A simple model of domestic lighting demand

Energy and Buildings 36, 103-116 DOI: 10.1016/j.enbuild.2003.10.007

Citation Report

	_
CITATION	PEDODT

#	Article	IF	CITATION
1	Impacts of temporal precision in optimisation modelling of micro-Combined Heat and Power. Energy, 2005, 30, 1759-1779.	4.5	112
2	Solar radiation calculation methodology for building exterior surfaces. Solar Energy, 2005, 79, 513-522.	2.9	42
3	Sustainable cities – modelling urban energy supply and demand. Applied Energy, 2005, 82, 167-180.	5.1	57
4	Evaluating the applicability of integrated domestic energy consumption frameworks in the UK. Energy Policy, 2006, 34, 3065-3077.	4.2	58
5	Optimisation of consumer benefits from microCombined Heat and Power. Energy and Buildings, 2006, 38, 981-987.	3.1	22
6	The nature of domestic electricity-loads and effects of time averaging on statistics and on-site generation calculations. Applied Energy, 2007, 84, 389-403.	5.1	136
7	An approach for estimating the carbon emissions associated with office lighting with a daylight contribution. Applied Energy, 2007, 84, 608-622.	5.1	71
8	Rapid analysis of time series data to identify changes in electricity consumption patterns in UK secondary schools. Building and Environment, 2007, 42, 1568-1580.	3.0	23
9	Carbon neutral Biggar: calculating the community carbon footprint and renewable energy options for footprint reduction. Sustainability Science, 2008, 3, 267-282.	2.5	30
10	A high-resolution domestic building occupancy model for energy demand simulations. Energy and Buildings, 2008, 40, 1560-1566.	3.1	419
11	Spatial Assessment of Net Mercury Emissions from the Use of Fluorescent Bulbs. Environmental Science & Technology, 2008, 42, 8564-8570.	4.6	38
12	Illuminating Household Energy Demand and the Policies for Its Reduction. Energy and Environment, 2008, 19, 979-993.	2.7	2
13	A model for estimation of daylight factor for skylight: An experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India). Applied Energy, 2009, 86, 2507-2519.	5.1	42
14	Domestic lighting: A high-resolution energy demand model. Energy and Buildings, 2009, 41, 781-789.	3.1	149
15	A combined Markov-chain and bottom-up approach to modelling of domestic lighting demand. Energy and Buildings, 2009, 41, 1001-1012.	3.1	174
16	Investigating the potential of overheating in UK dwellings as a consequence of extant climate change. Energy Policy, 2010, 38, 3277-3288.	4.2	99
17	A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India). Applied Energy, 2010, 87, 3037-3050.	5.1	36
18	A methodology for modeling the behavior of electricity prosumers within the smart grid. , 2010, , .		58

