.3	112
232	Molecular Mechanisms of TRPV1 Channel Activation. Open Pain Journal, 2010, 3, 68-81.	0.4	17
233	TRPV1 Antagonists as Analgesic Agents. Open Pain Journal, 2013, 6, 108-118.	0.4	29
234	Calcium-dependent desensitization of vanilloid receptor TRPV1: a mechanism possibly involved in analgesia induced by topical application of capsaicin. Physiological Research, 2008, 57 Suppl 3, S59-S68.	0.4	102
235	Two Vanilloid Ligand Bindings Per Channel Are Required to Transduce Capsaicin-Activating Stimuli. Frontiers in Molecular Neuroscience, 2019, 12, 302.	1.4	3
236	Molecular Mechanisms of Temperature Gating in TRP Channels. , 2017, , 11-25.		10
237	Activity and Ca2+ regulate the mobility of TRPV1 channels in the plasma membrane of sensory neurons. ELife, 2015, 4, e03819.	2.8	15
238	Irreversible temperature gating in trpv1 sheds light on channel activation. ELife, 2018, 7, .	2.8	42
239	New capsaicin analogs as molecular rulers to define the permissive conformation of the mouse TRPV1 ligand-binding pocket. ELife, 2020, 9, .	2.8	10
240	TRPV1 in gut function, abdominal pain and functional bowel disorders. , 2005, , 147-165.		0
241	Signal Molecules and Calcium. , 2009, , 489-508.		0

C		D
	ON	REDUDT
CITAT		KLFOKI

#	Article	IF	CITATIONS
242	Advances in Research on Pacemaking Function of Interstitial Cell of Cajal in Gastrointestinal Tract. , 0, , .		0
243	Biophysical and Molecular Features of Thermosensitive TRP Channels Involved in Sensory Transduction. , 2015, , 1-39.		4
244	Molecular Mechanisms of Temperature Gating in TRP Channels. Frontiers in Neuroscience, 2017, , 11-26.	0.0	1
245	TRP Channels: What Do They Look Like?. Frontiers in Neuroscience, 2017, , 1-10.	0.0	0
248	Polymodal Activation and Desensitization of TRPV1 Receptor in Human Odontoblasts-Like Cells with Eugenol. International Journal of Dentistry, 2020, 2020, 1-14.	0.5	1
249	Activation and Desensitization of TRPV1 Channels under the Influence of Capsaicin. Neurophysiology, 2020, 52, 256-260.	0.2	5
252	Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis. Biochemistry, 0, , .	0.8	1
253	Capsaicin, a Phytochemical From Chili Pepper, Alleviates the Ultraviolet Irradiation-Induced Decline of Collagen in Dermal Fibroblast via Blocking the Generation of Reactive Oxygen Species. Frontiers in Pharmacology, 2022, 13, 872912.	1.6	4
254	TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. , 2022, 237, 108164.		9
255	TRP Channels as Molecular Targets to Relieve Cancer Pain. Biomolecules, 2022, 12, 1.	1.8	27
256	Transient Receptor Potential Vanilloid 1 Function at Central Synapses in Health and Disease. Frontiers in Cellular Neuroscience, 2022, 16, 864828.	1.8	9
260	TRP channels: a journey towards a molecular understanding of pain. Nature Reviews Neuroscience, 2022, 23, 596-610.	4.9	24
261	The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review. International Journal of Environmental Research and Public Health, 2022, 19, 11187.	1.2	6
262	Cold avoidance and heat pain hypersensitivity in neuronal nucleoredoxin knockout mice. Free Radical Biology and Medicine, 2022, 192, 84-97.	1.3	1
263	Vasopressin regulation of maternal body fluid balance in pregnancy and lactation: A role for TRPV channels?. Molecular and Cellular Endocrinology, 2022, 558, 111764.	1.6	3
264	<i>N</i> -Methylamide-structured SB366791 derivatives with high TRPV1 antagonistic activity: toward PET radiotracers to visualize TRPV1. RSC Medicinal Chemistry, 2022, 13, 1197-1204.	1.7	2
265	TRPV1 in chronic pruritus and pain: Soft modulation as a therapeutic strategy. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	12
266	Mutagenesis studies of TRPV1 subunit interfaces informed by genomic variant analysis. Biophysical Journal, 2023, 122, 322-332.	0.2	0

#	Article	IF	CITATIONS
267	The Preemptive Analgesic Effect of Capsaicin Involves Attenuations of Epidermal Keratinocytes Proliferation and Expression of Pro-Inflammatory Mediators After Plantar Incision in Rats. Journal of Pain Research, 0, Volume 16, 141-149.	0.8	1
268	Molecular Physiology of TRPV Channels: Controversies and Future Challenges. Annual Review of Physiology, 2023, 85, 293-316.	5.6	19
269	Effect of Dimethyl Sulfoxide on the Nociceptive Response Induced by the TRPV1-Agonist Capsaicin in Mice. Pharmaceutical Chemistry Journal, 2023, 56, 1439-1442.	0.3	0