Stagnation point flow of a micropolar fluid towards a st

International Journal of Non-Linear Mechanics 39, 1227-1235 DOI: 10.1016/j.ijnonlinmec.2003.08.007

Citation Report

#	Article	IF	CITATIONS
1	Hiemenz flow of a micropolar viscoelastic fluid in hydromagnetics. Canadian Journal of Physics, 2005, 83, 1007-1017.	0.4	16
2	Non-orthogonal stagnation point flow towards a stretching sheet. International Journal of Non-Linear Mechanics, 2006, 41, 622-627.	1.4	103
3	On the effectiveness of porosity on stagnation point flow towards a stretching surface with heat generation. Computational Materials Science, 2007, 38, 741-745.	1.4	13
4	ON THE EFFECTIVENESS OF UNIFORM SUCTION OR INJECTION ON TWO-DIMENSIONAL STAGNATION-POINT FLOW TOWARDS A STRETCHING SURFACE WITH HEAT GENERATION. Chemical Engineering Communications, 2007, 194, 553-564.	1.5	7
5	Mixed Convection on the Stagnation Point Flow Toward a Vertical, Continuously Stretching Sheet. Journal of Heat Transfer, 2007, 129, 1087-1090.	1.2	116
6	Comments on: "Steady two-dimensional oblique stagnation-point flow towards a stretching surface― Fluid Dynamics Research, 2007, 39, 505-510.	0.6	7
7	Analysis of stagnation point flow toward a stretching sheet. International Journal of Non-Linear Mechanics, 2007, 42, 1084-1091.	1.4	61
8	Peristaltic flow of a micropolar fluid in a channel with different wave forms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 370, 331-344.	0.9	44
9	Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet. Meccanica, 2008, 43, 411-418.	1.2	79
10	Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 637-647.	0.9	126
11	Effects of an endoscope on peristaltic flow of a micropolar fluid. Mathematical and Computer Modelling, 2008, 48, 721-733.	2.0	67
12	Stagnation point flow and heat transfer of a micropolar fluid with uniform suction or blowing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2008, 30, .	0.8	10
13	On exact solutions for thin film flows of a micropolar fluid. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 451-461.	1.7	22
14	Analytical solution of non-Newtonian micropolar fluid flow with uniform suction/blowing and heat generation. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 443-451.	2.7	35
15	Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica, 2009, 44, 369-375.	1.2	237
16	MHD flow of a micropolar fluid near a stagnation-point towards a non-linear stretching surface. Nonlinear Analysis: Real World Applications, 2009, 10, 1514-1526.	0.9	129
17	Studying effect of MHD on thin films of a micropolar fluid. Physica B: Condensed Matter, 2009, 404, 3859-3866.	1.3	8
18	STAGNATION-POINT FLOW OVER A SHRINKING SHEET IN A MICROPOLAR FLUID. Chemical Engineering Communications, 2010, 197, 1417-1427.	1.5	216

#	Article	IF	CITATIONS
19	Heat and mass transfer for micropolar flow with radiation effect past a nonlinearly stretching sheet. Heat and Mass Transfer, 2010, 46, 413-419.	1.2	38
20	Heat transfer—A review of 2004 literature. International Journal of Heat and Mass Transfer, 2010, 53, 4343-4396.	2.5	50
21	Thermal boundary layer flow over a stretching sheet inÂaÂmicropolar fluid with radiation effect. Meccanica, 2010, 45, 367-373.	1.2	145
22	MHD stagnation flow of a micropolar fluid through a porous medium. Meccanica, 2010, 45, 869-880.	1.2	65
23	Generalized Crane flows of micropolar fluids. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3237-3240.	1.7	6
24	Stretching a Curved Surface in a Viscous Fluid. Chinese Physics Letters, 2010, 27, 024703.	1.3	179
25	Boundary layer flow of an Oldroyd-B fluid in the region of a stagnation point over a stretching sheet. Canadian Journal of Physics, 2010, 88, 635-640.	0.4	75
26	Effect of Magnetohydrodynamic on Thin Films of Unsteady Micropolar Fluid through a Porous Medium. Journal of Modern Physics, 2011, 02, 1290-1304.	0.3	13
27	Heat Transfer Analysis on Axisymmetric Mhd Flow of a Micropolar Fluid Between the Radially Stretching Sheets. Journal of Mechanics, 2011, 27, 607-617.	0.7	4
28	Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet. Chinese Physics Letters, 2011, 28, 094702.	1.3	51
29	Improved analytical solutions to a stagnation-point flow past a porous stretching sheet with heat generation. Journal of the Franklin Institute, 2011, 348, 2044-2058.	1.9	28
30	Flow and heat transfer over an unsteady stretching sheet inÂaÂmicropolar fluid. Meccanica, 2011, 46, 935-942.	1.2	46
31	Axisymmetric magnetohydrodynamic flow of micropolar fluid between unsteady stretching surfaces. Applied Mathematics and Mechanics (English Edition), 2011, 32, 361-374.	1.9	26
32	Mixed convection boundary layer flow near stagnation-point on vertical surface with slip. Applied Mathematics and Mechanics (English Edition), 2011, 32, 1599-1606.	1.9	49
33	Convective heat transfer in a conducting fluid over a permeable stretching surface with suction and internal heat generation/absorption. Applied Mathematics and Computation, 2011, 217, 5810-5821.	1.4	20
34	Boundary layer flow and heat transfer of a micropolar fluid near the stagnation point on a stretching vertical surface with prescribed skin friction. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 502-507.	2.4	4
35	Mixed convection flow of a micropolar fluid with radiation and chemical reaction. International Journal for Numerical Methods in Fluids, 2011, 67, 1418-1436.	0.9	50
36	Numerical solution of the momentum and heat transfer equations for a hydromagnetic flow due to a stretching sheet of a non-uniform property micropolar liquid. Applied Mathematics and Computation, 2011, 217, 5895-5909.	1.4	16

