The influence of molecular weight, crosslinking and couproduction by macrophages in response to ultra high m particles

Biomaterials

25, 3511-3522

DOI: 10.1016/j.biomaterials.2003.10.054

Citation Report

#	Article	IF	CITATIONS
1	Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nature Materials, 2004, 3, 829-836.	13.3	528
2	Wear, Debris, and Biologic Activity of Cross-linked Polyethylene in the Knee. Clinical Orthopaedics and Related Research, 2004, 428, 114-119.	0.7	159
3	Life Cycle Aspects of Total Replacement Hip Joints. Tribology and Interface Engineering Series, 2005, , 147-160.	0.0	1
4	Wear evaluation of a cross-linked medical grade polyethylene by ultra thin layer activation compared to gravimetry. Nuclear Instruments & Methods in Physics Research B, 2005, 227, 597-602.	0.6	10
5	The role of macrophages in osteolysis of total joint replacement. Biomaterials, 2005, 26, 1271-1286.	5.7	594
6	Wear behaviour of cross-linked polyethylene assessed in vitro under severe conditions. Biomaterials, 2005, 26, 3259-3267.	5.7	99
7	Does endotoxin contribute to aseptic loosening of orthopedic implants?. Journal of Biomedical Materials Research Part B, 2005, 72B, 179-185.	3.0	136
8	Particle analysis for the determination of UHMWPE wear. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 325-337.	1.6	52
9	The osteolytic response of macrophages to challenge with particles of Simplex P, Endurance, Palacos R, and Vertebroplastic bone cement particlesin vitro. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 75B, 210-220.	1.6	10
11	Abrasive Wear of Ultra-high Molecular Weight Polyethylene. , 2006, , 1-8.		4
12	In Vitro Study of Backside Wear Mechanisms on Mobile Knee-Bearing Components. Journal of Tribology, 2006, 128, 275-281.	1.0	15
13	2006 FRANK STINCHFIELD AWARD: Grafting of Biocompatible Polymer for Longevity of Artificial Hip Joints. Clinical Orthopaedics and Related Research, 2006, 453, 58-63.	0.7	50
14	PRESIDENTIAL GUEST LECTURE: Tribology of Alternative Bearings. Clinical Orthopaedics and Related Research, 2006, 453, 25-34.	0.7	183
15	Wear behaviour, fluorescence and SEM investigations on nanocomposite zirconia-toughened alumina. Journal of Materials Science, 2006, 41, 5310-5316.	1.7	12
16	Preparation of UHMWPE particles and establishment of inverted macrophage cell model to investigate wear particles induced bioactivites. Journal of Proteomics, 2006, 68, 175-187.	2.4	39
17	Isolation and characterization of UHMWPE wear particles down to ten nanometers in size fromin vitro hip and knee joint simulators. Journal of Biomedical Materials Research - Part A, 2006, 78A, 473-480.	2.1	91
18	Advanced nanocomposite materials for orthopaedic applications. I. A long-termin vitro wear study of zirconia-toughened alumina. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 76-82.	1.6	50
19	Metal-on-metal bearings surfaces: Materials, manufacture, design, optimization, and alternatives. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2006, 220, 119-133	1.0	64

