An exact algorithm for the elementary shortest path pro Application to some vehicle routing problems

Networks 44, 216-229 DOI: 10.1002/net.20033

Citation Report

#	ARTICLE	IF	CITATIONS
1	Dynamic programming algorithms for the elementary shortest path problem with resource constraints. Electronic Notes in Discrete Mathematics, 2004, 17, 247-249.	0.4	5
2	Branch-and-Price Heuristics: A Case Study on the Vehicle Routing Problem with Time Windows. , 2005, , 99-129.		29
3	The Profitable Arc Tour Problem: Solution with a Branch-and-Price Algorithm. Transportation Science, 2005, 39, 539-552.	2.6	54
4	Vehicle Routing Problem with Time Windows. , 2005, , 67-98.		117
5	Shortest Path Problems with Resource Constraints. , 2005, , 33-65.		279
7	Multi-resource routing with flexible tasks: an application in drayage operations. IIE Transactions, 2006, 38, 577-590.	2.1	63
8	A Branch-and-Price Approach to the Vehicle Routing Problem with Simultaneous Distribution and Collection. Transportation Science, 2006, 40, 235-247.	2.6	164
9	Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints. Discrete Optimization, 2006, 3, 255-273.	0.6	248
10	Lagrangian duality applied to the vehicle routing problem with time windows. Computers and Operations Research, 2006, 33, 1464-1487.	2.4	101
11	Accelerated label setting algorithms for the elementary resource constrained shortest path problem. Operations Research Letters, 2006, 34, 58-68.	0.5	141
12	EFFECTS OF RELAXING TIME WINDOWS ON VEHICLE ROUTING AND SCHEDULING. Infrastructure Planning Review, 2007, 24, 927-936.	0.1	6
13	New Refinements for the Solution of Vehicle Routing Problems with Branch and Price. Infor, 2007, 45, 239-256.	0.5	25
14	Location-Routing Problems with Distance Constraints. Transportation Science, 2007, 41, 29-43.	2.6	76
15	A Branch and Price Algorithm for the Combined Vehicle Routing and Scheduling Problem With Synchronization Constraints. SSRN Electronic Journal, 0, , .	0.4	32
16	ELEMENTARY SHORTEST PATH PROBLEM WITH RESOURCE CONSTRAINTS AND TIME DEPENDENT LATE ARRIVAL PENALTIES. Doboku Gakkai Ronbunshuu D, 2007, 63, 579-590.	0.0	2
17	Arcs-states models for the vehicle routing problem with time windows and related problems. Computers and Operations Research, 2007, 34, 1061-1084.	2.4	4
18	Interior point stabilization for column generation. Operations Research Letters, 2007, 35, 660-668.	0.5	83
19	An exact algorithm for a single-vehicle routing problem with time windows and multiple routes. European Journal of Operational Research, 2007, 178, 755-766.	3.5	160