#	Article	IF	CITATIONS
19	Identifying the nature of domestic load profile from a single household electricity consumption measurements. , 2011, , .		5
20	Peak-load shaving in smart homes via online scheduling. , 2011, , .		35
21	Daylight saving, electricity demand and emissions: the British case. , 0, , 445-463.		0
22	Web-based decision-support system methodology for smart provision of adaptive digital energy services over cloud technologies. IET Software, 2011, 5, 454.	1.5	22
23	Three dimensional energy profile:. Energy Policy, 2011, 39, 7505-7517.	4.2	236
24	Methodology for characterising domestic electrical demand by usage categories. Applied Energy, 2011, 88, 612-621.	5.1	15
25	The development and application of a temporal MARKAL energy system model using flexible time slicing. Applied Energy, 2011, 88, 2261-2272.	5.1	66
26	Development of an energy model for the residential sector: Electricity consumption in Andalusia, Spain. Energy and Buildings, 2011, 43, 1315-1321.	3.1	32
27	Models of domestic occupancy, activities and energy use based on time-use data: deterministic and stochastic approaches with application to various building-related simulations. Journal of Building Performance Simulation, 2012, 5, 27-44.	1.0	71
28	An Experimental Approach to Assess the Disparities in the Usage Trends of Domestic Electric Lighting. , 2012, , .		2
29	A System Architecture for Autonomous Demand Side Load Management in Smart Buildings. IEEE Transactions on Smart Grid, 2012, 3, 2157-2165.	6.2	218
30	Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation. Applied Energy, 2012, 96, 74-83.	5.1	171
31	Measured end-use electric load profiles for 12 Canadian houses at high temporal resolution. Energy and Buildings, 2012, 49, 519-530.	3.1	81
32	An experimental study on load-peak shaving in smart homes by means of online admission control. , 2012, , .		7
33	Optimal online operation of residential μCHP systems using linear programming. Energy and Buildings, 2012, 44, 17-25.	3.1	61
34	Saving money vs investing money: Do energy ratings influence consumer demand for energy efficient goods?. Energy Economics, 2013, 38, 51-63.	5.6	17
35	Accommodating renewable generation through an aggregatorâ€ f ocused method for inducing demand side response from electricity consumers. IET Renewable Power Generation, 2013, 7, 689-699.	1.7	35
36	SIMULATING OCCUPANTS' BEHAVIOR FOR ENERGY WASTE REDUCTION IN DWELLINGS: A MULTIAGENT METHODOLOGY. International Journal of Modeling, Simulation, and Scientific Computing, 2013, 16, 1350022.	0.9	15

#	Article	IF	CITATIONS
37	Rule-based demand-side management of domestic hot water production with heat pumps in zero energy neighbourhoods. Journal of Building Performance Simulation, 2014, 7, 271-288.	1.0	60
38	Calculation method for electricity end-use for residential lighting. Energy, 2014, 66, 295-304.	4.5	6
39	Modelling of middle income residential lighting load profile using a universal estimator. , 2014, , .		1
40	Synthesising electrical demand profiles for UK dwellings. Energy and Buildings, 2014, 76, 605-614.	3.1	27
41	A review of time use models of residential electricity demand. Renewable and Sustainable Energy Reviews, 2014, 37, 265-272.	8.2	131
42	Residential Lighting Load Profile: ANFIS and Neural Network-Based Models. , 2015, , .		0
43	Stochastic model for lighting's electricity consumption in the residential sector. Impact of energy saving actions. Energy and Buildings, 2015, 89, 245-259.	3.1	44
44	Residential lighting load profile modelling. Energy and Buildings, 2015, 90, 29-40.	3.1	15
45	Four-state domestic building occupancy model for energy demand simulations. Energy and Buildings, 2015, 96, 30-39.	3.1	81
46	Household energy consumption and carbon emissions for sustainable cities – A critical review of modelling approaches. International Journal of Sustainable Built Environment, 2015, 4, 231-247.	3.2	46
47	Mathematical model as a standard procedure to analyze small and large water distribution networks. Journal of Cleaner Production, 2015, 106, 541-554.	4.6	9
48	Monthly domestic hot water profiles for energy calculation in Finnish apartment buildings. Energy and Buildings, 2015, 97, 77-85.	3.1	64
49	An ontology to represent energy-related occupant behavior in buildings. Part I: Introduction to the DNAs framework. Building and Environment, 2015, 92, 764-777.	3.0	219
50	Influence of natural and artificial light on structured steel buildings. Renewable and Sustainable Energy Reviews, 2015, 48, 392-398.	8.2	7
51	Optimal design of CHP systems for housing complexes involving weather and electric market variations. Applied Thermal Engineering, 2015, 90, 895-906.	3.0	21
52	Comparative analysis and assessment of ANFIS-based domestic lighting profile modelling. Energy and Buildings, 2015, 107, 294-306.	3.1	16
53	Electricity consumption of medical plug loads in hospital laboratories: Identification, evaluation, prediction and verification. Energy and Buildings, 2015, 107, 392-406.	3.1	26
54	An approach for an efficient hybrid AC/DC solar powered Homegrid system based on the load characteristics of home appliances. Energy and Buildings, 2015, 108, 23-35.	3.1	27

