Photopolymerized monolithic capillary columns for rap chromatographic separation of proteins

Journal of Chromatography A 1051, 53-60

DOI: 10.1016/j.chroma.2004.04.047

Citation Report

#	Article	IF	Citations
1	Evaluation of ring-opening metathesis polymerization (ROMP)-derived monolithic capillary high performance liquid chromatography columns. Journal of Chromatography A, 2005, 1090, 81-89.	3.7	37
2	Capillary Electrochromatography on Methacrylate Based Monolithic Columns: Evaluation of Column Performance and Separation of Polyphenols. Chromatographia, 2005, 62, 409-416.	1.3	16
3	Preparation of low flow-resistant methacrylate-based monolithic stationary phases of different hydrophobicity and the application to rapid reversed-phase liquid chromatographic separation of alkylbenzenes at high flow rate and elevated temperature. Journal of Chromatography A, 2006, 1106, 106-111.	3.7	73
4	Polymetacrylate and hybrid interparticle monolithic columns for fast separations of proteins by capillary liquid chromatography. Journal of Chromatography A, 2006, 1109, 60-73.	3.7	21
5	Monolithic poly(p-methylstyrene-co-1,2-bis(p-vinylphenyl)ethane) capillary columns as novel styrene stationary phases for biopolymer separation. Journal of Chromatography A, 2006, 1117, 56-66.	3.7	54
6	Preparation and characterization of methacrylate-based semi-micro monoliths for high-throughput bioanalysis. Analytical and Bioanalytical Chemistry, 2006, 386, 566-571.	3.7	45
7	Toward high sequence coverage of proteins in human breast cancer cells using on-line monolith-based HPLC-ESI-TOF MS compared to CE MS. Electrophoresis, 2006, 27, 2126-2138.	2.4	14
8	Monolithic media in microfluidic devices for proteomics. Electrophoresis, 2006, 27, 3547-3558.	2.4	53
9	A study of surface modification and anchoring techniques used in the preparation of monolithic microcolumns in fused silica capillaries. Journal of Separation Science, 2006, 29, 14-24.	2.5	91
10	A model of flow-through pore formation in methacrylate ester-based monolithic columns. Journal of Separation Science, 2006, 29, 1064-1073.	2.5	19
11	Chromatography-Based Separation of Proteins, Peptides, and Amino Acids., 0,, 585-610.		1
12	Recent development of monolithic materials as matrices in microcolumn separation systems. Journal of Separation Science, 2007, 30, 792-803.	2.5	56
13	Preparation of methacrylate monoliths. Journal of Separation Science, 2007, 30, 2801-2813.	2.5	139
14	Comprehensive analysis of proteins of pH fractionated samples using monolithic LC/MS/MS, intact MW measurement and MALDI-QIT-TOF MS. Journal of Mass Spectrometry, 2007, 42, 312-334.	1.6	9
15	Preparation of monolithic columns with target mesopore-size distribution for potential use in size-exclusion chromatography. Journal of Chromatography A, 2007, 1150, 279-289.	3.7	42
16	Stability and repeatability of capillary columns based on porous monoliths of poly(butyl) Tj ETQq1 1 0.784314 rş	gBT ₃ /Overl	ock 10 Tf 50 1
17	Use of monolithic supports in proteomics technology. Journal of Chromatography A, 2007, 1144, 2-13.	3.7	88
18	Comparison between monolithic conventional size, microbore and capillary poly(p-methylstyrene-co-1,2-bis(p-vinylphenyl)ethane) high-performance liquid chromatography columns. Journal of Chromatography A, 2007, 1146, 216-224.	3.7	41

