Wall coating of a CuO/ZnO/Al2O3 methanol steam reformers

Chemical Engineering Journal 101, 113-121 DOI: 10.1016/j.cej.2004.01.011

Citation Report

#	ARTICLE	IF	CITATIONS
1	Transport in a Methanol Steam Reformer as the Fuel Processor for Fuel Cell Systems. , 2004, , 433.		2
2	Preparation, Coating and Patterning of Cu-Based Catalyst for Methanol Steam Reforming by Micro Fuel Reformer. , 2005, , 531.		1
3	La–Ce–Ni–O monolithic perovskite catalysts potential for gasoline autothermal reforming system. Applied Catalysis A: General, 2005, 281, 233-246.	4.3	83
4	Catalytic performance of microtube-type copper-based catalyst for methanol steam reforming, prepared on the inner wall of an aluminum tube by electroless plating. Applied Catalysis A: General, 2005, 296, 100-107.	4.3	25
5	Comparison of wall-coated and packed-bed reactors for steam reforming of methanol. Catalysis Today, 2005, 110, 86-91.	4.4	162
6	Microstructured reactors for catalytic reactions. Catalysis Today, 2005, 110, 2-14.	4.4	429
7	Nonisothermality in packed bed reactors for steam reforming of methanol. Applied Catalysis A: General, 2005, 282, 101-109.	4.3	110
8	Modeling of a compact plate-fin reformer for methanol steam reforming in fuel cell systems. Chemical Engineering Journal, 2005, 108, 51-58.	12.7	50
9	MEMS-Based Fuel Reformer Integrated with Catalytic Combustor Using CarbonNanoTubes as Catalyst Supports. , 2006, , .		0
10	Design, fabrication and testing of a catalytic microreactor for hydrogen production. Journal of Micromechanics and Microengineering, 2006, 16, 1752-1760.	2.6	60
11	Micro packed-bed Reactor using MEMS Technology. ECS Meeting Abstracts, 2006, , .	0.0	0
12	Fabrication of Microreactor Using Glass Capillary with Cu/SiO2Layer. Chemistry Letters, 2006, 35, 1078-1079.	1.3	5
13	Review on methods to deposit catalysts on structured surfaces. Applied Catalysis A: General, 2006, 315, 1-17.	4.3	467
14	Catalyst preparation for fabrication of a MEMS fuel reformer. Chemical Engineering Journal, 2006, 123, 93-102.	12.7	31
15	Wall coating behavior of catalyst slurries in non-porous ceramic microstructures. Chemical Engineering Science, 2006, 61, 5678-5685.	3.8	21
16	Micromachined Methanol Steam Reforming System Integrated With Catalytic Combustor Using Carbon Nanotubes as Catalyst Supports. , 2006, , 1001.		4
17	Development of Methanol Steam Reforming System Integrated with Catalytic Combustor Using Carbon Nanotubes as Catalyst Supports. , 0, , .		0
18	Preparation of Cu/ZnO for Fabrication of a Micro Methanol Reformer. Solid State Phenomena, 2007, 119, 235-238.	0.3	2

TATION PEDO

#	Article	IF	CITATIONS
19	Methanol Reforming Processes. Advances in Fuel Cells, 2007, , 419-472.	0.9	13
20	Method of catalyst coating in micro-reactors for methanol steam reforming. Applied Catalysis A: General, 2007, 316, 83-89.	4.3	35
21	Coating of steam reforming catalysts in non-porous multi-channeled microreactors. Catalysis Today, 2007, 125, 11-15.	4.4	25
22	Preparation and characterization of porous alumina-based catalyst coatings in microchannels. Chemical Engineering Science, 2007, 62, 5084-5091.	3.8	63
23	Micro-channel reactor for steam reforming of methanol. Fuel, 2007, 86, 1331-1336.	6.4	63
24	Integrated fuel processors for fuel cell application: A review. Fuel Processing Technology, 2007, 88, 3-22.	7.2	173
25	Autothermal reforming of gasoline on Rh-based monolithic catalysts. International Journal of Hydrogen Energy, 2007, 32, 981-991.	7.1	92
26	Transport in packed-bed and wall-coated steam-methanol reformers. Journal of Power Sources, 2007, 166, 194-201.	7.8	49
