Formation and stability of nano-emulsions

Advances in Colloid and Interface Science 108-109, 303-318

DOI: 10.1016/j.cis.2003.10.023

Citation Report

#	Article	IF	CITATIONS
1	Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, 1, 193-212.	3.3	592
2	Nano-emulsions. Current Opinion in Colloid and Interface Science, 2005, 10, 102-110.	7.4	1,191
3	Colloidal stability by surface modification. Jom, 2005, 57, 52-56.	1.9	25
4	Dielectrophoresis of reverse phase emulsions. IET Nanobiotechnology, 2005, 152, 137.	2.1	4
5	Characterization and Evaluation of Electrolyte Influence on Canola Oil/Water Nanoâ€Emulsion. Journal of Dispersion Science and Technology, 2006, 27, 1009-1014.	2.4	32
6	Microemulsions: A Potential Delivery System for Bioactives in Food. Critical Reviews in Food Science and Nutrition, 2006, 46, 221-237.	10.3	326
7	Formation and Charaterization of Submicrometer Oil-in-Water (O/W) Emulsions, Using High-Energy Emulsification. Industrial & Emulsification. Industrial & Emulsification. Industrial & Emulsification. Industrial & Emulsification.	3.7	56
8	Isolation and characterisation of a novel antibacterial peptide from bovine αS1-casein. International Dairy Journal, 2006, 16, 316-323.	3.0	119
9	Effect of mixing protocol on formation of fine emulsions. Chemical Engineering Science, 2006, 61, 3009-3017.	3.8	52
10	Weight fractions in three-phase emulsions with an L $\hat{l}\pm$ phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 369-376.	4.7	28
11	Stability of cosmetic formulations containing esters of Vitamins E and A: Chemical and physical aspects. International Journal of Pharmaceutics, 2006, 327, 12-16.	5.2	79
12	Theoretical estimation of stability ratios for hexadecane-in-water (H/W) emulsions stabilized with nonylphenol ethoxylated surfactants. Journal of Colloid and Interface Science, 2006, 299, 366-377.	9.4	10
13	Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science, 2006, 303, 557-563.	9.4	268
14	Pegylated Nanocapsules Produced by an Organic Solvent-Free Method: Evaluation of their Stealth Properties. Pharmaceutical Research, 2006, 23, 2190-2199.	3.5	67
15	Aging of oil-in-water emulsions: The role of the oil. Journal of Colloid and Interface Science, 2006, 299, 890-899.	9.4	31
16	Evaporation from a Fragrance Emulsion. Journal of Dispersion Science and Technology, 2006, 27, 573-577.	2.4	3
17	Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Research International, 2007, 40, 862-873.	6.2	94
18	Encapsulation of Nanoparticles of d-Limonene by Spray Drying: Role of Emulsifiers and Emulsifying Technology, 2007, 25, 1069-1079.	3.1	165

#	Article	IF	CITATIONS
19	Evaporation from a Limonene Emulsion. Journal of Dispersion Science and Technology, 2007, 28, 11-20.	2.4	11
20	Positional Control of Superparamagnetic Iron Oxide Nanoparticles in Silica Beads. Advanced Engineering Materials, 2007, 9, 375-380.	3.5	6
21	Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 2007, 82, 478-488.	5.2	425
22	Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 2007, 314, 230-235.	9.4	400
23	A new method for preparation of poly-lauryl acrylate nanoparticles from nanoemulsions obtained by the phase inversion temperature process. Polymers for Advanced Technologies, 2007, 18, 705-711.	3.2	37
24	Preparation of ethyl cellulose nanoparticles from nano-emulsion obtained by inversion at constant temperature. Micro and Nano Letters, 2007, 2, 90.	1.3	15
25	Optimization of nano-emulsions production by microfluidization. European Food Research and Technology, 2007, 225, 733-741.	3.3	267
26	Nano-emulsions: New applications and optimization of their preparation. Current Opinion in Colloid and Interface Science, 2008, 13, 245-251.	7.4	499
27	Nanoemulsions Induced by Compressed Gases. Angewandte Chemie - International Edition, 2008, 47, 3012-3015.	13.8	55
29	α-Tocopherol nanodispersions: Preparation, characterization and stability evaluation. Journal of Food Engineering, 2008, 89, 204-209.	5.2	112
30	Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 324, $181-188$.	4.7	179
31	Droplet size and stability of nano-emulsions produced by the temperature phase inversion method. Chemical Engineering Journal, 2008, 140, 626-631.	12.7	119
32	Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 2008, 22, 1191-1202.	10.7	634
33	Positively charged microemulsions for topical application. International Journal of Pharmaceutics, 2008, 346, 119-123.	5.2	70
34	Increased bioavailability of a transdermal application of a nano-sized emulsion preparation. International Journal of Pharmaceutics, 2008, 347, 144-148.	5.2	59
35	Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. International Journal of Pharmaceutics, 2008, 353, 270-276.	5.2	169
36	Advances in lipid nanodispersions for parenteral drug delivery and targeting. Advanced Drug Delivery Reviews, 2008, 60, 757-767.	13.7	197
37	Thermodynamics of the adsorption-accompanied formation of new-phase particles. High Energy Chemistry, 2008, 42, 469-471.	0.9	1

#	Article	IF	Citations
38	Formulation of a Cosurfactantâ€Free O/W Microemulsion Using Nonionic Surfactant Mixtures. Journal of Food Science, 2008, 73, E115-21.	3.1	82
39	Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release, 2008, 128, 185-199.	9.9	988
40	Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir, 2008, 24, 12758-12765.	3.5	687
41	Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter, 2008, 4, 1964.	2.7	310
42	The use of ultrasonics for nanoemulsion preparation. Innovative Food Science and Emerging Technologies, 2008, 9, 170-175.	5.6	521
43	Enhancement of anti-inflammatory property of aspirin in mice by a nano-emulsion preparation. International Immunopharmacology, 2008, 8, 1533-1539.	3.8	40
44	A Nanoemulsion Formulation of Tamoxifen Increases Its Efficacy in a Breast Cancer Cell Line. Molecular Pharmaceutics, 2008, 5, 280-286.	4.6	78
45	Low cytotoxicity of creams and lotions formulated with Buriti oil (Mauritia flexuosa) assessed by the neutral red release test. Food and Chemical Toxicology, 2008, 46, 2776-2781.	3.6	39
46	Nano-particle encapsulation of fish oil by spray drying. Food Research International, 2008, 41, 172-183.	6.2	399
47	Electrostatic micro- and nanoencapsulation and electroemulsification: A brief review. Journal of Microencapsulation, 2008, 25, 443-468.	2.8	135
48	Nanoemulsion Preparations of the Anticancer Drug Dacarbazine Significantly Increase Its Efficacy in a Xenograft Mouse Melanoma Model. Molecular Pharmaceutics, 2008, 5, 1055-1063.	4.6	83
49	Nanoemulsions Prepared by a Two-Step Low-Energy Process. Langmuir, 2008, 24, 6092-6099.	3.5	92
51	Emulsions, Microemulsions, and Lipid-Based Drug Delivery Systems for Drug Solubilization and Deliveryâ€"Part I. , 2008, , 195-226.		5
52	Polymer science applied to petroleum production. Pure and Applied Chemistry, 2009, 81, 473-494.	1.9	103
53	Bioavailability of a Nanoemulsion of Lutein is Greater than a Lutein Supplement. Nano Biomedicine and Engineering, 2009, 1 , .	0.9	56
54	Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids, 2009, 23, 1096-1102.	10.7	145
55	Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. European Journal of Pharmaceutical Sciences, 2009, 37, 313-320.	4.0	90
57	Biocompatible Functionalized Polyglycerol Microgels with Cell Penetrating Properties. Angewandte Chemie - International Edition, 2009, 48, 7540-7545.	13.8	93

#	Article	IF	CITATIONS
58	Extraction of phenolic compounds from environmental water samples using oil-in-water emulsions. Mikrochimica Acta, 2009, 167, 211-216.	5.0	10
59	Permeation Enhancer-Containing Water-In-Oil Nanoemulsions as Carriers for Intravesical Cisplatin Delivery. Pharmaceutical Research, 2009, 26, 2314-2323.	3.5	43
60	Fluorineâ€containing nanoemulsions for MRI cell tracking. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 492-501.	6.1	160
61	Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. International Journal of Pharmaceutics, 2009, 370, 181-186.	5.2	140
62	Formulation and stability of whitening VCO-in-water nano-cream. International Journal of Pharmaceutics, 2009, 373, 174-178.	5.2	52
63	Lipid nanocapsules: A new platform for nanomedicine. International Journal of Pharmaceutics, 2009, 379, 201-209.	5.2	461
64	The universality of low-energy nano-emulsification. International Journal of Pharmaceutics, 2009, 377, 142-147.	5.2	411
65	Formulation of multifunctional oil-in-water nanosized emulsions for active and passive targeting of drugs to otherwise inaccessible internal organs of the human body. International Journal of Pharmaceutics, 2009, 381, 62-76.	5.2	48
66	Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 2009, 16, 721-727.	8.2	516
67	Stability of oil-in-water nano-emulsions prepared using the phase inversion composition method. Journal of Industrial and Engineering Chemistry, 2009, 15, 331-335.	5.8	41
68	Polymeric surfactants in disperse systems. Advances in Colloid and Interface Science, 2009, 147-148, 281-299.	14.7	150
69	Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 350, 57-62.	4.7	71
70	Emulsifiers' Composition Modulates Venous Irritation of the Nanoemulsions as a Lipophilic and Venous Irritant Drug Delivery System. AAPS PharmSciTech, 2009, 10, 1058-64.	3.3	7
71	Squalene: A natural triterpene for use in disease management and therapy. Advanced Drug Delivery Reviews, 2009, 61, 1412-1426.	13.7	281
72	Quantification of Antioxidant Capacity in a Microemulsion System: Synergistic Effects of Chlorogenic Acid with α-Tocopherol. Journal of Agricultural and Food Chemistry, 2009, 57, 3409-3414.	5.2	28
73	Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. International Dairy Journal, 2009, 19, 643-654.	3.0	280
74	Nanoemulsions for Intravenous Drug Delivery. , 2009, , 461-489.		5
75	Aqueous-Core Lipid Nanocapsules for Encapsulating Fragile Hydrophilic and/or Lipophilic Molecules. Langmuir, 2009, 25, 11413-11419.	3.5	51

#	Article	IF	Citations
76	Squalene Emulsions for Parenteral Vaccine and Drug Delivery. Molecules, 2009, 14, 3286-3312.	3.8	164
77	Formation and stability of nanoemulsions with mixed ionic–nonionic surfactants. Physical Chemistry Chemical Physics, 2009, 11, 9772.	2.8	75
78	O/W Nanoemulsion After 15 Years of Preparation: A Suitable Vehicle for Pharmaceutical and Cosmetic Applications. Journal of Dispersion Science and Technology, 2009, 31, 17-22.	2.4	28
80	Nano-emulsions as Cement Spacer Improve the Cleaning of Casing Bore During Cementing Operations. , 2010, , .		33
81	Anti-inflammatory and Analgesic Effects of Ketoprofen in Palm Oil Esters Nanoemulsion. Journal of Oleo Science, 2010, 59, 667-671.	1.4	16
82	Formulation and in vitro Evaluation of Ketoprofen in Palm Oil Esters Nanoemulsion for Topical Delivery. Journal of Oleo Science, 2010, 59, 223-228.	1.4	33
83	Evaluation of process conditions and characterization of particle size and stability of oil-in-water nanoemulsions. Colloid Journal, 2010, 72, 56-65.	1.3	17
84	Injectable Lipid Emulsions—Advancements, Opportunities and Challenges. AAPS PharmSciTech, 2010, 11, 1526-1540.	3.3	181
85	Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Advanced Drug Delivery Reviews, 2010, 62, 478-490.	13.7	140
86	Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine, 2010, 5, 1595-1616.	3.3	360
87	Formation of tetradecane nanoemulsion by low-energy emulsification methods. International Journal of Refrigeration, 2010, 33, 1612-1624.	3 . 4	60
88	Nanoencapsulation: A New Trend in Food Engineering Processing. Food Engineering Reviews, 2010, 2, 39-50.	5.9	185
89	Preparation and Characterization of a Lecithin Nanoemulsion as a Topical Delivery System. Nanoscale Research Letters, 2010, 5, 224-30.	5.7	103
90	Formation of silica nanocapsules from nanoemulsions obtained by the phase inversion temperature method. Micro and Nano Letters, 2010, 5, 28.	1.3	14
91	Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocolloids, 2010, 24, 560-569.	10.7	130
92	Dispersion Stabilizers Based on Inulin. , 0, , 285-301.		0
94	Effect of sodium chloride on the formation and stability of nâ€dodecane nanoemulsions by the PIT method. Asia-Pacific Journal of Chemical Engineering, 2010, 5, 570-576.	1,5	20
95	Intravesical delivery of 5â€aminolevulinic acid from waterâ€inâ€oil nano/submicronâ€emulsion systems. Journal of Pharmaceutical Sciences, 2010, 99, 2375-2385.	3.3	11

#	ARTICLE	IF	CITATIONS
96	PEOâ€Covered Nanoparticles by Emulsion Inversion Point (EIP) Method. Macromolecular Rapid Communications, 2010, 31, 998-1002.	3.9	35
97	Enhancement of stability and skin permeation by sucrose stearate and cyclodextrins in progesterone nanoemulsions. International Journal of Pharmaceutics, 2010, 393, 153-161.	5.2	84
98	Reverse micelle-loaded lipid nano-emulsions: New technology for nano-encapsulation of hydrophilic materials. International Journal of Pharmaceutics, 2010, 398, 204-209.	5.2	46
99	Composite alginate hydrogels: An innovative approach for the controlled release of hydrophobic drugs. Acta Biomaterialia, 2010, 6, 4642-4649.	8.3	7 3
100	lodinated blood pool contrast media for preclinical X-ray imaging applications – A review. Biomaterials, 2010, 31, 6249-6268.	11.4	221
101	Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science, 2010, 159, 213-228.	14.7	723
102	Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 356, 71-77.	4.7	58
103	Optimization of water-in-oil nanoemulsions by mixed surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 370, 136-142.	4.7	130
104	Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery. Colloids and Surfaces B: Biointerfaces, 2010, 79, 509-515.	5.0	51
105	Effect of Limonene on Permeation Enhancement of Ketoprofen in Palm Oil Esters Nanoemulsion. Journal of Oleo Science, 2010, 59, 395-400.	1.4	22
106	Preparation of Water-in-Jet Fuel Nano-emulsions Using a High-Energy Method. International Journal of Green Nanotechnology: Physics and Chemistry, 2010, 2, P20-P29.	1.5	8
107	Some Fundamentals of the One-Step Formation of Double Emulsions. Journal of Dispersion Science and Technology, 2010, 31, 1019-1026.	2.4	19
108	Influence of palmitoyl pentapeptide and Ceramide III B on the droplet size of nanoemulsion. Proceedings of SPIE, 2010, , .	0.8	0
109	Time-Dependent Nanoemulsion Droplet Size Reduction By Evaporative Ripening. Journal of Physical Chemistry Letters, 2010, 1, 3349-3353.	4.6	30
110	Ferrous Ion Effects on the Stability and Properties of Oil-in-Water Emulsions Formulated by Membrane Emulsification. Industrial & Engineering Chemistry Research, 2010, 49, 3818-3829.	3.7	12
111	Effects of Homogenization Models and Emulsifiers on the Physicochemical Properties of \hat{l}^2 -Carotene Nanoemulsions. Journal of Dispersion Science and Technology, 2010, 31, 986-993.	2.4	99
112	Antibacterial Peptides from Goat and Sheep Milk Proteins. Biotechnology and Biotechnological Equipment, 2010, 24, 1799-1803.	1.3	63
113	Effects of the components of two antimicrobial emulsions on food-borne pathogens. Food Control, 2010, 21, 227-230.	5.5	41

#	Article	IF	CITATIONS
114	Effects of surfactants on the physical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion–diffusion method. Food Research International, 2010, 43, 8-17.	6.2	79
115	Influence of the introduction of a solubility enhancer on the formulation of lipidic nanoparticles with improved drug loading rates. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 117-127.	4.3	19
116	Photoprotective potential of emulsions formulated with Buriti oil (Mauritia flexuosa) against UV irradiation on keratinocytes and fibroblasts cell lines. Food and Chemical Toxicology, 2010, 48, 70-75.	3.6	65
117	Emulsion Design to Improve the Delivery of Functional Lipophilic Components. Annual Review of Food Science and Technology, 2010, 1, 241-269.	9.9	425
118	Polyglycerol nanogels: highly functional scaffolds for biomedical applications. Soft Matter, 2010, 6, 4968.	2.7	66
119	Optimization of Oil-in-Water Emulsion Stability: Experimental Design, Multiple Light Scattering, and Acoustic Attenuation Spectroscopy. Journal of Dispersion Science and Technology, 2010, 31, 1260-1272.	2.4	29
120	Stabilization of Phase Inversion Temperature Nanoemulsions by Surfactant Displacement. Journal of Agricultural and Food Chemistry, 2010, 58, 7059-7066.	5.2	170
121	CO2-responsive TX-100 emulsion for selective synthesis of 1D or 3D gold. Soft Matter, 2010, 6, 6200.	2.7	14
122	A new method for measurement of droplet size distribution in superheated emulsions. Measurement Science and Technology, 2010, 21, 045104.	2.6	4
123	Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter, 2011, 7, 5697.	2.7	59
124	Emulsion inversion induced by CO2. Physical Chemistry Chemical Physics, 2011, 13, 6065.	2.8	14
125	Phase Behavior and Formulation of Palm Oil Esters o/w Nanoemulsions Stabilized by Hydrocolloid Gums for Cosmeceuticals Application. Journal of Dispersion Science and Technology, 2011, 32, 1428-1433.	2.4	5
126	Inhibition of Citral Degradation by Oil-in-Water Nanoemulsions Combined with Antioxidants. Journal of Agricultural and Food Chemistry, 2011, 59, 6113-6119.	5.2	75
127	Water-in-oil-in-water double nanoemulsion induced by CO ₂ . Physical Chemistry Chemical Physics, 2011, 13, 684-689.	2.8	26
128	Design and Evaluation of Emulsion Generation Device Using Ultrasonic Vibration and Microchannel. Japanese Journal of Applied Physics, 2011, 50, 07HE24.	1.5	6
129	Precision AFM Measurements of Dynamic Interactions between Deformable Drops in Aqueous Surfactant and Surfactant-Free Solutions. Langmuir, 2011, 27, 2676-2685.	3.5	53
130	Influence of Surfactant Charge on Antimicrobial Efficacy of Surfactant-Stabilized Thyme Oil Nanoemulsions. Journal of Agricultural and Food Chemistry, 2011, 59, 6247-6255.	5.2	208
131	How To Prepare and Stabilize Very Small Nanoemulsions. Langmuir, 2011, 27, 1683-1692.	3.5	287

#	Article	IF	Citations
132	Two-dimensional nanoparticle self-assembly using plasma-induced Ostwald ripening. Nanotechnology, 2011, 22, 235306.	2.6	18
133	Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 2011, 7, 2297-2316.	2.7	822
136	Current State of Nanoemulsions in Drug Delivery. Journal of Biomaterials and Nanobiotechnology, 2011, 02, 626-639.	0.5	295
139	Protein-Stabilized Nanoemulsions and Emulsions: Comparison of Physicochemical Stability, Lipid Oxidation, and Lipase Digestibility. Journal of Agricultural and Food Chemistry, 2011, 59, 415-427.	5.2	149
140	Development of sucrose stearate-based nanoemulsions and optimisation through \hat{l}^3 -cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 58-67.	4.3	59
141	Semi-solid Sucrose Stearate-Based Emulsions as Dermal Drug Delivery Systems. Pharmaceutics, 2011, 3, 275-306.	4.5	40
142	Surface activity and molecular characteristics of cuttlefish skin gelatin modified by oxidized linoleic acid. International Journal of Biological Macromolecules, 2011, 48, 650-660.	7.5	22
143	Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, 2011, 51, 285-330.	10.3	1,237
144	Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification. International Journal of Pharmaceutics, 2011, 404, 191-197.	5.2	82
145	Attainment of hydrogel-thickened nanoemulsions with tea tree oil (Melaleuca alternifolia) and retinyl palmitate. African Journal of Biotechnology, 2011, 10, 13014-13018.	0.6	16
146	The preparation of 3,5-dihydroxy-4-isopropylstilbene nanoemulsion and in vitro release. International Journal of Nanomedicine, 2011, 6, 649.	6.7	27
147	Development of Low-Energy Methods for Preparing Food Nano-emulsions. Journal of Oleo Science, 2011, 60, 355-362.	1.4	11
148	Effects of Oil and Drug Concentrations on Droplets Size of Palm Oil Esters (POEs) Nanoemulsion. Journal of Oleo Science, 2011, 60, 155-158.	1.4	35
149	A facile preparation method of a PFC-containing nano-sized emulsion for theranostics of solid tumors. International Journal of Pharmaceutics, 2011, 421, 379-387.	5.2	35
150	Studies on the formation of bifenthrin oil-in-water nano-emulsions prepared with mixed surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389, 90-96.	4.7	52
151	Study on the stability of water-in-kerosene nano-emulsions and their dynamic surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 390, 189-198.	4.7	17
152	Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. European Journal of Pharmaceutical Sciences, 2011, 44, 57-67.	4.0	151
153	Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids, 2011, 25, 1000-1008.	10.7	717

#	Article	IF	CITATIONS
154	Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & Eamp; lemon oil. Food Hydrocolloids, 2011, 25, 1413-1423.	10.7	212
155	Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials, 2011, 32, 8593-8604.	11.4	253
156	Theoretical problems of stability of Brownian disperse systems. Journal of Water Chemistry and Technology, 2011, 33, 207-214.	0.6	2
157	Nano-emulsions and Micro-emulsions: Clarifications of the Critical Differences. Pharmaceutical Research, 2011, 28, 978-985.	3.5	452
158	Design and investigation of nanoemulsified carrier based on amphiphile-modified hyaluronic acid. Carbohydrate Polymers, 2011, 83, 462-469.	10.2	42
159	Response Surface Modeling of Processing Parameters for the Preparation of Phytosterol Nanodispersions Using an Emulsification–Evaporation Technique. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 717-725.	1.9	5
160	Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3. Journal of Nanobiotechnology, 2011, 9, 41.	9.1	62
161	Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology, 2011, 9, 44.	9.1	260
162	Polyurea nanocapsules obtained from nanoâ€emulsions prepared by the phase inversion temperature method. Polymers for Advanced Technologies, 2011, 22, 2469-2473.	3.2	11
163	Preparation, characterization, and properties of polyamic acid nanoâ€emulsion. Polymers for Advanced Technologies, 2011, 22, 2633-2637.	3.2	5
164	Optimization of Formulation Variables Affecting Spray-Dried Oily Core Nanocapsules by Response Surface Methodology. Journal of Pharmaceutical Sciences, 2011, 100, 1031-1044.	3.3	9
165	Effectiveness of Polyoxyethylene Nonionic Emulsifiers in Emulsification Processes Using Disc Systems. Chemical Engineering and Technology, 2011, 34, 1869-1875.	1.5	7
166	Preparation and characterisation of water-soluble phytosterol nanodispersions. Food Chemistry, 2011, 129, 77-83.	8.2	78
167	Stability investigation of hyaluronic acid based nanoemulsion and its potential as transdermal carrier. Carbohydrate Polymers, 2011, 83, 1303-1310.	10.2	80
168	Miniemulsion polymerization templates: A systematic comparison between low energy emulsification (Near-PIT) and ultrasound emulsification methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374, 134-141.	4.7	33
169	O/W nano-emulsions with tunable PIT induced by inorganic salts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 102-108.	4.7	52
170	Self-assembly behaviour of alkylpolyglucosides (APG) in mixed surfactant-stabilized emulsions system. Journal of Molecular Liquids, 2011, 158, 175-181.	4.9	36
171	A nanoemulsion formulation of dacarbazine reduces tumor size in a xenograft mouse epidermoid carcinoma model compared to dacarbazine suspension. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 277-283.	3.3	56

#	ARTICLE	IF	Citations
172	Effect of sucrose fatty acid esters on the particle characteristics and flow properties of phytosterol nanodispersions. Journal of Food Engineering, 2011, 104, 63-69.	5.2	28
173	Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation. Journal of Colloid and Interface Science, 2011, 353, 406-411.	9.4	93
174	Preparation and characterization of highly stable lipid nanoparticles with amorphous core of tuneable viscosity. Journal of Colloid and Interface Science, 2011, 360, 471-481.	9.4	67
175	Microemulsions and Nanoemulsions for Targeted Drug Delivery to the Brain. Current Nanoscience, 2011, 7, 119-133.	1.2	51
176	Electrostatic MEMS emulsifying device with high flow rate. , 2011, , .		0
178	Aspects of Future R&D Regarding Targeted Lipid Nanoemulsions. Studies in Interface Science, 2011, , 333-342.	0.0	1
179	Molecular Dynamics Simulation of Palmitate Ester Self-Assembly with Diclofenac. International Journal of Molecular Sciences, 2012, 13, 9572-9583.	4.1	20
180	Fabrication, characterization and properties of food nanoemulsions., 2012,, 293-316.		6
181	Absorption, Disposition and Pharmacokinetics of Nanoemulsions. Current Drug Metabolism, 2012, 13, 396-417.	1,2	56
182	Colloidal emulsions and particles as micronutrient and nutraceutical delivery systems., 2012,, 319-391.		4
183	Palm oil nanoemulsion hydrogels: Formulation and stability studies. , 2012, , .		0
184	Can nanotechnology potentiate photodynamic therapy?. Nanotechnology Reviews, 2012, 1, 111-146.	5.8	125
185	Characterization of Surfactant Stabilized Nanoemulsion and Its Use in Enhanced Oil Recovery. , 2012, , .		37
186	Micelles and microemulsions as food ingredient and nutraceutical delivery systems., 2012,, 211-251.		16
187	Influence of Temperature on the Phase Behaviors and Techniques Toward Formation of Palm Oil Esters Nanoemulsion. Journal of Dispersion Science and Technology, 2012, 33, 332-338.	2.4	0
188	Modification of palm kernel oil esters nanoemulsions with hydrocolloid gum for enhanced topical delivery of ibuprofen. International Journal of Nanomedicine, 2012, 7, 4739.	6.7	25
189	Nano-emulsions: Formation by low-energy methods. Current Opinion in Colloid and Interface Science, 2012, 17, 246-254.	7.4	488
190	Cosmetics, diet, and the future. Dermatologic Therapy, 2012, 25, 267-272.	1.7	9

#	Article	IF	Citations
191	Physical Properties and Antimicrobial Efficacy of Thyme Oil Nanoemulsions: Influence of Ripening Inhibitors. Journal of Agricultural and Food Chemistry, 2012, 60, 12056-12063.	5.2	196
192	Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8, 1719-1729.	2.7	1,237
193	Comparative study of gastrointestinal absorption of EPA & DHA rich fish oil from nano and conventional emulsion formulation in rats. Food Research International, 2012, 49, 72-79.	6.2	83
194	A novel hybrid delivery system: Polymer-oil nanostructured carrier for controlled delivery of highly lipophilic drug all-trans-retinoic acid (ATRA). International Journal of Pharmaceutics, 2012, 436, 721-731.	5.2	42
195	[P1.030] Preparation of nano-emulsions using SPG Membrane Emulsification -Application to Vitamin E Encapsulation. Procedia Engineering, 2012, 44, 740-742.	1.2	0
196	Babassu Nanoemulsions Have Physical and Chemical Stability. Journal of Dispersion Science and Technology, 2012, 33, 1569-1573.	2.4	14
197	Nanocapsules as delivery systems in the food, beverage and nutraceutical industries. , 2012, , 208-256.		5
198	Size-Tunable Nanoparticle Synthesis by RAFT Polymerization in CO2-Induced Miniemulsions. Macromolecules, 2012, 45, 1803-1810.	4.8	20
199	Bottom-Up Design and Synthesis of Limit Size Lipid Nanoparticle Systems with Aqueous and Triglyceride Cores Using Millisecond Microfluidic Mixing. Langmuir, 2012, 28, 3633-3640.	3.5	250
200	Ionic liquid-in-ionic liquid nanoemulsions. Chemical Communications, 2012, 48, 10562.	4.1	23
201	Optically probing nanoemulsion compositions. Physical Chemistry Chemical Physics, 2012, 14, 2455.	2.8	16
202	Analytical applications of emulsions and microemulsions. Talanta, 2012, 96, 11-20.	5 . 5	78
203	Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 2012, 23, 13-27.	15.1	489
204	Advanced Nanoemulsions. Annual Review of Physical Chemistry, 2012, 63, 493-518.	10.8	202
205	In vitro vs. in vivo tape stripping: Validation of the porcine ear model and penetration assessment of novel sucrose stearate emulsions. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 604-614.	4.3	103
206	Fabrication and stability of colloidal delivery systems for flavor oils: Effect of composition and storage conditions. Food Research International, 2012, 46, 209-216.	6.2	50
207	AF03, An Alternative Squalene Emulsionâ€Based Vaccine Adjuvant Prepared by a Phase Inversion Temperature Method. Journal of Pharmaceutical Sciences, 2012, 101, 4490-4500.	3.3	64
209	Highly Stable Concentrated Nanoemulsions by the Phase Inversion Composition Method at Elevated Temperature. Langmuir, 2012, 28, 14547-14552.	3.5	90