#	Article	IF	Citations
19	Novel monolithic poly(phenyl acrylate-co-1,4-phenylene diacrylate) capillary columns for biopolymer chromatography. Journal of Chromatography A, 2007, 1147, 46-52.	3.7	23
20	Monolithic poly[(trimethylsilyl-4-methylstyrene)-co- bis(4-vinylbenzyl)dimethylsilane] stationary phases for the fast separation of proteins and oligonucleotides. Journal of Chromatography A, 2007, 1147, 53-58.	3.7	23
21	Influence of different polymerisation parameters on the separation efficiency of monolithic poly(phenyl acrylate-co-1,4-phenylene diacrylate) capillary columns. Journal of Chromatography A, 2007, 1154, 269-276.	3.7	34
22	Understanding and design of existing and future chromatographic support formats. Journal of Chromatography A, 2007, 1168, 73-99.	3.7	58
23	High-performance liquid chromatography with contactless conductivity detection for the determination of peptides and proteins using a monolithic capillary column. Journal of Chromatography A, 2007, 1176, 185-191.	3.7	28
24	Proteomic profiling identifies breast tumor metastasis-associated factors in an isogenic model. Proteomics, 2007, 7, 299-312.	2.2	45
25	Preparation and characterization of long alkyl chain methacrylate-based monolithic column for capillary chromatography. Journal of Proteomics, 2007, 70, 39-45.	2.4	45
26	Polymethacrylate monolithic columns for capillary liquid chromatography. Journal of Separation Science, 2008, 31, 2521-2540.	2.5	118
27	Lauroyl peroxide as thermal initiator of lauryl methacrylate monolithic columns for CEC. Electrophoresis, 2008, 29, 4399-4406.	2.4	14
28	Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2008, 1184, 416-440.	3.7	98
29	Novel monolithic poly(p-methylstyrene-co-bis(p-vinylbenzyl)dimethylsilane) capillary columns for biopolymer separation. Journal of Chromatography A, 2008, 1191, 253-262.	3.7	31
30	Characterization of polymer-based monolithic capillary columns by inverse size-exclusion chromatography and mercury-intrusion porosimetry. Journal of Chromatography A, 2008, 1182, 161-168.	3.7	59
31	Methacrylate monolithic capillary columns for gradient peptide separations. Journal of Chromatography A, 2008, 1208, 109-115.	3.7	17
32	Control over the morphology of porous polymeric membranes for flow through biosensors. Journal of Membrane Science, 2008, 321, 51-60.	8.2	5
33	UV-LED photopolymerised monoliths. Analyst, The, 2008, 133, 864.	3.5	35
34	Recent Applications of Organic Monoliths in Capillary Liquid Chromatographic Separation of Biomolecules. Journal of Chromatographic Science, 2009, 47, 418-431.	1.4	26
35	Comparison of thermal―and photoâ€polymerization of lauryl methacrylate monolithic columns for CEC. Electrophoresis, 2009, 30, 1929-1936.	2.4	17
36	Photoâ€polymerized lauryl methacrylate monolithic columns for CEC using lauroyl peroxide as initiator. Electrophoresis, 2009, 30, 3748-3756.	2.4	31

#	Article	IF	CITATIONS
37	My favorite materials: Porous polymer monoliths. Journal of Separation Science, 2009, 32, 3-9.	2.5	30
38	Highly crossâ€linked polymeric capillary monoliths for the separation of low, medium, and high molecular weight analytes. Journal of Separation Science, 2009, 32, 2521-2529.	2.5	48
39	Preparation and characterization of polymethacrylate monolithic capillary columns with dual hydrophilic interaction reversedâ€phase retention mechanism for polar compounds. Journal of Separation Science, 2009, 32, 2530-2543.	2.5	65
40	Monolithic poly(1,2â€bis(<i>p</i> â€vinylphenyl)ethane) capillary columns for simultaneous separation of lowâ€and highâ€molecularâ€weight compounds. Journal of Separation Science, 2009, 32, 2510-2520.	2.5	33
41	Effect of temperature during photopolymerization of capillary monolithic columns. Journal of Separation Science, 2009, 32, 2574-2581.	2.5	22
42	Electron beam triggered, free radical polymerization-derived monolithic capillary columns for high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 2664-2670.	3.7	19
43	Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 2637-2650.	3.7	121
44	Preparation of poly(N-isopropylacrylamide)-grafted polymer monolith for hydrophobic interaction chromatography of proteins. Journal of Chromatography A, 2009, 1216, 2404-2411.	3.7	43
45	Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns. Journal of Chromatography A, 2009, 1216, 7747-7754.	3.7	81
46	Polymer Microchips Integrating Solid-Phase Extraction and High-Performance Liquid Chromatography Using Reversed-Phase Polymethacrylate Monoliths. Analytical Chemistry, 2009, 81, 2545-2554.	6.5	107
47	Methacrylate-ester-based Reversed Phase Monolithic Columns for High Speed Separation Prepared by Low Temperature UV Photo-polymerization. Analytical Sciences, 2009, 25, 1107-1113.	1.6	26
48	Monolithic Stationary Phases in HPLC. Chromatographic Science, 2010, , 3-45.	0.1	1
49	Micro-HPLC. Chromatographic Science, 2010, , 77-100.	0.1	0
50	Differences in porous characteristics of styrenic monoliths prepared by controlled thermal polymerization in molds of varying dimensions. Journal of Separation Science, 2010, 33, 191-199.	2.5	12
51	Comparison on photo-initiators for the preparation of methacrylate monolithic columns for capillary electrochromatography. Journal of Chromatography A, 2010, 1217, 3231-3237.	3.7	16
52	Polymethacrylate monolithic and hybrid particle-monolithic columns for reversed-phase and hydrophilic interaction capillary liquid chromatography. Journal of Chromatography A, 2010, 1217, 22-33.	3.7	52
53	On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. Journal of Chromatography A, 2010, 1217, 5389-5397.	3.7	113
54	Size-exclusion separation of proteins using a biocompatible polymeric monolithic capillary column with mesoporosity. Journal of Chromatography A, 2010, 1217, 8181-8185.	3.7	32