#	Article	IF	CITATIONS
37	An RBF Solution to a Stagnation Point Flow Towards a Stretching Surface with Heat Generation. , 2011, , .		0
38	Soret and Dufour Effects on the Stagnation-Point Flow of a Micropolar Fluid Toward a Stretching Sheet. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .	0.8	14
39	Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet. Chinese Physics Letters, 2011, 28, 084702.	1.3	61
40	Lie point symmetries and similarity solutions for an electrically conducting Jeffrey fluid. Physica Scripta, 2011, 83, 015017.	1.2	26
41	MHD Squeezing Flow of a Micropolar Fluid Between Parallel Disks. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .	0.8	25
42	MHD stagnationâ€point flow towards a shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 21, 61-72.	1.6	115
43	Axisymmetric Stagnation Flow of a Micropolar Nanofluid in a Moving Cylinder. Mathematical Problems in Engineering, 2012, 2012, 1-18.	0.6	24
44	MHD MIXED CONVECTION STAGNATION-POINT FLOW OF A MICROPOLAR FLUID IN A POROUS MEDIUM TOWARDS A HEATED STRETCHING SHEET WITH THERMAL RADIATION. Mathematical Modelling and Analysis, 2012, 17, 498-518.	0.7	15
45	MHD NON-DARCY MIXED CONVECTION STAGNATION-POINT FLOW OF A MICROPOLAR FLUID TOWARDS A STRETCHING SHEET WITH RADIATION. Chemical Engineering Communications, 2012, 199, 1169-1193.	1.5	5
46	Mixed convective flow of a micropolar fluid mixture in a vertical channel with boundary conditions of the third kind. Journal of Engineering Physics and Thermophysics, 2012, 85, 895-908.	0.2	11
47	Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation. Chinese Physics B, 2012, 21, 054701.	0.7	30
48	Steady boundary layer flow and reactive mass transfer past an exponentially stretching surface in an exponentially moving free stream. Journal of the Egyptian Mathematical Society, 2012, 20, 223-228.	0.6	28
49	Mixed Convection Stagnation Point Flow of Casson Fluid with Convective Boundary Conditions. Chinese Physics Letters, 2012, 29, 114704.	1.3	118
50	Mixed Convection Heat Transfer in Micropolar Nanofluid over a Vertical Slender Cylinder. Chinese Physics Letters, 2012, 29, 124701.	1.3	30
51	Numerical simulation of MHD stagnation point flow and heat transfer of a micropolar fluid towards a heated shrinking sheet. International Journal for Numerical Methods in Fluids, 2012, 69, 384-398.	0.9	24
52	Heat and mass transfer in a MHD nonâ€Darcian micropolar fluid over an unsteady stretching sheet with nonâ€uniform heat source/sink and thermophoresis. Heat Transfer - Asian Research, 2012, 41, 601-612.	2.8	2
53	Non-Newtonian dynamics characteristics of parabolic-film slider bearings: Micropolar fluid model. Tribology International, 2012, 48, 226-231.	3.0	14
54	Hydromagnetic stagnation point flow of a viscous fluid overÂaÂstretching or shrinking sheet. Meccanica, 2012, 47, 31-50.	1.2	37

ARTICLE IF CITATIONS # FLOW OF AN EYRING-POWELL NON-NEWTONIAN FLUID OVER A STRETCHING SHEET. Chemical Engineering 1.5 129 55 Communications, 2013, 200, 327-336. Heat transfer analysis in unsteady boundary layer stagnation-point flow towards a 3.5 shrinking/stretching sheet. Ain Shams Engineering Journal, 2013, 4, 259-264. Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform 57 0.7 15 heat flux. Chinese Physics B, 2013, 22, 074705. MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. AEJ - Alexandria Engineering Journal, 2013, 52, 577-582. Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. International Journal of Heat and Mass Transfer, 2013, 57, 59 2.5 163 82-88. Hydromagnetic Hiemenz Slip Flow of Convective Micropolar Fluid Towards a Stretching Plate. Journal of Thermophysics and Heat Transfer, 2013, 27, 151-160. Heat Transfer in a Micropolar Fluid over a Stretching Sheet with Newtonian Heating. PLoS ONE, 2013, 61 1.1 102 8, e59393. Non-orthogonal stagnation point flow of a micropolar second grade fluid towards a stretching 2.7 24 surface with heat transfer. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 586-595. MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. 63 2.5 236 International Journal of Heat and Mass Transfer, 2013, 56, 1-9. Radiation effects on the thermal boundary layer flow of a micropolar fluid towards a permeable 64 stretching sheet. Journal of the Franklin Institute, 2013, 350, 194-210. Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet in a micropolar fluid. 2 65 0.5 Thermal Science, 2013, 17, 525-532. Stagnation Point Flow and Heat Transfer of a Magneto-Micropolar Fluid Towards a Shrinking Sheet with Mass Transfer and Chemical Reaction. Journal of Mechanics, 2013, 29, 411-422. Series solution for heat transfer of continuous stretching sheet immersed in a micropolar fluid in 67 the existence of radiation. International Journal of Numerical Methods for Heat and Fluid Flow, 2013, 1.6 20 23, 289-304. Influence of heat transfer on the nonorthogonal stagnation point flow of a thirdâ \in order fluid towards a stretching surface. Heat Transfer - Asian Research, 2013, 42, 319-334. 2.8 Unsteady axisymmetric flow of a micropolar fluid between the stretching surfaces. Quaestiones 69 0.2 1 Mathematicae, 2013, 36, 463-476. Finite Element Solution of Unsteady Mixed Convection Flow of Micropolar Fluid over a Porous 14 Shrinking Sheet. Scientific World Journal, The, 2014, 2014, 1-11. Analytical Investigation of Laminar Viscoelastic Fluid Flow over a Wedge in the Presence of Buoyancy 9 71 0.3 Force Effects. Abstract and Applied Analysis, 2014, 2014, 1-11. Stagnation-Point Flow and Heat Transfer over a Nonlinearly Stretching/Shrinking Sheet in a Micropolar Fluid. Abstract and Applied Analysis, 2014, 2014, 1-6.