#	Article	IF	CITATIONS
210	Electrostatic Enhancement of Coalescence of Oil Droplets (in Nanometer Scale) in Water Emulsion. Chinese Journal of Chemical Engineering, 2012, 20, 654-658.	3.5	32
211	On the preparation and characterization of nanoemulsions produced by phase inversion emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410, 130-135.	4.7	18
212	Membrane emulsification: A promising alternative for vitamin E encapsulation within nano-emulsion. Journal of Membrane Science, 2012, 423-424, 85-96.	8.2	84
213	Hygro-responsive membranes for effective oil–water separation. Nature Communications, 2012, 3, 1025.	12.8	1,033
214	Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food and Function, 2012, 3, 202-220.	4.6	265
215	Synthesis of polyalkylacrylate nanolatexes by microemulsion polymerization method. Egyptian Journal of Petroleum, 2012, 21, 81-87.	2.6	6
216	Characterization and stability evaluation of olive oil nanoemulsion-based hydrogel formulation by nanophase emulsification technique. , 2012, , .		1
217	Structure and dynamics of nanoemulsions: Insights from combining dynamic and static neutron scattering. Physical Review E, 2012, 86, 061407.	2.1	8
218	Micro- and Nanoemulsions (Controlled Release Parenteral Drug Delivery Systems)., 2012,, 221-238.		3
219	Physical and Antimicrobial Properties of Peppermint Oil Nanoemulsions. Journal of Agricultural and Food Chemistry, 2012, 60, 7548-7555.	5.2	286
220	Effect of Salts on the Phase Behavior and the Stability of Nano-Emulsions with Rapeseed Oil and an Extended Surfactant. Langmuir, 2012, 28, 8318-8328.	3.5	44
221	Nanoemulsions: the properties, methods of preparation and promising applications. Russian Chemical Reviews, 2012, 81, 21-43.	6.5	183
222	APPLICATIONS OF NANOTECHNOLOGY IN PHARMACEUTICAL DEVELOPMENT., 2012, , 171-190.		9
223	NANOTECHNOLOGY: EMERGING INTEREST, OPPORTUNITIES, AND CHALLENGES. , 2012, , 1-14.		2
224	SNEDDS Containing Poorly Water Soluble Cinnarizine; Development and in Vitro Characterization of Dispersion, Digestion and Solubilization. Pharmaceutics, 2012, 4, 641-665.	4.5	34
225	Skin Permeation of Cacalol, Cacalone and 6-epi-Cacalone Sesquiterpenes from a Nanoemulsion. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	3
226	Revis \tilde{A} £o: caracter \tilde{A} sticas de nanopart \tilde{A} culas e potenciais aplica \tilde{A} § \tilde{A} µes em alimentos. Brazilian Journal of Food Technology, 2012, 15, 99-109.	0.8	51
227	Low Energy Emulsification Methods for Nanoparticles Synthesis. , 0, , .		2

#	Article	IF	Citations
228	Preparing Glabridin-in-Water Nanoemulsions by High Pressure Homogenization with Response Surface Methodology. Journal of Oleo Science, 2012, 61, 483-489.	1.4	17
229	Neem oil (<i>Azadirachta indica</i>) nanoemulsion—a potent larvicidal agent against <i>Culex quinquefasciatus</i> . Pest Management Science, 2012, 68, 158-163.	3.4	248
230	Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opinion on Drug Delivery, 2012, 9, 585-598.	5.0	133
231	Parameter Selection of Emulsification Processes: Conditions for Nano―and Macroemulsions. Chemical Engineering and Technology, 2012, 35, 1604-1608.	1.5	12
232	Nanoemulsions for Food Applications: Development and Characterization. Food and Bioprocess Technology, 2012, 5, 854-867.	4.7	483
233	Crystals and crystallization in oil-in-water emulsions: Implications for emulsion-based delivery systems. Advances in Colloid and Interface Science, 2012, 174, 1-30.	14.7	268
234	Estimation of the electric field strength required for breaking the water-in-oil emulsion: A thermodynamic approach considering droplets deformation and the effect of interfacial tension. Fluid Phase Equilibria, 2012, 316, 156-163.	2.5	12
235	Lemon oil solubilization in mixed surfactant solutions: Rationalizing microemulsion & amp; nanoemulsion formation. Food Hydrocolloids, 2012, 26, 268-276.	10.7	134
236	Food-grade microemulsions and nanoemulsions: Role of oil phase composition on formation and stability. Food Hydrocolloids, 2012, 29, 326-334.	10.7	163
237	Fabrication of ultrafine edible emulsions: Comparison of high-energy and low-energy homogenization methods. Food Hydrocolloids, 2012, 29, 398-406.	10.7	158
238	A biocide-free mineral oil nanoemulsion exhibiting strong bactericidal activity against Mycobacterium immunogenum and Pseudomonas aeruginosa. International Biodeterioration and Biodegradation, 2012, 70, 66-73.	3.9	11
239	n-Butyl cyanoacrylate miniemulsion polymerization via the phase inversion composition method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 393, 133-138.	4.7	12
240	Tocopheryl acetate nanoemulsions stabilized with lipid–polymer hybrid emulsifiers for effective skin delivery. Colloids and Surfaces B: Biointerfaces, 2012, 94, 51-57.	5.0	49
241	Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. International Journal of Pharmaceutics, 2012, 427, 452-459.	5.2	163
242	Enhanced solubility and oral bioavailability of itraconazole by combining membrane emulsification and spray drying technique. International Journal of Pharmaceutics, 2012, 434, 264-271.	5.2	45
243	Study of nano-emulsion formation by dilution of microemulsions. Journal of Colloid and Interface Science, 2012, 376, 133-139.	9.4	110
244	Influence of particle size on the in vitro digestibility of protein-coated lipid nanoparticles. Journal of Colloid and Interface Science, 2012, 382, 110-116.	9.4	57
245	Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron, 2012, 43, 85-103.	2.2	246

#	Article	IF	CITATIONS
246	Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonics Sonochemistry, 2012, 19, 192-197.	8.2	198
247	Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrasonics Sonochemistry, 2012, 19, 330-345.	8.2	170
248	Squalenoylation: A generic platform for nanoparticular drug delivery. Journal of Controlled Release, 2012, 161, 609-618.	9.9	115
249	Waterâ€inâ€Diesel Fuel Nanoemulsions Prepared by High Energy: Emulsion Drop Size and Stability, and Emission Characteristics. Journal of Surfactants and Detergents, 2012, 15, 139-145.	2.1	21
250	IMPROVEMENT OF OXIDATIVE STABILITY OF RICE BRAN OIL EMULSION BY CONTROLLING DROPLET SIZE. Journal of Food Processing and Preservation, 2013, 37, 139-151.	2.0	18
251	Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science and Technology, 2013, 31, 13-26.	15.1	249
252	Process optimization and stability of d-limonene nanoemulsions prepared by catastrophic phase inversion method. Journal of Food Engineering, 2013, 119, 419-424.	5. 2	56
253	Design and Formulation Technique of a Novel Drug Delivery System for Azithromycin and its Anti-Bacterial Activity Against Staphylococcus aureus. AAPS PharmSciTech, 2013, 14, 1045-1054.	3.3	3
254	Strategies for the design of orally bioavailable antileishmanial treatments. International Journal of Pharmaceutics, 2013, 454, 539-552.	5.2	50
255	Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Therapeutic Delivery, 2013, 4, 841-857.	2.2	94
256	Compartmentalized Hollow Silica Nanospheres Templated from Nanoemulsions. Chemistry of Materials, 2013, 25, 352-364.	6.7	70
257	Behavior of vitamin E acetate delivery systems under simulated gastrointestinal conditions: Lipid digestion and bioaccessibility of low-energy nanoemulsions. Journal of Colloid and Interface Science, 2013, 404, 215-222.	9.4	72
258	Physicochemical Characterization of Lemongrass Essential Oil–Alginate Nanoemulsions: Effect of Ultrasound Processing Parameters. Food and Bioprocess Technology, 2013, 6, 2439-2446.	4.7	81
259	Emulsifying Property and Antioxidative Activity of Cuttlefish Skin Gelatin Modified with Oxidized Linoleic Acid and Oxidized Tannic Acid. Food and Bioprocess Technology, 2013, 6, 870-881.	4.7	22
260	Enhancement of Emulsifying Properties of Cuttlefish Skin Gelatin by Modification with N-hydroxysuccinimide Esters of Fatty Acids. Food and Bioprocess Technology, 2013, 6, 671-681.	4.7	14
261	High- and Low-Energy Emulsifications for Food Applications: A Focus on Process Parameters. Food Engineering Reviews, 2013, 5, 107-122.	5.9	134
262	Scalable high-power ultrasonic technology for the production of translucent nanoemulsions. Chemical Engineering and Processing: Process Intensification, 2013, 69, 77-82.	3.6	98
263	Nanopharmaceuticals for improved topical vaginal therapy: Can they deliver?. European Journal of Pharmaceutical Sciences, 2013, 50, 29-41.	4.0	100

#	Article	IF	CITATIONS
264	Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling. Critical Reviews in Environmental Science and Technology, 2013, 43, 1823-1867.	12.8	416
265	Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. Journal of Colloid and Interface Science, 2013, 411, 105-113.	9.4	102
266	Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: Effect of propylene glycol and ethanol on formation, stability, and properties. Food Research International, 2013, 54, 812-820.	6.2	89
267	Stability and Bioaccessibility of \hat{l}^2 -Carotene in Nanoemulsions Stabilized by Modified Starches. Journal of Agricultural and Food Chemistry, 2013, 61, 1249-1257.	5.2	205
268	HLB value, an important parameter for the development of essential oil phytopharmaceuticals. Revista Brasileira De Farmacognosia, 2013, 23, 108-114.	1.4	59
269	Fabrication of a uniformly sized fenofibrate microemulsion by membrane emulsification. Journal of Microencapsulation, 2013, 30, 42-48.	2.8	13
270	Skin cell targeting with selfâ€assembled ligand addressed nanoemulsion droplets. International Journal of Cosmetic Science, 2013, 35, 310-318.	2.6	17
271	Adhesive water-in-oil nano-emulsions generated by the phase inversion temperature method. Soft Matter, 2013, 9, 6465.	2.7	15
272	Comparison of paraffin nanoemulsions prepared by low-energy emulsification method for latent heat storage. International Journal of Thermal Sciences, 2013, 67, 113-119.	4.9	17
273	Stability of oil-in-water macro-emulsion with anionic surfactant: Effect of electrolytes and temperature. Chemical Engineering Science, 2013, 102, 176-185.	3.8	103
274	Water-in-diesel fuel nanoemulsions: Preparation, stability and physical properties. Egyptian Journal of Petroleum, 2013, 22, 517-530.	2.6	67
275	Characterization of structural stability of palm oil esters-based nanocosmeceuticals loaded with tocotrienol. Journal of Nanobiotechnology, 2013, 11, 27.	9.1	14
276	Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. Journal of Nanobiotechnology, 2013, 11, S6.	9.1	29
277	Optimization of Process Parameters in Preparation of Nanoemulsions of CLnA Rich Oil by Response Surface Methodology. Journal of the Institution of Engineers (India): Series E, 2013, 94, 23-28.	0.9	2
278	Formation of nanoemulsions in stirred media mills. Chemical Engineering Science, 2013, 102, 300-308.	3.8	8
279	Physicochemical Properties and Antimicrobial Efficacy of Carvacrol Nanoemulsions Formed by Spontaneous Emulsification. Journal of Agricultural and Food Chemistry, 2013, 61, 8906-8913.	5.2	160
281	<i>In vivo</i> MRI cell tracking using perfluorocarbon probes and fluorineâ€19 detection. NMR in Biomedicine, 2013, 26, 860-871.	2.8	139
282	Experimental Investigation of Rheological and Morphological Properties of Water in Crude Oil Emulsions Stabilized by a Lipophilic Surfactant. Journal of Dispersion Science and Technology, 2013, 34, 356-368.	2.4	14

#	Article	IF	CITATIONS
283	Enhancement of Topical Delivery with Nanocarriers., 2013,, 87-93.		5
284	Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. International Journal of Pharmaceutics, 2013, 453, 198-214.	5.2	465
285	Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonics Sonochemistry, 2013, 20, 338-344.	8.2	343
286	Hydroalcoholic extracts of Vellozia squamata: study of its nanoemulsions for pharmaceutical or cosmetic applications. Revista Brasileira De Farmacognosia, 2013, 23, 101-107.	1.4	38
287	Dilute nanoemulsions via separation of satellite droplets. Journal of Colloid and Interface Science, 2013, 407, 354-360.	9.4	3
288	On the growth mechanisms of nanoemulsions. Journal of Colloid and Interface Science, 2013, 397, 154-162.	9.4	109
289	Nanoemulsions containing octyl methoxycinnamate and solid particles of TiO ₂ : preparation, characterization and <i>in vitro</i> evaluation of the solar protection factor. Drug Development and Industrial Pharmacy, 2013, 39, 1378-1388.	2.0	15
290	Antioxidant Activity Degradation, Formulation Optimization, Characterization, and Stability of <i>Equisetum Arvense </i> Extract Nanoemulsion. Journal of Dispersion Science and Technology, 2013, 34, 64-71.	2.4	12
291	Intracellular fate of retinyl acetate-loaded submicron delivery systems by in vitro intestinal epithelial cells: A comparison between whey protein-stabilised submicron droplets and micelles stabilised with polysorbate 80. Food Research International, 2013, 51, 679-692.	6.2	9
292	Influence of CTAB and SDS on the properties of oil-in-water nano-emulsion with paraffin and span 20/Tween 20. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 418, 60-67.	4.7	88
293	Study of gamma ray response of R404A superheated droplet detector using a two-state model. Applied Radiation and Isotopes, 2013, 77, 61-67.	1.5	4
294	Development, characterization, and photocytotoxicity assessment on human melanoma of chloroaluminum phthalocyanine nanocapsules. Materials Science and Engineering C, 2013, 33, 1744-1752.	7.3	60
295	Copolymers Structures Tailored for the Preparation of Nanocapsules. Macromolecules, 2013, 46, 573-579.	4.8	40
296	Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013, 113, 1904-2074.	47.7	1,173
298	New self-nanoemulsifying drug delivery system (SNEDDS) with amphiphilic diblock copolymer methoxy poly (ethylene glycol)-block-poly (Ϊμ-caprolactone). Pharmaceutical Development and Technology, 2013, 18, 745-751.	2.4	2
299	Proposal of stability categories for nano-dispersions obtained from pharmaceutical self-emulsifying formulations. International Journal of Pharmaceutics, 2013, 446, 70-80.	5.2	29
300	The influence of different stabilizers and salt addition on the stability of model emulsions containing olive or sesame oil. Journal of Food Engineering, 2013, 117, 124-132.	5.2	32
301	Phase Behaviour and Formation of Fatty Acid Esters Nanoemulsions Containing Piroxicam. AAPS PharmSciTech, 2013, 14, 456-463.	3.3	35

#	Article	IF	CITATIONS
302	Antibacterial microemulsion prevents sepsis and triggers healing of wound in wistar rats. Colloids and Surfaces B: Biointerfaces, 2013, 105, 152-157.	5.0	74
303	Preparation and Application of Nanoemulsions in the Last Decade (2000–2010). Journal of Dispersion Science and Technology, 2013, 34, 92-105.	2.4	124
304	Mild Oxidation of Thiofunctional Polymers to Cytocompatible and Stimuliâ€Sensitive Hydrogels and Nanogels. Macromolecular Bioscience, 2013, 13, 470-482.	4.1	17
305	Natural oil nanoemulsions as cores for layer-by-layer encapsulation. Journal of Microencapsulation, 2013, 30, 479-489.	2.8	12
306	Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloids, 2013, 33, 225-233.	10.7	96
307	Direct Observation of the Formation of Surfactant Micelles under Nonisothermal Conditions by Synchrotron SAXS. Journal of the American Chemical Society, 2013, 135, 7214-7222.	13.7	74
308	Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science and Emerging Technologies, 2013, 19, 29-43.	5.6	481
310	Edible lipid nanoparticles: Digestion, absorption, and potential toxicity. Progress in Lipid Research, 2013, 52, 409-423.	11.6	177
311	Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: Factors influencing droplet size and stability. Journal of Colloid and Interface Science, 2013, 402, 122-130.	9.4	148
312	Ostwald ripening of nanoemulsions stopped by combined interfacial adsorptions of molecular and macromolecular nonionic stabilizers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 425, 24-30.	4.7	35
313	Bottomâ€Up Formation of Dodecaneâ€inâ€Water Nanoemulsions from Hydrothermal Homogeneous Solutions. Angewandte Chemie - International Edition, 2013, 52, 6409-6412.	13.8	18
314	An Overview of Ultrasound-Assisted Food-Grade Nanoemulsions. Food Engineering Reviews, 2013, 5, 139-157.	5.9	187
315	Anti-inflammatory Effects of Z-Ligustilide Nanoemulsion. Inflammation, 2013, 36, 294-299.	3.8	20
316	The application of nanoemulsion in dermatology: an overview. Journal of Drug Targeting, 2013, 21, 321-327.	4.4	38
317	Ultrasound-assisted analytical emulsification-extraction. TrAC - Trends in Analytical Chemistry, 2013, 45, 1-13.	11.4	31
318	Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. Journal of Colloid and Interface Science, 2013, 391, 95-102.	9.4	362
319	Cerberus Nanoemulsions Produced by Multidroplet Flow-Induced Fusion. Langmuir, 2013, 29, 15787-15793.	3.5	22
320	Formation and Stability of Water-in-Diesel Fuel Nanoemulsions Prepared by High-Energy Method. Journal of Dispersion Science and Technology, 2013, 34, 575-581.	2.4	12

#	Article	IF	CITATIONS
321	Microemulsions Based on Propylene Glycol Diesters of Caprylic and Capric Acids. Polish Journal of Chemical Technology, 2013, 15, 68-73.	0.5	0
322	Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens. Journal of Basic Microbiology, 2013, 53, 677-685.	3.3	74
323	Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids, 2013, 30, 401-407.	10.7	180
324	Ultrastructural Study of <i>Elaeis guineensis</i> (Oil Palm) Leaf and Antimicrobial Activity of its Methanol Extract against <i>Staphylococcus Aureus</i> . Tropical Journal of Pharmaceutical Research, 2013, 12, 419-423.	0.3	9
325	Preparation and Characterization of Polymeric Nanocapsules Produced by in Situ Polymerization From Nanoemulsions Produced by Direct Emulsification. Journal of Dispersion Science and Technology, 2013, 34, 228-233.	2.4	5
326	Development of Nanoemulsion Formulations of Ginger Extract. Advanced Materials Research, 0, 684, 12-15.	0.3	5
327	Bottomâ€Up Formation of Dodecaneâ€inâ€Water Nanoemulsions from Hydrothermal Homogeneous Solutions. Angewandte Chemie, 2013, 125, 6537-6540.	2.0	3
329	Applications of Engineered Particulate Systems in Agriculture and Food Industry. KONA Powder and Particle Journal, 2013, 30, 221-235.	1.7	16
330	Influence of particle size on appearance and in vitro efficacy of sunscreens. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 251-261.	1.2	14
331	The influence of glicerides oil phase on O/W nanoemulsion formation by pic method. Periodica Polytechnica: Chemical Engineering, 2014, 58, 43-48.	1.1	14
332	Microemulsion of babassu oil as a natural product to improve human immune system function. Drug Design, Development and Therapy, 2015, 9, 21.	4.3	18
333	Nano-Emulsions; Emulsification Using Low Energy Methods. Japan Journal of Food Engineering, 2014, 15, 119-130.	0.3	15
335	Nanoemulsion of eucalyptus oil and its larvicidal activity against <i>Culex quinquefasciatus</i> Bulletin of Entomological Research, 2014, 104, 393-402.	1.0	158
336	The Production and Evaluation of a Nano-biosurfactant. Petroleum Science and Technology, 2014, 32, 125-132.	1.5	13
337	Preparation, characterization and in vivo evaluation of nanoemulsions for the controlled delivery of the antiobesity agent N-oleoylethanolamine. Nanomedicine, 2014, 9, 2761-2772.	3.3	10
339	Some Physicochemical Remarks on Spontaneous Emulsification of Vitreal Tamponades. BioMed Research International, 2014, 2014, 1-6.	1.9	5
340	Development and Evaluation of Solbrax-Water Nanoemulsions for Removal of Oil from Sand. Journal of Nanomaterials, 2014, 2014, 1-8.	2.7	5
341	Formation and Stability of <scp>d</scp> -Limonene Organogel-Based Nanoemulsion Prepared by a High-Pressure Homogenizer. Journal of Agricultural and Food Chemistry, 2014, 62, 12563-12569.	5.2	66

#	Article	IF	CITATIONS
342	Minimum Evaporation Model of Dermatological Delivery Systems. Lamellar Liquid Crystal Formulations Containing Brazilian Nut (<i>Bertholletia excelsa</i> HBK) Vegetable Oil and Guarana Glycolic Extract. Journal of Dispersion Science and Technology, 2014, 35, 1191-1199.	2.4	5
343	Enhanced effectiveness of tocotrienol-based nano-emulsified system for topical delivery against skin carcinomas. Drug Delivery, 2016, 23, 1-11.	5.7	21
344	Microencapsulation of capsanthin by self-emulsifying nanoemulsions and stability evaluation. European Food Research and Technology, 2014, 239, 1077-1085.	3.3	45
345	Natural polymer-stabilized multiple water-in-oil-in-water emulsions: a novel dermal drug delivery system for 5-fluorouracil. Journal of Pharmacy and Pharmacology, 2014, 66, 658-667.	2.4	18
346	Synthesis and Characterization of Poly(Methyl Methacrylate) PMMA and Evaluation of Cytotoxicity for Biomedical Application. Macromolecular Symposia, 2014, 343, 65-69.	0.7	33
347	Enhancement of the antimicrobial properties of bacteriophageâ€K via stabilization using oilâ€inâ€water nanoâ€emulsions. Biotechnology Progress, 2014, 30, 932-944.	2.6	40
348	Emulsions and Dispersions, Trends in Detergency, Cleaning and Hygiene, Sustainability and Product Safety, Forum for Innovations. Tenside, Surfactants, Detergents, 2014, 51, 72-88.	1.2	0
349	Development of binary nanoemulsion to apply for diffusion absorption refrigerator as a new refrigerant. Energy, 2014, 78, 693-700.	8.8	16
350	Unique Crystal Structure of a Novel Surfactant Protein from the Foam Nest of the Frog <i>Leptodactylus vastus</i> . ChemBioChem, 2014, 15, 393-398.	2.6	14
351	Techniques for Formation of Nanoemulsions. SpringerBriefs in Food, Health and Nutrition, 2014, , 7-16.	0.5	7
352	Influence of Lavander Essential Oil Addition on Passion Fruit Oil Nanoemulsions: Stability and In vivo Study. Journal of Nanomedicine & Nanotechnology, 2014, 05, .	1.1	7
353	Skin permeation of d-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification. Ultrasonics Sonochemistry, 2014, 21, 826-832.	8.2	64
354	Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocolloids, 2014, 42, 5-41.	10.7	305
355	Topical delivery of ocular therapeutics: carrier systems and physical methods. Journal of Pharmacy and Pharmacology, 2014, 66, 507-530.	2.4	107
356	Synthesis of sub-10Ânm solid lipid nanoparticles for topical and biomarker detection applications. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	4
358	Inhibition of Ostwald ripening in heptane/water miniemulsions. Colloid Journal, 2014, 76, 25-37.	1.3	4
359	Phase Change Characteristics of a Nanoemulsion as a Latent Heat Storage Material. International Journal of Thermophysics, 2014, 35, 1922-1932.	2.1	14
360	Stabilization of vitamin E-enriched mini-emulsions: Influence of organic and aqueous phase compositions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 449, 65-73.	4.7	35

#	ARTICLE	IF	CITATIONS
361	Towards designer nanoemulsions for precision delivery of therapeutics. Current Opinion in Chemical Engineering, 2014, 4, 11-17.	7.8	29
362	Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2014, 115, 267-274.	5.0	50
363	Preparation of highly stable concentrated W/O nanoemulsions by PIC method at elevated temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447, 97-102.	4.7	22
364	Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids and Surfaces B: Biointerfaces, 2014, 114, 392-397.	5.0	194
365	Acrylate nanolatex via self-initiated photopolymerization. Journal of Polymer Science Part A, 2014, 52, 1843-1853.	2.3	8
366	Vitamin E nanoemulsions characterization and analysis. International Journal of Pharmaceutics, 2014, 465, 455-463.	5.2	44
367	Quality and microbial safety of  Fuji' apples coated with carnauba-shellac wax containing lemongrass oil. LWT - Food Science and Technology, 2014, 55, 490-497.	5.2	106
368	Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids, 2014, 41, 188-194.	10.7	279
369	Cavitation technology – A greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrasonics Sonochemistry, 2014, 21, 2069-2083.	8.2	218
370	Low shear-rate process to obtain transparent W/O fine emulsions as functional foods. Food Research International, 2014, 62, 533-540.	6.2	5
371	Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. International Biodeterioration and Biodegradation, 2014, 91, 119-127.	3.9	111
372	Dairy-derived antimicrobial peptides: Action mechanisms, pharmaceutical uses and production proposals. Trends in Food Science and Technology, 2014, 36, 79-95.	15.1	71
373	PIT tuning effects of hydrophobic co-surfactants and drugs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455, 1-10.	4.7	6
375	Preparation and characterisation of protein based nanocapsules of bioactive lipids. Journal of Food Engineering, 2014, 121, 64-72.	5.2	8
376	Optimization of Process Parameters to Formulate Nanoemulsion by Spontaneous Emulsification: Evaluation of Larvicidal Activity Against Culex quinquefasciatus Larva. BioNanoScience, 2014, 4, 157-165.	3.5	16
377	Development and <i>in vitro </i> evaluation of a nanoemulsion for transcutaneous delivery. Drug Development and Industrial Pharmacy, 2014, 40, 370-379.	2.0	23
378	Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. Journal of Nutritional Biochemistry, 2014, 25, 363-376.	4.2	361
379	Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrasonics Sonochemistry, 2014, 21, 1044-1049.	8.2	153

#	Article	IF	CITATIONS
380	Effect of Salts on Formation and Stability of Vitamin E-Enriched Mini-emulsions Produced by Spontaneous Emulsification. Journal of Agricultural and Food Chemistry, 2014, 62, 11246-11253.	5.2	28
382	Fluorofluorophores: Fluorescent Fluorous Chemical Tools Spanning the Visible Spectrum. Journal of the American Chemical Society, 2014, 136, 13574-13577.	13.7	65
383	In vitro release testing methods for vitamin E nanoemulsions. International Journal of Pharmaceutics, 2014, 475, 393-400.	5.2	42
384	Polymeric coatings based on acrylic resin latexes from miniemulsion polymerization using hydrocarbon resins as osmotic agents. Journal of Applied Polymer Science, 2014, 131, .	2.6	6
385	Optimization of Walnut Oil Nanoemulsions Prepared Using Ultrasonic Emulsification: A Response Surface Method. Journal of Dispersion Science and Technology, 2014, 35, 685-694.	2.4	12
386	Comparison of Box–Behnken and central composite designs in optimization of fullerene loaded palm-based nano-emulsions for cosmeceutical application. Industrial Crops and Products, 2014, 59, 309-317.	5.2	89
387	Biocolloids Based on Amphiphilic Block Copolymers as a Medium for Enzyme Encapsulation. Journal of Physical Chemistry B, 2014, 118, 9808-9816.	2.6	16
388	Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: Process scale-up. Chemical Engineering and Processing: Process Intensification, 2014, 82, 132-136.	3.6	50
389	Creation of well-defined particle stabilized oil-in-water nanoemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 48-57.	4.7	45
390	Stabilization of Vitamin E-Enriched Nanoemulsions: Influence of Post-Homogenization Cosurfactant Addition. Journal of Agricultural and Food Chemistry, 2014, 62, 1625-1633.	5.2	39
391	Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions. Journal of Colloid and Interface Science, 2014, 433, 196-203.	9.4	36
392	Development and evaluation of magnetic microemulsion: tool for targeted delivery of camptothecin to BALB/c mice-bearing breast cancer. Journal of Drug Targeting, 2014, 22, 913-926.	4.4	19
393	Modification of the stability of oil-in-water nano-emulsions by polymers with different structures. Colloid and Polymer Science, 2014, 292, 1297-1306.	2.1	18
394	Pharmacological and Pharmacokinetic Studies with Vitamin D-loaded Nanoemulsions in Asthma Model. Inflammation, 2014, 37, 723-728.	3.8	13
395	Surfactant–cosurfactant interactions and process parameters involved in the formulation of stable and small droplet-sized benznidazole-loaded soybean O/W emulsions. Journal of Molecular Liquids, 2014, 196, 178-186.	4.9	23
396	Formulation, development and evaluation of ibuprofen loaded nanoemulsion prepared by nanoprecipitation technique: use of factorial design approach as a tool of optimization methodology. Journal of Pharmaceutical Investigation, 2014, 44, 273-290.	5.3	8
397	Influence of the plate-type continuous micro-separator dimensions on the efficiency of demulsification of oil-in-water emulsion. Chemical Engineering Research and Design, 2014, 92, 2758-2769.	5.6	17
398	Block copolymers at interfaces: Interactions with physiological media. Advances in Colloid and Interface Science, 2014, 206, 414-427.	14.7	59

#	Article	IF	CITATIONS
399	A multivariate modeling for analysis of factors controlling the particle size and viscosity in palm kernel oil esters-based nanoemulsions. Industrial Crops and Products, 2014, 52, 506-511.	5.2	13
400	Design and formulation of nanoemulsions using 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene in combination with linear perfluoro(polyethylene glycol dimethyl ether). Journal of Fluorine Chemistry, 2014, 162, 38-44.	1.7	13
401	Nanostructured mucoadhesive microparticles for enhanced preocular retention. Acta Biomaterialia, 2014, 10, 77-86.	8.3	27
402	Effects of emulsion droplet sizes on the crystallisation of milk fat. Food Chemistry, 2014, 145, 725-735.	8.2	70
403	Nanoscience and nanotechnologies in food industries: opportunities and research trends. Journal of Nanoparticle Research, 2014, 16 , 1 .	1.9	231
404	Optimization of Orange Oil Nanoemulsion Formation by Isothermal Low-Energy Methods: Influence of the Oil Phase, Surfactant, and Temperature. Journal of Agricultural and Food Chemistry, 2014, 62, 2306-2312.	5.2	148
405	Anal fissure nanocarrier of lercanidipine for enhanced transdermal delivery: formulation optimization, ex vivoandin vivoassessment. Expert Opinion on Drug Delivery, 2014, 11, 467-478.	5.0	14
406	Investigating Factors Affecting Waterâ€Inâ€Diesel Fuel Nanoemulsions. Journal of Surfactants and Detergents, 2014, 17, 819-831.	2.1	11
407	Ethanol-in-palm oil/diesel microemulsion-based biofuel: Phase behavior, viscosity, and droplet size. Fuel, 2014, 132, 101-106.	6.4	68
408	Formulation development and optimization of palm kernel oil esters-based nanoemulsions containing sodium diclofenac. International Journal of Nanomedicine, 2014, 9, 539.	6.7	16
409	Phase Behavior and Formation of O/W Nano-Emulsion in Vegetable Oil/ Mixture of Polyglycerol Polyricinoleate and Polyglycerin Fatty Acid Ester/Water Systems. Journal of Oleo Science, 2014, 63, 229-237.	1.4	14
410	Structural Analysis and Adsorbability onto the Corneal Epithelial Cells-Model Interface of Vitamin Nano-Emulsions. Journal of Oleo Science, 2014, 63, 903-909.	1.4	1
419	Reversible Size Control of Liquidâ€Metal Nanoparticles under Ultrasonication. Angewandte Chemie - International Edition, 2015, 54, 12809-12813.	13.8	168
420	Regeneration of spent polymer resins in oily water treatment systems by application of nanoemulsion. Journal of Applied Polymer Science, 2015, 132, .	2.6	13
421	Continuous manufacturing of carboxyamidotriazoleencapsulated nanoemulsions using adaptive focused acoustics: Potential green technology for the pharmaceutical industry. Journal of Biomedical Engineering and Informatics, 2015, 2, 70.	0.2	1
422	Nanomedicine Approaches for Corneal Diseases. Journal of Functional Biomaterials, 2015, 6, 277-298.	4.4	78
423	Production of Nanoemulsions from Palm-Based Tocotrienol Rich Fraction by Microfluidization. Molecules, 2015, 20, 19936-19946.	3.8	32
424	Nanoemulsions containing a synthetic chalcone as an alternative for treating cutaneous leshmaniasis: optimization using a full factorial design. International Journal of Nanomedicine, 2015, 10, 5529.	6.7	36