27	Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells. Sensors and Actuators A: Physical, 2007, 135, 58-66.	4.1	47
28	Microchannel catalytic systems for hydrogen energetics. Russian Journal of General Chemistry, 2007, 77, 676-684.	0.8	7
29	Methanol Steam Reforming for Hydrogen Production. Chemical Reviews, 2007, 107, 3992-4021.	47.7	919
30	Water Gas Shift Reaction in a glass microreactor. Catalysis Today, 2007, 120, 107-120.	4.4	14
31	Wall coating optimization for microchannel reactors. Catalysis Today, 2007, 125, 16-23.	4.4	52
32	Enhancing surface activity in silicon microreactors: Use of black silicon and alumina as catalyst supports for chemical and biological applications. Chemical Engineering Journal, 2008, 135, S317-S326.	12.7	35
33	A study on methanol steam reforming to CO2 and H2 over the La2CuO4 nanofiber catalyst. Journal of Solid State Chemistry, 2008, 181, 7-13.	2.9	38
34	Process intensification by micro-channel reactor for steam reforming of methanol. Chemical Engineering Journal, 2008, 135, 113-119.	12.7	37
35	Pd/HZSM-5 coating catalyst for supercritical cracking of endothermic fuel. Journal of Fuel Chemistry and Technology, 2008, 36, 462-467.	2.0	14
36	Micro-Fuel Cells. , 2008, , 613-634.		3

			_
#	ARTICLE	IF	CITATIONS
39	Temperature and Concentration Simulations in the Methanol Steam Reformer. , 2008, , .		0
40	Micromachined Methanol Reformer for Portable PEM Fuel Cells. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	5
43	Three-dimensional microchannels as a simple microreactor. Sensors and Actuators B: Chemical, 2009, 137, 393-402.	7.8	12
44	The development of a fully integrated micro-channel fuel processor using low temperature co-fired ceramic (LTCC). Journal of Industrial and Engineering Chemistry, 2009, 15, 618-623.	5.8	9
45	Heat transfer effects on the methanol-steam reforming with partially filled catalyst layers. International Journal of Hydrogen Energy, 2009, 34, 5398-5408.	7.1	46
46	Preparation and characterization of catalyst thin films. Catalysis Today, 2009, 146, 367-377.	4.4	29
47	Optimisation of physical properties of γ-alumina coating microreactors used for the growth of a carbon nanofiber layer. Chemical Engineering Journal, 2009, 149, 447-454.	12.7	17
48	The preparation and characterization of hydrotalcite micromembranes. Chemical Engineering Science, 2009, 64, 1585-1590.	3.8	10
50	Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst. International Journal of Hydrogen Energy, 2010, 35, 118-126.	7.1	28
51	Microstructured Catalytic Reactors. Advances in Catalysis, 2010, , 47-122.	0.2	41
52	Hydrogen Generation Using a CuO/ZnO-ZrO2 Nanocatalyst for Autothermal Reforming of Methanol in a Microchannel Reactor. Molecules, 2011, 16, 348-366.	3.8	29
53	Coating powdered copper catalyst with yttria sol. Materials Chemistry and Physics, 2011, 128, 57-61.	4.0	5
54	Preparation and performance of Cu-based monoliths for methanol synthesis. Applied Catalysis A: General, 2011, 405, 1-7.	4.3	27
55	Methanol steam reforming in a planar wash coated microreactor integrated with a micro-combustor. International Journal of Hydrogen Energy, 2011, 36, 12822-12832.	7.1	41
56	Numerical simulation of configuration and catalyst-layer effects on micro-channel steam reforming of methanol. International Journal of Hydrogen Energy, 2011, 36, 15611-15621.	7.1	54
57	Experimental study on the hydrogen production of integrated methanol-steam reforming reactors for PEM fuel cells. International Journal of Thermal Sciences, 2011, 50, 1253-1262.	4.9	42