#	Article	IF	CITATIONS
73	Thermal Boundary Layer in Flow due to an Exponentially Stretching Surface with an Exponentially Moving Free Stream. Modelling and Simulation in Engineering, 2014, 2014, 1-9.	0.4	9
74	MHD BOUNDARY-LAYER FLOW AND HEAT TRANSFER OVER PERMEABLE PLATE WITH CONVECTIVE SURFACE BOUNDARY CONDITION. International Journal of Modeling, Simulation, and Scientific Computing, 2014, 05, 1350021.	0.9	1
75	Boundary layer flow near stagnation-points on a vertical surface with slip in the presence of transverse magnetic field. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 643-653.	1.6	34
76	Numerical investigation of mixed convection on a stagnation point flow past a stretching vertical surface with convective boundary conditions. , 2014, , .		0
77	The effects of heat generation or absorption on MHD stagnation point of Jeffrey fluid. , 2014, , .		5
78	Stagnation-point flow over a nonlinearly stretching/shrinking sheet in a micropolar fluid. , 2014, , .		1
79	Analytic and numeric solutions for stagnation-point flow with melting, thermal-diffusion and diffusion-thermo effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 438-454.	1.6	8
80	Unsteady stagnation point flow of second grade fluid with variable free stream. AEJ - Alexandria Engineering Journal, 2014, 53, 455-461.	3.4	19
81	Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Powder Technology, 2014, 253, 377-384.	2.1	207
82	Flow and heat transfer of Powell–Eyring fluid over a shrinking surface in a parallel free stream. International Journal of Heat and Mass Transfer, 2014, 71, 321-327.	2.5	50
83	Hydromagnetic stagnation point flow of a micropolar viscoelastic fluid towards a stretching/shrinking sheet in the presence of heat generation. Canadian Journal of Physics, 2014, 92, 1113-1123.	0.4	12
84	Boundary layer flow and heat transfer of a nanofluid over a permeable unsteady stretching sheet with viscous dissipation. Journal of Engineering Thermophysics, 2014, 23, 216-228.	0.6	15
85	Flow and Heat Transfer of Maxwell Fluid Over an Exponentially Stretching Sheet: A Non-similar Solution. Heat Transfer - Asian Research, 2014, 43, 233-242.	2.8	12
86	MHD stagnation point flow over a stretching/shrinking sheet. , 2015, , .		2
87	The effects of slip conditions and viscous dissipation on the stagnation point flow over a stretching sheet. AIP Conference Proceedings, 2015, , .	0.3	1
88	Optimal and Numerical Solutions for an MHD Micropolar Nanofluid between Rotating Horizontal Parallel Plates. PLoS ONE, 2015, 10, e0124016.	1.1	44
89	Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium. PLoS ONE, 2015, 10, e0144299.	1.1	24
90	Magnetohydrodynamic stagnation point flow and heat transfer in a nanofluid towards a stretching sheet with suction/injection. AIP Conference Proceedings, 2015, , .	0.3	0