ATION RED

#	Article	IF	CITATIONS
20	Column generation based heuristic for tactical planning in multi-period vehicle routing. European Journal of Operational Research, 2007, 183, 1028-1041.	3.5	92
21	Arc routing problems with time-dependent service costs. European Journal of Operational Research, 2007, 181, 30-39.	3.5	88
22	Three-stage approaches for optimizing some variations of the resource constrained shortest-path sub-problem in a column generation context. European Journal of Operational Research, 2007, 183, 564-577.	3.5	13
23	An exact algorithm for team orienteering problems. 4or, 2007, 5, 211-230.	1.0	151
24	Vehicle and personnel routing optimization in the service sector: application to water distribution and treatment. 4or, 2007, 5, 165-168.	1.0	6
25	A general heuristic for vehicle routing problems. Computers and Operations Research, 2007, 34, 2403-2435.	2.4	993
26	A Branch-and-price algorithm for placement routing for a multi-head beam-type component placement tool. OR Spectrum, 2008, 30, 515-534.	2.1	7
27	Comparison of bundle and classical column generation. Mathematical Programming, 2008, 113, 299-344.	1.6	79
28	Pruning in column generation for service vehicle dispatching. Annals of Operations Research, 2008, 159, 355-371.	2.6	13
29	A branch and bound method for the job-shop problem with sequence-dependent setup times. Annals of Operations Research, 2008, 159, 135-159.	2.6	56
30	New dynamic programming algorithms for the resource constrained elementary shortest path problem. Networks, 2008, 51, 155-170.	1.6	203
31	Ant colony optimization for the traveling purchaser problem. Computers and Operations Research, 2008, 35, 628-637.	2.4	65
32	Bi-dynamic constraint aggregation and subproblem reduction. Computers and Operations Research, 2008, 35, 1713-1724.	2.4	19
33	Formulations and exact algorithms for the vehicle routing problem with time windows. Computers and Operations Research, 2008, 35, 2307-2330.	2.4	124
34	The Split Delivery Vehicle Routing Problem: A Survey. Operations Research/ Computer Science Interfaces Series, 2008, , 103-122.	0.3	56
35	Chvátal-Gomory Rank-1 Cuts Used in a Dantzig-Wolfe Decomposition of the Vehicle Routing Problem with Time Windows. Operations Research/ Computer Science Interfaces Series, 2008, , 397-419.	0.3	16
36	Tabu Search, Partial Elementarity, and Generalized <i>k</i> -Path Inequalities for the Vehicle Routing Problem with Time Windows. Transportation Science, 2008, 42, 387-404.	2.6	167
37	Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows. Operations Research, 2008, 56, 497-511.	1.2	266

#	Article	IF	Citations
38	Multiperiod Planning and Routing on a Rolling Horizon for Field Force Optimization Logistics. Operations Research/ Computer Science Interfaces Series, 2008, , 503-525.	0.3	24
39	Optimizing the Cargo Express Service of Swiss Federal Railways. Transportation Science, 2008, 42, 450-465.	2.6	23
40	New Hybrid Optimization Algorithms for Machine Scheduling Problems. IEEE Transactions on Automation Science and Engineering, 2008, 5, 337-348.	3.4	20
41	A COMPARISON OF ENVIRONMENTAL IMPACTS OF HARD TIME WINDOWS AND SEMI SOFT TIME WINDOWS USING EXACT ROUTING SOLUTION. Infrastructure Planning Review, 2008, 25, 451-462.	0.1	1
42	Tabu search metaheuristic embedded in adaptative memory procedure for the Profitable Arc Tour Problem. , 2009, , .		1
43	MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics. Annals of Information Systems, 2009, , 71-102.	0.5	4
44	A branchâ€andâ€priceâ€based large neighborhood search algorithm for the vehicle routing problem with time windows. Networks, 2009, 54, 190-204.	1.6	75
45	The manpower allocation problem with time windows and job-teaming constraints: A branch-and-price approach. Computers and Operations Research, 2009, 36, 1145-1157.	2.4	92
46	Decremental state space relaxation strategies and initialization heuristics for solving the Orienteering Problem with Time Windows with dynamic programming. Computers and Operations Research, 2009, 36, 1191-1203.	2.4	112
47	Real-time vehicle rerouting problems with time windows. European Journal of Operational Research, 2009, 194, 711-727.	3.5	99
48	The capacitated team orienteering and profitable tour problems. Journal of the Operational Research Society, 2009, 60, 831-842.	2.1	121
49	Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows. Transportation Science, 2009, 43, 267-286.	2.6	336
50	A Column Generation Algorithm for a Rich Vehicle-Routing Problem. Transportation Science, 2009, 43, 56-69.	2.6	83
51	A Branch-and-Price Algorithm for Combined Location and Routing Problems Under Capacity Restrictions. , 2009, , 309-330.		29
53	HYBRID INSERTION HEURISTICS FOR VEHICLE ROUTING PROBLEM WITH SOFT TIME WINDOWS. Infrastructure Planning Review, 2009, 26, 703-713.	0.1	0
54	Tabu Search metaheuristic embedded in Adaptive Memory Procedure for the Profitable Arc Tour Problem. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 990-995.	0.4	3
55	Clique Inequalities Applied to the Vehicle Routing Problem with Time Windows. Infor, 2010, 48, 53-67.	0.5	7
56	A column generation method for quay crane scheduling problem. , 2010, , .		0