58	Novel micro-channel methane reformer assisted combustion reaction for hydrogen production. International Journal of Hydrogen Energy, 2011, 36, 473-481.	7.1	24
59	Synthesis and characterization of CuO/ZnO–Al2O3 catalyst washcoat thin films with ZrO2 sols for steam reforming of methanol in a microreactor. Thin Solid Films, 2011, 519, 4681-4686.	1.8	8

#	Article	IF	CITATIONS
60	Experiments on hydrogen production from methanol steam reforming in the microchannel reactor. International Journal of Hydrogen Energy, 2012, 37, 12271-12280.	7.1	31
61	Pore-scale simulation of coupled multiple physicochemical thermal processes in micro reactor for hydrogen production using lattice Boltzmann method. International Journal of Hydrogen Energy, 2012, 37, 13943-13957.	7.1	68
63	Hydrogen production using integrated methanol-steam reforming reactor with various reformer designs for PEM fuel cells. International Journal of Energy Research, 2012, 36, 466-476.	4.5	35
64	Palladium–zinc catalysts on mesoporous titania prepared by colloid synthesis. I. Size control synthesis of PdZn nanoclusters by a polyol method. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	13
65	Palladium–zinc catalysts on mesoporous titania prepared by colloid synthesis. II. Synthesis and characterization of PdZn/TiO2 coating on inner surface of fused silica capillary. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	10
66	Effect of ZrO2 on steam reforming of methanol over CuO/ZnO/ZrO2/Al2O3 catalysts. Chemical Engineering Journal, 2012, 192, 350-356.	12.7	55
67	Review: Microstructured reactors for distributed and renewable production of fuels and electrical energy. Chemical Engineering and Processing: Process Intensification, 2013, 65, 1-44.	3.6	208
68	Advances in Structured and Microstructured Catalytic Reactors for Hydrogen Production. , 2013, , 201-224.		11
69	Hydrogen Production through Aqueousâ€Phase Reforming of Ethylene Glycol in a Washcoated Microchannel. ChemSusChem, 2013, 6, 1708-1716.	6.8	24
70	Optimization of Wash oating Slurries as Catalyst Carrier for Screen Printing into Microstructured Reactors. Chemical Engineering and Technology, 2013, 36, 1033-1041.	1.5	14
74	Adhesion Properties of Milled CuO-CeO2/γ-Al2O3on Metallic Substrate for Automotive Catalytic Converter. Particulate Science and Technology, 2014, 32, 529-536.	2.1	2
75	A study of the transport phenomena in a wall-coated micro steam-methanol reformer. International Journal of Hydrogen Energy, 2014, 39, 2008-2017.	7.1	7
76	Methods for the catalytic activation of metallic structured substrates. Catalysis Science and Technology, 2014, 4, 2846-2870.	4.1	118
77	Methanol steam reforming in an Al 2 O 3 supported thin Pd-layer membrane reactor over Cu/ZnO/Al 2 O 3 catalyst. International Journal of Hydrogen Energy, 2014, 39, 18702-18710.	7.1	51
78	Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review. Renewable and Sustainable Energy Reviews, 2014, 29, 355-368.	16.4	388
79	A well-dispersed catalyst on porous silicon micro-reformer for enhancing adhesion inÂtheÂcatalyst-coating process. International Journal of Hydrogen Energy, 2014, 39, 7753-7764.	7.1	14
80	Hydrogen production through the fuel processing of liquefied natural gas with silicon-based micro-reactors. Chemical Engineering Journal, 2014, 247, 9-15.	12.7	14
81	Novel synthesis of thick wall coatings of titania supported Bi poisoned Pd catalysts and application in selective hydrogenation of acetylene alcohols in capillary microreactors. Lab on A Chip, 2015, 15, 1952-1960.	6.0	42