#	Article	IF	CITATIONS
20	Highly Crosslinked Polyethylenes in Hip Replacements: Improved Wear Performance or Paradox?. Tribology Transactions, 2007, 50, 277-290.	1.1	29
21	Very low wear of non-remelted highly cross-linked polyethylene cups: An RSA study lasting up to 6 years. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 78, 739-745.	1.2	73
22	Inhibition of the PI3K-Akt Signaling Pathway Reduces Tumor Necrosis Factor-α Production in Response to Titanium Particles in Vitro. Journal of Bone and Joint Surgery - Series A, 2007, 89, 1019-1027.	1.4	42
23	Wear and biological activity of highly crosslinked polyethylene in the hip under low serum protein concentrations. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2007, 221, 1-10.	1.0	66
24	Aromatic Thermosetting Copolyester (ATSP)/UHMWPE Blends with Improved Wear Properties and Biocompatibility. Materials Research Society Symposia Proceedings, 2007, 1063, 1.	0.1	1
25	The Biology of Aseptic Osteolysis. Clinical Orthopaedics and Related Research, 2007, 460, 240-252.	0.7	284
26	Incidence and Volume of Pelvic Osteolysis at Early Follow-up with Highly Cross-linked and Noncross-linked Polyethylene. Journal of Arthroplasty, 2007, 22, 134-139.	1.5	69
27	Tribological properties and structure of ultra-high molecular weight polyethylene after gamma irradiation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221, 315-320.	1.0	8
28	Simulation of polyethylene wear in ankle joint prostheses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 162-167.	1.6	32
30	The local inflammatory environment and microorganisms in "aseptic―loosening of hip prostheses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 291-301.	1.6	42
31	"Severe―wear challenge to 36 mm mechanically enhanced highly crosslinked polyethylene hip liners. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 253-263.	1.6	20
32	Highly Crosslinked vs Conventional Polyethylene Particles—An In Vitro Comparison of Biologic Activities. Journal of Arthroplasty, 2008, 23, 721-731.	1.5	70
33	Clinical Wear Measurement on Low Contact Stress Rotating Platform Knee Bearings. Journal of Arthroplasty, 2008, 23, 431-440.	1.5	54
34	Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrieved <i>in vivo</i> . Journal of Bone and Joint Surgery: British Volume, 2008, 90-B, 1106-1113.	3.4	61
35	Size Effects of Nanomaterials on Lung Inflammation and Coagulatory Disturbance. International Journal of Immunopathology and Pharmacology, 2008, 21, 197-206.	1.0	47
36	Sterilization of joint replacement materials. , 2008, , 407-427.		2
37	Numerical Investigations of Mechanical Responses, Friction and the Formation of Debris of UHMWPE in Total Joint Replacements. , 2009, , .		0
39	Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers. Materials Chemistry and Physics, 2009, 115, 404-412.	2.0	147

	CHATON R	LFORT	
#	Article	IF	CITATIONS
40	Highly Crosslinked Vs Conventional Polyethylene Particles. Journal of Arthroplasty, 2009, 24, 117-124.	1.5	43
41	Two-Year Radiostereometric Analysis Evaluation of Femoral Head Penetration in a Challenging Population of Young Total Hip Arthroplasty Patients. Journal of Arthroplasty, 2009, 24, 9-14.	1.5	20
42	Effects of gold coating on experimental implant fixation. Journal of Biomedical Materials Research - Part A, 2009, 88A, 274-280.	2.1	19
43	Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. Journal of Materials Science: Materials in Medicine, 2009, 20, 163-170.	1.7	103
44	Wear is Reduced in THA Performed with Highly Cross-linked Polyethylene. Clinical Orthopaedics and Related Research, 2009, 467, 1765-1772.	0.7	48
45	Wear resistance of artificial hip joints with poly(2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: Comparisons with the effect of polyethylene cross-linking and ceramic femoral heads. Biomaterials, 2009, 30, 2995-3001.	5.7	98
46	Characterization of UHMWPE Wear Particles. , 2009, , 409-422.		1
47	Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials, 2010, 31, 3479-3491.	5.7	324
48	Early Reactive Synovitis and Osteolysis after Total Hip Arthroplasty. Clinical Orthopaedics and Related Research, 2010, 468, 3278-3285.	0.7	41
49	Surface grafting of biocompatible phospholipid polymer MPC provides wear resistance of tibial polyethylene insert in artificial knee joints. Osteoarthritis and Cartilage, 2010, 18, 1174-1182.	0.6	39
50	Distinct immunohistomorphologic changes in periprosthetic hip tissues from historical and highly crosslinked UHMWPE implant retrievals. Journal of Biomedical Materials Research - Part A, 2010, 95A, 68-78.	2.1	15
51	Polyethylene wear debris produced in a knee simulator model: Effect of crosslinking and counterface material. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 78-85.	1.6	13
52	The relationship of polyethylene wear to particle size, distribution, and number: A possible factor explaining the risk of osteolysis after hip arthroplasty. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94B, 171-177.	1.6	36
53	Impactability and timeâ€dependent mechanical properties of porous titanium particles for application in impaction grafting. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 131-140.	1.6	9
54	Biotribology of alternative bearing materials for unicompartmental knee arthroplasty. Acta Biomaterialia, 2010, 6, 3601-3610.	4.1	62
55	Alternative bearing materials for intervertebral disc arthroplasty. Biomaterials, 2010, 31, 523-531.	5.7	84
56	HIGHLY CROSSLINKED POLYETHYLENE: A COMPARATIVE STUDY BETWEEN TWO UHMWPES WITH DISTINCT MOLECULAR WEIGHT. Journal of Mechanics in Medicine and Biology, 2010, 10, 95-111.	0.3	2
57	Tribological characteristics of polyethylene bearings of knee prostheses. International Journal of Surface Science and Engineering, 2010, 4, 166.	0.4	3