CITATION REPORT

ARTICLE IF CITATIONS # Advantages of Model Driven Engineering for studying complex systems. Natural Computing, 2015, 14, 1.8 5 55 129-144. Measurement of actual efficacy of compact fluorescent lamps (CFLs). Energy and Buildings, 2015, 86, 3.1 601-607. 57 Daylighting. Engergy Systems in Electrical Engineering, 2016, , 51-83. 0.5 1 Modeling of residential lighting load profile using adaptive neuro fuzzy inference system (ANFIS). International Journal of Green Energy, 2016, 13, 1473-1482. Occupant behavior in building energy simulation: Towards a fit-for-purpose modeling strategy. Energy 59 3.1 226 and Buildings, 2016, 121, 188-204. Hourly consumption profiles of domestic hot water for different occupant groups in dwellings. Solar Energy, 2016, 137, 516-530. Modeling Individual's Light Switching Behavior to Understand Lighting Energy Use of Office Building. 61 1.8 28 Energy Procedia, 2016, 88, 781-787. Bottom-up Markov Chain Monte Carlo approach for scenario based residential load modelling with 3.1 57 publicly available data. Energy and Buildings, 2016, 112, 121-129. Impact of residential electricity tariffs with variable energy prices on low voltage grids with 63 photovoltaic generation. International Journal of Electrical Power and Energy Systems, 2016, 79, 3.3 17 161-171. Modelling uncertainty in district energy simulations by stochastic residential occupant behaviour. 64 1.0 Journal of Building Performance Simulation, 2016, 9, 431-447. Data Analytics for Renewable Energy Integration. Lecture Notes in Computer Science, 2017, , . 65 1.0 0 Analytical modelling and prediction formulas for domestic hot water consumption in residential 3.1 Finnish apartments. Energy and Buildings, 2017, 143, 53-60. A literature review on driving factors and contextual events influencing occupants' behaviours in 67 3.0 154 buildings. Building and Environment, 2017, 118, 40-66. Modelling diversity in building occupant behaviour: a novel statistical approach. Journal of Building Performance Simulation, 2017, 10, 527-544. 1.0 Twenty-year tracking of lighting savings and power density in the residential sector. Energy and 69 3.1 21 Buildings, 2017, 154, 113-126. Appliance-based residential harmonic load modelling., 2017,,. Electrical-end-use data from 23 houses sampled each minute for simulating micro-generation systems. 71 3.023 Applied Thermal Engineering, 2017, 114, 1449-1456. Stochastic Residential Harmonic Source Modeling for Grid Impact Studies. Energies, 2017, 10, 372.