#	Article	IF	CITATIONS
82	Comparison between parallel and checked arrangements of micro reformer for H2 production from methane. Chemical Engineering Journal, 2015, 268, 135-143.	12.7	16
83	Fabricating roughened surfaces on halloysite nanotubes via alkali etching for deposition of high-efficiency Pt nanocatalysts. CrystEngComm, 2015, 17, 3110-3116.	2.6	49
84	A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield. Applied Energy, 2015, 138, 21-30.	10.1	32
85	In-Situ Catalytic Surface Modification of Micro-Structured La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF) Oxygen Permeable Membrane Using Vacuum-Assisted technique. MATEC Web of Conferences, 2016, 69, 05002.	0.2	1
86	Effect of flow arrangement on micro membrane reforming for H 2 production from methane. Chemical Engineering Journal, 2016, 293, 319-326.	12.7	13
87	Development of a Replaceable Microreactor Coated with a CuZnFe Nanocatalyst forÂMethanol Steam Reforming. Chemical Engineering and Technology, 2016, 39, 322-330.	1.5	15
88	Methanol steam reforming on catalyst coating by cold gas dynamic spray. International Journal of Hydrogen Energy, 2016, 41, 2391-2398.	7.1	14
89	Intensification of hydrogen production by methanol steam reforming. International Journal of Hydrogen Energy, 2016, 41, 5250-5259.	7.1	56
90	Washcoating of low surface area cerium oxide on complex geometry substrates. Particulate Science and Technology, 2016, 34, 184-193.	2.1	18
91	Conversion of hydrogen/carbon dioxide into formic acid and methanol over Cu/CuCr 2 O 4 catalyst. International Journal of Hydrogen Energy, 2017, 42, 23647-23663.	7.1	26
92	Epoxidation of methyl oleate in a TiO2 coated-wall capillary microreactor. Chemical Engineering Journal, 2017, 314, 594-599.	12.7	37
93	Comparison of membrane and conventional reactors under dry methane reforming conditions. Petroleum Chemistry, 2017, 57, 804-812.	1.4	4
94	Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chemical Engineering Journal, 2017, 327, 792-821.	12.7	242
95	Palladium nanoparticles supported on ceria thin film for capillary microreactor application. Chemical Engineering Research and Design, 2018, 132, 479-491.	5.6	9
96	Direct synthesis of formic acid via CO2 hydrogenation over Cu/ZnO/Al2O3 catalyst. Journal of Cleaner Production, 2018, 172, 1957-1977.	9.3	54
97	Optimal heating profiles in tubular reactors with solidâ€phase axial wall conduction for isothermal operation. AICHE Journal, 2019, 65, e16742.	3.6	1
98	Effect of sinusoidal-wavy channel of reformer on power of proton exchange membrane fuel cell. Applied Thermal Engineering, 2019, 162, 114269.	6.0	16
99	Comprehensive study on novel parabolic trough solar receiver-reactors of gradually-varied porosity catalyst beds for hydrogen production. Renewable Energy, 2019, 143, 1766-1781.	8.9	23

#	Article	IF	CITATIONS
100	Recent advances in preparation methods for catalytic thin films and coatings. Catalysis Science and Technology, 2019, 9, 3582-3602.	4.1	50
101	Preparation and performance of catalytic MOFs in microreactor. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 85-93.	5.3	16
102	Analysis of solid-phase axial heat conduction upon hot-spot formation in a one-dimensional microreactor. Chemical Engineering Journal, 2019, 377, 120501.	12.7	2
103	A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renewable and Sustainable Energy Reviews, 2020, 119, 109589.	16.4	161
104	Modelling of packed bed and coated wall microreactors for methanol steam reforming for hydrogen production. RSC Advances, 2020, 10, 41680-41692.	3.6	25