#	Article	IF	CITATIONS
425	Preparation and Characterization of Micro/Nano-emulsions Containing Functional Food Components. Japan Journal of Food Engineering, 2015, 16, 263-276.	0.3	14
426	O/W Nano-Emulsion Formation Using an Isothermal Low-Energy Emulsification Method in a Mixture of Polyglycerol Polyricinoleate and Hexaglycerol Monolaurate with Glycerol System. Journal of Oleo Science, 2015, 64, 405-413.	1.4	6
427	Production and Characterization of Cosmetic Nanoemulsions Containing Opuntia ficus-indica (L.) Mill Extract as Moisturizing Agent. Molecules, 2015, 20, 2492-2509.	3.8	143
428	The effect of aspirin nanoemulsion on TNF& amp; alpha; and iNOS in gastric tissue in comparison with conventional aspirin. International Journal of Nanomedicine, 2015, 10, 5301.	6.7	5
429	Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro. International Journal of Nanomedicine, 2015, 10 Suppl 1, 67.	6.7	32
430	Nanocarriers as Promising Novel Systems for Controlled Delivery of Diclofenac Sodium. Advances in Pharmacology and Pharmacy, 2015, 3, 1-10.	0.2	0
431	High Shear Methods to Produce Nano-sized Food Related to Dispersed Systems. Food Engineering Series, 2015, , 145-161.	0.7	7
432	PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. Journal of Controlled Release, 2015, 211, 134-143.	9.9	165
433	Ketoprofen-loaded pomegranate seed oil nanoemulsion stabilized by pullulan: Selective antiglioma formulation for intravenous administration. Colloids and Surfaces B: Biointerfaces, 2015, 130, 272-277.	5.0	47
434	Fabrication and stabilization of nanoscale emulsions by formation of a thin polymer membrane at the oil–water interface. RSC Advances, 2015, 5, 46276-46281.	3.6	7
435	An unconventional aging mechanism of nanoemulsions. Colloid and Polymer Science, 2015, 293, 3199-3211.	2.1	0
436	Dual responsive macroemulsion stabilized by Y-shaped amphiphilic AB ₂ miktoarm star copolymers. RSC Advances, 2015, 5, 96377-96386.	3.6	19
437	Preparation of betulinic acid nanoemulsions stabilized by ï‰-3 enriched phosphatidylcholine. Ultrasonics Sonochemistry, 2015, 24, 204-213.	8.2	48
438	Comparative real-time study of cellular uptake of a formulated conjugated linolenic acid rich nano and conventional macro emulsions and their bioactivity in ex vivo models for parenteral applications. Colloids and Surfaces B: Biointerfaces, 2015, 126, 426-436.	5.0	18
439	Preparation of biodegradable PCL particles via double emulsion evaporation method using ultrasound technique. Colloid and Polymer Science, 2015, 293, 861-873.	2.1	49
440	Nanoemulsions produced by rotor–stator high speed stirring. International Journal of Pharmaceutics, 2015, 482, 110-117.	5.2	60
441	Preparation of latex nanoparticles using nanoemulsions obtained by the phase inversion composition (PIC) method and their application in textile printing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 70-79.	4.7	9
442	Formation of transparent solid lipid nanoparticles by microfluidization: Influence of lipid physical state on appearance. Journal of Colloid and Interface Science, 2015, 448, 114-122.	9.4	32

#	Article	IF	CITATIONS
443	Physical properties of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil. LWT - Food Science and Technology, 2015, 62, 1184-1191.	5.2	42
444	Kinetic and thermodynamic stability of paprika nanoemulsions. International Journal of Food Science and Technology, 2015, 50, 1174-1181.	2.7	16
445	Formation and Characterization of Fully Dilutable Microemulsion with Fatty Acid Methyl Esters as Oil Phase. ACS Sustainable Chemistry and Engineering, 2015, 3, 443-450.	6.7	33
446	Nanotechnology in agro-food: From field to plate. Food Research International, 2015, 69, 381-400.	6.2	325
447	Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). Journal of Stored Products Research, 2015, 61, 9-16.	2.6	78
448	Association Efficiency of Three Ionic Forms of Oxytetracycline to Cationic and Anionic Oil-In-Water Nanoemulsions Analyzed by Diafiltration. Journal of Pharmaceutical Sciences, 2015, 104, 1141-1152.	3.3	16
449	Influence of sugar surfactant structure on the encapsulation of oil droplets in an amorphous sugar matrix during freeze-drying. Food Research International, 2015, 70, 143-149.	6.2	8
450	Supramolecular drug delivery platforms in photodynamic therapy. , 2015, , 465-485.		3
451	Drug delivery systems., 2015,, 87-194.		12
452	Development and characterization of Pterodon pubescens oil nanoemulsions as a possible delivery system for the treatment of rheumatoid arthritis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 19-27.	4.7	24
453	Detailed investigation of nano-emulsions obtained from the Remcopal 4/decane/water system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 207-214.	4.7	2
454	Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering, 2015, 167, 89-98.	5.2	131
455	Determination of critical micelle concentration of sodium dodecyl sulfate in butyl acrylate emulsions. Polymer Bulletin, 2015, 72, 2215-2225.	3.3	4
456	Degradation of Vitamin E in Nanoemulsions during Storage as Affected by Temperature, Light and Darkness. International Journal of Food Engineering, 2015, 11, 199-206.	1.5	20
457	Influence of droplet size on repulsive and attractive nanoemulsion gelation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 144-152.	4.7	26
458	Evaluation of short cycles of ultrasound application in nanoemulsions to obtain nanocapsules. Ultrasonics Sonochemistry, 2015, 27, 536-542.	8.2	6
459	Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale, 2015, 7, 12076-12084.	5.6	78
460	Microfluidic conceived Trojan microcarriers for oral delivery of nanoparticles. International Journal of Pharmaceutics, 2015, 493, 7-15.	5.2	18

#	Article	IF	CITATIONS
461	Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size. Journal of Food Engineering, 2015, 164, 10-20.	5.2	117
462	Focused Ultrasound as a Scalable and Contact-Free Method to Manufacture Protein-Loaded PLGA Nanoparticles. Pharmaceutical Research, 2015, 32, 2995-3006.	3.5	13
463	Formation of stable hydrocarbon oil-in-water nanoemulsions by phase inversion composition method at elevated temperature. Korean Journal of Chemical Engineering, 2015, 32, 540-546.	2.7	12
464	Reprint of: Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions. Journal of Colloid and Interface Science, 2015, 449, 13-20.	9.4	21
465	Preparation and characterization of nanoemulsions stabilized by food biopolymers using microfluidization. Flavour and Fragrance Journal, 2015, 30, 288-294.	2.6	36
466	Modulating the properties of sunflower oil based novel emulgels using castor oil fatty acid ester: Prospects for topical antimicrobial drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 128, 155-164.	5.0	16
467	Beta-lactoglobulin-based encapsulating systems as emerging bioavailability enhancers for nutraceuticals: a review. RSC Advances, 2015, 5, 35138-35154.	3.6	85
468	Vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 70-80.	4.7	71
469	Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 2015, 105, 8-16.	6.0	282
470	Pinhão starch and coat extract as new natural cosmetic ingredients: Topical formulation stability and sensory analysis. Carbohydrate Polymers, 2015, 134, 573-580.	10.2	49
471	Development and characterization of evening primrose (Oenothera biennis) oil nanoemulsions. Revista Brasileira De Farmacognosia, 2015, 25, 422-425.	1.4	30
472	Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions. Journal of Food and Drug Analysis, 2015, 23, 828-835.	1.9	52
473	Recent Developments in Phase Inversion Emulsification. Industrial & Engineering Chemistry Research, 2015, 54, 8375-8396.	3.7	75
474	Photothermally triggerable solid lipid nanoparticles containing gold nanospheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 441-448.	4.7	7
475	Formulation design for topical drug and nanoparticle treatment of skin disease. Therapeutic Delivery, 2015, 6, 197-216.	2.2	22
476	On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Revista Brasileira De Farmacognosia, 2015, 25, 426-436.	1.4	68
477	Hydrodynamic Characterization of the Formation of Alpha-Tocopherol Nanoemulsions in a Microfluidizer. Food Engineering Series, 2015, , 163-175.	0.7	2
478	Antitumor Efficacy of Irreversible Electroporation and Doxorubicin-Loaded Polymeric Micelles. ACS Macro Letters, 2015, 4, 1081-1084.	4.8	9

#	Article	IF	CITATIONS
479	Oil/Water Nanoemulsions: Activity at the Water–Oil Interface and Evaluation on Asphaltene Aggregates. Energy & Samp; Fuels, 2015, 29, 7855-7865.	5.1	12
480	Nanoemulsion as a tool for improvement of Cilostazol oral bioavailability. Journal of Molecular Liquids, 2015, 212, 792-798.	4.9	25
481	How droplets nucleate and grow on liquids and liquid impregnated surfaces. Soft Matter, 2015, 11, 69-80.	2.7	127
482	Optimization of ultrasonic emulsification conditions for the production of orange peel essential oil nanoemulsions. Journal of Food Science and Technology, 2015, 52, 2679-2689.	2.8	68
483	A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids, 2015, 43, 153-164.	10.7	277
484	Ultrasound assisted manufacturing of paraffin wax nanoemulsions: Process optimization. Ultrasonics Sonochemistry, 2015, 23, 201-207.	8.2	79
485	Design and in vitro evaluation of biocompatible dexamethasone-loaded nanoparticle dispersions, obtained from nano-emulsions, for inhalatory therapy. Colloids and Surfaces B: Biointerfaces, 2015, 125, 58-64.	5.0	26
486	Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food and Function, 2015, 6, 41-54.	4.6	204
487	Enhancement of aqueous stability of allyl isothiocyanate using nanoemulsions prepared by an emulsion inversion point method. Journal of Colloid and Interface Science, 2015, 438, 130-137.	9.4	34
488	Formulation of nanoemulsion: a comparison between phase inversion composition method and high-pressure homogenization method. Drug Delivery, 2015, 22, 455-466.	5.7	123
489	Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocolloids, 2015, 44, 40-48.	10.7	87
490	Optimizing the Preparation Conditions for Shea Butter Nanoemulsions via Response Surface Methodology. Journal of Dispersion Science and Technology, 2015, 36, 983-990.	2.4	5
491	Physical and antimicrobial properties of trans-cinnamaldehyde nanoemulsions in water melon juice. LWT - Food Science and Technology, 2015, 60, 444-451.	5.2	113
492	Brain targeted intranasal delivery of tramadol: comparative study of microemulsion and nanoemulsion. Pharmaceutical Development and Technology, 2015, 20, 992-1001.	2.4	34
493	Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, 2015, 43, 547-556.	10.7	299
494	Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 2015, 5, 123-127.	2.2	648
495	Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chemistry, 2015, 172, 298-304.	8.2	115
496	Formulation and characterisation of wheat bran oil-in-water nanoemulsions. Food Chemistry, 2015, 167, 16-23.	8.2	84

#	Article	IF	CITATIONS
497	Nanoemulsion gel-based topical delivery of an antifungal drug: <i>in vitro</i> activity and <i>in vivo</i> evaluation. Drug Delivery, 2016, 23, 642-657.	5 . 7	162
498	Omega 3 fatty acid-enriched nanoemulsion of thiocolchicoside for transdermal delivery: formulation, characterization and absorption studies. Drug Delivery, 2016, 23, 591-600.	5.7	29
499	The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications. Brazilian Journal of Pharmaceutical Sciences, 2016, 52, 347-363.	1.2	43
500	Nanotechnology Applications in Functional Foods; Opportunities and Challenges. Preventive Nutrition and Food Science, 2016, 21, 1-8.	1.6	112
501	Ostwald Ripening Stability of Curcumin-Loaded MCT Nanoemulsion: Influence of Various Emulsifiers. Preventive Nutrition and Food Science, 2016, 21, 289-295.	1.6	26
502	Application of CMC as Thickener on Nanoemulsions Based on Olive Oil: Physical Properties and Stability. International Journal of Polymer Science, 2016, 2016, 1-10.	2.7	54
503	Nanoemulsions to Prevent Photoaging. , 2016, , 237-246.		1
504	Advanced nanocarriers for nutraceuticals based on structured lipid and nonlipid components., 2016, , 271-304.		4
505	Nanoemulsion-based delivery systems: preparation and application in the food industry., 2016,, 293-328.		4
506	Nanoemulsions for food: properties, production, characterization, and applications., 2016, , 1-36.		19
507	Nanoemulsions containing unsaturated fatty acid concentrates. , 2016, , 71-106.		4
508	Nanoemulsion: preparation and its application in food industry. , 2016, , 153-191.		33
509	Gelation in nanoemulsion: structure formation and rheological behavior., 2016,, 257-292.		2
510	Production, stability and application of micro- and nanoemulsion in food production and the food processing industry., 2016,, 405-442.		19
511	Trends and methods for nanobased delivery forÂnutraceuticals., 2016,, 573-609.		4
512	Effect of Surfactant Concentration in the Emulsions on the Process of Oleophilic Porous Structures Imbibition. MATEC Web of Conferences, 2016, 49, 01003.	0.2	1
513	Nanobiomaterials in cosmetics: current status and future prospects., 2016,, 149-174.		23
514	Nanoemulsion Formulations of Fungicide Tebuconazole for Agricultural Applications. Molecules, 2016, 21, 1271.	3.8	48

#	ARTICLE	IF	CITATIONS
515	Development of a Larvicidal Nanoemulsion with Pterodon emarginatus Vogel Oil. PLoS ONE, 2016, 11, e0145835.	2.5	50
516	An Artificial Neural Network Based Analysis of Factors Controlling Particle Size in a Virgin Coconut Oil-Based Nanoemulsion System Containing Copper Peptide. PLoS ONE, 2016, 11, e0157737.	2.5	21
517	Nanoemulsion as a carrier to improve the topical anti-inflammatory activity of stem bark extract of Rapanea ferruginea . International Journal of Nanomedicine, 2016, Volume 11, 4495-4507.	6.7	15
518	Nanoemulsions: an emerging technology in the food industry. , 2016, , 651-688.		17
519	Exotic Vegetable Oils for Cosmetic O/W Nanoemulsions: In Vivo Evaluation. Molecules, 2016, 21, 248.	3.8	33
520	An Overview of Nanomaterials in Dermatology. , 2016, , 31-46.		4
521	Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives. Nanomaterials, 2016, 6, 17.	4.1	101
522	Nanoemulsions as potential delivery systems for bioactive compounds in food systems: preparation, characterization, and applications in food industry., 2016,, 365-403.		21
523	Nanoemulsions as delivery vehicles for food and pharmaceuticals., 2016,, 611-649.		2
524	Cryogenic transmission electron microscopy study: preparation of vesicular dispersions by quenching microemulsions. Journal of Microscopy, 2016, 263, 293-299.	1.8	9
525	Physicochemical properties and storage stability of ultrasound-mediated WPI-stabilized fish oil nanoemulsions. Food Hydrocolloids, 2016, 61, 801-811.	10.7	75
526	Development of nanoemulsions for topical delivery of vitamin K1. International Journal of Pharmaceutics, 2016, 511, 170-177.	5.2	40
527	Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids, 2016, 61, 703-711.	10.7	223
528	Design and development of a nanoemulsion system containing extract of Clinacanthus nutans (L.) leaves for transdermal delivery system by D-optimal mixture design and evaluation of its physicochemical properties. RSC Advances, 2016, 6, 67378-67388.	3.6	27
529	The effect of concentration of surfactant and electrolyte on the pit and droplet sizes nanoemulsions of n-dodecane in water. Russian Journal of Applied Chemistry, 2016, 89, 84-89.	0.5	4
530	Characterization and Antibacterial Activity of Oil-In-Water Nano-Emulsion Formulation Against <i>Candidatus</i> Liberibacter asiaticus. Plant Disease, 2016, 100, 2448-2454.	1.4	9
531	Nano- and microcapsules as drug-delivery systems. Resource-efficient Technologies, 2016, 2, 233-239.	0.1	15
532	Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and inÂvitro digestibility. Food Hydrocolloids, 2016, 60, 138-147.	10.7	158

#	Article	IF	CITATIONS
533	In situ ultrafast separation and purification of oil/water emulsions by superwetting TiO ₂ nanocluster-based mesh. Nanoscale, 2016, 8, 8525-8529.	5.6	103
534	The development of vegetarian omega-3 oil in water nanoemulsions suitable for integration into functional food products. Journal of Functional Foods, 2016, 23, 306-314.	3.4	31
535	Freeze-drying of emulsified systems: A review. International Journal of Pharmaceutics, 2016, 503, 102-114.	5.2	114
536	Multi-pathway exposure modeling of chemicals in cosmetics with application to shampoo. Environment International, 2016, 92-93, 87-96.	10.0	39
537	Improvement of physical stability of kenaf seed oil-in-water nanoemulsions by addition of \hat{l}^2 -cyclodextrin to primary emulsion containing sodium caseinate and Tween 20. Journal of Food Engineering, 2016, 183, 24-31.	5.2	41
538	Pomegranate seed oil nanoemulsions improve the photostability and in vivo antinociceptive effect of a non-steroidal anti-inflammatory drug. Colloids and Surfaces B: Biointerfaces, 2016, 144, 214-221.	5.0	40
539	Development of nanoemulsions containing a polyoxide surfactant and asphaltenes dispersant. Fuel, 2016, 181, 64-74.	6.4	8
540	Compared with Powdered Lutein, a Lutein Nanoemulsion Increases Plasma and Liver Lutein, Protects against Hepatic Steatosis, and Affects Lipoprotein Metabolism in Guinea Pigs. Journal of Nutrition, 2016, 146, 1961-1969.	2.9	41
541	Development, in vitro and in vivo evaluation of a self-emulsifying drug delivery system (SEDDS) for oral enoxaparin administration. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 109, 113-121.	4.3	71
542	Polymeric Nanoparticles for Drug Delivery in Neurological Diseases. Current Pathobiology Reports, 2016, 4, 189-197.	3.4	15
543	Electrolytes as a tuning parameter to control nano-emulsion and nanoparticle size. RSC Advances, 2016, 6, 58203-58211.	3.6	12
544	Nanoemulsion formulation of florfenicol improves bioavailability in pigs. Journal of Veterinary Pharmacology and Therapeutics, 2016, 39, 84-89.	1.3	13
545	Formation of Foodâ€Grade Nanoemulsions Using Lowâ€Energy Preparation Methods: A Review of Available Methods. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 331-352.	11.7	317
546	Nanoemulsion: process selection and application in cosmetics $\hat{a} \in \hat{a}$ a review. International Journal of Cosmetic Science, 2016, 38, 13-24.	2.6	227
547	Nanoagriculture and Water Quality Management. Sustainable Agriculture Reviews, 2016, , 1-42.	1.1	16
548	Investigation of the PIT emulsification mechanism by NIR and conductometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 566-575.	4.7	4
549	Nanocarriers in cosmetology. , 2016, , 363-393.		7
550	Dense stable suspensions of medium-chain-length poly(3-hydroxyalkanoate) nanoparticles. European Polymer Journal, 2016, 84, 137-146.	5.4	2

#	Article	IF	CITATIONS
551	Biocompatible microemulsions for the nanoencapsulation of essential oils and nutraceuticals. , 2016, , 503-558.		3
552	Impact of short-chain alcohols on the formation and stability of nano-emulsions prepared by the spontaneous emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 591-600.	4.7	13
553	A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion. Scientific Reports, 2016, 6, 24365.	3.3	38
554	Oil-in-water nanoemulsions are suitable for carrying hydrophobic compounds: Indomethacin as a model of anti-inflammatory drug. International Journal of Pharmaceutics, 2016, 515, 749-756.	5.2	24
555	Recent Applications of Enzymes in Personal Care Products. , 2016, , 279-298.		10
556	Characterizing the novel surfactant-stabilized nanoemulsions of stinging nettle essential oil: Thermal behaviour, storage stability, antimicrobial activity and bioaccessibility. Journal of Molecular Liquids, 2016, 224, 1332-1340.	4.9	43
557	Formulation and stability assessment of ergocalciferol loaded oil-in-water nanoemulsions: Insights of emulsifiers effect on stabilization mechanism. Food Research International, 2016, 90, 320-327.	6.2	41
558	Nanostructured Lipid Carriers. Nutraceuticals, 2016, , 215-232.	0.0	0
559	Challenges in the Development of Functional Foods. Nutraceuticals, 2016, , 233-264.	0.0	0
560	Kinetics of the Change in Droplet Size during Nanoemulsion Formation. Langmuir, 2016, 32, 11551-11559.	3.5	25
561	Transferrin tagged lipid nanoemulsion of docetaxel for enhanced tumor targeting. Journal of Drug Delivery Science and Technology, 2016, 36, 175-182.	3.0	21
562	Nano-emulsions for Pharmaceutical Applications. , 2016, , 365-388.		0
563	A piezoelectric polymer cavitation sensor installed in an emulsion generation microchannel device and an evaluation of cavitation state. Japanese Journal of Applied Physics, 2016, 55, 07KE07.	1.5	2
564	Stability and physical properties of model macro- and nano/submicron emulsions containing fenugreek gum. Food Hydrocolloids, 2016, 61, 625-632.	10.7	17
565	Readily accessible multifunctional fluorous emulsions. Chemical Science, 2016, 7, 5091-5097.	7.4	15
566	Thermophysical properties and thermal characteristics of phase change emulsion for thermal energy storage media. Energy, 2016, 117, 562-568.	8.8	54
567	A Co ₃ O ₄ nano-needle mesh for highly efficient, high-flux emulsion separation. Journal of Materials Chemistry A, 2016, 4, 12014-12019.	10.3	100
568	Colloidal behavior of nanoemulsions: Interactions, structure, and rheology. Current Opinion in Colloid and Interface Science, 2016, 25, 39-50.	7.4	102

#	Article	IF	CITATIONS
569	Effects of storage conditions on the physical stability of d-limonene nanoemulsion. Food Hydrocolloids, 2016, 53, 218-224.	10.7	106
570	β-lactoglobulin stabilized nanemulsions—Formulation and process factors affecting droplet size and nanoemulsion stability. International Journal of Pharmaceutics, 2016, 500, 291-304.	5.2	50
571	Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. Journal of Colloid and Interface Science, 2016, 466, 206-212.	9.4	88
572	Nanoemulsion as a topical delivery system of antipsoriatic drugs. RSC Advances, 2016, 6, 6234-6250.	3.6	54
573	Effect of Milk Fat Globule Size on Physical Properties of Milk. SpringerBriefs in Food, Health and Nutrition, 2016, , 35-45.	0.5	3
574	Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design. Journal of Pharmaceutical Sciences, 2016, 105, 308-323.	3.3	22
575	Comparative study of nanoemulsions based on commercial oils (sunflower, canola, corn, olive,) Tj ETQq0 0 0 rgBT farmed sea bass. Innovative Food Science and Emerging Technologies, 2016, 33, 422-430.	/Overlock 5.6	10 Tf 50 50 60
576	Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloids, 2016, 57, 72-79.	10.7	131
577	Fabrication of a nutrient delivery system of docosahexaenoic acid nanoemulsions via high energy techniques. RSC Advances, 2016, 6, 3501-3513.	3.6	36
578	Critical steps and energetics involved in a successful development of a stable nanoemulsion. Journal of Molecular Liquids, 2016, 214, 7-18.	4.9	83
579	Preparation and Evaluation of Contact Lenses Embedded with Polycaprolactone-Based Nanoparticles for Ocular Drug Delivery. Biomacromolecules, 2016, 17, 485-495.	5.4	85
580	Optimization of ultrasound induced emulsification on the formulation of palm-olein based nanoemulsions for the incorporation of antioxidant \hat{l}^2 -d-glucan polysaccharides. Ultrasonics Sonochemistry, 2016, 31, 71-84.	8.2	79
581	Impact of microemulsion inspired approaches on the formation and destabilisation mechanisms of triglyceride nanoemulsions. Soft Matter, 2016, 12, 1425-1435.	2.7	30
582	Effect of emulsifying process on stability of pesticide nanoemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 286-292.	4.7	45
583	Physicochemical, morphological and cellular uptake properties of lutein nanodispersions prepared by using surfactants with different stabilizing mechanisms. Food and Function, 2016, 7, 2043-2051.	4.6	19
584	Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Research International, 2016, 83, 41-59.	6.2	169
585	Optimization and Characterization of Biocompatible Oil-in-Water Nanoemulsion for Pesticide Delivery. ACS Sustainable Chemistry and Engineering, 2016, 4, 983-991.	6.7	118
586	CO ₂ -Switchable Nanoemulsion Based on N,N-dimethyl Oleoaminde-Propylamine (DOAPA) and Sodium Dodecyl Sulphate (SDS). Journal of Dispersion Science and Technology, 2016, 37, 1819-1825.	2.4	13

#	Article	IF	CITATIONS
587	Lipid-based nanoformulations for peptide delivery. International Journal of Pharmaceutics, 2016, 502, 80-97.	5.2	88
588	Design and development of a nanoemulsion system containing copper peptide by D-optimal mixture design and evaluation of its physicochemical properties. RSC Advances, 2016, 6, 17845-17856.	3.6	27
589	Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential. Colloids and Surfaces B: Biointerfaces, 2016, 139, 87-94.	5.0	60
590	Nanoemulsions: formation, properties and applications. Soft Matter, 2016, 12, 2826-2841.	2.7	963
591	Chemical composition and antibacterial activity of essential oils and major fractions of four Achillea species and their nanoemulsions against foodborne bacteria. LWT - Food Science and Technology, 2016, 69, 529-537.	5.2	62
592	Injection of nanosized CO 2 droplets as a technique for stable geological sequestration. International Journal of Greenhouse Gas Control, 2016, 45, 62-69.	4.6	6
593	Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science and Technology, 2016, 50, 144-158.	15.1	165
594	Thermal Degradation and Isomerization of \hat{l}^2 -Carotene in Oil-in-Water Nanoemulsions Supplemented with Natural Antioxidants. Journal of Agricultural and Food Chemistry, 2016, 64, 1970-1976.	5.2	38
595	Emulsion Blending Approach for the Preparation of Gelatin/Poly(butylene succinate- <i>co</i> -adipate) Films. ACS Biomaterials Science and Engineering, 2016, 2, 677-686.	5.2	8
596	Nanoemulsion preparation by combining high pressure homogenization and high power ultrasound at low energy densities. Food Research International, 2016, 83, 25-30.	6.2	69
597	Formation of nanoemulsion with long chain oil by W/O microemulsion dilution method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 101-108.	4.7	32
598	Improvement of physical stability properties of kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions. Industrial Crops and Products, 2016, 80, 77-85.	5.2	23
599	Evaluation of the versatile character of a nanoemulsion formulation. International Journal of Pharmaceutics, 2016, 498, 49-65.	5.2	38
600	Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. Journal of Agricultural and Food Chemistry, 2016, 64, 1447-1483.	5.2	648
601	Surfactant-free solid dispersion of fat-soluble flavour in an amorphous sugar matrix. Food Chemistry, 2016, 197, 1136-1142.	8.2	15
602	Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation. Soft Matter, 2016, 12, 1452-1458.	2.7	94
603	Antioxidant Effect of Nanoemulsions Containing Extract of Achyrocline satureioides (Lam) D.C.—Asteraceae. AAPS PharmSciTech, 2016, 17, 844-850.	3.3	43
604	A high loaded cationic nanoemulsion for quercetin delivery obtained by sub-PIT method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 256-264.	4.7	34

#	Article	IF	CITATIONS
605	Anti-quorum sensing activity of spice oil nanoemulsions against food borne pathogens. LWT - Food Science and Technology, 2016, 66, 225-231.	5.2	30
606	Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt. Food Chemistry, 2016, 197, 297-306.	8.2	128
607	Optimizing Jatropha biodiesohol composition for a suitable kinematic viscosity by a phase diagram and mixture design. Fuel, 2016, 164, 134-140.	6.4	13
608	Optimization of Nanoemulsion Fabrication Using Microfluidization: Role of Surfactant Concentration on Formation and Stability. Food Biophysics, 2016, 11, 52-59.	3.0	76
609	Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability. Ultrasonics Sonochemistry, 2016, 29, 299-308.	8.2	76
610	Development and assessment of stable formulations containing two herbal antimicrobials: <i>Allium sativum L.</i> and <i>Eruca sativa miller</i> seed oils. Drug Development and Industrial Pharmacy, 2016, 42, 958-968.	2.0	10
611	Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions. Food Chemistry, 2016, 192, 53-59.	8.2	71
612	Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chemistry, 2016, 194, 410-415.	8.2	322
613	Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids, 2016, 52, 438-446.	10.7	166
614	Stability properties of different fenugreek galactomannans in emulsions prepared by high-shear and ultrasonic method. Food Hydrocolloids, 2016, 52, 487-496.	10.7	20
615	Challenges associated in stability of food grade nanoemulsions. Critical Reviews in Food Science and Nutrition, 2017, 57, 1435-1450.	10.3	108
616	A new modified low-energy emulsification method for preparation of water-in-diesel fuel nanoemulsion as alternative fuel. Journal of Dispersion Science and Technology, 2017, 38, 248-255.	2.4	12
617	Dependence of emulsion stability on particle size: Relative importance of drop concentration and destabilization rate on the half lifetimes of O/W nanoemulsions. Journal of Dispersion Science and Technology, 2017, 38, 167-179.	2.4	2
618	The effects of emulsifier type, phase ratio, and homogenization methods on stability of the double emulsion. Journal of Dispersion Science and Technology, 2017, 38, 807-814.	2.4	47
619	Nanoemulsions Containing a Coumarin-Rich Extract from Pterocaulon balansae (Asteraceae) for the Treatment of Ocular Acanthamoeba Keratitis. AAPS PharmSciTech, 2017, 18, 721-728.	3.3	35
620	Effect of process parameters and methylcellulose supplementation on the properties of n-undecane emulsions. Journal of Dispersion Science and Technology, 2017, 38, 775-781.	2.4	2
621	Edible Nanoemulsions as Carriers of Active Ingredients: A Review. Annual Review of Food Science and Technology, 2017, 8, 439-466.	9.9	207
622	Structurally Stable Attractive Nanoscale Emulsions with Dipole–Dipole Interactionâ€Driven Interdrop Percolation. Chemistry - A European Journal, 2017, 23, 4292-4297.	3.3	16