CITATION REPORT

#	Article	IF	CITATIONS
73	A stochastic multi-energy simulation model for UK residential buildings. Energy and Buildings, 2018, 168, 470-489.	3.1	7
74	A review of uncertainty characterisation approaches for the optimal design of distributed energy systems. Renewable and Sustainable Energy Reviews, 2018, 88, 258-277.	8.2	134
75	Residential lighting load profile modelling: ANFIS approach using weighted and non-weighted data. Energy Efficiency, 2018, 11, 169-188.	1.3	5
76	Computational intelligence modelling based on variables interlinked with behavioral tendencies for energy usage profile– A necessity. Renewable and Sustainable Energy Reviews, 2018, 82, 60-72.	8.2	18
77	Adaptation and validation of an existing bottom-up model for simulating temporal and inter-dwelling variations of residential appliance and lighting demands. Journal of Building Performance Simulation, 2018, 11, 350-368.	1.0	7
78	Energy-Related Occupant Behaviour and Its Implications in Energy Use: A Chronological Review. Sustainability, 2018, 10, 2635.	1.6	28
79	Energy and Carbon Emissions in Housing. Green Energy and Technology, 2018, , 13-49.	0.4	0
80	The evaluation of stochastic occupant behavior models from an application-oriented perspective: Using the lighting behavior model as a case study. Energy and Buildings, 2018, 176, 151-162.	3.1	22
81	Improving accuracy in building energy simulation via evaluating occupant behaviors: A case study in Hong Kong. Energy and Buildings, 2019, 202, 109373.	3.1	36
82	A high-temporal resolution residential building occupancy model to generate high-temporal resolution heating load profiles of occupancy-integrated archetypes. Energy and Buildings, 2020, 206, 109577.	3.1	19
83	Modeling occupant behavior in buildings. Building and Environment, 2020, 174, 106768.	3.0	123
84	Regression analysis to design a solar thermal collector for occasional use. Sustainable Energy Technologies and Assessments, 2020, 37, 100638.	1.7	3
85	Generating Manageable Electricity Demand Capacity for Residential Demand Response Studies by Activity-based Load Models. Advances in Electrical and Computer Engineering, 2021, 21, 99-108.	0.5	3
86	A review on behavioural propensity for building load and energy profile development – Model inadequacy and improved approach. Sustainable Energy Technologies and Assessments, 2021, 45, 101235.	1.7	2
87	Distributional effects of Time of Use tariffs based on electricity demand and time use. Energy Policy, 2021, 156, 112412.	4.2	14
88	Structural analysis of energy demand. , 2021, , 67-107.		Ο
89	Impacts of the Fairly Priced REDD-based CO2 Offset Options on the Electricity Producers and Consumers. Economy of Region, 2014, , 273-288.	0.4	2
93	Integrating occupant behaviour in the simulation of coupled electric and thermal systems in buildings. , 2011, , .		3

CITATION REPORT

#	Article	IF	CITATIONS
94	THE IMPACT OF OCCUPANT BEHAVIOUR ON RESIDENTIAL GREENHOUSE GAS EMISSIONS REDUCTION. Journal of Green Building, 2015, 10, 127-140.	0.4	7
95	The Impact of Load Profile on the Grid-Interaction of Building Integrated Photovoltaic (BIPV) Systems in Low-Energy Dwellings. Journal of Green Building, 2010, 5, 137-147.	0.4	15
96	Estimating hourly lighting load profiles of rural households in East Africa applying a data-driven characterization of occupant behavior and lighting devices ownership. Development Engineering, 2021, 6, 100073.	1.4	6
97	Modeling of Skylight on Dome Shaped Roof of Low Energy Adobe House Located in New Delhi (India). , 2011, , .		0
99	Decomposition of Aggregate Electricity Demand into the Seasonal-Thermal Components for Demand-Side Management Applications in "Smart Grids― Lecture Notes in Computer Science, 2017, , 116-135.	1.0	0
100	Do in-home and virtual activities impact out-of-home activity participation? Investigating end-user activity behaviour and time use for residential energy applications. Energy and Buildings, 2022, 257, 111764.	3.1	3
102	Documenting occupant models for building performance simulation: a state-of-the-art. Journal of Building Performance Simulation, 2022, 15, 634-655.	1.0	3
103	Consumer demand profile management through Demand side load management: a review. , 2022, , .		0
104	Structured probabilistic models for capturing household and temporal variations in the internal electricity load. Energy and Buildings, 2023, 279, 112685.	3.1	1
105	Structured Probabilistic Models for Predicting Internal Electricity Loads in Residential Communities. SSRN Electronic Journal, 0, , .	0.4	0
106	State-of-the-Art II: Bibliometric Review of the Last 30 Years Energy Policy in Europe. , 2022, , 93-156.		0
107	High resolution synthetic residential energy use profiles for the United States. Scientific Data, 2023, 10, .	2.4	14
111	Optimal Operation of Low-Carbon Power Substation Considering Multiple Flexible Resources. , 2023, , .		0