105	Modeling and Design of a Multi-Tubular Packed-Bed Reactor for Methanol Steam Reforming over a Cu/ZnO/Al2O3 Catalyst. Energies, 2020, 13, 610.	3.1	24
106	A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy, 2021, 217, 119384.	8.8	163
107	Numerical investigation of hydrogen production via autothermal reforming of steam and methane over Ni/Al2O3 and Pt/Al2O3 patterned catalytic layers. International Journal of Hydrogen Energy, 2021, 46, 37521-37532.	7.1	40
108	Effect of zinc substitution on the growth morphology of ZnO-CuO tenorite solid solutions. Journal of Crystal Growth, 2021, 562, 126062.	1.5	5
109	Methanol as a Fuel. , 2016, , 45-66.		2
109 111	Methanol as a Fuel. , 2016, , 45-66. High H2 selectivity with low coke formation for methanol steam reforming over Cu/Y1.5Ce0.84Ru0.04O4 catalyst in a microchannel plate reactor. International Journal of Hydrogen Energy, 2022, 47, 971-983.	7.1	2
109 111 112	Methanol as a Fuel. , 2016, , 45-66. High H2 selectivity with low coke formation for methanol steam reforming over Cu/Y1.5Ce0.84Ru0.0404 catalyst in a microchannel plate reactor. International Journal of Hydrogen Energy, 2022, 47, 971-983. Minimizing Heat Transfer Resistance in an Integrated Methanol Steam Reformer Designed Using Space-Filling Curves. Industrial & amp; Engineering Chemistry Research, 2022, 61, 5255-5271.	7.1 3.7	2 12 4
109 111 112 113	 Methanol as a Fuel. , 2016, , 45-66. High H2 selectivity with low coke formation for methanol steam reforming over Cu/Y1.5Ce0.84Ru0.0404 catalyst in a microchannel plate reactor. International Journal of Hydrogen Energy, 2022, 47, 971-983. Minimizing Heat Transfer Resistance in an Integrated Methanol Steam Reformer Designed Using Space-Filling Curves. Industrial & amp; Engineering Chemistry Research, 2022, 61, 5255-5271. Synthesis of Thin Titania Coatings onto the Inner Surface of Quartz Tubes and Their Photoactivity in Decomposition of Methylene Blue and Rhodamine B. Catalysts, 2021, 11, 1538. 	7.1 3.7 3.5	2 12 4 5
109 111 112 113 114	Methanol as a Fuel. , 2016, , 45-66. High H2 selectivity with low coke formation for methanol steam reforming over Cu/Y1.5Ce0.84Ru0.0404 catalyst in a microchannel plate reactor. International Journal of Hydrogen Energy, 2022, 47, 971-983. Minimizing Heat Transfer Resistance in an Integrated Methanol Steam Reformer Designed Using Space-Filling Curves. Industrial & amp; Engineering Chemistry Research, 2022, 61, 5255-5271. Synthesis of Thin Titania Coatings onto the Inner Surface of Quartz Tubes and Their Photoactivity in Decomposition of Methylene Blue and Rhodamine B. Catalysts, 2021, 11, 1538. Multi-objective topology optimization and flow characteristics study of the microfluidic reactor.	7.1 3.7 3.5 1.7	2 12 4 5 3
109 111 112 113 114 115	Methanol as a Fuel. , 2016, , 45-66. High H2 selectivity with low coke formation for methanol steam reforming over CulY1.5Ce0.84Ru0.0404 catalyst in a microchannel plate reactor. International Journal of Hydrogen Energy, 2022, 47, 971-983. Minimizing Heat Transfer Resistance in an Integrated Methanol Steam Reformer Designed Using Space-Filling Curves. Industrial & amp; Engineering Chemistry Research, 2022, 61, 5255-5271. Synthesis of Thin Titania Coatings onto the Inner Surface of Quartz Tubes and Their Photoactivity in Decomposition of Methylene Blue and Rhodamine B. Catalysts, 2021, 11, 1538. Multi-objective topology optimization and flow characteristics study of the microfluidic reactor. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 2475-2501. Additive Manufacturing as the Future of Green Chemical Engineering. , 2022, , 239-307.	7.1 3.7 3.5 1.7	2 12 4 5 3