#	Article	IF	CITATIONS
58	COMBINED EFFECTS OF POLYETHYLENE WEAR PARTICLE SIZE AND DOSAGE ON MACROPHAGE RESPONSES. Biomedical Engineering - Applications, Basis and Communications, 2010, 22, 279-291.	0.3	1
59	Cross-linked <i>versus</i> conventional polyethylene for total hip replacement. Journal of Bone and Joint Surgery: British Volume, 2011, 93-B, 593-600.	3.4	99
60	Biological Effects of Wear Debris from Joint Arthroplasties. , 2011, , 79-87.		2
61	Polyethylene and metal wear particles: characteristics and biological effects. Seminars in Immunopathology, 2011, 33, 257-271.	2.8	73
62	Preparation of ultra high molecular weight polyethylene with MgCl2/TiCl4 catalyst: effect of internal and external donor on molecular weight and molecular weight distribution. Polymer Bulletin, 2011, 66, 627-635.	1.7	21
63	Vitamin E-stabilized UHMWPE for Total Joint Implants: A Review. Clinical Orthopaedics and Related Research, 2011, 469, 2286-2293.	0.7	238
64	Detailed three-dimensional size and shape characterisation of UHMWPE wear debris. Wear, 2011, 270, 455-463.	1.5	15
65	Tribological Behavior of High Density Polyethylene Nanocomposites With Silane Treated Carbon Nanofibers. , 2011, , .		1
66	Biological effects of wear particles generated in total joint replacements: trends and future prospects. Tribology - Materials, Surfaces and Interfaces, 2012, 6, 39-52.	0.6	16
67	Evaluation of different methods to eliminate adherent endotoxin of polyethylene wear particles. Wear, 2012, 294-295, 319-325.	1.5	2
68	Orthopedic implant cobaltâ€alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloyâ€based particles <i>in vitro</i> , in human osteoblasts, fibroblasts, and macrophages. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2147-2158.	2.1	99
69	Comparison of the cytotoxic and inflammatory responses of titanium particles with different methods for endotoxin removal in RAW264.7 macrophages. Journal of Materials Science: Materials in Medicine, 2012, 23, 1055-1062.	1.7	16
70	Cold atmospheric pressure gas plasma enhances the wear performance of ultra-high molecular weight polyethylene. Acta Biomaterialia, 2012, 8, 1357-1365.	4.1	30
71	In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 308-317.	1.7	41
72	Total hip arthroplasty: to cement or not to cement the acetabular socket? A critical review of the literature. Archives of Orthopaedic and Trauma Surgery, 2012, 132, 411-427.	1.3	52
73	Study on <i>in vitro</i> release and cell response to alendronate sodiumâ€loaded ultrahigh molecular weight polyethylene loaded with alendronate sodium wear particles to treat the particlesâ€induced osteolysis. Journal of Biomedical Materials Research - Part A, 2013, 101A, 394-403.	2.1	27
74	Biotribology of a new bearing material combination in a rotating hinge knee articulation. Acta Biomaterialia, 2013, 9, 7054-7063.	4.1	41
75	Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management. Inflammopharmacology, 2013, 21, 389-396.	1.9	35