#	Article	IF	CITATIONS
623	Mass transfer performance enhancement by nanoemulsion absorbents during CO2 absorption process. International Journal of Heat and Mass Transfer, 2017, 108, 680-690.	4.8	26
624	Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability. European Journal of Lipid Science and Technology, 2017, 119, 1500539.	1.5	100
625	Development and Evaluation of a Nanoemulsion Containing Ursolic Acid: a Promising Trypanocidal Agent. AAPS PharmSciTech, 2017, 18, 2551-2560.	3.3	24
626	Versatile Methodology to Encapsulate Gold Nanoparticles in PLGA Nanoparticles Obtained by Nano-Emulsion Templating. Pharmaceutical Research, 2017, 34, 1093-1103.	3.5	8
627	Dispersion and oxidative stability of O/W emulsions and oxidation of microencapsulated oil. Bioscience, Biotechnology and Biochemistry, 2017, 81, 625-633.	1.3	13
628	Optimization of Green Multiple Emulsions Processing to Improve Their Physical Stability. Chemical Engineering and Technology, 2017, 40, 1043-1050.	1.5	0
629	Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydrate Polymers, 2017, 166, 93-103.	10.2	213
630	Food-Grade Nanoemulsions for Protection and Delivery of Nutrients. Sustainable Agriculture Reviews, 2017, , 99-139.	1.1	6
631	Modeling and optimization of nanoemulsion containing Sorafenib for cancer treatment by response surface methodology. Chemistry Central Journal, 2017, 11, 21.	2.6	26
632	Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 2017, 252, 28-49.	9.9	817
633	Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan. International Journal of Biological Macromolecules, 2017, 98, 810-819.	7.5	67
634	Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control, 2017, 77, 131-138.	5.5	98
635	A "green―method for preparing ABCBA penta-block elastomers by using RAFT emulsion polymerization. Polymer Chemistry, 2017, 8, 3013-3021.	3.9	26
636	Recent Update on Nanoemulgel as Topical Drug Delivery System. Journal of Pharmaceutical Sciences, 2017, 106, 1736-1751.	3.3	118
637	Effect of Nanoemulsified and Microencapsulated Mexican Oregano (<i>Lippia graveolens</i> Kunth) Essential Oil Coatings on Quality of Fresh Pork Meat. Journal of Food Science, 2017, 82, 1423-1432.	3.1	22
638	Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environmental Science and Pollution Research, 2017, 24, 15125-15133.	5.3	87
639	The effect of a lipophilic drug, felodipine, on the formation of nanoemulsions upon phase inversion induced by temperature variation. Colloid Journal, 2017, 79, 1-12.	1.3	5
640	Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & mp; lemon oil. Journal of Food Engineering, 2017, 211, 60-68.	5.2	79

#	Article	IF	CITATIONS
641	Predicting the optimum compositions of a transdermal nanoemulsion system containing an extract of <i>Clinacanthus nutans</i> leaves (<scp>L</scp> .) for skin antiaging by artificial neural network model. Journal of Chemometrics, 2017, 31, e2894.	1.3	8
642	Augmentation of the cytotoxic effects of zinc oxide nanoparticles by MTCP conjugation: Non-canonical apoptosis and autophagy induction in human adenocarcinoma breast cancer cell lines. Materials Science and Engineering C, 2017, 78, 949-959.	7.3	20
643	Sugar Beet Extract (<i>Beta vulgaris</i> L.) as a New Natural Emulsifier: Emulsion Formation. Journal of Agricultural and Food Chemistry, 2017, 65, 4153-4160.	5.2	47
644	Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrasonics Sonochemistry, 2017, 36, 367-374.	8.2	55
645	A versatile and efficient approach to separate both surfactant-stabilized water-in-oil and oil-in-water emulsions. Separation and Purification Technology, 2017, 176, 1-7.	7.9	34
646	Emulsions of essential oils and aloe polysaccharides: Antimicrobial activity and resistance inducer potential against Xanthomonas fragariae. Tropical Plant Pathology, 2017, 42, 370-381.	1.5	14
647	Cinnamon oil nanoemulsions by spontaneous emulsification: Formulation, characterization and antimicrobial activity. LWT - Food Science and Technology, 2017, 84, 122-128.	5.2	80
648	Effect of fat globule size on the churnability of dairy cream. Food Research International, 2017, 99, 229-238.	6.2	18
649	Potential Application of Nanoemulsions for Skin Delivery of Pomegranate Peel Polyphenols. AAPS PharmSciTech, 2017, 18, 3307-3314.	3.3	27
650	Evaluation of the impact of critical quality attributes and critical process parameters on quality and stability of parenteral nutrition nanoemulsions. Journal of Drug Delivery Science and Technology, 2017, 39, 341-347.	3.0	8
651	Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. International Journal of Biological Macromolecules, 2017, 101, 502-517.	7.5	59
652	Fabrication of monodisperse drug-loaded poly(lactic-co-glycolic acid)–chitosan core-shell nanocomposites via pickering emulsion. Composites Part B: Engineering, 2017, 121, 99-107.	12.0	19
654	Efficacy of nano- and microemulsion-based topical gels in delivery of ibuprofen: an in vivo study. Journal of Microencapsulation, 2017, 34, 195-202.	2.8	18
655	PREPARATION OF NANOEMULSIONS BY HIGH-ENERGY AND LOWENERGY EMULSIFICATION METHODS. IFMBE Proceedings, 2017, , 317-322.	0.3	50
656	Eugenol Nanoemulsion Stabilized with Zein and Sodium Caseinate by Self-Assembly. Journal of Agricultural and Food Chemistry, 2017, 65, 2990-2998.	5.2	110
657	Nanopesticides: a review of current research and perspectives. , 2017, , 193-225.		80
658	Preparing artificial latexes using a switchable hydrophilicity solvent. Green Chemistry, 2017, 19, 1889-1894.	9.0	12
659	Effect of Formulation and Process Parameters on Chitosan Microparticles Prepared by an Emulsion Crosslinking Technique. AAPS PharmSciTech, 2017, 18, 1084-1094.	3.3	14

#	Article	IF	CITATIONS
660	Topical and cutaneous delivery using nanosystems. Journal of Controlled Release, 2017, 247, 86-105.	9.9	199
661	Colloidal emulsion based delivery systems for steroid glycosides. Journal of Functional Foods, 2017, 28, 90-95.	3.4	12
662	Fe/C and FeMo/C hybrid materials for the biphasic oxidation of fuel contaminants. New Journal of Chemistry, 2017, 41, 142-150.	2.8	10
663	A novel perspective on emulsion stabilization in steam crackers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 48-62.	4.7	4
664	Development of microemulsions to reduce the viscocity of crude oil emulsions. Fuel, 2017, 210, 684-694.	6.4	16
665	Bespoke Diblock Copolymer Nanoparticles Enable the Production of Relatively Stable Oil-in-Water Pickering Nanoemulsions. Langmuir, 2017, 33, 12616-12623.	3.5	46
666	Positive charge pesticide nanoemulsions prepared by the phase inversion composition method with ionic liquids. RSC Advances, 2017, 7, 48586-48596.	3.6	36
667	Insights into the interfacial structure–function of poly(ethylene glycol)-decorated peptide-stabilised nanoscale emulsions. Soft Matter, 2017, 13, 7953-7961.	2.7	11
668	Effect of cooling on droplet size in supersaturation-induced emulsions. Physical Chemistry Chemical Physics, 2017, 19, 29855-29861.	2.8	4
669	Effects of Oil-in-Water Nanoemulsion Based on Sunflower Oil on the Quality of Farmed Sea Bass and Gilthead Sea Bream Stored at Chilled Temperature (2 ± 2°C). Journal of Aquatic Food Product Technology, 2017, 26, 979-992.	1.4	45
670	Comparison of ergocalciferol nanodispersions prepared using modified lecithin and sodium caseinate: Insights of formulation, stability and bioaccessibility. Journal of Functional Foods, 2017, 38, 28-35.	3.4	15
671	Development and characterization of nano-cream preparation containing natural extract using nanoemulsion techniques. Materials Today: Proceedings, 2017, 4, 6105-6110.	1.8	6
672	Study of curcumin antioxidant activities in robust oil–water nanoemulsions. New Journal of Chemistry, 2017, 41, 12506-12519.	2.8	28
674	Evaluation of in vitro and in vivo safety of the by-product of Agave sisalana as a new cosmetic raw material: Development and clinical evaluation of a nanoemulsion to improve skin moisturizing. Industrial Crops and Products, 2017, 108, 470-479.	5. 2	37
675	Surfactant properties of PEGylated lignins: Anomalous interfacial activities at low grafting density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530, 200-208.	4.7	19
676	Nanoemulsion: An Advanced Vehicle For Efficient Drug Delivery. Drug Research, 2017, 67, 617-631.	1.7	50
677	Synthesis of magnesium chloride nanoparticles by the water/oil nanoemulsion evaporation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 930-935.	4.7	8
678	Experimental Study of Nanofluids Applied in EOR Processes. Journal of Surfactants and Detergents, 2017, 20, 1095-1104.	2.1	33

#	Article	IF	CITATIONS
679	Nanomaterial Impact, Toxicity and Regulation in Agriculture, Food and Environment. Sustainable Agriculture Reviews, 2017, , 205-242.	1.1	6
680	Bioorganometallic ferrocene-tripeptide nanoemulsions. Nanoscale, 2017, 9, 15323-15331.	5.6	24
681	Bioactivity of Epigallocatechin Gallate Nanoemulsions Evaluated in Mice Model. Journal of Medicinal Food, 2017, 20, 923-931.	1.5	16
682	Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine. Food and Function, 2017, 8, 3346-3354.	4.6	25
683	Novel preparation of Fe3O4/styrene-co-butyl acrylate composite microspheres via a phase inversion emulsion process. Colloid and Polymer Science, 2017, 295, 1757-1763.	2.1	6
684	Optimization and characterization of the formation of oil-in-water diazinon nanoemulsions: Modeling and influence of the oil phase, surfactant and sonication. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 896-911.	1.5	39
685	Fabrication, <i>in-vitro</i> characterization, and enhanced <i>in-vivo</i> evaluation of carbopol-based nanoemulsion gel of apigenin for UV-induced skin carcinoma. Drug Delivery, 2017, 24, 1026-1036.	5.7	41
686	Polymer conjugated retinoids for controlled transdermal delivery. Journal of Controlled Release, 2017, 262, 1-9.	9.9	35
687	Long-term stability of sodium caseinate-stabilized nanoemulsions. Journal of Food Science and Technology, 2017, 54, 82-92.	2.8	51
688	Essential oil from Pterodon emarginatus as a promising natural raw material for larvicidal nanoemulsions against a tropical disease vector. Sustainable Chemistry and Pharmacy, 2017, 6, 1-9.	3.3	27
689	A General Route for Nanoemulsion Synthesis Using Low-Energy Methods at Constant Temperature. Langmuir, 2017, 33, 7118-7123.	3.5	59
690	Encapsulation of vitamin E in edible orange oil-in-water emulsion beverages: Influence of heating temperature on physicochemical stability during chilled storage. Food Hydrocolloids, 2017, 72, 155-162.	10.7	63
691	Influence of surface-active phenolic acids and aqueous phase ratio on w/o nano-emulsions properties; model fitting and prediction of nano-emulsions oxidation stability. Journal of Food Engineering, 2017, 214, 40-46.	5.2	26
692	Ultrasonic nanoemulsification of food grade trans-cinnamaldehyde: 1,8-Cineol and investigation of the mechanism of antibacterial activity. Ultrasonics Sonochemistry, 2017, 35, 415-421.	8.2	58
693	Stabilisation of dispersions using a graft copolymer of hydrophobically modified polyfructose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 11-19.	4.7	4
694	Nanostructured emulsions and nanolaminates for delivery of active ingredients: Improving food safety and functionality. Trends in Food Science and Technology, 2017, 60, 12-22.	15.1	67
695	Enhanced prevention of progression of non alcoholic fatty liver to steatohepatitis by incorporating pumpkin seed oil in nanoemulsions. Journal of Molecular Liquids, 2017, 225, 822-832.	4.9	16
696	Betel leaf (Piper betle L.) essential oil microemulsion: Characterization and antifungal activity on growth, and apparent lag time of Aspergillus flavus in tomato paste. LWT - Food Science and Technology, 2017, 75, 616-623.	5.2	37

#	Article	IF	CITATIONS
697	Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 38-50.	4.3	53
698	Chemical composition and antimicrobial activity of garlic essential oils evaluated in organic solvent, emulsifying, and self-microemulsifying water based delivery systems. Food Chemistry, 2017, 221, 196-204.	8.2	94
699	The Effect of Manipulating Fat Globule Size on the Stability and Rheological Properties of Dairy Creams. Food Biophysics, 2017, 12, 1-10.	3.0	26
700	Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: Its emulsifying property and emulsion stability. Food Hydrocolloids, 2017, 63, 727-734.	10.7	212
701	Physicochemical characterization of black seed oil-milk emulsions through ultrasonication. Ultrasonics Sonochemistry, 2017, 38, 766-771.	8.2	33
702	From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opinion on Drug Delivery, 2017, 14, 1325-1340.	5.0	96
703	Evaluation of Organogel Nanoparticles as Drug Delivery System for Lipophilic Compounds. AAPS PharmSciTech, 2017, 18, 1261-1269.	3.3	31
704	Foodâ€Grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 76-95.	11.7	246
705	Environmental benignity of a pesticide in soft colloidal hydrodispersive nanometric form with improved toxic precision towards the target organisms than non-target organisms. Science of the Total Environment, 2017, 579, 190-201.	8.0	35
706	Development and characterization of emulsions containing purple rice bran and brown rice oils. Journal of Food Processing and Preservation, 2017, 41, e13149.	2.0	4
707	Development of Nasal Lipid Nanocarriers Containing Curcumin for Brain Targeting. Journal of Alzheimer's Disease, 2017, 59, 961-974.	2.6	38
708	Nanoencapsulation of Spice Oils. , 2017, , 179-207.		1
709	Vaccine Adjuvant Nanotechnologies. , 2017, , 127-147.		7
710	Nanoscale nutrient delivery systems. , 2017, , 87-139.		3
711	Instrumental analysis and characterization of nanocapsules. , 2017, , 524-544.		8
712	Encapsulation by nanoemulsions. , 2017, , 36-73.		35
713	Nanoemulsions., 2017,, 111-137.		4
714	Diversity and Functionality of Excipients for Micro/Nanosized Drug Carriers. , 2017, , 95-132.		4

#	Article	IF	CITATIONS
715	Nanoencapsulation of Enzymes, Bioactive Peptides, and Biological Molecules., 2017, , 297-332.		1
716	Nanostructurated materials for prolonged and safe food preservation. , 2017, , 305-335.		7
717	Nanodelivery of nutrients for improved bioavailability. , 2017, , 369-411.		3
718	Nanoemulsions and Their Stability for Enhancing Functional Properties of Food Ingredients. , 2017, , 87-106.		26
719	Nanoemulsification Technology in Improving Bioavailability of Lipophilic Functional Food-Grade Ingredients and Quality of Food Products., 2017,, 203-221.		0
720	Baccharis reticularia DC. and Limonene Nanoemulsions: Promising Larvicidal Agents for Aedes aegypti (Diptera: Culicidae) Control. Molecules, 2017, 22, 1990.	3 . 8	62
721	Nanoemulsions., 2017,, 107-127.		4
722	Technological Aspects of Nanoemulsions and Their Applications in the Food Sector. , 2017, , 129-152.		10
723	Natural Surfactants-Based Micro/Nanoemulsion Systems for NSAIDsâ€"Practical Formulation Approach, Physicochemical and Biopharmaceutical Characteristics/Performances., 2017,, 179-217.		10
724	Nanoemulsion as a Valuable Nanostructure Platform for Pharmaceutical Drug Delivery. , 2017, , 321-341.		11
725	Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Frontiers in Microbiology, 2017, 8, 1014.	3.5	915
726	Andiroba Oil (<i>Carapa guianensis</i> Aublet) Nanoemulsions: Development and Assessment of Cytotoxicity, Genotoxicity, and Hematotoxicity. Journal of Nanomaterials, 2017, 2017, 1-11.	2.7	23
727	Formulation, development, and optimization of a novel octyldodecanol-based nanoemulsion for transdermal delivery of ceramide IIIB. International Journal of Nanomedicine, 2017, Volume 12, 5203-5221.	6.7	53
728	Nanoformulation andÂadministration ofÂPUFA-rich systems forÂapplications in modern healthcare. , 2017, , 165-200.		1
729	Preparation and Optimization of 10-Hydroxycamptothecin Nanocolloidal Particles Using Antisolvent Method Combined with High Pressure Homogenization. Journal of Chemistry, 2017, 2017, 1-10.	1.9	4
730	Emulsifying conditions and processing parameters optimisation of kenaf seed oil-in-water nanoemulsions stabilised by ternary emulsifier mixtures. Food Science and Technology International, 2018, 24, 404-413.	2.2	8
731	Advanced emulsions <i>via</i> noncovalent interaction-mediated interfacial self-assembly. Chemical Communications, 2018, 54, 3174-3177.	4.1	3
732	Influence of essential oils and pectin on nanoemulsion formulation: AÂternary phase experimental approach. Food Hydrocolloids, 2018, 81, 209-219.	10.7	46

#	Article	IF	CITATIONS
733	Mineral acid monitored physicochemical studies of oil-in-water nanoemulsions. Journal of Molecular Liquids, 2018, 259, 439-452.	4.9	20
734	Characterization of physical properties and electronic sensory analyses of citrus oil-based nanoemulsions. Food Research International, 2018, 109, 149-158.	6.2	43
735	Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms. Physical Chemistry Chemical Physics, 2018, 20, 10369-10377.	2.8	60
736	Nanoemulsions and topical creams for the safe and effective delivery of lipophilic antioxidant coenzyme Q10. Colloids and Surfaces B: Biointerfaces, 2018, 167, 165-175.	5.0	49
737	Chemical composition and antibacterial activity of Eugenia brejoensis essential oil nanoemulsions against Pseudomonas fluorescens. LWT - Food Science and Technology, 2018, 93, 659-664.	5. 2	30
739	Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers. Food Chemistry, 2018, 255, 67-74.	8.2	70
740	Concentration effect of Quillaja saponin – Co-surfactant mixtures on emulsifying properties. Journal of Colloid and Interface Science, 2018, 519, 71-80.	9.4	53
741	Recent advances and development in epidermal and dermal drug deposition enhancement technology. International Journal of Dermatology, 2018, 57, 646-660.	1.0	76
742	Preparation of aqueous nanodispersions with annatto (Bixa orellana L.) extract using an organic solvent-free and low energy method. Food Chemistry, 2018, 257, 196-205.	8.2	17
743	A study on the effect of dynamic interfacial tension on the stability of nano-emulsified diesel. Journal of Molecular Liquids, 2018, 254, 39-46.	4.9	16
744	Low Energy Nanoemulsions as Templates for the Formulation of Hydrophobic Drugs. Advanced Therapeutics, 2018, 1, 1700020.	3.2	22
745	Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control, 2018, 89, 1-11.	5.5	255
746	Microemulsion system for Colletotrichum lini ST-1 biotransformation of dehydroepiandrosterone to $7\hat{l}\pm,15\hat{l}\pm$ -diOH-DHEA. Biochemical Engineering Journal, 2018, 131, 77-83.	3.6	3
747	Stabilization and characterization of carboxylated medium-chain-length poly(3-hydroxyalkanoate) nanosuspensions. International Journal of Biological Macromolecules, 2018, 108, 902-908.	7.5	6
748	In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Scientific Reports, 2018, 8, 144.	3.3	102
749	Absorption kinetics of vitamin E nanoemulsion and green tea microstructures by intestinal in situ single perfusion technique in rats. Food Research International, 2018, 106, 149-155.	6.2	12
750	Food Nanoemulsions: Stability, Benefits and Applications. Environmental Chemistry for A Sustainable World, 2018, , 19-48.	0.5	8
751	Preparation of Fenpropathrin Nanoemulsion by Phase Inversion Temperature Method and Its Study on Performance. International Journal of Nanoscience, 2018, 17, 1850001.	0.7	6

#	Article	IF	CITATIONS
752	Faba bean protein flour obtained by densification: A sustainable method to develop protein concentrates with food applications. LWT - Food Science and Technology, 2018, 93, 563-569.	5.2	32
7 53	Multiscale and Multifunctional Emulsions by Host–Guest Interaction-Mediated Self-Assembly. ACS Central Science, 2018, 4, 600-605.	11.3	25
754	Transdermal delivery of Diacerein with homing carrier Glucosamine sulphate laden in oil-in-water nanoemulsion. Materials Today: Proceedings, 2018, 5, 9690-9697.	1.8	4
755	Research on factors affecting heavy oil-in-water emulsion rheology and pressure drop. Journal of Dispersion Science and Technology, 2018, 39, 411-422.	2.4	12
756	Effect of diutan microbial polysaccharide on the stability and rheological properties of O/W nanoemulsions formed with a blend of Span20-Tween20. Journal of Dispersion Science and Technology, 2018, 39, 1644-1654.	2.4	10
757	Formulation of vitamin D encapsulated cinnamon oil nanoemulsion: Its potential anti-cancerous activity in human alveolar carcinoma cells. Colloids and Surfaces B: Biointerfaces, 2018, 166, 349-357.	5.0	51
758	Impact of virgin coconut oil nanoemulsion on properties of croaker surimi gel. Food Hydrocolloids, 2018, 82, 34-44.	10.7	92
759	Investigation of oil-in-water emulsion stability with relevant interfacial characteristics simulated by dissipative particle dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 107-114.	4.7	56
760	Optimization strategy for encapsulation efficiency and size of drug loaded silica xerogel/polymer coreâ€shell composite nanoparticles prepared by gelationâ€emulsion method. Polymer Engineering and Science, 2018, 58, 742-751.	3.1	7
761	Preparation and characterization of solid lipid nanoparticles of furosemide using quality by design. Particulate Science and Technology, 2018, 36, 695-709.	2.1	16
762	Influence of polymer concentration on the properties of nano-emulsions and nanoparticles obtained by a low-energy method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 204-212.	4.7	16
763	Preparation of water-in-diesel oil nano-emulsion using nonionic surfactants with enhanced stability and flow properties. Journal of Dispersion Science and Technology, 2018, 39, 560-570.	2.4	13
764	Ultrasound assisted synthesis of stable oil in milk emulsion: Study of operating parameters and scale-up aspects. Ultrasonics Sonochemistry, 2018, 40, 135-146.	8.2	29
765	Anti-inflammatory and antialgic actions of a nanoemulsion of Rosmarinus officinalis L. essential oil and a molecular docking study of its major chemical constituents. Inflammopharmacology, 2018, 26, 183-195.	3.9	37
766	Biological nanopesticides: a greener approach towards the mosquito vector control. Environmental Science and Pollution Research, 2018, 25, 10151-10163.	5.3	20
767	Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 108-126.	4.7	66
768	Ultrasonically tailored, chemically engineered and "QbD―enabled fabrication of agomelatine nanoemulsion; optimization, characterization, ex-vivo permeation and stability study. Ultrasonics Sonochemistry, 2018, 41, 213-226.	8.2	49
769	Nanoparticles for pest control: current status and future perspectives. Journal of Pest Science, 2018, 91, 1-15.	3.7	262

#	Article	IF	CITATIONS
770	Formulation and characterization of acetate based ionic liquid in oil microemulsion as a carrier for acyclovir and methotrexate. Separation and Purification Technology, 2018, 196, 149-156.	7.9	31
771	Preparation of DOPA-TA coated novel membrane for multifunctional water decontamination. Separation and Purification Technology, 2018, 194, 135-140.	7.9	32
772	Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). Environmental Science and Pollution Research, 2018, 25, 10526-10537.	5. 3	48
773	Effect of high pressure homogenization on the structure and the interfacial and emulsifying properties of î²-lactoglobulin. International Journal of Pharmaceutics, 2018, 537, 111-121.	5.2	23
774	Surfactant-oil interactions overcoming physicochemical instability and insoluble praziquantel loading in soybean oil dispersions. Journal of Molecular Liquids, 2018, 255, 288-296.	4.9	4
775	Enhancing the physicochemical stability of \hat{l}^2 -carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Research International, 2018, 105, 962-969.	6.2	94
776	Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. Journal of Controlled Release, 2018, 270, 203-225.	9.9	374
777	Water-in-Diesel Nanoemulsion Fuels for Diesel Engine: Combustion Properties and Emission Characteristics. Energy, Environment, and Sustainability, 2018, , 299-342.	1.0	1
778	Formulation and stabilization of oil-in-water nanoemulsions using a saponins-rich extract from argan oil press-cake. Food Chemistry, 2018, 246, 457-463.	8.2	46
779	Environmentally benign nanometric neem-laced urea emulsion for controlling mosquito population in environment. Environmental Science and Pollution Research, 2018, 25, 2211-2230.	5.3	12
780	Delivery by Design (DbD): A Standardized Approach to the Development of Efficacious Nanoparticleâ€and Microparticleâ€Based Delivery Systems. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 200-219.	11.7	85
781	Effects of compositions on the stability of polyols-in-oil-in-water (P/O/W) multiple emulsions. Journal of Dispersion Science and Technology, 2018, 39, 1344-1351.	2.4	5
782	Selective heavy rare earth element extraction from dilute solutions using ultrasonically synthesized Cyanex 572 oil droplets and Cyanex 572-impregnated resin. Journal of Industrial and Engineering Chemistry, 2018, 59, 388-402.	5.8	20
783	Factors affecting the properties of nitrocellulose emulsions: A comparative study. Carbohydrate Polymers, 2018, 189, 267-272.	10.2	15
784	Emulsion phase inversion of model and crude oil systems detected by near-infrared spectroscopy and principal component analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 565-573.	4.7	16
785	The effect of surfactan on formulation and stability of nanoemulsion using extract of Centella Asiatica and Zingiber Officinale. AIP Conference Proceedings, 2018, , .	0.4	13
786	Microwave-assisted oleothermal synthesis of graphene-TiO2 quantum dots for photoelectrochemical oxygen evolution reaction. FlatChem, 2018, 12, 26-34.	5.6	23
787	Alginate Biocomposite Films Incorporated with Cinnamon Essential Oil Nanoemulsions: Physical, Mechanical, and Antibacterial Properties. International Journal of Polymer Science, 2018, 2018, 1-8.	2.7	44

#	Article	IF	CITATIONS
788	Formation of Nanoemulsion Containing Ibuprofen by PIC Method for Topical Delivery. Materials Today: Proceedings, 2018, 5, S172-S179.	1.8	13
789	Preparation of gelatin nanoparticles by a water-in-oil emulsion method for water-soluble model drug encapsulation. Materials Today: Proceedings, 2018, 5, 15800-15805.	1.8	6
790	Looking into Limoncello: The Structure of the Italian Liquor Revealed by Small-Angle Neutron Scattering. ACS Omega, 2018, 3, 15407-15415.	3.5	12
791	Anti oral biofilm mouthwash nanoemulsion containing extract propolis and curcumin. AIP Conference Proceedings, 2018, , .	0.4	4
792	Plenty of Room at the Bottom: Nanotechnology as Solution to an Old Issue in Enhanced Oil Recovery. Applied Sciences (Switzerland), 2018, 8, 2596.	2.5	27
793	Effect of Carnauba Wax–Based Coating Containing Glycerol Monolaurate on Decay and Quality of Sweet Potato Roots during Storage. Journal of Food Protection, 2018, 81, 1643-1650.	1.7	23
794	Flurbiprofen-Loaded Solid SNEDDS Preconcentrate for the Enhanced Solubility, In-Vitro Dissolution and Bioavailability in Rats. Pharmaceutics, 2018, 10, 247.	4.5	22
795	Stability study of honey, black seed oil, and olive oil emulsions with lechitin as the emulsifier. AIP Conference Proceedings, 2018, , .	0.4	2
796	Buccal Bullfrog (Rana catesbeiana Shaw) Oil Emulsion: A Mucoadhesive System Intended for Treatment of Oral Candidiasis. Pharmaceutics, 2018, 10, 257.	4.5	8
797	Preparation and characterizations of essential oil and monoterpene nanoemulsions and acaricidal activity against two-spotted spider mite (<i>Tetranychus urticae</i> Koch). International Journal of Acarology, 2018, 44, 330-340.	0.7	28
798	Effect of ultrasonic processing on the particle size and distribution of the emulsion containing enzymatically interesterified fat. Journal of Food Processing and Preservation, 2018, 42, e13692.	2.0	1
799	Vitamin E Encapsulation in Plant-Based Nanoemulsions Fabricated Using Dual-Channel Microfluidization: Formation, Stability, and Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 10532-10542.	5.2	53
800	Cell penetrating peptide grafting of PLGA nanoparticles to enhance cell uptake. European Polymer Journal, 2018, 108, 429-438.	5.4	19
801	Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine, 2018, 13, 2507-2525.	3.3	109
802	Synthesis and Characterization of Ozonated Oil Nanoemulsions. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1385-1398.	1.9	10
803	Development and Characterization of Nanoemulsion Containing Almond Oil, Biodegradable Polymer and Propranolol as Potential Treatment in Hemangioma. Macromolecular Symposia, 2018, 381, 1800121.	0.7	4
804	A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system. Journal of Food Science and Technology, 2018, 55, 4701-4710.	2.8	63
805	Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microbial Pathogenesis, 2018, 125, 475-485.	2.9	90