#	Article	IF	CITATIONS
55	Reversedâ€Phase High Performance Liquid Chromatography of Proteins. Current Protocols in Protein Science, 2010, 61, Unit 8.7.	2.8	23
56	Polymer Monoliths with Exchangeable Chemistries: Use of Gold Nanoparticles As Intermediate Ligands for Capillary Columns with Varying Surface Functionalities. Analytical Chemistry, 2010, 82, 7416-7421.	6.5	141
57	Preparation and Characterization of a Polymeric Monolithic Column for Use in High-Performance Liquid Chromatography (HPLC). Journal of Chemical Education, 2011, 88, 675-678.	2.3	2
58	Methacrylate monolithic stationary phases for gradient elution separations in microfluidic devices. Journal of Chromatography A, 2011, 1218, 5292-5297.	3.7	4
59	Effects of functional monomers on retention behavior of small and large molecules in monolithic capillary columns at isocratic and gradient conditions. Journal of Separation Science, 2011, 34, 2054-2062.	2.5	21
60	Improved chromatographic performances of glycidyl methacrylate anionâ€exchange monolith for fast nanoâ€ion exchange chromatography. Journal of Separation Science, 2011, 34, 2079-2087.	2.5	24
61	Reversedâ€phase monoliths prepared by UV polymerization of divinylbenzene. Journal of Separation Science, 2011, 34, 2047-2053.	2.5	10
62	New Monolithic Capillary Columns with Well-Defined Macropores Based on Poly(styrene-co-divinylbenzene). ACS Applied Materials & Interfaces, 2012, 4, 2343-2347.	8.0	38
63	New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: Theory and applications. Journal of Pharmaceutical and Biomedical Analysis, 2012, 69, 9-27.	2.8	120
64	A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane). Biomicrofluidics, 2012, 6, 016506.	2.4	14
65	Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. Journal of Chromatography A, 2012, 1228, 250-262.	3.7	145
66	Preparation of a butyl–silica hybrid monolithic column with a "one-pot―process for bioseparation by capillary liquid chromatography. Analytical and Bioanalytical Chemistry, 2013, 405, 2265-2271.	3.7	24
67	Organic monoliths for highâ€performance reversedâ€phase liquid chromatography. Journal of Separation Science, 2013, 36, 2767-2781.	2.5	56
68	Cation exchange/hydrophobic interaction monolithic chromatography of small molecules and proteins by nano liquid chromatographyâ€. Journal of Separation Science, 2013, 36, 1685-1692.	2.5	22
69	Highly stable surface modification of hypercrosslinked monolithic capillary columns and their application in hydrophilic interaction chromatography. Journal of Separation Science, 2013, 36, 2806-2812.	2.5	37
70	Separation of intact proteins by using polyhedral oligomeric silsesquioxane based hybrid monolithic capillary columns. Journal of Chromatography A, 2013, 1317, 138-147.	3.7	38
71	Cross-linker effects on the separation efficiency on (poly)methacrylate capillary monolithic columns. Part I. Reversed-phase liquid chromatography. Journal of Chromatography A, 2013, 1274, 97-106.	3.7	43
72	Novel Monolithic Capillary Column with Well-Defined Macropores Based on Poly(styrene-co-divinylbenzene). Springer Theses, 2013, , 47-60.	0.1	0