#	Article	IF	CITATIONS
57	VEHICLE ROUTING PROBLEM WITH SOFT TIME WINDOWS AND PATH CHOICE. Infrastructure Planning Review, 2010, 27, 767-777.	0.1	2
58	An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles. European Journal of Operational Research, 2010, 202, 756-763.	3.5	197
59	A tutorial on column generation and branch-and-price for vehicle routing problems. 4or, 2010, 8, 407-424.	1.0	103
60	Exact solution for the vehicle routing problem with semi soft time windows and its application. Procedia, Social and Behavioral Sciences, 2010, 2, 5931-5943.	0.5	25
61	Optimal routing with failureâ€independent path protection. Networks, 2010, 55, 125-137.	1.6	10
62	A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows. European Journal of Operational Research, 2010, 206, 341-349.	3.5	82
63	A Memetic Algorithm with a large neighborhood crossover operator for the Generalized Traveling Salesman Problem. Computers and Operations Research, 2010, 37, 1844-1852.	2.4	90
64	The undirected capacitated arc routing problem with profits. Computers and Operations Research, 2010, 37, 1860-1869.	2.4	46
65	An ILP improvement procedure for the Open Vehicle Routing Problem. Computers and Operations Research, 2010, 37, 2106-2120.	2.4	74
66	Vehicle routing problems with alternative paths: An application to on-demand transportation. European Journal of Operational Research, 2010, 204, 62-75.	3.5	102
67	A Branch-and-Price Algorithm for Capacitated Arc Routing Problem with Flexible Time Windows. Electronic Notes in Discrete Mathematics, 2010, 36, 319-326.	0.4	10
68	On the design of complex networks through a Branch-and-price algorithm. , 2010, , .		1
69	Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows. Operations Research, 2010, 58, 179-192.	1.2	144
70	Path-Reduced Costs for Eliminating Arcs in Routing and Scheduling. INFORMS Journal on Computing, 2010, 22, 297-313.	1.0	47
71	Matheuristics. Annals of Information Systems, 2010, , .	0.5	94
72	Have a nice trip: an algorithm for identifying excess routes under satisfaction constraints. International Journal of Geographical Information Science, 2010, 24, 1745-1758.	2.2	3
73	Multi-robot persistent surveillance planning as a Vehicle Routing Problem. , 2011, , .		60
75	A Novel Column Generation Algorithm for the Vehicle Routing Problem with Cross-Docking. Lecture Notes in Computer Science, 2011, , 412-425.	1.0	9