#	Article	IF	CITATIONS
806	Plant-Derived Drug Molecules as Antibacterial Agents., 2018,, 143-171.		2
807	Performance Evaluation of Novel Sunflower Oil-Based Gemini Surfactant(s) with Different Spacer Lengths: Application in Enhanced Oil Recovery. Energy & Samp; Fuels, 2018, 32, 11344-11361.	5.1	64
808	Changes in characteristics of nanoemulsion of cinnamon oil and their relationships with instability mechanisms during storage. Journal of Food Processing and Preservation, 2018, 42, e13745.	2.0	9
809	Free Energy and Dynamics of Water Droplet Coalescence. Journal of Physical Chemistry C, 2018, 122, 22975-22984.	3.1	19
810	Preparation of basil oil nanoemulsion using Sapindus mukorossi pericarp extract: Physico-chemical properties and antifungal activity against food spoilage pathogens. Industrial Crops and Products, 2018, 125, 95-104.	5.2	42
811	Effects of Compositional Tailoring on Drug Delivery Behaviours of Silica Xerogel/Polymer Core-shell Composite Nanoparticles. Scientific Reports, 2018, 8, 13002.	3.3	35
812	Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. International Journal of Pharmaceutics, 2018, 550, 333-346.	5.2	30
813	Optimization of process parameters in preparation of tocotrienol-rich red palm oil-based nanoemulsion stabilized by Tween80-Span 80 using response surface methodology. PLoS ONE, 2018, 13, e0202771.	2.5	55
814	Potential applications of nano-emulsions in the food systems: an update. Materials Research Express, 2018, 5, 062001.	1.6	23
815	Nanoemulsions and dermatological diseases: contributions and therapeutic advances. International Journal of Dermatology, 2018, 57, 894-900.	1.0	12
816	Membrane permeation of giant unilamellar vesicles and corneal epithelial cells with lipophilic vitamin nanoemulsions. Colloids and Surfaces B: Biointerfaces, 2018, 169, 444-452.	5.0	14
817	Intertwining Roles of the Disperse Phase Properties during Emulsification. Langmuir, 2018, 34, 6480-6488.	3. 5	6
818	Droplet coalescence as a potential marker for physicochemical fate of nanoemulsions during in-vitro small intestine digestion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 278-287.	4.7	11
819	Nanoemulsion-Loaded Hydrogels for Topical Administration of Pentyl Gallate. AAPS PharmSciTech, 2018, 19, 2672-2678.	3.3	8
820	A practical framework for implementing Quality by Design to the development of topical drug products: Nanosystem-based dosage forms. International Journal of Pharmaceutics, 2018, 548, 385-399.	5.2	31
821	Natural Antimicrobial Materials for Use in Food Packaging. , 2018, , 181-233.		2
822	Nanoemulsion in drug delivery. , 2018, , 667-700.		16
823	Thermodynamic and physicochemical properties evaluation for formation and characterization of oil-in-water nanoemulsion. Journal of Molecular Liquids, 2018, 266, 147-159.	4.9	105

#	Article	IF	CITATIONS
824	Effects of Process Parameters on an Inverse Concentrated Miniemulsion Flowing in a Microchannel. Chemical Engineering and Technology, 2018, 41, 1965-1974.	1.5	3
825	Pickering nano-emulsion as a nanocarrier for pH-triggered drug release. International Journal of Pharmaceutics, 2018, 549, 299-305.	5.2	30
826	A Realistic Look at Nanostructured Material as an Innovative Approach for Enhanced Oil Recovery Process Upgrading. , 2018, , .		5
827	Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. Journal of Molecular Liquids, 2018, 268, 734-742.	4.9	95
828	Bio-Based Nanoemulsions: An Eco-Safe Approach Towards the Eco-Toxicity Problem. , 2018, , 1-23.		1
830	Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. International Journal of Nanomedicine, 2018, Volume 13, 669-680.	6.7	90
831	Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Archives of Pharmacal Research, 2018, 41, 797-814.	6.3	22
832	Enhanced oral absorption of pemetrexed by ion-pairing complex formation with deoxycholic acid derivative and multiple nanoemulsion formulations: preparation, characterization, and in vivo oral bioavailability and anticancer effect. International Journal of Nanomedicine, 2018, Volume 13, 3329-3351.	6.7	41
833	Comparing Surfactant Structures at "Soft―and "Hard―Hydrophobic Materials: Not All Interfaces Are Equivalent. Langmuir, 2018, 34, 9141-9152.	3.5	10
834	Development of finger citron (Citrus medica L. var. sarcodactylis) essential oil loaded nanoemulsion and its antimicrobial activity. Food Control, 2018, 94, 317-323.	5.5	39
835	Stability, physical properties and acceptance of salad dressings containing saffron (Crocus sativus) or pomegranate juice powder as affected by high shear (HS) and ultrasonication (US) process. LWT - Food Science and Technology, 2018, 97, 404-413.	5.2	19
836	Ultrasonication assisted formation and stability of water-in-oil nanoemulsions: Optimization and ternary diagram analysis. Ultrasonics Sonochemistry, 2018, 49, 79-88.	8.2	38
837	General Aspects of Nanoemulsions and Their Formulation. , 2018, , 3-20.		52
838	Overview of Nanoemulsion Properties: Stability, Rheology, and Appearance. , 2018, , 21-49.		21
839	Transitional Nanoemulsification Methods., 2018,, 77-100.		8
840	General Principles of Nanoemulsion Formation by High-Energy Mechanical Methods. , 2018, , 103-139.		18
841	Fabrication of Nanoemulsions by High-Pressure Valve Homogenization., 2018,, 175-206.		5
842	Fabrication of Nanoemulsions by Microfluidization. , 2018, , 207-232.		13

#	Article	IF	Citations
843	Fabrication of Nanoemulsions by Ultrasonication. , 2018, , 233-285.		10
844	Application of Nanoemulsions in Cosmetics. , 2018, , 435-475.		25
845	Characterization of Physicochemical Properties of Nanoemulsions: Appearance, Stability, and Rheology., 2018, , 547-576.		9
846	Preparation of oil-in-water nanoemulsions at large-scale using premix membrane emulsification and Shirasu Porous Glass (SPG) membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 76-84.	4.7	51
847	Optimization of palm oil in water nano-emulsion with curcumin using microfluidizer and response surface methodology. LWT - Food Science and Technology, 2018, 96, 58-65.	5.2	75
848	Surfactant Stabilized Oil-in-Water Nanoemulsion: Stability, Interfacial Tension, and Rheology Study for Enhanced Oil Recovery Application. Energy & Samp; Fuels, 2018, 32, 6452-6466.	5.1	181
849	Optimized conditions to produce water-in-oil-in-water nanoemulsion and spray-dried nanocapsule of red ginseng extract. Food Science and Technology, 2018, 38, 485-492.	1.7	16
850	Analytical considerations for measuring the globule size distribution of cyclosporine ophthalmic emulsions. International Journal of Pharmaceutics, 2018, 550, 229-239.	5.2	28
851	Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions. Journal of Membrane Science, 2018, 565, 303-310.	8.2	84
852	Astaxanthin-alpha tocopherol nanoemulsion formulation by emulsification methods: Investigation on anticancer, wound healing, and antibacterial effects. Colloids and Surfaces B: Biointerfaces, 2018, 172, 170-179.	5.0	53
853	Food-Grade Biopolymers as Efficient Delivery Systems for Nutrients: An Overview., 2018,, 401-422.		4
854	Ultrasonication techniques used for the preparation of novel Eugenol-Nanoemulsion in the treatment of wounds healings and anti-inflammatory. Journal of Drug Delivery Science and Technology, 2018, 46, 461-473.	3.0	43
855	Nanohydrogels. , 2018, , 293-368.		13
856	Use of Nanotechnological Methods for the Analysis and Stability of Food Antioxidants. , 2018, , 311-350.		2
857	Engineered Smart Textiles and Janus Microparticles for Diverse Functional Industrial Applications. Polymer-Plastics Technology and Materials, 2019, 58, 229-245.	1.3	13
858	Protein-Based Nanodelivery Systems for Food Applications. , 2019, , 719-726.		3
859	Surface remobilization of buoyancyâ€driven surfactantâ€laden drops at low reynolds and capillary numbers. AICHE Journal, 2019, 65, 294-304.	3.6	5
860	Synthesis of poly(styrene-co-methyl methacrylate) nanospheres by ultrasound-mediated Pickering nanoemulsion polymerization. Journal of Polymer Research, 2019, 26, 1.	2.4	9

#	Article	IF	CITATIONS
861	Protective effect of sucupira oil nanoemulsion against oxidative stress in UVA-irradiated HaCaT cells. Journal of Pharmacy and Pharmacology, 2019, 71, 1532-1543.	2.4	8
862	Preparation and Characterization of Whey Protein Isolate–DIM Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 3917.	4.1	27
863	Classification and Uses of Emulsions in Food and Agro Applications. , 2019, , 143-158.		1
864	Salt and pH-Induced Attractive Interactions on the Rheology of Food Protein-Stabilized Nanoemulsions. ACS Omega, 2019, 4, 11791-11800.	3.5	15
865	Enzyme stabilization for biotechnological applications. , 2019, , 107-131.		3
866	Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation. Nanoscale, 2019, 11, 17607-17614.	5.6	104
867	A herbal oil in water nano-emulsion prepared through an ecofriendly approach affects two tropical disease vectors. Revista Brasileira De Farmacognosia, 2019, 29, 778-784.	1.4	16
868	Evidence of nanoemulsion as an effective control measure for fruit flies Drosophila melanogaster. Scientific Reports, 2019, 9, 10578.	3.3	6
869	Nanoemulsions in Food Industry. , 0, , .		17
870	Preparation of Nanoemulsions of Vitamin A and C by Microfluidization: Efficacy on the Expression Pattern of Milk-Specific Proteins in MAC-T Cells. Molecules, 2019, 24, 2566.	3.8	14
871	Producing the sour cherry pit oil nanoemulsion and evaluation of its anti-cancer effects on both breast cancer murine model and MCF-7 cell line. Journal of Microencapsulation, 2019, 36, 399-409.	2.8	14
872	Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Advances, 2019, 9, 20192-20206.	3.6	124
873	Application of Technetium 99 Metastable Radioactive Nanosystems: Nanoparticles, Liposomes, and Nanoemulsion for Biomedical Application. Current Pharmacology Reports, 2019, 5, 281-302.	3.0	6
874	Development, characterization and evaluation of cinnamon oil and usnic acid blended nanoemulsion to attenuate skin carcinogenicity in swiss albino mice. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101227.	3.1	14
875	Fucoxanthin-Loaded Oil-in-Water Emulsion-Based Delivery Systems: Effects of Natural Emulsifiers on the Formulation, Stability, and Bioaccessibility. ACS Omega, 2019, 4, 10502-10509.	3.5	41
876	Effect of Carrier Oil and Co-Solvent on The Formation of Clove Oil Nanoemulsion by Phase Inversion Technique. IOP Conference Series: Earth and Environmental Science, 2019, 309, 012036.	0.3	11
877	Effect of Emulsifier Variation on The Stability of Carotene Nanoemulsion. IOP Conference Series: Earth and Environmental Science, 2019, 309, 012046.	0.3	0
878	Milk Emulsions: Structure and Stability. Foods, 2019, 8, 483.	4.3	9

#	Article	IF	Citations
879	Encapsulation of food ingredients by Pickering nanoemulsions., 2019,, 151-176.		0
880	Encapsulation of Natural Bioactive Compounds: Nanoemulsion Formulation to Enhance Essential Oils Activities., 0,,.		2
881	Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Industrial Crops and Products, 2019, 142, 111869.	5. 2	55
882	Introductory Chapter: From Microemulsions to Nanoemulsions. , 0, , .		4
883	Interaction between ethoxylated emulsifiers and propylene glycol based solvents: Gelation and rheology study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123905.	4.7	5
884	Pharmaceutical design and development of perfluorocarbon nanocolloids for oxygen delivery in regenerative medicine. Nanomedicine, 2019, 14, 2697-2712.	3.3	26
885	Chemical profile, characterization and acaricidal activity of essential oils of three plant species and their nanoemulsions against Tyrophagus putrescentiae, a stored-food mite. Experimental and Applied Acarology, 2019, 79, 359-376.	1.6	23
886	Nanoemulsions and Their Potential Applications in Food Industry. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	264
887	Co-delivery of free vancomycin and transcription factor decoy-nanostructured lipid carriers can enhance inhibition of methicillin resistant Staphylococcus aureus (MRSA). PLoS ONE, 2019, 14, e0220684.	2.5	11
888	PLGA cationic nanoparticles, obtained from nano-emulsion templating, as potential DNA vaccines. European Polymer Journal, 2019, 120, 109229.	5.4	12
889	Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests. Nanomaterials, 2019, 9, 1285.	4.1	107
890	<p>Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system</p> . International Journal of Nanomedicine, 2019, Volume 14, 6439-6450.	6.7	60
891	Ultrasound assisted synthesis of water-in-oil nanoemulsions: Parametric optimization using hybrid ANN-GA approach. Chemical Engineering and Processing: Process Intensification, 2019, 144, 107649.	3.6	13
892	Improving the emulsion stability by regulation of dilational rheology properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123906.	4.7	25
893	Dynamic Viscosity, Surface Tension and Wetting Behavior Studies of Paraffin–in–Water Nano–Emulsions. Energies, 2019, 12, 3334.	3.1	24
894	Entrapment of Glucose Oxidase in Reverse Micelle Microemulsion Systems for Glucose Detection in Lipid Based Food Products. Asian Journal of Chemistry, 2019, 31, 2635-2641.	0.3	0
895	Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Management Science, 2019, 75, 2403-2412.	3.4	92
896	Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. Journal of Pest Science, 2019, 92, 909-921.	3.7	53

#	Article	IF	CITATIONS
897	W/O/W Multiple Emulsions as the Functional Component of Dairy Products. Chemical Engineering and Technology, 2019, 42, 715-727.	1.5	15
898	Development and characterization of novel and stable silicon nanoparticles-embedded PCM-in-water emulsions for thermal energy storage. Applied Energy, 2019, 238, 1407-1416.	10.1	57
899	Effect of \hat{l}^2 -Glucan Stabilized Virgin Coconut Oil Nanoemulsion on Properties of Croaker Surimi Gel. Journal of Aquatic Food Product Technology, 2019, 28, 194-209.	1.4	6
900	Synthesis of <i>Carum Carvi </i> essential oil nanoemulsion, the cytotoxic effect, and expression of caspase 3 gene. Journal of Food Biochemistry, 2019, 43, e12956.	2.9	23
901	Factors affecting the formation of highly concentrated emulsions and nanoemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123577.	4.7	16
902	Nanostructures of gums for encapsulation of food ingredients. , 2019, , 521-578.		4
903	Effect of residence time and energy dissipation on drop size distribution for the dispersion of oil in water using KMS and SMX+ static mixer. Chemical Engineering Research and Design, 2019, 148, 417-428.	5.6	13
904	Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials, 2019, 9, 821.	4.1	147
905	Nanoencapsulation of Agrochemicals, Fertilizers, and Pesticides for Improved Plant Production., 2019,, 279-298.		13
906	Microemulsions: An effective encapsulation tool to enhance the antimicrobial activity of selected EOs. Journal of Drug Delivery Science and Technology, 2019, 53, 101101.	3.0	31
907	Nanocarrier-Based Antimicrobial Phytochemicals. , 2019, , 299-314.		6
908	An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnology and Biotechnological Equipment, 2019, 33, 779-797.	1.3	171
909	Oxidatively stable curcuminâ \in loaded oleogels structured by \hat{l}^2 â \in sitosterol and lecithin: physical characteristics and release behaviour <i>in vitro</i> . International Journal of Food Science and Technology, 2019, 54, 2502-2510.	2.7	54
910	Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in Colloid and Interface Science, 2019, 269, 277-295.	14.7	134
911	Formation of drug-loaded nanoemulsions in stirred media mills. Advanced Powder Technology, 2019, 30, 1584-1591.	4.1	9
912	Heteroprotein complex formation of ovotransferrin and lysozyme: Fabrication of food-grade particles to stabilize Pickering emulsions. Food Hydrocolloids, 2019, 96, 190-200.	10.7	64
913	An experimental investigation of nanoemulsion enhanced oil recovery: Use of unconsolidated porous systems. Fuel, 2019, 251, 754-762.	6.4	46
914	Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein. Journal of Drug Delivery Science and Technology, 2019, 52, 189-203.	3.0	43

#	ARTICLE	IF	CITATIONS
915	A novel Nanoformulation Development of Eugenol and their treatment in inflammation and periodontitis. Saudi Pharmaceutical Journal, 2019, 27, 778-790.	2.7	42
916	The influence of organically intercalated montmorillonites on the interfacial tension and structure of oil-in-water nanoemulsions. RSC Advances, 2019, 9, 13378-13385.	3.6	9
917	Effectiveness of nanoemulsions of clove and lemongrass essential oils and their major components against Escherichia coli and Botrytis cinerea. Journal of Food Science and Technology, 2019, 56, 2721-2736.	2.8	22
918	Comparison of Three Processes for Parenteral Nanoemulsion Production: Ultrasounds, Microfluidizer, and Premix Membrane Emulsification. Journal of Pharmaceutical Sciences, 2019, 108, 2708-2717.	3.3	24
919	Synergy between polymer crystallinity and nanoparticles size for payloads release. Journal of Colloid and Interface Science, 2019, 550, 139-146.	9.4	25
920	Nanobiopesticides: Composition and preparation methods., 2019,, 69-131.		16
921	Green nanoemulsion interventions for biopesticide formulations. , 2019, , 133-160.		10
922	A Green Nano-Synthesis to Explore the Plant Microbe Interactions. , 2019, , 85-105.		11
923	Preparation of biodiesel oil-in-water nanoemulsions by mixed surfactants for bifenthrin formulation. RSC Advances, 2019, 9, 11649-11658.	3.6	23
924	Some physical characteristics of the O/W macroemulsion of oleoresin of astaxanthin obtained from biomass of Haematococcus pluvialis. DYNA (Colombia), 2019, 86, 136-142.	0.4	5
925	Individual and Collective Behavior of Emulsion Droplets Undergoing Ostwald Ripening. Langmuir, 2019, 35, 5316-5323.	3.5	12
926	Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by \hat{I}^{e} -carrageenan: Process optimization, bio-accessibility and cytotoxicity. Ultrasonics Sonochemistry, 2019, 55, 105-116.	8.2	49
927	Nanobiopesticide perspectives for protection and nutrition of plants., 2019, , 47-68.		10
928	Nanoencapsulation of functional food ingredients. Advances in Food and Nutrition Research, 2019, 88, 129-165.	3.0	18
929	A new alternative insight of nanoemulsion conjugated with \hat{l}^2 -carrageenan for wound healing study in diabetic mice: In vitro and in vivo evaluation. European Journal of Pharmaceutical Sciences, 2019, 133, 236-250.	4.0	33
930	An intelligent dual mode filtration device for separation of immiscible oil/water mixtures and emulsions. Applied Surface Science, 2019, 484, 97-104.	6.1	17
931	Measurement of the Size and Zeta Potential of Polymer Microspheres Using Dynamic Light Scattering and Electrophoretic Light Scattering Methods: Effect of Viscosity of Dispersion Media., 2019,,.		2
932	Application of <i>Bacillus subtilis</i> strain for microbial-enhanced oil recovery. International Journal of Green Energy, 2019, 16, 530-539.	3.8	10

#	Article	IF	CITATIONS
933	Application of chitosan nanoparticles containing Cuminum cyminum oil as a delivery system for shelf life extension of Agaricus bisporus. LWT - Food Science and Technology, 2019, 106, 218-228.	5.2	59
934	Sustainability of water in diesel emulsion fuel: An assessment of its corrosion behaviour towards copper. Journal of Cleaner Production, 2019, 220, 1005-1013.	9.3	20
935	Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends in Food Science and Technology, 2019, 86, 230-251.	15.1	251
936	Formation and stability of waterâ€inâ€oil nanoâ€emulsions with mixed surfactant using inâ€situ combined condensationâ€dispersion method. Canadian Journal of Chemical Engineering, 2019, 97, 2039-2049.	1.7	20
937	Study on optimum parameters of high content paraffin wax microemulsion. IOP Conference Series: Materials Science and Engineering, 2019, 578, 012040.	0.6	1
938	Production of food bioactive-loaded nanostructures by microfluidization. , 2019, , 341-390.		0
939	High-pressure homogenization in food processing. , 2019, , 139-157.		5
940	Small-scale preparation of perfluorocarbon-nanoemulsions utilizing dual centrifugation. International Journal of Pharmaceutics, 2019, 572, 118753.	5.2	8
941	Cyclosporine A eyedrops with self-nanoemulsifying drug delivery systems have improved physicochemical properties and efficacy against dry eye disease in a murine dry eye model. PLoS ONE, 2019, 14, e0224805.	2.5	30
942	Conversion of Viscous Oil-in-Water Nanoemulsions to Viscoelastic Gels upon Removal of Excess Ionic Emulsifier. Langmuir, 2019, 35, 17061-17074.	3.5	13
943	Effect of protein type, concentration and oil droplet size on the formation of repulsively jammed elastic nanoemulsion gels. Soft Matter, 2019, 15, 9762-9775.	2.7	14
944	Nanostructured Systems Improve the Antimicrobial Potential of the Essential Oil from <i>Cymbopogon densiflorus</i> Leaves. Journal of Natural Products, 2019, 82, 3208-3220.	3.0	21
945	Design and characterization of liquid nanocapsules of rosemary oil (Rosmarinus officinalis L.)., 2019,		0
946	Ethyl oleate food-grade O/W emulsions loaded with apigenin: Insights to their formulation characteristics and physico-chemical stability. Food Research International, 2019, 116, 953-962.	6.2	19
947	Phase behaviour and characterization of microemulsion stabilized by a novel synthesized surfactant: Implications for enhanced oil recovery. Fuel, 2019, 235, 995-1009.	6.4	102
948	Microemulsions for delivery of Apiaceae essential oilsâ€"Towards highly effective and eco-friendly mosquito larvicides?. Industrial Crops and Products, 2019, 129, 631-640.	5.2	106
949	Electrophoresis of Liquid Droplets and Gas Bubbles. Interface Science and Technology, 2019, 26, 247-274.	3.3	0
950	Ultrasound-assisted water-in-palm oil nano-emulsion: Influence of polyglycerol polyricinoleate and NaCl on its stability. Ultrasonics Sonochemistry, 2019, 52, 353-363.	8.2	54

#	Article	IF	CITATIONS
951	Physical and chemical stability of sweet walnut oil emulsion: Influence of homogenization conditions and stabilizer ratio. Journal of Food Process Engineering, 2019, 42, e12945.	2.9	5
952	Ultrasonic nano-emulsification – A review. Ultrasonics Sonochemistry, 2019, 52, 88-105.	8.2	122
953	Vortex-assisted liquid-liquid microextraction revisited. TrAC - Trends in Analytical Chemistry, 2019, 113, 332-339.	11.4	63
954	Enhanced Therapeutic Potency of Nanoemulsified Garlic Oil Blend Towards Renal Abnormalities in Pre-diabetic Rats. Applied Biochemistry and Biotechnology, 2019, 188, 338-356.	2.9	5
955	Ultrasound-assisted emulsion of laurel leaves essential oil (Laurus nobilis L.) encapsulated by SFEE. Journal of Supercritical Fluids, 2019, 147, 284-292.	3.2	23
956	Nanoemulsion formation by the phase inversion temperature method using polyoxypropylene surfactants. Journal of Colloid and Interface Science, 2019, 540, 177-184.	9.4	78
957	Pectin-whey protein complexes vs. small molecule surfactants for stabilization of double nano-emulsions as novel bioactive delivery systems. Journal of Food Engineering, 2019, 245, 139-148.	5.2	90
958	Development of sustainable carrier in thermosensitive hydrogel based on chitosan/alginate nanoparticles for <i>in situ</i> delivery system. Polymer Composites, 2019, 40, 2187-2196.	4.6	16
959	Mexican oregano (Lippia graveolens) essential oil-in-water emulsions: impact of emulsifier type on the antifungal activity of Candida albicans. Food Science and Biotechnology, 2019, 28, 441-448.	2.6	20
960	Influence of concentration ratio on emulsifying properties of Quillaja saponin - protein or lecithin mixed systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 267-274.	4.7	20
961	Engineering Nanomaterials for Smart Drug Release. , 2019, , 411-449.		25
962	Renewable Surfactants for Biochemical Applications and Nanotechnology. Journal of Surfactants and Detergents, 2019, 22, 5-21.	2.1	58
963	Nanoemulsions: Synthesis, Characterization, and Application in Bioâ€Based Active Food Packaging. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 264-285.	11.7	133
964	Use of microalgae: Tetraselmis tetrathele extract in formulation of nanoemulsions for cosmeceutical application. Journal of Applied Phycology, 2019, 31, 1743-1752.	2.8	23
965	Ultrasound-assisted oil-in-water nanoemulsion produced from Pereskia aculeata Miller mucilage. Ultrasonics Sonochemistry, 2019, 50, 339-353.	8.2	56
966	The antioxidant activity of nanoemulsions based on lipids and peptides from Spirulina sp. LEB18. LWT - Food Science and Technology, 2019, 99, 173-178.	5.2	24
967	Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. Arabian Journal of Chemistry, 2019, 12, 3225-3230.	4.9	80
968	Comparison of emulsifying characteristics of different macromolecule emulsifiers and their effects on the physical properties of lycopene nanoemulsions. Journal of Dispersion Science and Technology, 2020, 41, 618-627.	2.4	23

#	Article	IF	CITATIONS
969	High internal phase Pickering emulsions stabilized with graphene oxide in supercritical CO2 system. Journal of Supercritical Fluids, 2020, 155, 104654.	3.2	8
970	Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chemistry, 2020, 302, 125328.	8.2	148
971	Nanoemulsion of eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice. Industrial Crops and Products, 2020, 143, 111849.	5.2	80
972	Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. Small, 2020, 16, e1904673.	10.0	63
973	Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes' role overcome penetration enhancement effect?. European Journal of Pharmaceutical Sciences, 2020, 142, 105135.	4.0	28
974	Interferonâ€gamma carrying nanoemulsion with immunomodulatory and antiâ€ŧumor activities. Journal of Biomedical Materials Research - Part A, 2020, 108, 234-245.	4.0	13
975	Optimization of low-energy Pickering nanoemulsion stabilized with montmorillonite and nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124098.	4.7	11
976	Effect of enzymolysis and glycosylation on the curcumin nanoemulsions stabilized by \hat{l}^2 -conglycinin: Formation, stability and in vitro digestion. International Journal of Biological Macromolecules, 2020, 142, 658-667.	7.5	33
977	Development, characterization and in vitro toxicity evaluation of nanoemulsion-loaded hydrogel based on copaiba oil and coenzyme Q10. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124132.	4.7	11
978	Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity. Journal of Molecular Liquids, 2020, 301, 112479.	4.9	19
979	Anti-HPV Nanoemulsified-Imiquimod: A New and Potent Formulation to Treat Cervical Cancer. AAPS PharmSciTech, 2020, 21, 54.	3.3	12
980	Surfactant-Stabilized Spontaneous 3-(Trimethoxysilyl) Propyl Methacrylate Nanoemulsions. Langmuir, 2020, 36, 284-292.	3.5	12
981	Nanoemulsions: A review on low energy formulation methods, characterization, applications and optimization technique. Materials Today: Proceedings, 2020, 27, 454-459.	1.8	43
982	Preparation, characterization, and biological evaluation of retinyl palmitate and Dead Sea water loaded nanoemulsions toward topical treatment of skin diseases. Journal of Bioactive and Compatible Polymers, 2020, 35, 24-38.	2.1	6
983	Effects of poly(vinyl alcohol) and poly(acrylic acid) on interfacial properties and stability of compound droplets. International Journal of Hydrogen Energy, 2020, 45, 2925-2935.	7.1	6
984	Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor. International Journal of Pharmaceutics, 2020, 576, 118952.	5.2	53
985	Preparation and characterization of Eucommia ulmoides seed oil O/W nanoemulsion by dynamic high-pressure microfluidization. LWT - Food Science and Technology, 2020, 121, 108960.	5.2	42
986	Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil. Journal of the Science of Food and Agriculture, 2020, 100, 1671-1677.	3.5	27

#	Article	IF	Citations
987	Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. Journal of Drug Delivery Science and Technology, 2020, 55, 101400.	3.0	39
988	Formation and stability of W/O emulsions in presence of asphaltene at reservoir thermodynamic conditions. Journal of Molecular Liquids, 2020, 299, 112125.	4.9	36
989	Nanoemulsions., 2020,, 371-384.		12
990	Current applications of Colloidal Liquid Aphrons: Predispersed solvent extraction, enzyme immobilization and drug delivery. Advances in Colloid and Interface Science, 2020, 275, 102079.	14.7	8
991	Nanostructured oleic acid/polysorbate 80 emulsions with diminished toxicity in NL-20 cell line: Insights of potential drug carriers. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110758.	5.0	9
992	Self-Assembled Cationic-Covered Nanoemulsion as A Novel Biocompatible Immunoadjuvant for Antiserum Production Against Tityus serrulatus Scorpion Venom. Pharmaceutics, 2020, 12, 927.	4.5	3
993	Influence of the hydrophilic moiety of polymeric surfactant on their surface activity and physical stability of pesticide suspension concentrate. Journal of Molecular Liquids, 2020, 317, 114136.	4.9	25
994	Nanoemulsion adjuvantation strategy of tumor-associated antigen therapy rephrases mucosal and immunotherapeutic signatures following intranasal vaccination. , 2020, 8, e001022.		13
995	Essential oils and their chemical constituents against Aedes aegypti L. (Diptera: Culicidae) larvae. Acta Tropica, 2020, 212, 105705.	2.0	31
996	Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Industrial Crops and Products, 2020, 157, 112935.	5.2	55
997	<p>Preparation of Celery Essential Oil-Based Nanoemulsion by Ultrasonication and Evaluation of Its Potential Anticancer and Antibacterial Activity</p> . International Journal of Nanomedicine, 2020, Volume 15, 7651-7666.	6.7	41
998	Interfacial and molecular interactions between fractions of heavy oil and surfactants in porous media: Comprehensive review. Advances in Colloid and Interface Science, 2020, 283, 102242.	14.7	46
999	Development and characterization of ω-3 fatty acid nanoemulsions with improved physicochemical stability and bioaccessibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125515.	4.7	22
1000	Nanotechnological strategies for systemic microbial infections treatment: A review. International Journal of Pharmaceutics, 2020, 589, 119780.	5.2	29
1001	Mentha spicata essential oil nanoformulation and its larvicidal application against Culex pipiens and Musca domestica. Industrial Crops and Products, 2020, 157, 112944.	5 . 2	38
1002	Developing formulations for drug follicular targeting: Nanoemulsions loaded with minoxidil and clove oil. Journal of Drug Delivery Science and Technology, 2020, 59, 101908.	3.0	19
1003	The Effect of NaCl Concentration on the Phase Inversion Temperature and Droplet Sizes of Liquid Paraffin Nanoemulsions. Russian Journal of Applied Chemistry, 2020, 93, 916-919.	0.5	1
1004	The role of breadfruit OSA starch and surfactant in stabilizing high-oil-load emulsions using high-pressure homogenization and low-frequency ultrasonication. Heliyon, 2020, 6, e04341.	3.2	10