#	Article	IF	CITATIONS
91	INFLUENCE OF HEAT TRANSFER ON THE MHD STAGNATION POINT FLOW OF A POWER LAW FLUID WITH CONVECTIVE BOUNDARY CONDITION. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.3	0
92	MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration. Chemical Engineering Journal, 2015, 273, 430-437.	6.6	103
93	Analytical Solution to the MHD Flow of Micropolar Fluid Over a Linear Stretching Sheet. International Journal of Applied Mechanics and Engineering, 2015, 20, 397-406.	0.3	8
94	Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink. Engineering Science and Technology, an International Journal, 2015, 18, 738-745.	2.0	78
95	MHD and Radiation Effects on Mixed Convection Unsteady Flow of Micropolar Fluid Over A Stretching Sheet. Procedia Computer Science, 2015, 57, 65-76.	1.2	12
96	Slip Effect on an Unsteady MHD Stagnation-Point Flow of a Micropolar Fluid towards a Shrinking Sheet with Thermophoresis Effect. International Journal for Computational Methods in Engineering Science and Mechanics, 2015, 16, 285-291.	1.4	8
97	Stagnation-Point Flow of a Jeffrey Nanofluid over a Stretching Surface with Induced Magnetic Field and Chemical Reaction. International Journal of Engineering Research in Africa, 2015, 20, 93-111.	0.7	52
98	On numerical and approximate solutions for stagnation point flow involving third order fluid. AIP Advances, 2015, 5, .	0.6	15
99	Buoyancy and Radiation Effect on Stagnation Point Flow of Micropolar Nanofluid Along a Vertically Convective Stretching Surface. IEEE Nanotechnology Magazine, 2015, 14, 42-50.	1.1	63
100	Approximate Analytical Solution of Stagnation Point Flow and Heat Transfer over an Exponential Stretching Sheet with Convective Boundary Condition. Heat Transfer - Asian Research, 2015, 44, 293-304.	2.8	8
101	An exact solution for the 3D MHD stagnation-point flow of a micropolar fluid. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 121-135.	1.7	27
102	Flow past a stretching sheet. , 2016, , 7-45.		9
103	Numerical Study of Non-Newtonian Maxwell Fluid in the Region of Oblique Stagnation Point Flow over a Stretching Sheet. Journal of Mechanics, 2016, 32, 175-184.	0.7	14
104	Stability analysis of stagnation-point flow over a stretching/shrinking sheet. AIP Advances, 2016, 6, .	0.6	48
105	Influence of heterogeneous-homogeneous reactions in thermally stratified stagnation point flow of an Oldroyd-B fluid. Results in Physics, 2016, 6, 1161-1167.	2.0	18
106	Effect of partial slip on an unsteady MHD mixed convection stagnation-point flow of a micropolar fluid towards a permeable shrinking sheet. AEJ - Alexandria Engineering Journal, 2016, 55, 1285-1293.	3.4	32
107	MHD flow and heat transfer of couple stress fluid over an oscillatory stretching sheet with heat source/sink in porous medium. AEJ - Alexandria Engineering Journal, 2016, 55, 915-924.	3.4	51
108	Simultaneous Effects of Soret and Dufour onÂthe Unsteady Stagnation Point Flow ofÂMicropolar Fluid Towards a Permeable Stretching Sheet. , 2016, , 45-59.		0

~		<u> </u>	
		REP	NDT
\sim	IIAI	IVE FV	

#	Article	IF	CITATIONS
109	Hydromagnetic Hiemenz flow of micropolar fluid over a nonlinearly stretching/shrinking sheet: Dual solutions by using Chebyshev Spectral Newton Iterative Scheme. Journal of Magnetism and Magnetic Materials, 2016, 416, 329-334.	1.0	41
110	Flow of a micropolar fluid due to a porous stretching sheet and heat transfer. International Journal of Non-Linear Mechanics, 2016, 83, 59-64.	1.4	127
111	Axisymmetric stagnation-point flow over a stretching/shrinking plate with second-order velocity slip. Propulsion and Power Research, 2016, 5, 194-201.	2.0	11
112	Slip effects on a mixed convection flow of a third-grade fluid near the orthogonal stagnation point on a vertical surface. Journal of Applied Mechanics and Technical Physics, 2016, 57, 527-536.	0.1	20
113	Magnetic Field and Slip Effects on the Flow and Heat Transfer of Stagnation Point Jeffrey Fluid over Deformable Surfaces. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2016, 71, 549-556.	0.7	40
114	Stagnation point flow and heat transfer behavior of Cu–water nanofluid towards horizontal and exponentially stretching/shrinking cylinders. Applied Nanoscience (Switzerland), 2016, 6, 451-459.	1.6	32
115	Analytical study for unsteady nanofluid MHD Flow impinging on heated stretching sheet. Journal of Molecular Liquids, 2016, 219, 216-223.	2.3	36
116	Oblique stagnation-point flow of a nanofluid past a shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 189-213.	1.6	29
117	Effects of transverse magnetic field on a rotating micropolar fluid between parallel plates with heat transfer. Journal of Magnetism and Magnetic Materials, 2016, 401, 1006-1014.	1.0	64
118	Numerical Analysis of Stagnation Point Nonlinear Convection Flow Through Porous Medium over a Shrinking Sheet. International Journal of Applied and Computational Mathematics, 2017, 3, 971-985.	0.9	10
119	Axisymmetric stagnation-point flow and heat transfer due to a stretching/shrinking vertical plate with surface second-order velocity slip. Meccanica, 2017, 52, 139-151.	1.2	14
120	Influence of chemically reacting species in MHD stagnation point flow of an Oldroyd-B fluid with partial slip. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 2159-2169.	0.8	3
121	Buoyancy effect on stagnation point flow past a stretching vertical surface with Newtonian heating. AIP Conference Proceedings, 2017, , .	0.3	1
122	Dual Solutions of MHD Boundary Layer Flow of a Micropolar Fluid with Weak Concentration over a Stretching/Shrinking Sheet. Communications in Theoretical Physics, 2017, 67, 449.	1.1	19
123	MHD Stagnation-Point Flow Past over a Stretching Sheet in the Presence of Non-Darcy Porous Medium and Heat Source/Sink. Defect and Diffusion Forum, 0, 374, 92-105.	0.4	9
124	Unsteady MHD flow and heat transfer over a shrinking sheet with ohmic heating. Chinese Journal of Physics, 2017, 55, 1626-1636.	2.0	46
125	Numerical Investigation of Micropolar Casson Fluid over a Stretching Sheet with Internal Heating. Communications in Theoretical Physics, 2017, 67, 443.	1.1	39
126	Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid. Journal of Colloid and Interface Science, 2017, 501, 304-310.	5.0	34