#	ARTICLE	IF	CITATIONS
73	Low-flow-resistance Methacrylate-based Polymer Monolithic Column Prepared by Low-conversion Ultraviolet Photopolymerization at Low Temperature. Analytical Sciences, 2013, 29, 205-211.	1.6	8
74	Methacrylate-based Diol Monolithic Stationary Phase for the Separation of Polar and Non-Polar Compounds in Capillary Liquid Chromatography. Analytical Sciences, 2013, 29, 631-635.	1.6	4
75	Preparation and evaluation of a novel monolithic column containing double octadecyl chains for reverse-phase micro high performance liquid chromatography. Journal of Chromatography A, 2014, 1345, 174-181.	3.7	18
76	Preparation of a porous functional polymer and its application in the separation of small molecules in conjunction with HPLC. Analytical Methods, 2014, 6, 589-595.	2.7	9
77	A Surface-Enhanced Raman Scattering Optrode Prepared by <i>in Situ</i> Photoinduced Reactions and Its Application for Highly Sensitive On-Chip Detection. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11706-11713.	8.0	18
78	Roles of interstitial fraction and load conditions on the dynamic binding capacity of proteins on capillaryâ€channeled polymer fiber columns. Biotechnology Progress, 2015, 31, 97-109.	2.6	17
79	Nucleophilic substitution in preparation and surface modification of hypercrosslinked stationary phases. Journal of Chromatography A, 2015, 1388, 151-157.	3.7	14
80	Polymethacrylate monolithic columns for hydrophilic interaction liquid chromatography prepared using a secondary surface polymerization. Journal of Chromatography A, 2015, 1402, 82-93.	3.7	24
81	Pore volume accessibility of particulate and monolithic stationary phases. Journal of Chromatography A, 2015, 1396, 54-61.	3.7	5
82	Chromatographic efficiency comparison of polyhedral oligomeric silsesquioxanes-containing hybrid monoliths via photo- and thermally-initiated free-radical polymerization in capillary liquid chromatography for small molecules. Journal of Chromatography A, 2015, 1410, 110-117.	3.7	13
83	Evidence for the Intercalation of Lipid Acyl Chains into Polypropylene Fiber Matrices. Langmuir, 2015, 31, 10418-10425.	3.5	5
84	Optimization of poly(methyl styrene-co-bis(p-vinylbenzyl)dimethylsilane)-based capillary monoliths for separation of low, medium, and high molecular-weight analytes. Journal of Chromatography A, 2016, 1443, 126-135.	3.7	4
85	Development of an online solid-phase extraction with liquid chromatography method based on polymer monoliths for the determination of dopamine. Journal of Separation Science, 2016, 39, 4107-4115.	2.5	25
87	Preparation of organic-silica hybrid monolithic columns via crosslinking of functionalized mesoporous carbon nanoparticles for capillary liquid chromatography. Journal of Chromatography A, 2017, 1498, 64-71.	3.7	16
88	Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds. Mikrochimica Acta, 2018, 185, 318.	5.0	24
89	Phenylâ€bonded monolithic silica capillary column liquid chromatographic separation and detection of fluorogenic derivatized intact proteins. Biomedical Chromatography, 2021, 35, e5078.	1.7	3
90	Organic Monolith Column Technology for Capillary Liquid Chromatography. Advances in Chromatography, 2012, 50, 237-280.	1.0	3
93	Development of Monolithic Silica Capillary Columns for LC/MS Analysis of Intact Proteins. Bunseki Kagaku, 2020, 69, 97-104.	0.2	0

Article IF Citations

Electrical Conductivity and Photodetection in 3Dâ€Printed Nanoporous Structures via Solutionâ€Processed Functional Materials. Advanced Materials Technologies, 2023, 8, .