#	Article	IF	Citations
1005	Investigations on the generation of oil-in-water (O/W) nanoemulsions through the combination of ultrasound and microchannel. Ultrasonics Sonochemistry, 2020, 69, 105258 .	8.2	35
1006	Development of Chlorhexidine Digluconate and Lippia sidoides Essential Oil Loaded in Microemulsion for Disinfection of Dental Root Canals: Substantivity Profile and Antimicrobial Activity. AAPS PharmSciTech, 2020, 21, 302.	3.3	5
1007	Larvicide Activity on Aedes aegypti of Essential Oil Nanoemulsion from the Protium heptaphyllum Resin. Molecules, 2020, 25, 5333.	3.8	14
1008	Influence of hydrocolloid addition on physical properties and rheology of olive oil in bitter orange juice (O/W) nano-emulsions prepared with blends of different surfactants. Journal of Dispersion Science and Technology, 2022, 43, 1048-1060.	2.4	2
1009	Application of Nanoemulsions (W/O) of Extract of Opuntia oligacantha C.F. $F\tilde{A}\P$ rst and Orange Oil in Gelatine Films. Molecules, 2020, 25, 3487.	3.8	12
1010	Engineered Drug Delivery Systems: Insights of Biointerface. , 2020, , 1-30.		3
1011	Nanopharmaceuticals: A focus on their clinical translatability. International Journal of Pharmaceutics, 2020, 578, 119098.	5.2	44
1012	Probing the Molecular Structure of Coadsorbed Polyethylenimine and Charged Surfactants at the Nanoemulsion Droplet Surface. Langmuir, 2020, 36, 9081-9089.	3.5	13
1013	Superhydrophobic graphene-coated sponge with microcavities for high efficiency oil-in-water emulsion separation. Nanoscale, 2020, 12, 17812-17820.	5.6	39
1014	Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38887-38898.	8.0	23
1015	New Low-Energy Method for Nanoemulsion Formation: pH Regulation Based on Fatty Acid/Amine Complexes. Langmuir, 2020, 36, 10082-10090.	3.5	17
1016	Nanocellulose in Emulsions and Heterogeneous Waterâ€Based Polymer Systems: A Review. Advanced Materials, 2021, 33, e2002404.	21.0	119
1017	Chitosan-based films containing nanoemulsions of methyl salicylate: Formulation development, physical-chemical and in vitro drug release characterization. International Journal of Biological Macromolecules, 2020, 164, 2558-2568.	7.5	31
1018	Formulation and Preparation of Water-In-Oil-In-Water Emulsions Loaded with a Phenolic-Rich Inner Aqueous Phase by Application of High Energy Emulsification Methods. Foods, 2020, 9, 1411.	4.3	20
1019	Nano-emulsification of Aeollanthus suaveolens Mart. Ex Spreng essential oil modifies its neuroeffects?. Drug Delivery and Translational Research, 2020, 10, 1764-1770.	5.8	6
1020	Near-infrared polyfluorene encapsulated in poly($\hat{l}\mu$ -caprolactone) nanoparticles with remarkable large Stokes shift. RSC Advances, 2020, 10, 33279-33287.	3.6	2
1021	Biologically active toxin identified from Artemisia annua against lesser mulberry pyralid, Glyphodes pyloalis. Toxin Reviews, 2020, , 1-9.	3.4	4
1022	Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. Plants, 2020, 9, 1745.	3.5	68

#	Article	IF	CITATIONS
1023	Studies on the Effect of Oil and Surfactant on the Formation of Alginate-Based O/W Lidocaine Nanocarriers Using Nanoemulsion Template. Pharmaceutics, 2020, 12, 1223.	4.5	70
1024	Storage of Cereals in Warehouses with or without Pesticides. Insects, 2020, 11, 846.	2.2	23
1025	Preparation of non-toxic nano-emulsions based on a classical and promising Brazilian plant species through a low-energy concept. Industrial Crops and Products, 2020, 158, 112989.	5.2	5
1026	Influence of Nanoencapsulation Using High-Pressure Homogenization on the Volatile Constituents and Anticancer and Antioxidant Activities of Algerian Saccocalyx satureioides Coss. et Durieu. Molecules, 2020, 25, 4756.	3.8	15
1027	Phospholipid–Protein Structured Membrane for Microencapsulation of DHA Oil and Evaluation of Its In Vitro Digestibility: Inspired by Milk Fat Globule Membrane. Journal of Agricultural and Food Chemistry, 2020, 68, 6190-6201.	5.2	33
1028	Nanoemulsion in cosmetic: from laboratory to market. , 2020, , 327-347.		5
1029	Review of nanocellulose and nanohydrogel matrices for the development of sustainable future materials., 2020,, 155-176.		3
1030	Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Advanced Drug Delivery Reviews, 2020, 153, 87-108.	13.7	96
1031	Properties and stability of nanoemulsions: How relevant is the type of surfactant?. Journal of Drug Delivery Science and Technology, 2020, 58, 101772.	3.0	19
1032	Targeted Nanomedicines for Cancer Therapy, From Basics to Clinical Trials. Journal of Pharmacy and Pharmaceutical Sciences, 2020, 23, 132-157.	2.1	21
1033	Organogel Nanoparticles as a New Way to Improve Oral Bioavailability of Poorly Soluble Compounds. Pharmaceutical Research, 2020, 37, 92.	3.5	8
1034	Ultrasound-assisted production and characterization of rice bran lecithin-based nanoemulsions. Journal of Dispersion Science and Technology, 2021, 42, 1368-1375.	2.4	4
1035	A simple and effective strategy to enhance the stability and solid–liquid interfacial interaction of an emulsion by the interfacial dilational rheological properties. Soft Matter, 2020, 16, 5650-5658.	2.7	5
1036	Plasma-assisted preservation of breast chicken fillets in essential oils-containing marinades. LWT - Food Science and Technology, 2020, 131, 109759.	5.2	13
1037	Characterization of submicron emulsion processed by ultrasound homogenization to protect a bioactive extract from sea grape (Coccoloba uvifera L.). Food Science and Biotechnology, 2020, 29, 1365-1372.	2.6	5
1038	Interplaying Effects of Wall and Core Materials on the Property and Functionality of Microparticles for Co-Encapsulation of Vitamin E with Coenzyme Q10. Food and Bioprocess Technology, 2020, 13, 705-721.	4.7	25
1039	Nanocarriers for effective drug delivery. , 2020, , 315-341.		5
1040	Preparation, characterizations and antibacterial activity of different nanoemulsions incorporating monoterpenes: <i>inÂvitro</i> >inÂvitro>inÂvivo>studies. Archives of Phytopathology and Plant Protection, 2020, 53, 310-334.	1.3	13

#	Article	IF	CITATIONS
1041	Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods, 2020, 9, 365.	4.3	242
1042	A review on emulsification via microfluidic processes. Frontiers of Chemical Science and Engineering, 2020, 14, 350-364.	4.4	25
1043	Nanocomposites for Delivering Agrochemicals: A Comprehensive Review. Journal of Agricultural and Food Chemistry, 2020, 68, 3691-3702.	5.2	91
1044	Bulk and interfacial properties of milk fat emulsions stabilized by whey protein isolate and whey protein aggregates. Food Hydrocolloids, 2020, 109, 106100.	10.7	35
1045	COSAN-stabilised omega-3 oil-in-water nanoemulsions to prolong lung residence time for poorly water soluble drugs. Chemical Communications, 2020, 56, 8972-8975.	4.1	6
1046	Nanoemulsions and nanosized ingredients for food formulations. , 2020, , 207-256.		2
1047	Further insights into release mechanisms from nano-emulsions, assessed by a simple fluorescence-based method. Journal of Colloid and Interface Science, 2020, 578, 768-778.	9.4	8
1048	Nanoemulsions for intravenous drug delivery. , 2020, , 581-601.		4
1049	Low-energy formation of in-situ nanoemulsion at constant temperature for oil removal. Journal of Molecular Liquids, 2020, 314, 113663.	4.9	10
1050	Effect of spontaneous emulsification on oil recovery in tight oil-wet reservoirs. Fuel, 2020, 279, 118456.	6.4	38
1051	Antisolvent precipitation of lipid nanoparticles in microfluidic systems – A comparative study. International Journal of Pharmaceutics, 2020, 579, 119167.	5 . 2	24
1052	Dynamics of phase separation of sheared inertialess binary mixtures. Physics of Fluids, 2020, 32, .	4.0	11
1053	Polymer Type Impacts Amorphous Solubility and Drug-Rich Phase Colloidal Stability: A Mechanistic Study Using Nuclear Magnetic Resonance Spectroscopy. Molecular Pharmaceutics, 2020, 17, 1352-1362.	4.6	37
1054	Characterization of nanoemulsion gotukola, mangosteen rind, cucumber and tomato extract for cosmetic raw material. Journal of Physics: Conference Series, 2020, 1442, 012046.	0.4	2
1055	The physical and chemical analysis of nanoemulsion from extract rodent tuber mutant plant (Typhonium flagelliforme Lodd.). IOP Conference Series: Earth and Environmental Science, 2020, 439, 012005.	0.3	0
1056	Tween 80 and Soya-Lecithin-Based Food-Grade Nanoemulsions for the Effective Delivery of Vitamin D. Langmuir, 2020, 36, 2886-2892.	3.5	37
1057	<p>Ultrasonic Nanoemulsification of Cuminum cyminum Essential Oil and Its Applications in Medicine</p> . International Journal of Nanomedicine, 2020, Volume 15, 795-807.	6.7	42
1058	Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. International Journal of Biological Macromolecules, 2020, 150, 904-913.	7.5	83

#	Article	IF	CITATIONS
1059	Self-nano-emulsification of chamomile essential oil: A novel approach for a high value phytochemical. Colloids and Interface Science Communications, 2020, 34, 100225.	4.1	6
1060	Application of biotechnology in chemical industry. , 2020, , 57-193.		1
1061	Preparation of Janus Titanium Dioxide Particles via Ultraviolet Irradiation of Pickering Emulsions. Advanced Materials Interfaces, 2020, 7, 1901961.	3.7	11
1062	An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials, 2020, 10, 135.	4.1	242
1063	Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. Food Science and Biotechnology, 2020, 29, 149-168.	2.6	131
1064	Techno-biofunctionality of mangostin extract-loaded virgin coconut oil nanoemulsion and nanoemulgel. PLoS ONE, 2020, 15, e0227979.	2.5	29
1065	Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. Food Reviews International, 2022, 38, 32-69.	8.4	26
1066	Multiple nanoemulsions. Nature Reviews Materials, 2020, 5, 214-228.	48.7	140
1067	Janus-like particles prepared through partial UV irradiation at the water/oil interface and their encapsulation capabilities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124460.	4.7	8
1068	A chitosan hydrogel-thickened nanoemulsion containing Pelargonium graveolens essential oil for treatment of vaginal candidiasis. Journal of Drug Delivery Science and Technology, 2020, 56, 101527.	3.0	28
1069	The effect of spray-drying and freeze-drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system. Food Hydrocolloids, 2020, 106, 105890.	10.7	71
1070	Biomedical perfluorohexane-loaded nanocapsules prepared by low-energy emulsification and selective solvent diffusion. Materials Science and Engineering C, 2020, 111, 110838.	7.3	10
1071	Demulsification of Oil-in-Water Emulsions in a Novel Rotating Microchannel. Industrial & Engineering Chemistry Research, 2020, 59, 8335-8345.	3.7	13
1072	Effects of Ultrasonic Operating Parameters and Emulsifier System on Sacha Inchi Oil Nanoemulsion Characteristics. Journal of Oleo Science, 2020, 69, 437-448.	1.4	5
1073	Pickering nano-emulsions stabilized by Eudragit RL100 nanoparticles as oral drug delivery system for poorly soluble drugs. Colloids and Surfaces B: Biointerfaces, 2020, 191, 111010.	5.0	12
1074	Nanoemulsions of Acai Oil: Physicochemical Characterization for the Topical Delivery of Antifungal Drugs. Chemical Engineering and Technology, 2020, 43, 1424-1432.	1.5	12
1075	Effect of Cinnamon Essential Oil Nanoemulsion Combined with Ascorbic Acid on Enzymatic Browning of Cloudy Apple Juice. Food and Bioprocess Technology, 2020, 13, 860-870.	4.7	48
1076	Applications of nanotechnology in agry-food productions. , 2020, , 319-340.		2

#	Article	IF	CITATIONS
1077	Stretchable Polydimethylsiloxane Composites with Emulsified Ionic Materials and Thermochromic Applications. ACS Omega, 2020, 5, 9458-9464.	3.5	4
1078	Optimization and Characterization of Highly Stable Nanoemulsion for Effective Oil-Based Drilling Fluid Removal. SPE Journal, 2020, 25, 1259-1271.	3.1	15
1079	<p>Engineering of Long-Term Stable Transparent Nanoemulsion Using High-Gravity Rotating Packed Bed for Oral Drug Delivery</p> . International Journal of Nanomedicine, 2020, Volume 15, 2391-2402.	6.7	7
1080	A Concise Review on Nanoâ€emulsion Formation by the Phase Inversion Composition (PIC) Method. Journal of Surfactants and Detergents, 2020, 23, 677-685.	2.1	34
1081	Flavor encapsulation and release studies in food. , 2020, , 293-321.		5
1082	The Arachis hypogaea Essential Oil Nanoemulsion as an Efficient Safe Apoptosis Inducer in Human Lung Cancer Cells (A549). Nutrition and Cancer, 2021, 73, 1059-1067.	2.0	12
1083	Key features of nano-emulsion formation by the phase inversion temperature method. Journal of Dispersion Science and Technology, 2021, 42, 1073-1081.	2.4	16
1084	Production and evaluation of sweet almond and sesame oil nanoemulsion and their effects on physico-chemical, rheological and microbial characteristics of enriched yogurt. Journal of Food Measurement and Characterization, 2021, 15, 1270-1280.	3.2	7
1085	Encapsulation of tangeretin in PVA/PAA crosslinking electrospun fibers by emulsion-electrospinning: Morphology characterization, slow-release, and antioxidant activity assessment. Food Chemistry, 2021, 337, 127763.	8.2	51
1086	Impact of Interfacial Tension and Critical Micelle Concentration on Bilgewater Oil Separation. Journal of Water Process Engineering, 2021, 39, 101684.	5.6	17
1087	Dye‣oaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Advanced Healthcare Materials, 2021, 10, e2001289.	7.6	54
1088	Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Advances in Colloid and Interface Science, 2021, 287, 102330.	14.7	65
1089	Effects of ultrasonic treatment on the structure and rehydration peculiarity of freeze-dried soy protein isolate gel. Food Structure, 2021, 28, 100169.	4.5	22
1090	Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environmental Chemistry Letters, 2021, 19, 1153-1171.	16.2	85
1091	Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflugers Archiv European Journal of Physiology, 2021, 473, 139-150.	2.8	98
1092	Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: Improvement of solubility, in vitro release, ex-vivo permeation and anticancer activity. Journal of Drug Delivery Science and Technology, 2021, 61, 102204.	3.0	14
1093	Analytical photo-centrifuge-based prediction of shelf-life and droplet packing behaviour of nanoemulsions upon removal of excess micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125869.	4.7	3
1094	Development of nanoemulsions containing Lavandula dentata or Myristica fragrans essential oils: Influence of temperature and storage period on physical-chemical properties and chemical stability. Industrial Crops and Products, 2021, 160, 113115.	5.2	20

#	Article	IF	CITATIONS
1095	A short review on the antimicrobial micro- and nanoparticles loaded with Melaleuca alternifolia essential oil. Journal of Drug Delivery Science and Technology, 2021, 63, 102283.	3.0	12
1096	In Situ Measuring Partition Coefficient at Intact Nanoemulsions: A New Application of Single-Entity Electrochemistry. Analytical Chemistry, 2021, 93, 1154-1160.	6.5	12
1097	Three way ANOVA for emulsion of carotenoids extracted in flaxseed oil from carrot bio-waste. Waste Management, 2021, 121, 67-76.	7.4	10
1098	Evaluation and manipulation of the key emulsification factors toward highly stable PCM-water nano-emulsions for thermal energy storage. Solar Energy Materials and Solar Cells, 2021, 219, 110820.	6.2	25
1099	Synthesis of polymer nanoparticles via electrohydrodynamic emulsification-mediated self-assembly. Journal of Colloid and Interface Science, 2021, 586, 445-456.	9.4	7
1100	Encapsulation of herb extracts (Aromatic and medicinal herbs)., 2021,, 263-322.		3
1101	Synergistic combination of phytotherapeutics for infectious diseases. , 2021, , 337-392.		0
1102	Nanoemulsion design for the delivery of omega-3 fatty acids. , 2021, , 295-319.		1
1103	Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. Journal of Materials Chemistry B, 2021, 9, 5221-5244.	5.8	23
1104	Microbial Fuel Cells: Design and Evaluation of Catalysts and Device. , 2021, , 681-764.		1
1105	Conversion of bile salts from inferior emulsifier to efficient smart emulsifier assisted by negatively charged nanoparticles at low concentrations. Chemical Science, 2021, 12, 11845-11850.	7.4	12
1106	Nanoemulsions based edible coatings with potential food applications. International Journal of Biobased Plastics, 2021, 3, 112-125.	5.6	35
1107	Microemulsion Formulation of Botanical Oils as an Efficient Tool to Provide Sustainable Agricultural Pest Management. , 0, , .		5
1108	Astaxanthin nanoparticles from fabrication to applications in food formulations including regulatory issues., 2021,, 519-537.		O
1109	Nanoformulated Materials from Citrus Wastes. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 649-669.	1.6	1
1110	Advances in biopolymeric active films incorporated with emulsified lipophilic compounds: a review. RSC Advances, 2021, 11, 28148-28168.	3.6	4
1111	Emerging product formation., 2021,, 257-275.		3
1112	Preparation of a stabilized aqueous polystyrene suspension (i) via (i) phase inversion. RSC Advances, 2021, 11, 17547-17557.	3.6	3

#	Article	IF	Citations
1113	Comparing microfluidics and ultrasonication as formulation methods for developing hempseed oil nanoemulsions for oral delivery applications. Scientific Reports, 2021, 11, 72.	3.3	30
1114	Lipid Nanostructures in Food Applications. , 2021, , 565-579.		5
1115	Cascade communication in disordered networks of enzyme-loaded microdroplets. Chemical Communications, 2021, 57, 1631-1634.	4.1	5
1116	Development, Characterization and Evaluation of Nanoemulgel Used for the Treatment of Skin Disorders. Current Nanomaterials, 2021, 6, 43-57.	0.4	1
1117	Efficacy of nanoemulsion with Pterodon emarginatus Vogel oleoresin for topical treatment of cutaneous leishmaniasis. Biomedicine and Pharmacotherapy, 2021, 134, 111109.	5 . 6	21
1118	Physical, morphological, and storage studies of cinnamon based nanoemulsions developed with Tween 80 and soy lecithin: a comparative study. Journal of Food Measurement and Characterization, 2021, 15, 2386-2398.	3.2	11
1119	Critical Review of Lipid-Based Nanoparticles as Carriers of Neuroprotective Drugs and Extracts. Nanomaterials, 2021, 11, 563.	4.1	25
1120	Cold-Burst Method for Nanoparticle Formation with Natural Triglyceride Oils. Langmuir, 2021, 37, 7875-7889.	3 . 5	8
1121	Food-Grade Nanoemulsions for the Effective Delivery of \hat{l}^2 -Carotene. Langmuir, 2021, 37, 3086-3092.	3.5	22
1122	Preparation of Microemulsion from an Alkyl Polyglycoside Surfactant and Tea Tree Oil. Molecules, 2021, 26, 1971.	3.8	13
1123	CCRD based development of bromocriptine and glutathione nanoemulsion tailored ultrasonically for the combined anti-parkinson effect. Chemistry and Physics of Lipids, 2021, 235, 105035.	3.2	21
1124	Recent Advances in Nanomaterials for Dermal and Transdermal Applications. Colloids and Interfaces, 2021, 5, 18.	2.1	43
1125	The Creaming of Short Doughs and Its Impact on the Quality Attributes of Rotary-Molded Biscuits. Foods, 2021, 10, 621.	4.3	1
1126	Fabrication of Alginate-Based O/W Nanoemulsions for Transdermal Drug Delivery of Lidocaine: Influence of the Oil Phase and Surfactant. Molecules, 2021, 26, 2556.	3.8	16
1127	Estimating Breakup Frequencies in Industrial Emulsification Devices: The Challenge of Inferring Local Frequencies from Global Methods. Processes, 2021, 9, 645.	2.8	4
1128	Exploiting drug delivery systems for oral route in the peptic ulcer disease treatment. Journal of Drug Targeting, 2021, 29, 1029-1047.	4.4	5
1129	Nanotechnology in cosmetics pros and cons. Nano Express, 2021, 2, 022003.	2.4	23
1130	Evaporating spray characteristics of methanol-in-diesel emulsions. Fuel, 2021, 290, 119730.	6.4	12

#	Article	IF	CITATIONS
1131	Nutraceutical delivery through nano-emulsions: General aspects, recent applications and patented inventions. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111526.	5.0	15
1132	Lipid based nanocarriers: A novel paradigm for topical antifungal therapy. Journal of Drug Delivery Science and Technology, 2021, 62, 102397.	3.0	19
1133	Fluorosurfactants for medical nanoemulsions, their surface-active and biological properties. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111603.	5.0	1
1134	Ostwald ripening in macro- and nanoemulsions. Russian Chemical Reviews, 2021, 90, 293-323.	6.5	23
1135	Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111626.	5.0	42
1136	Insights into the release mechanisms of antioxidants from nanoemulsion droplets. Journal of Food Science and Technology, 2022, 59, 1677-1691.	2.8	5
1137	Studies on the formation and stability of perfluorodecalin nanoemulsions by ultrasound emulsification using novel surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126315.	4.7	7
1138	Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chemical Reviews, 2021, 121, 5671-5740.	47.7	88
1139	Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. Food Engineering Reviews, 2021, 13, 858-883.	5.9	21
1140	Optimized semisolid self-nanoemulsifying system based on glyceryl behenate: A potential nanoplatform for enhancing antitumor activity of raloxifene hydrochloride in MCF-7 human breast cancer cells. International Journal of Pharmaceutics, 2021, 600, 120493.	5. 2	27
1141	Essential oils from the genus Thymus as antimicrobial food preservatives: Progress in their use as nanoemulsions-a new paradigm. Trends in Food Science and Technology, 2021, 111, 426-441.	15.1	35
1142	Improving the bioavailability and bioactivity of garlic bioactive compounds <i>via</i> nanotechnology. Critical Reviews in Food Science and Nutrition, 2022, 62, 8467-8496.	10.3	4
1143	Influence of fat globule size, emulsifiers, and cream-aging on microstructure and physical properties of butter. International Dairy Journal, 2021, 117, 105003.	3.0	11
1144	Improvement of the Quality of Solid Ingredients of Instant Soups: A Review. Food Reviews International, 2023, 39, 1333-1358.	8.4	1
1145	Enhanced anti-psoriatic activity of tacrolimus loaded nanoemulsion gel via omega 3 - Fatty acid (EPA) Tj ETQq0 0 (102458.	0 rgBT /Ov 3.0	verlock 10 Tf 18
1146	Exploring Nanoemulsions for Prostate Cancer Therapy. Drug Research, 2021, 71, 417-428.	1.7	2
1147	Impact of Saltwater Environments on the Coalescence of Oil-in-Water Emulsions Stabilized by an Anionic Surfactant. ACS ES&T Water, 2021, 1, 1702-1713.	4.6	12
1148	Proteins in Food Systemsâ€"Bionanomaterials, Conventional and Unconventional Sources, Functional Properties, and Development Opportunities. Polymers, 2021, 13, 2506.	4.5	37

#	Article	IF	CITATIONS
1149	Shelf life extension of muffins coated with cinnamon and clove oil nanoemulsions. Journal of Food Science and Technology, 2022, 59, 1878-1888.	2.8	12
1150	Water-in-Oil Nano-Emulsions Prepared by Spontaneous Emulsification: New Insights on the Formulation Process. Pharmaceutics, 2021, 13, 1030.	4.5	14
1151	Development of nano-emulsions based on Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PLoS ONE, 2021, 16, e0254225.	2.5	14
1152	Nanoemulsions: A Review on the Conceptualization of Treatment for Psoriasis Using a â€~Green' Surfactant with Low-Energy Emulsification Method. Pharmaceutics, 2021, 13, 1024.	4.5	12
1153	Cinnamon essential oil nanoemulsions by high-pressure homogenization: Formulation, stability, and antimicrobial activity. LWT - Food Science and Technology, 2021, 147, 111660.	5. 2	32
1154	Essential Oil-Based Nano-Biopesticides: Formulation and Bioactivity against the Confused Flour Beetle Tribolium confusum. Sustainability, 2021, 13, 9746.	3.2	30
1155	Dispersion Performance of Polycarboxylate Terpolymers with Different Alkyl Side-Chain Lengths in Pesticide Suspension Concentrate. International Journal of Chemical Engineering, 2021, 2021, 1-7.	2.4	4
1156	Nanopesticides: A Systematic Review of Their Prospects With Special Reference to Tea Pest Management. Frontiers in Nutrition, 2021, 8, 686131.	3.7	46
1157	Identification and Antioxidant Abilities of Enzymatic-Transesterification (â°')-Epigallocatechin-3-O-gallate Stearyl Derivatives in Non-Aqueous Systems. Antioxidants, 2021, 10, 1282.	5.1	8
1158	Linseed Oil Nanoemulsions for treatment of Atopic Dermatitis disease: Formulation, characterization, in vitro and in silico evaluations. Journal of Drug Delivery Science and Technology, 2021, 64, 102652.	3.0	14
1159	Nanoemulsion of Mentha arvensis Essential Oil as an Anticancer Agent in Anaplastic Thyroid Cancer Cells and as an Antibacterial Agent in Staphylococcus aureus. BioNanoScience, 2021, 11, 1017-1029.	3. 5	6
1160	Influence of alkyl polyglucoside on physicochemical characteristics and in vitro studies of ibuprofen-loaded nanoemulsion formulations. Colloid and Polymer Science, 2021, 299, 1631-1642.	2.1	3
1161	Isofuranodiene-based nanoemulsion: larvicidal and adulticidal activity against tenebrionid beetles attacking stored wheat. Journal of Stored Products Research, 2021, 93, 101859.	2.6	13
1162	Ophthalmic Nanoemulsions: From Composition to Technological Processes and Quality Control. Molecular Pharmaceutics, 2021, 18, 3719-3740.	4.6	35
1163	Coconut oil-based resveratrol nanoemulsion: Optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chemistry, 2021, 357, 129721.	8.2	32
1164	Green synthesis of Ag nanoparticles in oil-in-water nano-emulsion and evaluation of their antibacterial and cytotoxic properties as well as molecular docking. Arabian Journal of Chemistry, 2021, 14, 103323.	4.9	32
1165	Wild Passiflora (Passiflora spp.) seed oils and their nanoemulsions induce proliferation in HaCaT keratinocytes cells. Journal of Drug Delivery Science and Technology, 2022, 67, 102803.	3.0	3
1166	Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Advanced Drug Delivery Reviews, 2021, 176, 113886.	13.7	20

#	Article	IF	CITATIONS
1167	Nano-emulsion of denak (Oliveria decumbens Vent.) essential oil: ultrasonic synthesis and antifungal activity against Penicillium digitatum. Journal of Food Measurement and Characterization, 2022, 16, 324-331.	3.2	4
1168	Chemical characteristics and targeted encapsulated Cordia myxa fruits extracts nanoparticles for antioxidant and cytotoxicity potentials. Saudi Journal of Biological Sciences, 2021, 28, 5349-5358.	3.8	12
1169	Comprehensive Electrokinetic-Assisted Separation of Oil Emulsion with Ultrahigh Flux. ACS Nano, 2021, 15, 15815-15823.	14.6	20
1170	Yogurt fortified with omegaâ€3 using nanoemulsion containing flaxseed oil: Investigation of physicochemical properties. Food Science and Nutrition, 2021, 9, 6186-6193.	3.4	16
1171	Shape-Controlled Nanoparticles from a Low-Energy Nanoemulsion. Jacs Au, 2021, 1, 1975-1986.	7.9	16
1172	Impacts of nano-emulsified vegetable oil on growth, hemato-biochemical markers, oxidative stress, and gut microbiota of New Zealand white and V-line rabbits. Livestock Science, 2021, 252, 104651.	1.6	3
1173	Strategies to improve the physical stability of sodium caseinate stabilized emulsions: A literature review. Food Hydrocolloids, 2021, 119, 106853.	10.7	44
1174	Study of single-phase polymer-alkaline-microemulsion flooding for enhancing oil recovery in sandstone reservoirs. Fuel, 2021, 302, 121176.	6.4	17
1175	Stabilisation of lavender essential oil extracted by microwave-assisted hydrodistillation: Characteristics of starch and soy protein-based microemulsions. Industrial Crops and Products, 2021, 172, 114034.	5.2	8
1176	Preparation of polyoxypropylene surfactant-based nanoemulsions using phase inversion composition method and their application in oil recovery. Journal of Molecular Liquids, 2021, 342, 117469.	4.9	11
1177	Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomedicine and Pharmacotherapy, 2021, 143, 112137.	5.6	11
1178	Formation, characteristics and oil industry applications of nanoemulsions: A review. Journal of Petroleum Science and Engineering, 2021, 206, 109042.	4.2	62
1179	Two-step droplet formation in monodisperse nanodroplet generation in quenched hydrothermal solution as revealed by spontaneous transformation of nanodroplets to swollen micelles in octaneâ€inâ€water nanoemulsions. Journal of Colloid and Interface Science, 2021, 604, 221-226.	9.4	5
1180	Superamphiphilic stainless steel mesh for oil/water emulsion separation on-demand. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127574.	4.7	11
1181	EOR Perspective of microemulsions: A review. Journal of Petroleum Science and Engineering, 2022, 208, 109312.	4.2	31
1182	Influence of Ozonized Oil Nanoemulsions on B-16 Melanoma Cells: An <i>in Vitro Study</i> . Journal of Biomaterials and Nanobiotechnology, 2021, 12, 49-56.	0.5	0
1183	Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chemical Communications, 2021, 57, 4212-4229.	4.1	25
1184	Advances in the Application of Food Proteins and Enzymes. , 2021, , 339-386.		0