#	Article	IF	CITATIONS
127	Magnetite micropolar nanofluid non-aligned MHD flow with mixed convection. European Physical Journal Plus, 2017, 132, 1.	1.2	12
128	Study of micropolar fluid flow inside a magnetohydrodynamic micropump. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 4955-4963.	0.8	9
129	Mixed convective stagnation point flow of Carreau fluid with variable properties. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 3005-3017.	0.8	34
130	Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink. International Journal of Mechanical Sciences, 2017, 126, 308-318.	3.6	98
131	Effect of Nonlinear Thermal Radiation on MHD Boundary Layer Flow and Melting Heat Transfer of Micro-Polar Fluid over a Stretching Surface with Fluid Particles Suspension. Defect and Diffusion Forum, 0, 378, 125-136.	0.4	33
132	Slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating. AIP Conference Proceedings, 2017, , .	0.3	0
133	Numerical solutions of MHD stagnation-point flow and heat transfer past a stretching/shrinking sheet with chemical reaction and transpiration. AIP Conference Proceedings, 2017, , .	0.3	1
134	Slip flow on stagnation point over a stretching sheet in a viscoelastic nanofluid. , 2017, , .		2
135	Effects of lubricated surface in the oblique stagnation point flow of a micro-polar fluid. European Physical Journal Plus, 2017, 132, 1.	1.2	22
136	Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating. Nonlinear Engineering, 2017, 6, .	1.4	21
137	Numerical study for MHD stagnation-point flow of a micropolar nanofluid towards a stretching sheet. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 89-100.	0.8	33
138	MHD Flow of Micropolar Fluid over an Oscillating Vertical Plate Embedded in Porous Media with Constant Temperature and Concentration. Mathematical Problems in Engineering, 2017, 2017, 1-20.	0.6	24
139	The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates. Results in Physics, 2018, 9, 1201-1214.	2.0	181
140	Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface. Results in Physics, 2018, 8, 316-323.	2.0	62
141	On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface. Results in Physics, 2018, 8, 524-531.	2.0	13
142	MHD non-orthogonal stagnation point flow of a nanofluid towards a stretching surface in the presence of thermal radiation. Ain Shams Engineering Journal, 2018, 9, 1671-1681.	3.5	18
143	Non-aligned stagnation point flow of radiating Casson fluid over a stretching surface. AEJ - Alexandria Engineering Journal, 2018, 57, 939-946.	3.4	32
144	Magneto-Convective Heat Transfer in Micropolar Nanofluid over a Stretching Sheet with Non-Uniform Heat Source/Sink. Defect and Diffusion Forum, 0, 387, 78-90.	0.4	14

#	Article	IF	CITATIONS
145	Darcy–Forchheimer flow of micropolar nanofluid between two plates in the rotating frame with non-uniform heat generation/absorption. Advances in Mechanical Engineering, 2018, 10, 168781401880885.	0.8	35
146	A numerical approach based on B-spline basis functions to solve boundary layer flow model of a non-Newtonian fluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	1
147	Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid Over a Convective Surface. Journal of Non-Equilibrium Thermodynamics, 2018, 43, 327-345.	2.4	95
148	On both MHD and slip effect in micropolar hybrid nanofluid past a circular cylinder under stagnation point region. Canadian Journal of Physics, 2019, 97, 392-399.	0.4	67
149	Radiative Heat and Mass Transfer Analysis of Micropolar Nanofluid Flow of Casson Fluid Between Two Rotating Parallel Plates With Effects of Hall Current. Journal of Heat Transfer, 2019, 141, .	1.2	142
150	Radiation effects on MHD free convective flow over a moving vertical porous plate with heat generation in the presence of viscous dissipation and chemical reaction. Materials Today: Proceedings, 2019, 18, 2172-2177.	0.9	2
151	A nonâ€Fourier heat flux model for magnetohydrodynamic micropolar liquid flow across a coagulated sheet. Heat Transfer - Asian Research, 2019, 48, 2819-2843.	2.8	38
152	Hydromagnetic steady flow of a micro polar nano fluid impinging obliquely over a stretching surface with Newtonian heating. , 2019, , .		0
153	Heat transfer on the cross flow of micropolar fluids over a thin needle moving in a parallel stream influenced by binary chemical reaction and Arrhenius activation energy. European Physical Journal Plus, 2019, 134, 1.	1.2	46
154	Influence of multiple slips and chemical reaction on radiative MHD Williamson nanofluid flow in porous medium. Multidiscipline Modeling in Materials and Structures, 2019, 15, 630-658.	0.6	43
155	Assisting or opposing MHD flow of cross fluid along a non-isothermal surface with variable thermal conductivity. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 4980-4989.	1.1	4
156	Thermal radiation and slip effects on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a convective stretching sheet. Propulsion and Power Research, 2019, 8, 138-146.	2.0	66
157	Thermal Radiation Effect on MHD Stagnation Point flow of Williamson Fluid over a stretching Surface. Journal of Physics: Conference Series, 2019, 1366, 012011.	0.3	5
158	Optimization of entropy generation in flow of micropolar mixed convective magnetite (Fe3O4) ferroparticle over a vertical plate. AEJ - Alexandria Engineering Journal, 2019, 58, 1461-1470.	3.4	39
159	Analytical solution for differential nonlinear and coupled equations in micropolar nanofluid flow between rotating parallel plates. European Physical Journal: Special Topics, 2019, 228, 2601-2617.	1.2	9
160	Local non-similar solutions of convective flow of Carreau fluid in the presence of MHD and radiative heat transfer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	10
161	Shape effects of molybdenum disulfide (nm) micro-rotating particles in crosswise transport of hydrogen oxide: (MoS ₂ –H ₂ O) nano polymer gel. Physica Scripta, 2020, 95, 035002.	1.2	10
162	Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3661-3674.	2.0	120