#	Article	IF	CITATIONS
76	Wear performances and wear mechanism study of bulk UHMWPE composites with nacre and CNT fillers and PFPE overcoat. Wear, 2013, 300, 44-54.	1.5	56
77	Establishment of a novel inÂvitro test setup exposing adherent cells to wear particles made of polyethylene. Polymer Testing, 2013, 32, 982-986.	2.3	1
78	Ceramic Debris in Hip Prosthesis: Correlation Between Synovial Fluid and Joint Capsule. Journal of Arthroplasty, 2013, 28, 838-841.	1.5	5
79	How to Measure Wear following Total Hip Arthroplasty. HIP International, 2013, 23, 233-242.	0.9	18
80	Survival rates and causes of revision in cemented primary total knee replacement. Bone and Joint Journal, 2013, 95-B, 636-642.	1.9	102
81	Orthopaedic implant failure: aseptic implant loosening–the contribution and future challenges of mouse models in translational research. Clinical Science, 2014, 127, 277-293.	1.8	48
82	Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 418-426.	1.0	3
83	Cardiovascular biomaterials: when the inflammatory response helps to efficiently restore tissue functionality?. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 253-267.	1.3	29
84	Does cross-linked polyethylene decrease the revision rate of total hip arthroplasty compared with conventional polyethylene? A meta-analysis. Orthopaedics and Traumatology: Surgery and Research, 2014, 100, 745-750.	0.9	38
85	Physical modification of polyetheretherketone for orthopedic implants. Frontiers of Materials Science, 2014, 8, 313-324.	1.1	21
86	How Has the Introduction of New Bearing Surfaces Altered the Biological Reactions to Byproducts of Wear and Modularity?. Clinical Orthopaedics and Related Research, 2014, 472, 3699-3708.	0.7	9
87	The current state of bearing surfaces in total hip replacement. Bone and Joint Journal, 2014, 96-B, 147-156.	1.9	64
88	Integrin-directed modulation of macrophage responses toÂbiomaterials. Biomaterials, 2014, 35, 3504-3515.	5.7	135
90	Dendritic cells enhance UHMWPE wear particle-induced osteoclast differentiation of macrophages. Journal of Biomedical Materials Research - Part A, 2015, 103, 3349-3354.	2.1	11
91	The Effect of Interferon-Î ³ and Zoledronate Treatment on Alpha-Tricalcium Phosphate/Collagen Sponge-Mediated Bone-Tissue Engineering. International Journal of Molecular Sciences, 2015, 16, 25678-25690.	1.8	7
92	MicroRNA-mediated immune modulation as a therapeutic strategy in host-implant integration. Advanced Drug Delivery Reviews, 2015, 88, 92-107.	6.6	17
93	Radiostereometric Analysis Study of Tantalum Compared with Titanium Acetabular Cups and Highly Cross-Linked Compared with Conventional Liners in Young Patients Undergoing Total Hip Replacement. Journal of Bone and Joint Surgery - Series A, 2015, 97, 627-634.	1.4	19
95	Options for Primary Hip Arthroplasty. , 2015, , 207-247.		0

#	Article	IF	CITATIONS
97	Particle Disease: A Current Review of the Biological Mechanisms in Periprosthetic Osteolysis After Hip Arthroplasty. The Open Orthopaedics Journal, 2016, 10, 241-251.	0.1	61
98	Proâ€osteoclastic <i>in vitro</i> effect of Polyethyleneâ€like nanoparticles: Involvement in the pathogenesis of implant aseptic loosening. Journal of Biomedical Materials Research - Part A, 2016, 104, 2649-2657.	2.1	10
99	Highly cross-linked polyethylene decreases the rate of revision of total hip arthroplasty compared with conventional polyethylene at 13 years' follow-up. Bone and Joint Journal, 2016, 98-B, 28-32.	1.9	117
101	The biological response of macrophages to PMMA particles with different morphology and size. Biosurface and Biotribology, 2016, 2, 114-120.	0.6	15
103	Effect of particle size on biological response by human monocyte-derived macrophages. Biosurface and Biotribology, 2016, 2, 18-25.	0.6	52
104	Pathophysiologic Reactions to UHMWPE Wear Particles. , 2016, , 506-530.		1
105	Characterization of UHMWPE Wear Particles. , 2016, , 635-653.		1
106	Long-Term Results of Total Hip Arthroplasty with 28-Millimeter Cobalt-Chromium Femoral Heads on Highly Cross-Linked Polyethylene in Patients 50Years and Less. Journal of Arthroplasty, 2016, 31, 162-167.	1.5	55
107	7.6 Biological Effects of Wear Debris From Joint Arthroplasties â~†. , 2017, , 92-105.		0
108	Supramacroparticulate PE in 6 different joint endoprostheses localisations: An indicator for PE damage?. Pathology Research and Practice, 2017, 213, 987-996.	1.0	7
109	A novel alginate-encapsulated system to study biological response to critical-sized wear particles of UHMWPE loaded with alendronate sodium. Materials Science and Engineering C, 2017, 79, 679-686.	3.8	10
110	The Relationship Between Polyethylene Wear and Periprosthetic Osteolysis in Total Hip Arthroplasty at 12 Years in a Randomized Controlled Trial Cohort. Journal of Arthroplasty, 2017, 32, 1186-1191.	1.5	55
111	Particles and Ions Generated in Total Hip Joint Prostheses: In Vitro Wear Test Results of UHMWPE and XLPE Acetabular Components. Tribology Letters, 2017, 65, 1.	1.2	7
112	RAW 264.7 coâ€cultured with ultraâ€high molecular weight polyethylene particles spontaneously differentiate into osteoclasts: an <i>in vitro</i> model of periprosthetic osteolysis. Journal of Biomedical Materials Research - Part A, 2017, 105, 510-520.	2.1	16
113	Macrophage integrins modulate response to ultra-high molecular weight polyethylene particles and direct particle-induced osteolysis. Biomaterials, 2017, 115, 128-140.	5.7	60
114	Mechanical tests, wear simulation and wear particle analysis of carbon-based nanomultilayer coatings on Ti6Al4V alloys as hip prostheses. RSC Advances, 2018, 8, 6849-6857.	1.7	8
115	El polietileno de alto entrecruzamiento no reduce el desgaste en la artroplastia total de rodilla. Revista Española De CirugÃa Ortopédica Y TraumatologÃa, 2018, 62, 197-203.	0.1	1
116	Amount of TNFâ€Î± released from macrophages reacting with polyethylene particles showed doseâ€dependent relationship to the total surface area of added particles. Biosurface and Biotribology, 2018, 4, 122-127.	0.6	1