#	Article	IF	Citations
1185	Unimodal sized silica nanocapsules produced through water-in-oil emulsions prepared by sequential irradiation of kilo- and submega-hertz ultrasounds. RSC Advances, 2021, 11, 22921-22928.	3.6	3
1187	The Potential of Nanoemulsions in Biomedicine. , 2013, , 117-158.		4
1188	Nanoemulsions as Optimized Vehicles for Essential Oils. Sustainable Agriculture Reviews, 2020, , 115-167.	1.1	13
1189	Biological Applications of Ionic Liquids-Based Surfactants: A Review of the Current Scenario. Nanotechnology in the Life Sciences, 2020, , 137-152.	0.6	1
1190	Nano-Emulsions. , 2016, , 93-116.		5
1191	Nanoemulsions in Dermal Drug Delivery. , 2015, , 255-266.		5
1192	Thyme (Thymus vulgaris) Essential Oil–Based Antimicrobial Nanoemulsion Formulation for Fruit Juice Preservation. , 2020, , 107-114.		1
1193	Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Delivery and Translational Research, 2018, 8, 1545-1563.	5.8	123
1194	Nanoemulsions for cosmetic products. , 2020, , 59-77.		9
1195	Preparation and cytotoxicity of lipid nanocarriers containing a hydrophobic flavanone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124982.	4.7	14
1196	Wettability alteration of sandstone rock by surfactant stabilized nanoemulsion for enhanced oil recoveryâ€"A mechanistic study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125043.	4.7	62
1197	Food Structure Development in Emulsion Systems. Food Chemistry, Function and Analysis, 2019, , 59-92.	0.2	1
1199	<i>In vitro</i> bioaccessibility of ergocalciferol in nanoemulsionâ€based delivery system: the influence of foodâ€grade emulsifiers with different stabilising mechanisms. International Journal of Food Science and Technology, 2018, 53, 430-440.	2.7	12
1200	Essential Oil Nanoemulsions and their Antimicrobial and Food Applications. Current Research in Nutrition and Food Science, 2018, 6, 626-643.	0.8	53
1201	Nanoemulsions as a Vehicle for Drugs and Cosmetics. Nanoscience & Technology Open Access, 2013, 1, .	0.3	6
1202	Influence of sonication and in vitro evaluation of nifedipine self-nanoemulsifying drug delivery system. Brazilian Journal of Pharmaceutical Sciences, 0, 55, .	1.2	4
1203	Nanoemulsion containing caffeine for cellulite treatment: characterization and in vitro evaluation. Brazilian Journal of Pharmaceutical Sciences, 0, 55, .	1.2	8
1204	Essential Oil Nanoemulsions and Food Applications. Advanced in Food Technology and Nutritional Sciences - Open Journal, 2015, 1, 84-87.	0.2	26

#	Article	IF	CITATIONS
1205	Formulation and Application of Nanoemulsions for Nutraceuticals and Phytochemicals. Current Medicinal Chemistry, 2020, 27, 3079-3095.	2.4	28
1206	Nanotechnology: A Promising Tool Towards Wound Healing. Current Pharmaceutical Design, 2017, 23, 3515-3528.	1.9	48
1207	Therapeutic Nanoemulsion: Concept to Delivery. Current Pharmaceutical Design, 2020, 26, 1145-1166.	1.9	30
1209	Application of High Pressure Homogenization to Improve Stability and Decrease Droplet Size in Emulsion-Flavor Systems. International Journal of Environment Agriculture and Biotechnology, 2016, 1, 646-662.	0.1	2
1210	CHARACTERISTICS AND TOXICITY OF NANOEMULSION FORMULATION OF PIPER RETROFRACTUM AND TAGETES ERECTA EXTRACT MIXTURES. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 2018, 18, 1.	0.2	3
1211	Phase Behavior of Engkabang Fat with Nonionic Surfactants. Tenside, Surfactants, Detergents, 2009, 46, 195-198.	1.2	2
1212	Volumetric and Diffusion Properties of Water/Surfactant/ <i>n</i> -Propanol/4-Allylanisole Micellar Systems. Tenside, Surfactants, Detergents, 2011, 48, 400-407.	1.2	3
1213	Nanomaterials in Cosmetics: Recent Updates. Nanomaterials, 2020, 10, 979.	4.1	210
1214	Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Preventive Nutrition and Food Science, 2019, 24, 225-234.	1.6	220
1215	Synthesis, characterization, stability evaluation and release kinetics of fiber-encapsulated carotene nano-capsules. Grasas Y Aceites, 2015, 66, e104.	0.9	8
1216	Emerging role of nanoemulsions in oral health management. International Journal of Pharmaceutical Investigation, 2017, 7, 1.	0.3	6
1217	Physicochemical characteristics and <i>in vitro</i> permeation of loratadine solid lipid nanoparticles for transdermal delivery. Therapeutic Delivery, 2020, 11, 685-700.	2.2	5
1218	Central Composite Design Method for the Preparation, Stability and Properties of Water-in-Diesel Nano Emulsions. Advances in Chemical Engineering and Science, 2018, 08, 176-189.	0.5	5
1219	Pharmacokinetic Characterization of Nano-emulsion Vitamin A, D and E (LaVita) in Rats. Korean Journal of Environmental Agriculture, 2011, 30, 196-201.	0.4	7
1220	Trends in Particle Formation of Bioactive Compounds Using Supercritical Fluids and Nanoemulsions. Food and Public Health, 2012, 2, 142-152.	2.0	22
1221	Design and Evaluation of Emulsion Generation Device Using Ultrasonic Vibration and Microchannel. Japanese Journal of Applied Physics, 2011, 50, 07HE24.	1.5	3
1222	Natural Probiotics and Nanomaterials: A New Functional Food. , 0, , .		1
1223	Nanotechnology Based Approaches in Phage Therapy: Overcoming the Pharmacological Barriers. Frontiers in Pharmacology, 2021, 12, 699054.	3.5	25

#	Article	IF	CITATIONS
1224	Bioengineering of neem nano-formulation with adjuvant for better adhesion over applied surface to give long term insect control. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112176.	5.0	8
1225	One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin. Food Research International, 2021, 150, 110757.	6.2	17
1226	Design and Optimization of Stimuli-responsive Emulsion-filled Gel for Topical Delivery of Copaiba Oil-resin. Journal of Pharmaceutical Sciences, 2022, 111, 287-292.	3.3	9
1227	Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. Colloids and Interface Science Communications, 2021, 45, 100533.	4.1	24
1228	Comparative Study of the Development and Characterization of Ecofriendly Oil and Water Nanoemulsions for Improving Antifungal Activity. ACS Agricultural Science and Technology, 2021, 1, 640-654.	2.3	9
1230	A Self Assembling Nanoemulsion of Lovastatin (SANEL) Decreases Cholesterol Accumulation and Apob-100 Secretion Greater than Lovastatin alone a Hepg2 Cell Line. Journal of Nanomedicine & Nanotechnology, 2012, 03, .	1.1	0
1231	Study of Nano-emulsion Formation by Different Dilution Method. Journal of the Society of Cosmetic Scientists of Korea, 2012, 38, 201-207.	0.2	1
1232	Stability of Nano-emulsions prepared upon Change of Composition. Journal of the Society of Cosmetic Scientists of Korea, 2013, 39, 55-63.	0.2	1
1233	Stability of Oil-in-Water Emulsions with Different Saturation Degrees from Beef Tallow Alcoholysis Products. Journal of the Korean Society of Food Science and Nutrition, 2013, 42, 933-940.	0.9	2
1234	SELECTED ASPECTS OF NANOTECHNOLOGY APPLICATIONS IN FOOD PRODUCTTION. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2014, , .	0.1	2
1235	Optical Reactors for Microscopic Visualization of Chemical Processes in Sub- and Supercritical Water. Biofuels and Biorefineries, 2014, , 133-156.	0.5	0
1236	ì^ê³ì•• ê·ì§^ê³µì• ìš"ì∮—•따른대ë'ë°•(비지)ì• ê°€ê³µì성 연구 ë°•ì∢Ĥ"¬ìœ ê°•í™"ì‹ë¹µì• 최ì́•™". Food Engine	er ing Prog	gre s s, 2014
1237	Fabrication, Rheology and Antioxidant Activity of Palm Esters-based Emulsions Loaded with Tocotrienol. ASEAN Journal on Science and Technology for Development, 2014, 31, 1.	0.5	0
1238	The Effect of Freezing and Hydrocolloids on the Physical Parameters of Strawberry Mass-Based Desserts. Proceedings of the Latvian University of Agriculture, 2014, 31, 12-24.	0.5	1
1239	NANOTECHNOLOGY IN NOVEL DRUG DELIVERY SYSTEM. Journal of Drug Delivery and Therapeutics, 2014, 4, .	0.5	3
1240	Nano-Emulsions., 2015, , 1-19.		0
1241	Application of Nanoemulsions upon Type of Cosmetic Oils for Convergence Type of Cosmetics. Journal of Digital Convergence, 2015, 13, 369-375.	0.1	2
1242	Development of Nanoemulsions with TucumÃ \pounds (Astrocaryum vulgare) Fruits Oil. Journal of Nanomedicine Research, 2015, 2, .	1.8	2

#	Article	IF	CITATIONS
1245	Pequi \tilde{A}_i -Based Nanoemulsion Highlights an Important Amazon Fruit (caryocar villosum (aubl.) pers.). Journal of Nanomedicine Research, 2016, 4, .	1.8	O
1247	Influence of Surfactant Concentration in the Emulsions on the Process of Oleophilic/Hydrophobic Porous Medium Imbibition. International Journal of Chemical Engineering and Applications (IJCEA), 2017, 8, 10-15.	0.3	0
1248	Formulation development and evaluation of Telmisartan Nanoemulsion. International Journal of Research and Development in Pharmacy and Life Sciences, 2017, 06, 2711-2719.	0.1	4
1249	Clinically translatable nanotheranostic platforms for peripheral nerve regeneration: design with outcome in mind. , $2018, $, .		0
1250	Bio-based Nanoemulsions: An Eco-safe Approach Towards the Eco-toxicity Problem. , 2019, , 1985-2006.		0
1251	Natural Compounds Extracted from Moringa oleifera and Their Agricultural Applications. , 2019, , 449-475.		0
1252	Nanopesticides for the Management of Insect Pests of Stored Grains. , 2019, , 303-322.		0
1253	Established and advanced adjuvants in vaccines' formulation: Mineral adsorbents, nanoparticulate carriers and microneedle delivery systems. Arhiv Za Farmaciju, 2019, 69, 420-451.	0.5	1
1254	Nano-contaminants: Sources and Impact on Agriculture. , 2020, , 175-199.		0
1255	Nanobiotechnology: A New Window for Management of Mosquito Vectors. , 2020, , 179-208.		0
1256	Emulsions and Foams. Soft and Biological Matter, 2020, , 195-279.	0.3	2
1258	Interfacial Steric and Molecular Bonding Effects Contributing to the Stability of Neutrally Charged Nanoemulsions. Langmuir, 2021, 37, 12643-12653.	3.5	10
1259	Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals, 2021, 14, 1083.	3.8	30
1262	Development of nanoemulsion gel based formulation of terbinafine for the synergistic antifungal activity: Dermatokinetic experiment for investigation of epidermal terbinafine deposition enhancement. Inorganic and Nano-Metal Chemistry, 2021, 51, 1867-1881.	1.6	1
1263	Optimization of Ultrasound-Assisted Emulsification of Emollient Nanoemulsions of Seed Oil of Passiflora edulis var. edulis. Cosmetics, 2021, 8, 1.	3.3	19
1264	An Introduction to Bioactive Natural Products and General Applications. Advanced Structured Materials, 2021, , 41-91.	0.5	3
1265	Influence of oil phase, surfactant on nano-emulsion based on essential oil from orange using phase inversion temperature method. IOP Conference Series: Materials Science and Engineering, 2020, 991, 012043.	0.6	3
1266	Stability and Release Behavior of Bioactive Compounds (with Antioxidant Activity) Encapsulated by Pickering Emulsion. Food Bioactive Ingredients, 2020, , 287-309.	0.4	1

#	Article	IF	CITATIONS
1267	Production of Soybean Oil Nanoemulsion (SONE) and Evaluation of Angiogenic and Embryotoxic Activity. Journal of Biomaterials and Nanobiotechnology, 2020, 11, 161-178.	0.5	1
1268	Low-Energy Emulsification Methods for Encapsulation of Antioxidants. Food Bioactive Ingredients, 2020, , 109-147.	0.4	0
1269	Formulation, Characterization, and Potential Application of Nanoemulsions in Food and Medicine. Nanotechnology in the Life Sciences, 2020, , 39-61.	0.6	2
1270	High-Energy Emulsification Methods for Encapsulation of Lipid-Soluble Antioxidants. Food Bioactive Ingredients, 2020, , 41-107.	0.4	1
1271	Insightful exploring of advanced nanocarriers for the topical/transdermal treatment of skin diseases. Pharmaceutical Development and Technology, 2021, 26, 1136-1157.	2.4	6
1272	Nanorevolution and Professionalizing University Education. , 0, , 138-153.		0
1273	Nanorevolution and Professionalizing University Education., 0,, 1494-1509.		0
1274	Exploring Nanoemulsion for Liver Cancer Therapy. Current Cancer Therapy Reviews, 2020, 16, 260-268.	0.3	5
1275	Formulation Development and Toxicity Assessment of Triacetin Mediated Nanoemulsions as Novel Delivery Systems for Rapamycin. Iranian Journal of Pharmaceutical Research, 2015, 14, 3-21.	0.5	48
1277	Design of eudragit RL nanoparticles by nanoemulsion method as carriers for ophthalmic drug delivery of ketotifen fumarate. Iranian Journal of Basic Medical Sciences, 2016, 19, 550-60.	1.0	11
1278	Rapamycin-Loaded, Capryol 90 and Oleic Acid Mediated Nanoemulsions: Formulation Development, Characterization and Toxicity Assessment. Iranian Journal of Pharmaceutical Research, 2018, 17, 830-850.	0.5	3
1279	and activity of the essential oil and nanoemulsion of against. Avicenna Journal of Phytomedicine, 2021, 11, 32-34.	0.2	0
1280	Promising Strategies of Colloidal Drug Delivery-Based Approaches in Psoriasis Management. Pharmaceutics, 2021, 13, 1978.	4.5	6
1281	Comparative Study of Physicochemical Properties of Nanoemulsions Fabricated with Natural and Synthetic Surfactants. Processes, 2021, 9, 2002.	2.8	21
1282	Application of Lipid-Based Nanocarriers for Antitubercular Drug Delivery: A Review. Pharmaceutics, 2021, 13, 2041.	4.5	14
1283	Facets of Nanotechnology in Food Processing, Packaging and Safety: An Emerald Insight., 2022,, 75-92.		2
1285	A review on green nanoemulsions for cosmetic applications with special emphasis on microbial surfactants as impending emulsifying agents. Journal of Surfactants and Detergents, 2022, 25, 303-319.	2.1	17
1286	Nanoemulsion Based on Mushroom Bioactive Compounds and Its Application in Food Preservation. Advances in Chemical and Materials Engineering Book Series, 2022, , 425-447.	0.3	O

#	Article	IF	CITATIONS
1288	Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments. Journal of Drug Delivery Science and Technology, 2022, 68, 103047.	3.0	11
1289	Nanotechnology-based sunscreens—a review. Materials Today Chemistry, 2022, 23, 100709.	3.5	13
1290	Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. Innovative Food Science and Emerging Technologies, 2022, 76, 102914.	5.6	43
1291	Strongly Chiral Liquid Crystals in Nanoemulsions. Small, 2022, , 2105835.	10.0	4
1292	Preparation of eugenol nanoemulsions for antibacterial activities. RSC Advances, 2022, 12, 3180-3190.	3.6	28
1293	The Essential Properties of Nanoemulsions. Advances in Chemical and Materials Engineering Book Series, 2022, , 1-23.	0.3	1
1294	Application of Nanoemulsion in Cancer Treatment. Advances in Chemical and Materials Engineering Book Series, 2022, , 237-258.	0.3	0
1295	Nanoemulsion stabilized by \hat{l}^2 -lactoglobulin: A promising strategy to encapsulate curcumin for topical delivery. Materials Today: Proceedings, 2022, 53, 168-173.	1.8	4
1296	Bioavailability Enhancement of Paroxetine Loaded Self Nanoemulsifying Drug Delivery System (SNEDDS) to Improve Behavioural Activities for the Management of Depression. Journal of Cluster Science, 2023, 34, 223-236.	3.3	2
1297	Development of an environmentally friendly nanoemulsion based on <i>Ginkgo biloba</i> exocarp extracts to control <i>Plutella xylostella</i> Micro and Nano Letters, 2022, 17, 42-48.	1.3	3
1299	Application of Nanoemulsion in Tuberculosis Treatment. Advances in Chemical and Materials Engineering Book Series, 2022, , 169-193.	0.3	0
1301	Design of a thermosensitive ibuprofen-loaded nanogel as smart material applied as anti-inflammatory in tooth bleaching: An in vivo study. Journal of Drug Delivery Science and Technology, 2022, 68, 103123.	3.0	3
1302	Essential oil nanoemulsions: Properties, development, and application in meat and meat products. Trends in Food Science and Technology, 2022, 121, 1-13.	15.1	75
1303	A comprehensive review on the application of essential oils as bioactive compounds in Nano-emulsion based edible coatings of fruits and vegetables. Applied Food Research, 2022, 2, 100042.	4.0	44
1304	Self-emulsification in chemical and pharmaceutical technologies. Current Opinion in Colloid and Interface Science, 2022, 59, 101576.	7.4	14
1305	Encapsulated essential oils: A perspective in food preservation. Future Foods, 2022, 5, 100126.	5.4	55
1306	Polyphenols as Antioxidants for Extending Food Shelf-Life and in the Prevention of Health Diseases: Encapsulation and Interfacial Phenomena. Biomedicines, 2021, 9, 1909.	3.2	25
1307	Coating of Tomatoes (Solanum lycopersicum L.) Employing Nanoemulsions Containing the Bioactive Compounds of Cactus Acid Fruits: Quality and Shelf Life. Processes, 2021, 9, 2173.	2.8	1

#	Article	IF	CITATIONS
1308	Polymeric nanoparticle-based insecticide: A critical review of agriculture production., 2022, , 445-466.		0
1309	Nanoemulsions for antitumor activity. , 2022, , 435-454.		0
1311	Nanoemulsions: Current trends in skin-care products. , 2022, , 49-73.		2
1312	Physical and Chemical Characterisation of Conventional and Nano/Emulsions: Influence of Vegetable Oils from Different Origins. Foods, 2022, 11, 681.	4.3	14
1314	<scp><i>Carlina acaulis</i></scp> essential oil nanoemulsion as a new grain protectant against different developmental stages of three storedâ€product beetles. Pest Management Science, 2022, 78, 2434-2442.	3.4	9
1315	Current Research and Challenges in Bitumen Emulsion Manufacturing and Its Properties. Materials, 2022, 15, 2026.	2.9	6
1317	Strategies for Improved Stability of Methanol-in-Diesel Emulsions. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	1
1318	Fabrication of supported carbide-derived-carbon membrane by two phases of interfacial polymerization for oil/water separation. Ceramics International, 2022, 48, 8125-8135.	4.8	10
1319	Direct Observation of Emulsion Morphology, Dynamics, and Demulsification. ACS Nano, 2022, 16, 7783-7793.	14.6	15
1320	CD44-Targeted Nanocarrier for Cancer Therapy. Frontiers in Pharmacology, 2021, 12, 800481.	3.5	41
1321	Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest Advancements. Gels, 2022, 8, 173.	4.5	63
1322	Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil. Antioxidants, 2022, 11, 650.	5.1	13
1323	Modified ceramic membrane with pH/ethanol induced switchable superwettability for antifouling separation of oil-in-acidic water emulsions. Separation and Purification Technology, 2022, 293, 121022.	7.9	19
1324	Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation. Nanomaterials, 2022, 12, 1196.	4.1	19
1325	Optimization of nanoemulsified systems containing lamellar phases for co-delivery of celecoxib and endoxifen to the skin aiming for breast cancer chemoprevention and treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128901.	4.7	6
1326	Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids. Advanced Drug Delivery Reviews, 2022, 184, 114197.	13.7	29
1327	A critical review on selection of microemulsions or nanoemulsions for enhanced oil recovery. Journal of Molecular Liquids, 2022, 353, 118791.	4.9	42
1328	Influence of different surfactants on development of nanoemulsion containing fixed oil from an Amazon palm species. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128721.	4.7	3

#	Article	IF	CITATIONS
1329	Pickering nanoemulsions and their mechanisms in enhancing oil recovery: A comprehensive review. Fuel, 2022, 319, 123667.	6.4	20
1330	PEGylated strategy for new polyurethane construction and its effects in improving the dispersion stability of tebuconazole suspension concentrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128847.	4.7	1
1331	Physicochemical studies of sunflower oil based vitamin D nanoemulsions. Journal of Dispersion Science and Technology, 0 , $1-11$.	2.4	0
1332	Nanoemulsions: A Versatile Technology for Oil and Gas Applications. , 2021, , .		0
1333	Formation and Physical Stability of Zanthoxylum bungeanum Essential Oil Based Nanoemulsions Co-Stabilized with Tea Saponin and Synthetic Surfactant. Molecules, 2021, 26, 7464.	3.8	4
1334	A Promising Cutaneous Leishmaniasis Treatment with a Nanoemulsion-Based Cream with a Generic Pentavalent Antimony (Ulamina) as the Active Ingredient. Cosmetics, 2021, 8, 115.	3.3	4
1335	Overcoming hydrolytic degradation challenges in topical delivery: non-aqueous nano-emulsions. Expert Opinion on Drug Delivery, 2022, 19, 23-45.	5.0	6
1336	Essential-Oil-Loaded Nanoemulsion Lipidic-Phase Optimization and Modeling by Response Surface Methodology (RSM): Enhancement of Their Antimicrobial Potential and Bioavailability in Nanoscale Food Delivery System. Foods, 2021, 10, 3149.	4.3	14
1337	Formulation of a stable biocosmetic nanoemulsion using a <i>Bacillus</i> lipopeptide as the green-emulsifier for skin-care applications. Journal of Dispersion Science and Technology, 2023, 44, 2045-2057.	2.4	9
1338	Advances in nanotechnologyâ€based hair care products applied to hair shaft and hair scalp disorders. International Journal of Cosmetic Science, 2022, 44, 320-332.	2.6	8
1339	Recent Developments in Starch-Based Delivery Systems of Bioactive Compounds: Formulations and Applications. Food Engineering Reviews, 2022, 14, 271-291.	5.9	4
1343	Plant essential oil-based nanoemulsions: A novel asset in the crop protection arsenal., 2022, , 325-353.		0
1344	Phytonanoformulations for hepatocellular carcinoma therapy. , 2022, , 197-213.		0
1345	Recent advancements of bionanocomposites in the food industry. , 2022, , 371-411.		0
1346	Nano emulsion formulation from allelo chemicals of medicinal plant for weed management in Himalaya. AIP Conference Proceedings, 2022, , .	0.4	0
1347	Rheological Investigation as Tool to Assess Physicochemical Stability of a Hyaluronic Acid Dermal Filler Cross-Linked with Polyethylene Glycol Diglycidyl Ether and Containing Calcium Hydroxyapatite, Glycine and L-Proline. Gels, 2022, 8, 264.	4.5	4
1348	Application of single and binary mixtures of novel seed hydrocolloids for stabilization of O/W emulsions compared with commercialized emulsifying agents. Journal of the Iranian Chemical Society, 2022, 19, 3673-3685.	2.2	1
1349	A multiscale time-Laplace method to extract relaxation times from non-stationary dynamic light scattering signals. Journal of Chemical Physics, 2022, 156, .	3.0	3

#	Article	IF	Citations
1350	Metabolite trafficking enables membrane-impermeable-terpene secretion by yeast. Nature Communications, 2022, 13, 2605.	12.8	12
1351	A novel formulation of simvastatin nanoemulsion gel for infected wound therapy: In vitro and in vivo assessment. Journal of Drug Delivery Science and Technology, 2022, 72, 103369.	3.0	4
1352	Elaboration of essential oil nanoemulsions of Rosemary (Rosmarinus officinalis L.) and its effect on liver injury prevention. Food and Bioproducts Processing, 2022, 134, 46-55.	3.6	6
1353	Greening perfluorocarbon based nanoemulsions by direct membrane emulsification: Comparative studies with ultrasound emulsification. Journal of Cleaner Production, 2022, 357, 131966.	9.3	10
1354	The separation and enrichment of molecules with part amphipathy using a novel ultrasonic emulsion-enrichment method. Chemical Engineering Journal, 2022, 444, 136682.	12.7	5
1355	Essential Oil Nanoemulsion Edible Coating in Food Industry: a Review. Food and Bioprocess Technology, 2022, 15, 2375-2395.	4.7	22
1356	Physicochemical Properties of Inorganic Nanopesticides/Nanofertilizers in Aqueous Media and Tank Mixtures., 2022,, 253-270.		1
1357	Nanoemulsions Containing Incorporated Lipophilic Drug, Felodipine, and Microheterogeneous Adhesive Polymer Matrices Based on These Nanoemulsions. Colloid Journal, 2022, 84, 20-30.	1.3	3
1358	Anti-inflammatory and anti-nociceptive effects of Cinnamon and Clove essential oils nanogels: an in vivo study. BMC Complementary Medicine and Therapies, 2022, 22, .	2.7	19
1359	Study on the Formation and Stability Properties of Nanoemulsions with Octenyl Succinic Anhydride Modified Starch. Journal of the Korean Society of Food Science and Nutrition, 2022, 51, 515-519.	0.9	0
1360	Preparation of a polysaccharide adjuvant and its application in the production of a foot-and-mouth disease virus-like particles vaccine. Biochemical Engineering Journal, 2022, 184, 108479.	3.6	2
1361	In situ complex coacervation supported by self-coated polydopamine interlayer on uniform-sized essential oils droplet. Journal of Colloid and Interface Science, 2022, 623, 1027-1038.	9.4	3
1363	Review on the applications of nanoemulsions in cancer theranostics. Journal of Materials Research, 0,	2.6	5
1364	Carbon Nanotube Enhanced Filtration and Dewatering of Kerosene. Membranes, 2022, 12, 621.	3.0	7
1365	Customized cationic nanoemulsions loading triamcinolone acetonide for corneal neovascularization secondary to inflammatory processes. International Journal of Pharmaceutics, 2022, 623, 121938.	5.2	9
1366	A hydrodynamic comparisons of two different high-pressure homogenizer valve design principles: A step towards increased efficiency. Chemical Engineering Research and Design, 2022, 184, 303-314.	5.6	4
1367	Thermal stimuli-responsive topical platform based on copaiba oil-resin: Design and performance upon ex-vivo human skin. Journal of Molecular Liquids, 2022, 361, 119625.	4.9	6
1368	Clove essential oil nanoemulsion: Optimization using artificial neural network., 2022,, 541-557.		1

#	Article	IF	CITATIONS
1369	Carnauba wax nanoemulsion applied as an edible coating on fresh tomato for postharvest quality evaluation. Heliyon, 2022, 8, e09803.	3.2	21
1370	Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Frontiers of Chemical Science and Engineering, 2022, 16, 1560-1583.	4.4	16
1371	Expanding arsenal against diabetic wounds using nanomedicines and nanomaterials: Success so far and bottlenecks. Journal of Drug Delivery Science and Technology, 2022, 74, 103534.	3.0	4
1372	DETERMINATION OF PHYSICAL STABILITY OF OMEGA-3 FATTY ACID NANOEMULSIONS AT DIFFERENT CONDITIONS. Gıda, 0, , 616-629.	0.4	0
1373	Food-grade nanoemulsions for effective delivery of vitamins. , 2022, , 441-449.		0
1374	A food-grade nanoemulsion for delivering probiotics and prebiotics. , 2022, , 347-361.		0
1375	Can droplet size influence antibacterial activity in ultrasound-prepared essential oil nanoemulsions?. Critical Reviews in Food Science and Nutrition, 2023, 63, 12567-12577.	10.3	9
1376	Physicochemical Characteristics of Mixed Surfactant-Stabilized <scp>I</scp> -Ascorbic Acid Nanoemulsions during Storage. Langmuir, 2022, 38, 9500-9506.	3.5	1
1379	Preparation, stability and biological activity of essential oil-based nano emulsions: A comprehensive review. OpenNano, 2022, 8, 100066.	4.8	31
1380	Deciphering the Emulsification Process to Create an Albumin-Perfluorocarbon-(o/w) Nanoemulsion with High Shelf Life and Bioresistivity. Langmuir, 2022, 38, 10351-10361.	3 . 5	5
1381	Preparation, characterization, and antimicrobial activity of cinnamon essential oil and cinnamaldehyde nanoemulsions. Journal of Essential Oil Research, 2022, 34, 544-558.	2.7	6
1382	Development of Saturated Fat Replacers: Conventional and Nano-Emulsions Stabilised by Lecithin and Hydroxylpropyl Methylcellulose. Foods, 2022, 11, 2536.	4.3	4
1383	Optimisation of the physicochemical stability of extra virgin olive oil-in-water nanoemulsion: processing parameters and stabiliser type. European Food Research and Technology, 2022, 248, 2765-2777.	3.3	2
1384	Chitosan-based active coating for pineapple preservation: Evaluation of antimicrobial efficacy and shelf-life extension. LWT - Food Science and Technology, 2022, 168, 113940.	5 . 2	21
1385	Bioactive-loaded nanodelivery systems for the feed and drugs of livestock; purposes, techniques and applications. Advances in Colloid and Interface Science, 2022, 308, 102772.	14.7	22
1386	Comprehensive review of the interfacial behavior of water/oil/surfactant systems using dissipative particle dynamics simulation. Advances in Colloid and Interface Science, 2022, 309, 102774.	14.7	18
1387	Formation, properties and rheology of paraffin wax oil-in-water emulsions. Stabilizing effect of novel EO/PO/EO block copolymer fatty acid monoesters. Materials Chemistry and Physics, 2022, 291, 126759.	4.0	0
1388	In vitro bioactivities and preparation of nanoemulsion from coconut oil loaded Curcuma aromatica extracts for cosmeceutical delivery systems. Saudi Journal of Biological Sciences, 2022, 29, 103435.	3.8	6