109 111 112 113 114 115	Methanol as a Fuel. , 2016, , 45-66. High H2 selectivity with low coke formation for methanol steam reforming over CulY1.5Ce0.84Ru0.0404 catalyst in a microchannel plate reactor. International Journal of Hydrogen Energy, 2022, 47, 971-983. Minimizing Heat Transfer Resistance in an Integrated Methanol Steam Reformer Designed Using Space-Filling Curves. Industrial & amp; Engineering Chemistry Research, 2022, 61, 5255-5271. Synthesis of Thin Titania Coatings onto the Inner Surface of Quartz Tubes and Their Photoactivity in Decomposition of Methylene Blue and Rhodamine B. Catalysts, 2021, 11, 1538. Multi-objective topology optimization and flow characteristics study of the microfluidic reactor. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 2475-2501. Additive Manufacturing as the Future of Green Chemical Engineering. , 2022, , 239-307. Performance analysis and artificial intelligence modeling for enhanced hydrogen production by catalytic bio-alcohol reforming in a membrane-assisted reactor. Chemical Engineering Science, 2023, 268, 118432.	7.1 3.7 3.5 1.7 3.8	2 12 4 5 3 1
109 111 112 113 114 115 115 116	Methanol as a Fuel. , 2016, , 45-66. High H2 selectivity with low coke formation for methanol steam reforming over Cu/N1.SCe0.84Ru0.0404 catalyst in a microchannel plate reactor. International Journal of Hydrogen Energy, 2022, 47, 971-983. Minimizing Heat Transfer Resistance in an Integrated Methanol Steam Reformer Designed Using Space-Filling Curves. Industrial & amp; Engineering Chemistry Research, 2022, 61, 5255-5271. Synthesis of Thin Titania Coatings onto the Inner Surface of Quartz Tubes and Their Photoactivity in Decomposition of Methylene Blue and Rhodamine B. Catalysts, 2021, 11, 1538. Multi-objective topology optimization and flow characteristics study of the microfluidic reactor. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 2475-2501. Additive Manufacturing as the Future of Green Chemical Engineering., 2022,, 239-307. Performance analysis and artificial intelligence modeling for enhanced hydrogen production by catalytic bio-alcohol reforming in a membrane-assisted reactor. Chemical Engineering Science, 2023, 268, 118432. A review of reformed methanol-high temperature proton exchange membrane fuel cell systems. Renewable and Sustainable Energy Reviews, 2023, 182, 113395.	7.1 3.7 3.5 1.7 3.8	2 12 4 5 3 1 12 6

#	Article	IF	CITATIONS
119	Comprehensive study on catalytic coating tubular reactor with electromagnetic induction heating for hydrogen production through methanol steam reforming. International Journal of Hydrogen Energy, 2024, 50, 1-17.	7.1	2
120	Advancements in microreactor technology for hydrogen production via steam reforming: A comprehensive review of experimental studies. Journal of Power Sources, 2023, 585, 233621.	7.8	4
121	Enhancing Sensitivity and Selectivity: Morphological Modification and Chemical Functionalization within Confined Structures. International Journal of Precision Engineering and Manufacturing, 2024, 25, 875-895.	2.2	0
122	Highly durable spray-coated plate catalyst for the dehydrogenation of perhydro benzyltoluene. Catalysis Science and Technology, 2024, 14, 980-989.	4.1	1
123	Liquid Ammonia as a Potential High Heat Sink Fuel via Catalytic Decomposition over Ru/CeO ₂ –Al ₂ O ₃ Coatings. Energy & Fuels, 2024, 38, 6538-6546.	5.1	0