#	Article	IF	CITATIONS
163	Entropy generation analysis of Hall current effect on MHD micropolar fluid flow with rotation effect. SN Applied Sciences, 2020, 2, 1.	1.5	8
164	Modeling and numerical simulation of micropolar fluid over a curved surface: Keller box method. Computer Methods and Programs in Biomedicine, 2020, 187, 105220.	2.6	15
165	A novel study of radiative flow involving micropolar nanoliquid from a shrinking/stretching curved surface including blood gold nanoparticles. European Physical Journal Plus, 2020, 135, 1.	1.2	14
166	The Effects of Activation Energy and Thermophoretic Diffusion of Nanoparticles on Steady Micropolar Fluid along with Brownian Motion. Advances in Materials Science and Engineering, 2020, 2020, 1-12.	1.0	72
167	Heat generation/absorption influence on steady stretched permeable surface on MHD flow of a micropolar fluid through a porous medium in the presence of variable suction/injection. International Journal of Thermofluids, 2020, 7-8, 100044.	4.0	50
168	Dispersion of solute in straining flows and boundary layers. Physics of Fluids, 2020, 32, 051703.	1.6	1
169	Study of Heat and Mass Transfer in MHD Flow of Micropolar Fluid over a Curved Stretching Sheet. Scientific Reports, 2020, 10, 4581.	1.6	52
170	On Fluid Flow Field Visualization in a Staggered Cavity: A Numerical Result. Processes, 2020, 8, 226.	1.3	5
171	On a new numerical approach of MHD mixed convection flow with heat and mass transfer of a micropolar fluid over an unsteady stretching sheet in the presence of viscous dissipation and thermal radiation. , 2020, , 149-176.		6
172	Stagnation point flow of magnetized Burgers' nanofluid subject to thermal radiation. Applied Nanoscience (Switzerland), 2020, 10, 5233-5246.	1.6	25
173	Evaluating the unsteady MHD micropolar fluid flow past stretching/shirking sheet with heat source and thermal radiation: Implementing fourth order predictor–corrector FDM. Mathematics and Computers in Simulation, 2021, 181, 333-350.	2.4	67
174	Nonlinear radiation and crossâ€diffusion effects on the micropolar nanoliquid flow past a stretching sheet with an exponential heat source. Heat Transfer, 2021, 50, 3530-3546.	1.7	37
175	Micropolar Fluid with Newtonian Heating Over a Stretching Sheet in Presence Heat Source. Lecture Notes in Mechanical Engineering, 2021, , 633-643.	0.3	0
176	Onset of unsteady MHD micropolar nanofluid flow with entropy generation. International Journal of Ambient Energy, 2022, 43, 4356-4369.	1.4	11
177	Effect of heat radiating and generating second-grade mixed convection flow over a vertical slender cylinder with variable physical properties. International Communications in Heat and Mass Transfer, 2021, 121, 105110.	2.9	19
178	Computational modeling and analysis for the effect of magnetic field on rotating stretched disk flow with heat transfer. Propulsion and Power Research, 2021, 10, 48-57.	2.0	36
179	Homotopy Perturbation Analysis in an energy transit problem closed to a Stretching Surface. Turkish Journal of Computer and Mathematics Education, 2021, 12, 289-295.	0.4	0
180	Numerical Investigation of MHD Pulsatile Flow of Micropolar Fluid in a Channel with Symmetrically Constricted Walls. Mathematics, 2021, 9, 1000.	1.1	5