#	ARTICLE	IF	Citations
1389	Plant-based nanoemulsions for agricultural application. , 2022, , 155-164.		0
1390	Spontaneous emulsification techniques of green/food grade nanoemulsions., 2022,, 137-152.		1
1391	Nanoemulsion formulations with plant growth promoting rhizobacteria (PGPR) for sustainable agriculture., 2022,, 207-223.		4
1392	Advanced drug delivery systems to treat Huntington's disease: challenges and opportunities. , 2022, , 189-206.		1
1393	Physical, chemical, and microbiological stability of nanocosmetics., 2022,, 139-166.		1
1394	Investigation on potential of nanoemulsion in nanocosmeceuticals. , 2022, , 319-326.		1
1395	Pest management with green nanoemulsions. , 2022, , 177-195.		0
1396	Nanoemulsions for drug delivery. , 2022, , 17-37.		1
1397	Cellulose/Polyvinyl Alcohol/Tannic Acid Porous Cross-Linked Composite Frame Material with Excellent Oil-Water Separation Performance. SSRN Electronic Journal, 0, , .	0.4	0
1398	Production and physicochemical characterization of nanocosmeceuticals., 2022,, 95-138.		7
1399	Lipid-based nanocarriers for drug delivery: microemulsions versus nanoemulsions., 2022,, 39-53.		0
1400	Recent trends in composite nanoemulsions for food packaging applications. , 2022, , 387-398.		0
1401	Nonionic green nanoemulsion nanoinsecticides/nanopesticides., 2022, , 105-122.		1
1402	Combating atherosclerosis with nanodrug delivery approaches: from bench side to commercialization., 2022,, 97-136.		1
1403	Development of Innovative Cosmetic Formulations to Help Fungal Treatment and Testing the Efficiency of Formulations. , 0 , , .		0
1404	Self-Emulsifying Drug Delivery Systems (SEDDS): Measuring Energy Dynamics to Determine Thermodynamic and Kinetic Stability. Pharmaceuticals, 2022, 15, 1064.	3.8	9
1405	Preparation of melatonin novel-mucoadhesive nanoemulsion used in the treatment of depression. Polymer Bulletin, 2023, 80, 8093-8132.	3.3	6
1406	Nanotechnology for precision and sustainable agriculture: recent advances, challenges and future implications. Nanotechnology for Environmental Engineering, 2023, 8, 775-787.	3.3	3

#	Article	IF	Citations
1407	Multifunctional attributes of nanostructured materials, toxicology, safety considerations, and regulations. Journal of Materials Science, 2022, 57, 17021-17051.	3.7	4
1408	Larvicidal Effects of Nanoliposomes Containing Clove and Cinnamon Essential Oils, Eugenol, and Cinnamaldehyde against the Main Malaria Vector, Anopheles stephensi Liston. Psyche: Journal of Entomology, 2022, 2022, 1-8.	0.9	5
1409	Characterization and insecticidal activity of two natural formulation types against the scale insect (Parlatoria ziziphi) and their biochemical effects on Citrus aurantium. Bulletin of the National Research Centre, 2022, 46, .	1.8	3
1410	Omani Frankincense nanoemulsion formulation efficacy and its latent effects on biological aspects of the spiny bollworm Earias insulana (Boisd.). Frontiers in Physiology, 0, 13, .	2.8	11
1411	Curcumin conjugated dextran coated Fe3O4 Nanoparticles: Cytotoxic effect on lung cancer cell line A549. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 286, 116047.	3.5	6
1412	Ultrasonic-assisted food grade nanoemulsion preparation from clove bud essential oil and evaluation of its antioxidant and antibacterial activity. Green Processing and Synthesis, 2022, 11, 974-986.	3.4	1
1413	Cellulose/Poly(vinyl alcohol)/Tannic Acid Porous Cross-Linked Composite Frame Materials with Excellent Oil/Water Separation Performance. Langmuir, 2022, 38, 12795-12803.	3.5	1
1414	Nanoencapsulation of Vitamins and Health Effects of Nanoencapsulated Vitamins. Akademik Gıda, 0, , 283-295.	0.8	O
1415	Development of chloramphenicol whey protein-based microparticles incorporated into thermoresponsive in situ hydrogels for improved wound healing treatment. International Journal of Pharmaceutics, 2022, 628, 122323.	5.2	7
1416	Unsaturated guluronate oligosaccharide used as a stabilizer of oil-in-water nanoemulsions loaded with bioactive nutrients. Food Chemistry: X, 2022, 16, 100469.	4.3	3
1417	Development of nanoformulation for hyperpigmentation disorders: Experimental evaluations, in vitro efficacy and in silico molecular docking studies. Arabian Journal of Chemistry, 2022, 15, 104362.	4.9	2
1418	Self-Assembled glycerol monooleate demixes miscible liquids through selective hydrogen bonding to water. Journal of Molecular Liquids, 2022, 367, 120551.	4.9	9
1419	Correlating the pre–emulsion conditions of film–making with the characteristics of active chitosan films containing orange essential oil (Citrus sinensis L.). Progress in Organic Coatings, 2023, 174, 107270.	3.9	0
1420	Application of biosurfactants as emulsifiers in the processing of food products with diverse utilization in the baked goods., 2023,, 203-237.		3
1421	Probiotic nanoparticles for food., 2023,, 307-338.		0
1423	Nanoemulsions in Cancer Therapy. Indo Global Journal of Pharmaceutical Sciences, 2013, 03, 124-133.	0.5	11
1424	Nanoemulsions: Nanotechnological approach in food quality monitoring. , 2023, , 223-238.		2
1425	The Biological Response of Carica papaya Leaves Extract to Saponin Reduction (O/W) Emulsion on Human Bronchial Epithelium Cell (BEAS-2B). Arabian Journal of Chemistry, 2022, , 104416.	4.9	1

#	Article	IF	CITATIONS
1426	Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Advances in Colloid and Interface Science, 2023, 311, 102810.	14.7	52
1427	Nanoemulgel formulation for topical delivery of plant glucosylceramide: Characterization and optimization. Journal of Drug Delivery Science and Technology, 2023, 79, 104056.	3.0	0
1428	Preparation and characterization of geraniol nanoemulsions and its antibacterial activity. Frontiers in Microbiology, 0, 13 , .	3 . 5	5
1429	Photo-Phytotherapeutic Gel Composed of Copaifera reticulata, Chlorophylls, and k-Carrageenan: A New Perspective for Topical Healing. Pharmaceutics, 2022, 14, 2580.	4.5	3
1430	Development and evaluation of clove and cinnamon oil-based nanoemulsions against adult fleas (Xenopsylla cheopis). Biocatalysis and Agricultural Biotechnology, 2023, 47, 102587.	3.1	1
1431	Properties, preparation, stability of nanoemulsions, their improving oil recovery mechanisms, and challenges for oil field applications—A critical review. , 2023, 221, 211360.		11
1432	Stabilization of an Aqueous Bio-Based Wax Nano-Emulsion through Encapsulation. Nanomaterials, 2022, 12, 4329.	4.1	2
1433	Comparative study on the topical and transdermal delivery of diclofenac incorporated in nano-emulsions, nano-emulgels, and a colloidal suspension. Drug Delivery and Translational Research, 2023, 13, 1372-1389.	5.8	2
1434	Mechanism of adsorption for design of role-specific polymeric surfactants. Chemical Papers, 2023, 77, 2343-2361.	2.2	3
1435	Development and evaluation emulgel for effective management of the imiquimod-induced psoriasis. Inflammopharmacology, 2023, 31, 301-320.	3.9	7
1436	Effect of sodium trimetaphosphate on the physicochemical properties of modified soy protein isolates and its luteinâ€loaded emulsion. Journal of Food Science, 0, , .	3.1	1
1437	Design and characterization of lipid nanocarriers for oral delivery of immunotherapeutic peptides. Journal of Biomedical Materials Research - Part A, 2023, 111, 938-949.	4.0	3
1438	Soy Protein Isolate as Emulsifier of Nanoemulsified Beverages: Rheological and Physical Evaluation. Foods, 2023, 12, 507.	4.3	1
1439	Theranostic applications of nanoemulsions in pulmonary diseases. , 2023, , 177-216.		0
1440	Multi-drug loaded eugenol-based nanoemulsions for enhanced anti-mycobacterial activity. RSC Medicinal Chemistry, 2023, 14, 433-443.	3.9	2
1441	Emulsifier crystal formation and its role in periodic deformation-relaxation of emulsion droplets upon cooling. Journal of Food Engineering, 2023, 347, 111430.	5.2	3
1442	Effects of micro- and nano-sized emulsions on physicochemical properties of emulsion–gelatin composite gels. Food Hydrocolloids, 2023, 139, 108537.	10.7	10
1443	Nanoemulsions., 2014,, 179-209.		O

#	Article	IF	CITATIONS
1444	Improvement of Physicochemical and Antibacterial Properties of Nanoemulsified Origanum vulgare Essential Oil Through Optimization of Ultrasound Processing Variables. Food and Bioprocess Technology, 2023, 16, 2016-2026.	4.7	3
1445	Dispersibility and surface properties of hydrocortisone-incorporated self-assemblies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 665, 131217.	4.7	1
1446	Corrosion characteristic of stainless steel and galvanized steel in water emulsified diesel, diesel and palm biodiesel. Engineering Failure Analysis, 2023, 147, 107129.	4.0	5
1447	Superoxide Anion Release by Human Blood Phagocytes Can Increase the Microbicidal Activity Induced by a New Microemulsioned System Containing Cotton Oil. Advances in Biological Chemistry, 2022, 12, 207-227.	0.6	0
1448	Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment. Medicine in Drug Discovery, 2023, 17, 100151.	4.5	7
1449	Vitamin D3-Loaded Nanoemulsions as a Potential Drug Delivery System for Autistic Children: Formulation Development, Safety, and Pharmacokinetic Studies. AAPS PharmSciTech, 2023, 24, .	3.3	6
1450	Recent advances in superwetting materials for separation of oil/water mixtures. Nanoscale, 2023, 15, 5139-5157.	5.6	8
1451	The enzymatic modification of phospholipids improves their surface-active properties and the formation of nanoemulsions. Biocatalysis and Agricultural Biotechnology, 2023, 48, 102652.	3.1	0
1452	Fabrication of Monarda citriodora essential oil nanoemulsions: characterization and antifungal activity against Penicillium digitatum of kinnow. Journal of Food Measurement and Characterization, 2023, 17, 3044-3060.	3.2	2
1453	Nano Emulsion Drug Delivery System: A Review. Current Nanomedicine, 2023, 13, .	0.6	0
1455	Polymeric encapsulation of anti-larval essential oil nanoemulsion for controlled release of bioactive compounds. Inorganic Chemistry Communication, 2023, 150, 110507.	3.9	5
1456	Microfluidic Methods for Generation of Submicron Droplets: A Review. Micromachines, 2023, 14, 638.	2.9	1
1457	Polymer nanoparticles from low-energy nanoemulsions for biomedical applications. Beilstein Journal of Nanotechnology, 0, 14, 339-350.	2.8	1
1459	Potential of Lipid-Based Nanocarriers against Two Major Barriers to Drug Delivery—Skin and Blood–Brain Barrier. Membranes, 2023, 13, 343.	3.0	3
1460	Bio-guided chemical characterization and nano-formulation studies of selected edible volatile oils with potential antibacterial and anti-SARS-CoV-2 activities. Arabian Journal of Chemistry, 2023, 16, 104813.	4.9	1
1461	Combating the vectors and management of vector-borne diseases with essential oil nanoemulsions. , 2023, , $81\text{-}113$.		O
1462	Ultrasound Emulsification in Microreactors: Effects of Channel Material, Surfactant Nature, and Ultrasound Parameters. Industrial & Engineering Chemistry Research, 2023, 62, 5170-5180.	3.7	2
1463	Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. Journal of Pharmaceutical Sciences, 2023, 112, 1772-1793.	3.3	9

#	Article	IF	CITATIONS
1464	Nanoemulsions of terpene by-products from cannabidiol production have promising insecticidal effect on Callosobruchus maculatus. Heliyon, 2023, 9, e15101.	3.2	2
1465	Ultrasound-assisted synthesis of oil-in-water nanoemulsions: stability and rheological characteristics. Journal of Dispersion Science and Technology, 2024, 45, 1027-1037.	2.4	0
1466	Ferulic acid-loaded polymeric nanoparticles prepared from nano-emulsion templates facilitate internalisation across the blood–brain barrier in model membranes. Nanoscale, 2023, 15, 7929-7944.	5.6	7
1467	Micro- and Nanoemulsions in Antiviral Treatment. , 2023, , 119-139.		0
1468	Effect of surfactant hydrophobic chain equivalence on the oil-water interface and emulsion stability: A dissipative particle dynamics and experimental study. Journal of Molecular Liquids, 2023, 382, 121781.	4.9	3
1469	Rheology and stability of drilling fluids formulated with saturated NaCl and CaCl2 solutions. Chemical Engineering Science, 2023, 275, 118752.	3.8	0
1470	Nanoemulsion in Management of Colorectal Cancer: Challenges and Future Prospects. Nanomanufacturing, 2023, 3, 139-166.	3.6	7
1471	On the Stability of Pickering and Classical Nanoemulsions: Theory and Experiments. Langmuir, 2023, 39, 6975-6991.	3.5	8
1472	Rational design of O/W nanoemulsions based on the surfactant dodecyldiglyceryl ether using the normalized HLD concept and the formulation-composition map. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 671, 131679.	4.7	4
1474	Preparation of cinnamaldehyde nanoemulsions: Formula optimization, antifungal activity, leaf adhesion, and safety assessment. Industrial Crops and Products, 2023, 200, 116825.	5.2	3
1476	A comprehensive review on applications, preparation & Department of the Comprehensive and Advanced Pharmacology, 2023, 8, 104-111.	0.3	1
1477	Formulation and Characteristics of Edible Oil Nanoemulsions Modified with Polymeric Surfactant for Encapsulating Curcumin. Polymers, 2023, 15, 2864.	4.5	1
1478	Physicochemical properties of surimi gel from silver carp as affected by ultrasonically emulsified vegetable oils. International Journal of Food Properties, 2023, 26, 1214-1229.	3.0	2
1479	Development, characterization and evidence of anti-endometriotic activity of Phytocannabinoid-Rich nanoemulsions. International Journal of Pharmaceutics, 2023, 643, 123049.	5.2	0
1480	Effectiveness of Eucalyptus Nano Formulation against Phytophthora capsici the Causal of Foot Rot Disease on Black Pepper. IOP Conference Series: Earth and Environmental Science, 2023, 1172, 012027.	0.3	1
1481	Emulsifying properties, in vitro digestive characteristics, and \hat{l}^2 -carotene bioaccessibility of mandarin peel pectin emulsions prepared with different carrier oil phases. International Journal of Biological Macromolecules, 2023, 242, 124961.	7.5	7
1482	Antiparasitic Activity of Nanomaterials. , 2023, , 173-205.		0
1483	Synthesis of styrene butadiene copolymer via novel nanoemulsion based system. Polymer Engineering and Science, 2023, 63, 2138-2148.	3.1	0

#	Article	IF	Citations
1484	Characterization and rheological behavior of vitamin E nanoemulsions prepared by phase inversion composition technique. Results in Engineering, 2023, 18, 101175.	5.1	1
1485	Functional nanoemulsions: Controllable low-energy nanoemulsification and advanced biomedical application. Chinese Chemical Letters, 2024, 35, 108710.	9.0	1
1486	Nanoemulsions and Emulsions. , 2023, , 148-180.		0
1487	Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines. Vaccines, 2023, 11, 1172.	4.4	5
1489	Synthesis and Characterization of Dimeric Artesunate Glycerol Monocaprylate Conjugate and Formulation of Nanoemulsion Preconcentrate. Molecules, 2023, 28, 5208.	3.8	0
1490	Lutein and \hat{l}^2 -Carotene Characterization in Free and Nanodispersion Forms in Terms of Antioxidant Activity and Cytotoxicity. Journal of Pharmaceutical Innovation, 2023, 18, 1727-1744.	2.4	1
1491	Ostwald Ripening of Triacylglycerol Droplets Embedded in Glass-Supported Phospholipid Bilayers. Langmuir, 2023, 39, 10001-10010.	3. 5	0
1492	New weapons against the disease vector Aedes aegypti: From natural products to nanoparticles. International Journal of Pharmaceutics, 2023, 643, 123221.	5.2	2
1493	Optimization of vitamin B12 nano-emulsification and encapsulation using spontaneous emulsification. Food Science and Biotechnology, 2024, 33, 399-415.	2.6	1
1494	Recent developments in nanoemulsions against spoilage in cold-stored fish: A review. Food Chemistry, 2023, 429, 136876.	8.2	O
1495	Applications of nanoemulsions as drug delivery vehicle for phytoconstituents., 2023,, 119-194.		1
1496	Benefits, Future Prospective, and Problem Associated with the Use of Nanopesticides. , 2023, , 157-190.		0
1497	An overview of nanocarriers used in corneal disease., 2023,, 79-92.		0
1498	Nanofood Process Technology: Insights on How Sustainability Informs Process Design. ACS Sustainable Chemistry and Engineering, 2023, 11, 11437-11458.	6.7	1
1499	Development and characterization of a continuous ultrasound emulsification and nano-emulsion polymerization process., 2023, 2, 100023.		0
1500	Development of highly stable phytosterol oleogel particle-based emulsions with improved bioaccessibility of êžµ-carotene. Food Hydrocolloids, 2024, 146, 109167.	10.7	2
1501	Easy-process nanoemulsions: Obtaining thymol nanodroplets with high shear speed systems. Food Bioscience, 2023, 55, 103048.	4.4	1
1502	A review on trends in microencapsulation of bioactive compounds: coating materials, design, and applications. European Food Research and Technology, 0, , .	3.3	O

#	Article	IF	Citations
1503	Nanoemulsion Formulations for Food Processing and Enhancing the Nutritional Quality and Shelf Life of Food., 2023,, 36-62.		0
1504	Exploring Nanocarriers as Treatment Modalities for Skin Cancer. Molecules, 2023, 28, 5905.	3.8	7
1505	Nanoformulation Synthesis and Mechanisms of Interactions with Biological Systems., 2023, , 18-35.		0
1506	The effect of anionic surfactant type and concentration on the development of waterborne nitrocellulose. Progress in Organic Coatings, 2024, 186, 107979.	3.9	0
1507	Cardiovascular Molecular Imaging With Fluorine-19 MRI: The Road to the Clinic. Circulation: Cardiovascular Imaging, 2023, 16, .	2.6	1
1508	Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Materials Au, 2023, 3, 600-619.	6.0	11
1510	Fabrication and stability of W/O/W emulsions stabilized by gum arabic and polyglycerol polyricinoleate. Journal of the Science of Food and Agriculture, 2024, 104, 797-808.	3.5	2
1511	Development of Saponin based Nano emulsion formulations from Phaleria macrocarpa to Control Aphis gossypii., 2022, 43, 43-55.		0
1512	Functionalized Nanoemulsions: Could Be a Promising Approach for Theranostic Applications. , 2023, , 145-161.		0
1514	Introduction to Green Nanoemulsions and Their Properties. , 2023, , 3-20.		0
1515	Nanoemulsions from Essential Oils: Preparation, Characterization, and Their Applications. , 2023, , 21-38.		0
1516	Nanoemulsion Applications in the Wound-Healing Process. , 2023, , 197-215.		0
1517	Study the consequences of nanoemulsion canola oil in overweight Iraqi volunteers on various biochemical indicators in Iraq Revista Bionatura, 2023, 8, 1-12.	0.4	1
1518	Investigation and Evaluation of the Transdermal Delivery of Ibuprofen in Various Characterized Nano-Drug Delivery Systems. Pharmaceutics, 2023, 15, 2413.	4. 5	0
1519	Optimization of complex coacervation parameters for the production of encapsulated black garlic using response surface methodology. Journal of Food Science, 0, , .	3.1	0
1520	The effect of homogenisation pressure on the microstructure of milk during evaporation and drying: particle-size distribution, electronic scanning microscopy, water activity and isotherm. Journal of Dairy Research, 2023, 90, 299-305.	1.4	1
1521	Enhanced in vivo absorption and biodistribution of curcumin loaded into emulsions with high medium-chain triglyceride content. Food Research International, 2023, 174, 113595.	6.2	1
1522	Innovative Microemulsion Loaded with Unusual Dimeric Flavonoids from Fridericia platyphylla (Cham.) L.G. Lohmann Roots. AAPS PharmSciTech, 2023, 24, .	3.3	1

#	Article	IF	CITATIONS
1523	Anti-aging peptides for advanced skincare: Focus on nanodelivery systems. Journal of Drug Delivery Science and Technology, 2023, 89, 105087.	3.0	2
1524	Star Polymer-Based Nanodelivery System for Pesticides: Enhanced Broad-Spectrum Toxicity and Selective Toxicity. ACS Omega, 0, , .	3.5	0
1525	Sustainable Pest Management Using Novel Nanoemulsions of Honeysuckle and Patchouli Essential Oils against the West Nile Virus Vector, Culex pipiens, under Laboratory and Field Conditions. Plants, 2023, 12, 3682.	3.5	2
1526	Advances in Designing Essential Oil Nanoformulations: An Integrative Approach to Mathematical Modeling with Potential Application in Food Preservation. Foods, 2023, 12, 4017.	4.3	2
1527	Harnessing Plant's Arsenal: Essential Oils as Promising Tools for Sustainable Management of Potato Late Blight Disease Caused by Phytophthora infestans—A Comprehensive Review. Molecules, 2023, 28, 7302.	3.8	0
1528	Emulsions Suspensions and Nanonutraceutical Formulations and Evaluation of Nutraceuticals. , 2024, , 1-37.		0
1529	Pickering Emulsions Stabilized by Metal-Organic Frameworks, Graphene-Based Materials, and Carbon Nanotubes: A Comprehensive Review. Journal of Molecular Liquids, 2024, 393, 123617.	4.9	0
1530	A realistic approach to radiation-induced treatment of micropollutants in wastewater. Chemical Papers, 0, , .	2.2	O
1531	Emerging Trends of Nanotechnology-Based Advanced Cosmeceuticals. E-Journal of Surface Science and Nanotechnology, 2023, , .	0.4	0
1532	Essential oil and its nanoemulsion of <i>Eucalyptus cladocalyx</i> : chemical characterization, antioxidant, anti-inflammatory and anticancer activities. International Journal of Environmental Health Research, 0, , 1-14.	2.7	0
1533	Topical delivery of nanoemulsions for skin cancer treatment. Applied Materials Today, 2023, 35, 102001.	4.3	0
1534	Emulsion Droplet System for Delivering Bioactive Components. , 2024, , 1-25.		0
1535	Nanotechnological Applications in Food and Agriculture. , 2023, , 393-417.		0
1536	The influence of the chemical composition of modified lecithins on their surface-active and emulsifying properties. New Technologies, 2023, 19, 48-57.	0.2	0
1537	Formulation and in vitro characterization of nanoemulsions containing remdesivir or licorice extract: A potential subcutaneous injection for coronavirus treatment. Colloids and Surfaces B: Biointerfaces, 2024, 234, 113703.	5.0	0
1538	Lipid Nanoparticles for Lutein Encapsulation and Delivery. Colloid Journal, 2023, 85, 817-826.	1.3	2
1540	Nanoemulsification of Essential Oil Blend by Ultrasound: Optimization of Physicochemical, Antioxidant Properties, and Activity Against Escherichia coli. Food and Bioprocess Technology, 0, , .	4.7	0
1541	Characterization and in vitro cytotoxicity of piperine-loaded nanoemulsion in breast cancer cells. Chemical Papers, 2024, 78, 2577-2587.	2.2	O

#	Article	IF	CITATIONS
1542	Chitosan-based films filled with nanoencapsulated essential oil: Physical-chemical characterization and enhanced wound healing activity. International Journal of Biological Macromolecules, 2024, 261, 129049.	7.5	0
1543	Lipid-Based Nanocarriers for the Delivery of Phytoconstituents., 2024, , 125-167.		0
1544	Micro and nanoemulsions in colorectal cancer. , 2024, , 259-286.		0
1545	The wound healing effect of polycaprolactone-chitosan scaffold coated with a gel containing Zataria multiflora Boiss. volatile oil nanoemulsions. BMC Complementary Medicine and Therapies, 2024, 24, .	2.7	0
1546	Nanoemulsions Stable against Ostwald Ripening. Langmuir, 2024, 40, 1364-1372.	3.5	0
1548	Antibacterial and antioxidant activity of oil-in-water nanoemulsion of Mentha pulegium essential oil and extract., 2023, 33, 355-364.		0
1549	Antibacterial Nanoemulsion of Oregano Oil for Food Preservation: In Vitro and In Situ Evaluation Against Escherichia coli. BioNanoScience, 0, , .	3.5	0
1550	Long-Term Stability of Lavandula x intermedia Essential Oil Nanoemulsions: Can the Addition of the Ripening Inhibitor Impact the Biocidal Activity of the Nanoformulations?. Pharmaceutics, 2024, 16, 108.	4.5	0
1551	Slow and controlled release nanofertilizers as an efficient tool for sustainable agriculture: Recent understanding and concerns., 2024, 7, 100058.		0
1552	Nanoscale additives and freshness indicators, nanocoatings, nanofilms, and nanoemulsions. , 2024, , 315-340.		0
1553	Preparation and characterization of ultrasound-assisted nanoemulsions containing natural oil for anti-aging effect. Journal of Agriculture and Food Research, 2024, 15, 101004.	2.5	0
1554	Smart nanomaterials in food formulations and enhancing the bioavailability of nutrients/nutraceuticals., 2024,, 283-314.		0
1555	Research progress on emulsion vaccine adjuvants. Heliyon, 2024, 10, e24662.	3.2	0
1556	Challenges for commercialization of nanoemulsions. , 2024, , 179-198.		0
1557	Basics of nanoemulsion: Synthesis and characterization. , 2024, , 1-16.		0
1558	Application of nanoemulsion in food and packaging industry. , 2024, , 49-75.		0
1559	Standard reference materials. , 2024, , 199-217.		0
1560	Nanoemulsions in comparison with conventional emulsions for biomedical applications. , 2024, , 77-106.		0

#	Article	IF	CITATIONS
1561	Critical Review of Techniques for Food Emulsion Characterization. Applied Sciences (Switzerland), 2024, 14, 1069.	2.5	0
1562	Nanoemulsions: summary of a decade of research and recent advances. Nanomedicine, 2024, 19, 519-536.	3.3	0
1563	Nanoencapsulation of fertilizers., 2024,, 97-110.		0
1564	Formulation and characterization of ionic liquid-based nanoemulsion for enhanced oil recovery applications. Journal of Molecular Liquids, 2024, 397, 124189.	4.9	0
1565	Characteristics of emulsion preparation in an ultrasonic microreactor: cavitation, droplet size and energy efficiency. Chemical Engineering Journal, 2024, 484, 149462.	12.7	0
1566	Advances in the Interaction between Food-Derived Nanoparticles and the Intestinal Barrier. Journal of Agricultural and Food Chemistry, 2024, 72, 3291-3301.	5.2	0
1567	3D hierarchical aquaporin-like nanoporous graphene membrane with engineered tripartite nanochannels for efficient oil/water separation. Npj Clean Water, 2024, 7, .	8.0	0
1568	Formulating 10-hydroxycamptothecin into nanoemulsion with functional excipient tributyrin: An innovative strategy for targeted hepatic cancer chemotherapy. International Journal of Pharmaceutics, 2024, 654, 123945.	5.2	0
1569	The Evolution of Sonochemistry: From the Beginnings to Novel Applications. ChemPlusChem, 0, , .	2.8	0
1570	Mixing dynamics in the synthesis of nanoparticle-stabilized water-in-water emulsion: Impact on size and stability. Physics of Fluids, 2024, 36, .	4.0	0
1571	Synthesis and interface behaviors of amino acid surfactants with naturally derived branched hydrophobic chains. Journal of Molecular Liquids, 2024, 398, 124328.	4.9	0
1572	Enhanced Oral Bioavailability of Isoformononetin Through Nanoemulsion: Development, Optimization, and Characterization. Journal of Pharmaceutical Innovation, 2024, 19, .	2.4	0
1573	Nanocosmeceuticals: Trends and Recent Advancements in Self Care. AAPS PharmSciTech, 2024, 25, .	3.3	0
1574	pH/Ion Dual-Responsive Emulsion Via a Cationic Surfactant and Positively Charged Magnesium Hydroxide Nanosheets. Langmuir, 2024, 40, 5360-5368.	3.5	0
1575	Fabrication of Eco-Friendly Hydrolyzed Ethylene–Maleic Anhydride Copolymer–Avermectin Nanoemulsion with High Stability, Adhesion Property, pH, and Temperature-Responsive Releasing Behaviors. Molecules, 2024, 29, 1148.	3.8	0
1576	Whey protein isolate-stabilized gardenia fruit oil nanoemulsions: Ultrasonic preparation, characterization and applications in nutraceuticals delivery. Industrial Crops and Products, 2024, 212, 118345.	5.2	0
1578	Nanoemulsions of Phoenix dactylifera L. (Decaffeinated) and CoffeaÂarabica L. Extracts as a Novel Approach for the Treatment of Carbon Tetrachloride-Mediated Liver Fibrosis. Antioxidants, 2024, 13, 355.	5.1	0
1579	Fat Reduction: Product Challenges, Approaches, and Application of Flavors. , 2024, , 163-196.		0

ARTICLE IF CITATIONS

1580 Synthesis of eco-friendly layered double hydroxide and nanoemulsion for jasmine and peppermint oils and their larvicidal activities against Culex pipiens Linnaeus. Scientific Reports, 2024, 14, . 3.3 0