#	Article	IF	CITATIONS
117	Cross-linked polyethylene does not reduce wear in total knee arthroplasty. Revista Española De CirugÃa Ortopédica Y TraumatologÃa, 2018, 62, 197-203.	0.1	0
118	Medical-grade ultra-high molecular weight polyethylene: Past, current and future. Materials Science and Technology, 2018, 34, 1940-1953.	0.8	25
119	Lactobacilli can attenuate inflammation in mouse macrophages exposed to polyethylene particles in vitro. BMC Research Notes, 2018, 11, 567.	0.6	0
120	Dysregulated expression of antioxidant enzymes in polyethylene particle-induced periprosthetic inflammation and osteolysis. PLoS ONE, 2018, 13, e0202501.	1.1	11
121	UHMWPE Biomaterials for Joint Implants. Springer Series in Biomaterials Science and Engineering, 2019, , .	0.7	12
122	Biomechanics and Biotribology of UHMWPE Artificial Hip Joints. Springer Series in Biomaterials Science and Engineering, 2019, , 241-286.	0.7	2
123	Advances in Conducting, Biodegradable and Biocompatible Copolymers for Biomedical Applications. Frontiers in Materials, 2019, 6, .	1.2	42
124	Relationship between wear behaviour of ultraâ€highâ€molecularâ€weight polyethylene and surface profile of Co–Cr–Mo alloy in artificial joint. Biosurface and Biotribology, 2019, 5, 1-7.	0.6	6
125	Fifteen-Year Results of Total Hip Arthroplasty With Cobalt-Chromium Femoral Heads on Highly Cross-Linked Polyethylene in Patients 50 Years and Less. Journal of Arthroplasty, 2019, 34, 1143-1149.	1.5	38
126	In vitro and in vivo investigations of a-C/a-C:Ti nanomultilayer coated Ti6Al4V alloy as artificial femoral head. Materials Science and Engineering C, 2019, 99, 816-826.	3.8	10
127	Can the radiopaque marker in surgical swabs scratch orthopaedic implant surfaces?. European Journal of Orthopaedic Surgery and Traumatology, 2019, 29, 383-388.	0.6	0
128	Computed Tomographic Osteolytic Analysis of a First-Generation Remelted Highly Cross-Linked Polyethylene in Total Hip Arthroplasty—At a Minimum of 15-Year Follow-Up. Journal of Arthroplasty, 2020, 35, 1417-1423.	1.5	9
129	Microfluidic Device used for the Secretion of Inflammatory Cytokines from Human Monocyte-Derived Macrophages Stimulated by Ultra-High Molecular Weight Polyethylene Particles. Biotribology, 2020, 23, 100137.	0.9	5
130	Wear and osteolysis outcomes for highly cross-linked polyethylene in primary total hip arthroplasty compared with conventional polyethylene: a 15- to 18-year single-centre follow-up study. HIP International, 2021, 31, 526-532.	0.9	22
131	Quantitative Measurements of Backside Wear in Acetabular Hip Joint Replacement: Conventional Polyethylene Versus Cross-Linked Polyethylene. Materials, 2020, 13, 1854.	1.3	3
132	Incidence and Characteristics of Osteolysis in HXLPE THA at 16-Year Follow up in Patients 50 Years and Less. Journal of Arthroplasty, 2021, 36, 641-646.	1.5	7
133	The polyethylene on bone articulation, as occurs with scapular notching, is associated with osteolytic potential. Seminars in Arthroplasty, 2021, 31, 15-22.	0.3	0
134	Cross-Linked Versus Conventional Polyethylene for Long-Term Clinical Outcomes After Total Hip Arthroplasty: A Systematic Review and Meta-Analysis. Journal of Investigative Surgery, 2021, 34, 307-317.	0.6	17