#	Article	IF	CITATIONS
181	Combined Effect of Radiation and Inclined MHD Flow of a Micropolar Fluid Over a Porous Stretching/Shrinking Sheet with Mass Transpiration. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	25
182	Numerical study of low Reynolds hybrid discretized convergent-divergent (CD) channel rooted with obstructions in left/right vicinity of CD throat. Results in Physics, 2021, 24, 104141.	2.0	5
183	Numerical computation of buoyancy and radiation effects on MHD micropolar nanofluid flow over a stretching/shrinking sheet with heat source. Case Studies in Thermal Engineering, 2021, 25, 100867.	2.8	60
184	Numerical analysis of unsteady magnetized micropolar fluid flow over a curved surface. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6449-6459.	2.0	39
185	Time-dependent squeezing flow of Casson-micropolar nanofluid with injection/suction and slip effects. International Communications in Heat and Mass Transfer, 2021, 126, 105470.	2.9	32
186	Implications of the third-grade nanomaterials lubrication problem in terms of radiative heat flux: A Keller box analysis. Chemical Physics Letters, 2021, 783, 139041.	1.2	14
187	Slip effect on mixed convective flow and heat transfer of magnetized UCM fluid through a porous medium in consequence of novel heat flux model. Results in Physics, 2021, 20, 103749.	2.0	10
188	Impact of Cattaneo-Christov heat flux model on MHD hybrid nano-micropolar fluid flow and heat transfer with viscous and joule dissipation effects. Scientific Reports, 2021, 11, 67.	1.6	44
189	Double Solutions and Stability Analysis of Micropolar Hybrid Nanofluid with Thermal Radiation Impact on Unsteady Stagnation Point Flow. Mathematics, 2021, 9, 276.	1.1	27
190	Three-dimensional magnetohydrodynamic flow of micropolar CNT-based nanofluid through a horizontal rotating channel: OHAM analysis. Indian Journal of Physics, 2020, 94, 319-332.	0.9	28
191	Stagnation Point Flow of a Nanofluid toward an Exponentially Stretching Sheet with Nonuniform Heat Generation/Absorption. Journal of Thermodynamics, 2013, 2013, 1-12.	0.8	97
192	MHD Stagnation-Point Flow over a Stretching/Shrinking Sheet in a Micropolar Fluid with a Slip Boundary. Sains Malaysiana, 2018, 47, 2907-2916.	0.3	39
193	MHD Flow of Micropolar Fluid due to a Curved Stretching Sheet with Thermal Radiation. Journal of Applied Fluid Mechanics, 2016, 9, 131-138.	0.4	79
194	Flow and Heat Transfer over an Unsteady Stretching Sheet in a Micropolar Fluid with Convective Boundary Condition. Journal of Applied Fluid Mechanics, 2016, 9, 1437-1445.	0.4	42
195	Casson Fluid Flow near the Stagnation Point over a Stretching Sheet with Variable Thickness and Radiation. Journal of Applied Fluid Mechanics, 2016, 9, 1115-1022.	0.4	74
196	Mixed convection boundary-layer flow of a micro polar fluid towards a heated shrinking sheet by homotopy analysis method. Thermal Science, 2016, 20, 21-34.	0.5	19
197	Scrutinization of Joule Heating and Viscous Dissipation on MHD Flow and Melting Heat Transfer Over a Stretching Sheet. International Journal of Applied Mechanics and Engineering, 2018, 23, 429-433.	0.3	14
198	Magneto Hydrodynamics Stagnation Point Flow of a Nano Fluid over an Exponentially Stretching Sheet with an Effect of Chemical Reaction, Heat Source and Suction/Injunction. World Journal of Mechanics, 2015, 05, 211-221.	0.1	5

#	ARTICLE	IF	CITATIONS
199	Squeezing Flow of Micropolar Nanofluid between Parallel Disks. Journal of Magnetics, 2016, 21, 476-489.	0.2	7
200	ENTROPY GENERATION IN BOUNDARY LAYER FLOW OF A MICRO POLAR FLUID OVER A STRETCHING SHEET EMBEDDED IN A HIGHLY ABSORBING MEDIUM. Frontiers in Heat and Mass Transfer, 0, 6, .	0.1	6
201	Heat Generation and Thermal Radiation Effects over a Stretching Sheet in a Micropolar Fluid. ISRN Thermodynamics, 2012, 2012, 1-6.	0.6	8
203	Stagnation Point Flow of a Williamson Fluid over a Nonlinearly Stretching Sheet with Thermal Radiation. American Chemical Science Journal, 2016, 13, 1-8.	0.2	22
204	Principles of Homotopy Analysis. , 2012, , 7-52.		1
206	Unsteady Boundary Layer Flow of an Incompressible Micropolar Fluid Over a Porous Stretching Sheer. Acta Mechanica Slovaca, 2012, 16, 84-90.	0.1	1
207	Heat transfer in a stagnation point flow of a second grade fluid over a stretching surface with heat generation/absorption. Kragujevac Journal of Science, 2014, , 41-48.	0.1	0
208	Analytic Solution of MHD Stagnation Point Flow over a Stretching Permeable Surface with Effects of Viscous Dissipation and Joule Heating. Engineering, 2014, 06, 827-840.	0.4	0
209	Boundary layer flow of mixed convection viscoelastic micropolar fluid over a horizontal circular cylinder with aligned magnetohydrodynamic effect. Malaysian Journal of Fundamental and Applied Sciences, 2017, 13, 567-571.	0.4	0
210	Numerical simulation of stagnation point flow in magneto micropolar fluid over a stretchable surface under influence of activation energy and bilateral reaction. International Communications in Heat and Mass Transfer, 2021, 129, 105679.	2.9	30
211	THIRD-ORDER GENERALIZED DISCONTINUOUS IMPULSIVE PROBLEMS ON THE HALF-LINE. Mathematical Modelling and Analysis, 2021, 26, 548-565.	0.7	1
212	Thermophysical aspects of magnetized Williamson fluid flow subject to both porous and non-porous surfaces: A Lie symmetry analysis. Case Studies in Thermal Engineering, 2021, 28, 101688.	2.8	16
213	Existence of dual solution for micro-polar fluid flow with convective boundary layer in the presence of thermal radiation and suction/injection effects. International Communications in Heat and Mass Transfer, 2022, 131, 105785.	2.9	21
214	Inspections of unsteady micropolar nanofluid model over exponentially stretching curved surface with chemical reaction. Waves in Random and Complex Media, 0, , 1-22.	1.6	19
215	Effects of thermal radiation and stability analysis on MHD stagnation casson fluid flow over the stretching surface with slip velocity. AIP Conference Proceedings, 2022, , .	0.3	6
216	Examination of warm transfer on extending sheet by variation iteration method strategy and investigation of arrangements for optimizing liquid properties. Engineering Reports, 2022, 4, .	0.9	3
217	Effects of non-linear radiation and chemical reaction on Oldroydâ€B nanofluid near oblique stagnation point flow. Chinese Journal of Physics, 2022, 77, 1197-1208.	2.0	10
218	Effect of Prescribed Heat Sources on Convective Unsteady MHD Flow of Williamson Nanofluid Through Porous Media: Darcy–Forchheimer Model. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	0.9	5

#	Article	IF	CITATIONS
219	Nanoparticle Aggregation and Thermophoretic Particle Deposition Process in the Flow of Micropolar Nanofluid over a Stretching Sheet. Nanomaterials, 2022, 12, 977.	1.9	14
220	Numerical investigation of fluid flow and heat transfer in micropolar fluids over a stretching domain. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10637-10646.	2.0	5
221	Numerical Simulation of Williamson Nanofluid Flow over an Inclined Surface: Keller Box Analysis. Applied Sciences (Switzerland), 2021, 11, 11523.	1.3	16
222	Similarity Solution of Stagnation-Point Flow and Heat Transfer of a Micropolar Fluid Towards a Horizontal Permeable Exponentially Elongating Sheet with Radiation, Heat Production/ Immersion. International Journal of Applied Mechanics and Engineering, 2021, 26, 179-191.	0.3	0
224	Numerical Study for Magnetohydrodynamic (MHD) Unsteady Maxwell Nanofluid Flow Impinging on Heated Stretching Sheet. CMES - Computer Modeling in Engineering and Sciences, 2022, .	0.8	1
225	Neuro-Computing for Hall Current and MHD Effects on the Flow of Micro-Polar Nano-Fluid Between Two Parallel Rotating Plates. Arabian Journal for Science and Engineering, 2022, 47, 16371-16391.	1.7	12
226	The Influence of Effective Prandtl Number Model on the Micropolar Squeezing Flow of Nanofluids between Parallel Disks. Processes, 2022, 10, 1126.	1.3	2
227	Multiple Exact Solutions for Micropolar Slip Flow and Heat Transfer of a Bidirectional Moving Plate. SSRN Electronic Journal, 0, , .	0.4	0
228	Cubic autocatalysis-based activation energy and thermophoretic diffusion effects of steady micro-polar nano-fluid. Microfluidics and Nanofluidics, 2022, 26, .	1.0	3
229	Analysis of entropy generation in the nonlinear thermal radiative micropolar nanofluid flow towards a stagnation point with catalytic effects. Physica Scripta, 2022, 97, 085204.	1.2	15
230	Numerical Study of Stagnation Point Flow and Heat Transfer of Micropolar Fluid towards a Surface with Viscous Dissipation Effects. Arab Gulf Journal of Scientific Research, 2013, , 68-78.	0.3	0
231	Significance of Thermal Phenomena and Mechanisms of Heat Transfer through the Dynamics of Second-Grade Micropolar Nanofluids. Sustainability, 2022, 14, 9361.	1.6	1
232	The Effects of Thermal Radiation and Viscous Dissipation on the Stagnation Point Flow of a Micropolar Fluid over a Permeable Stretching Sheet in the Presence of Porous Dissipation. Fluid Dynamics and Materials Processing, 2023, 19, 61-81.	0.5	3
233	A Self-Similar Approach to Study Nanofluid Flow Driven by a Stretching Curved Sheet. Symmetry, 2022, 14, 1991.	1.1	1
234	Dynamics of Rotating Micropolar Fluid over a Stretch Surface: The Case of Linear and Quadratic Convection Significance in Thermal Management. Nanomaterials, 2022, 12, 3100.	1.9	13
235	Application of heat transfer on MHD shear thickening fluid flow past a stretched surface with variable heat source/sink. Heat Transfer, 2023, 52, 1161-1177.	1.7	5
236	Free vibration of both-ends clamped wooden beams: is it potentially applicable as an in situ assessment method?. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 0, , .	0.8	1
237	Impact of Newtonian Heating on MHD Micropolar Fluid for the Influence of Heat Source. Open Chemical Engineering Journal, 2022, 16, .	0.4	1

#	Article	IF	CITATIONS
238	Multiple exact solutions for micropolar slip flow and heat transfer of a bidirectional moving plate. Thermal Science and Engineering Progress, 2023, 37, 101584.	1.3	10
239	Computational analysis of dual numerical solutions for unsteady flow of Cu-water nanofluids with the Cattaneo–Christov heat model. European Physical Journal: Special Topics, 0, , .	1.2	Ο
240	Hiemenz flow with heat transfer in a slip condition micropolar fluid model: Exact solutions. International Communications in Heat and Mass Transfer, 2023, 144, 106775.	2.9	7
241	Crosswise Stream of Cu-H2O Nanofluid with Micro Rotation Effects: Heat Transfer Analysis. Nanomaterials, 2023, 13, 471.	1.9	2
242	Mathematical analysis of nonlinear thermal radiation and nanoparticle aggregation on unsteady MHD flow of micropolar nanofluid over shrinking sheet. Heliyon, 2023, 9, e14248.	1.4	20
243	Significance of an incident solar energy toward the MHD micropolar fluid flow over a stretching sheet. International Journal of Modern Physics B, 2024, 38, .	1.0	Ο
244	Information of stagnation-point flow of Maxwell fluid past symmetrically exponential stretching/shrinking cylinder with prescribed heat flux. AIP Advances, 2023, 13, .	0.6	1
245	MHD Stagnation Point of Blasius Flow for Micropolar Hybrid Nanofluid toward a Vertical Surface with Stability Analysis. Symmetry, 2023, 15, 920.	1.1	5