#	Article	IF	CITATIONS
135	Incidence of Osteolysis and Aseptic Loosening Following Metal-on-Highly Cross-Linked Polyethylene Hip Arthroplasty. Journal of Bone and Joint Surgery - Series A, 2021, 103, 728-740.	1.4	32
136	Broader Insights into Understanding Tumor Necrosis Factor and Neurodegenerative Disease Pathogenesis Infer New Therapeutic Approaches. Journal of Alzheimer's Disease, 2021, 79, 931-948.	1.2	15
137	Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials, 2021, 11, 496.	1.9	300
138	Molecular and Structural Parallels between Gluten Pathogenic Peptides and Bacterial-Derived Proteins by Bioinformatics Analysis. International Journal of Molecular Sciences, 2021, 22, 9278.	1.8	5
139	Vitamin E-enriched polyethylene bearings are not inferior to Arcom bearings in primary total knee arthroplasty at medium-term follow-up. Archives of Orthopaedic and Trauma Surgery, 2021, 141, 1027-1033.	1.3	6
140	Comparison of the Functional Biological Activity and Osteolytic Potential of Ceramic on Ceramic and Cross Linked Polyethylene Bearings in the Hip. , 2005, , 21-24.		3
141	Reacciones a los productos de degradaciÃ ³ n de los implantes articulares. EMC - Aparato Locomotor, 2018, 51, 1-14.	0.1	1
142	Biotribology. , 2006, , 17-1-17-24.		2
143	Highly cross-linked versus conventional polyethylene inserts in total hip arthroplasty, a five-year Roentgen stereophotogrammetric analysis randomised controlled trial. World Journal of Orthopedics, 2020, 11, 442-452.	0.8	5
144	What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles?. Journal of the American Academy of Orthopaedic Surgeons, The, 2008, 16, S42-S48.	1.1	118
145	How has the biologic reaction to wear particles changed with newer bearing surfaces?. Journal of the American Academy of Orthopaedic Surgeons, The, 2008, 16, S49-S55.	1.1	48
146	Response to Ultra-high Molecular Weight Polyethylene Particles. American Journal of Biomedical Engineering, 2012, 1, 7-12.	0.9	4
147	Total Joint Replacement. , 2007, , 1-40.		0
148	Inhibition of the PI3K-Akt Signaling Pathway Reduces Tumor Necrosis Factor-? Production in Response to Titanium Particles in Vitro. Journal of Bone and Joint Surgery - Series A, 2007, 89, 1019-1027.	1.4	0
149	Les polyéthylènes hautement réticulés. , 2008, , 161-178.		1
150	Bearings. , 2011, , 217-223.		0
151	Bearing Surfaces. , 2011, , 133-140.		0
154	UHMWPE wear particles and dendritic cells promote osteoclastogenesis of RAW264.7 cells through RANK-activated NF-κB/MAPK/AKT pathways. International Journal of Clinical and Experimental Pathology, 2017, 10, 9400-9408.	0.5	0

#	Article	IF	CITATIONS
155	Characteristics of Particles and Debris Released after Implantoplasty: A Comparative Study. Materials, 2022, 15, 602.	1.3	6
156	Effect of particle size on in vivo performances of long-acting injectable drug suspension. Journal of Controlled Release, 2022, 341, 533-547.	4.8	17
157	Carcinogenic effects of nanomaterials with an emphasis on nanoplastics. , 2022, , 155-174.		0
158	Evaluation of potential toxicity of polyethylene microplastics on human derived cell lines. Science of the Total Environment, 2022, 838, 156089.	3.9	51
159	Comparisons of Different Bearing Surfaces in Cementless Total Hip Arthroplasty: A Systematic Review and Bayesian Network Analysis. Journal of Arthroplasty, 2023, 38, 600-609.	1.5	4
160	Microchamber device for studying phagocytosis of ultra-high molecular weight polyethylene particles by human monocyte-derived macrophages. Wear, 2023, 523, 204749.	1.5	0
161	Grundlagen des Hüftgelenkersatzes: Implantate und Materialien. Springer Reference Medizin, 2023, , 1-30.	0.0	0