#	Article	IF	Citations
76	New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem. Operations Research, 2011, 59, 1269-1283.	1.2	336
77	A column generation algorithm for the vehicle routing problem with soft time windows. 4or, 2011, 9, 49-82.	1.0	59
78	The orienteering problem with stochastic travel and service times. Annals of Operations Research, 2011, 186, 61-81.	2.6	90
79	A Branch-and-price algorithm for a Vehicle Routing Problem with Cross-Docking. Electronic Notes in Discrete Mathematics, 2011, 37, 249-254.	0.4	30
80	Modeling and solving a multimodal transportation problem with flexibleâ€ŧime and scheduled services. Networks, 2011, 57, 53-68.	1.6	66
81	Cutting planes for branchâ€andâ€price algorithms. Networks, 2011, 58, 301-310.	1.6	29
82	The vehicle routing problem with time windows and temporal dependencies. Networks, 2011, 58, 273-289.	1.6	57
83	Optimization of occupancy rate in dial-a-ride problems via linear fractional column generation. Computers and Operations Research, 2011, 38, 1435-1442.	2.4	38
84	An efficient column-generation-based algorithm for solving a pickup-and-delivery problem. Computers and Operations Research, 2011, 38, 1647-1655.	2.4	13
85	A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies, 2011, 19, 723-740.	3.9	128
86	Multi-dimensional labelling approaches to solve the linear fractional elementary shortest path problem with time windows. Optimization Methods and Software, 2011, 26, 295-340.	1.6	6
87	Dynamic Programming-Based Column Generation on Time-Expanded Networks: Application to the Dial-a-Flight Problem. INFORMS Journal on Computing, 2011, 23, 105-119.	1.0	22
88	A Heuristic Algorithm for Single Veichle Route Problem with Multi Time Windows. Advanced Materials Research, 0, 468-471, 461-466.	0.3	0
89	Formulations for the RWA problem with traffic grooming, protection and QoS in WDM optical networks. , 2012, , .		0
90	Stochastic motion planning with path constraints and application to optimal agent, resource, and route planning. , 2012, , .		11
91	Cut-First Branch-and-Price-Second for the Capacitated Arc-Routing Problem. Operations Research, 2012, 60, 1167-1182.	1.2	50
92	A branch-price-and-cut algorithm for the workover rig routing problem. Computers and Operations Research, 2012, 39, 3305-3315.	2.4	18
93	A computational study of solution approaches for the resource constrained elementary shortest path problem. Annals of Operations Research, 2012, 201, 131-157.	2.6	6

ARTICLE IF CITATIONS # Handling uncertainties in vehicle routing problems through data preprocessing. Transportation 3.7 13 94 Research, Part E: Logistics and Transportation Review, 2012, 48, 667-683. Models and hybrid methods for the onshore wells maintenance problem. Computers and Operations 2.4 Research, 2012, 39, 2944-2953. A three-stage approach for the resource-constrained shortest path as a sub-problem in column 96 2.4 28 generation. Computers and Operations Research, 2012, 39, 164-178. Recent exact algorithms for solving the vehicle routing problem under capacity and time window 350 constraints. European Journal of Operational Research, 2012, 218, 1-6. The Home Care Crew Scheduling Problem: Preference-based visit clustering and temporal 98 3.5 308 dependencies. European Journal of Operational Research, 2012, 219, 598-610. A Microsimulation Based Analysis of Exact Solution of Dynamic Vehicle Routing with Soft Time Windows. Procedia, Social and Behavioral Sciences, 2012, 39, 205-216. 99 An Analysis of Exact VRPTW Solutions on ITS Data-based Logistics Instances. International Journal of 100 0.6 7 Intelligent Transportation Systems Research, 2012, 10, 34-46. Using the primal-dual interior point algorithm within the branch-price-and-cut method. Computers 2.4 29 and Operations Research, 2013, 40, 2026-2036. 103 Solving the shortest path tour problem. European Journal of Operational Research, 2013, 230, 464-474. 3.5 24 Branch-and-price algorithms for the Two-Echelon Capacitated Vehicle Routing Problem. Optimization 104 Letters, 2013, 7, 1537-1547. Efficient techniques for the multi-period vehicle routing problem with time windows within a branch 105 2.6 16 and price framework. Annals of Operations Research, 2013, 206, 1-22. Exact algorithms for different classes of vehicle routing problems. 4or, 2013, 11, 195-196. 1.0 Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows. Transportation 107 2.6 102 Science, 2013, 47, 380-396. A Branch-and-price Algorithm for the Multi-Vehicle Covering Tour Problem. Electronic Notes in 0.4 Discrete Mathematics, 2013, 44, 61-66. On the Generalized Elementary Shortest Path Problem: A heuristic approach. Electronic Notes in 109 0.4 8 Discrete Mathematics, 2013, 41, 503-510. Dynamic vehicle routing: Solution methods and computational tools. 4or, 2013, 11, 395-396. 1.0 Periodic re-optimization based dynamic branch and price algorithm for dynamic multi-UAV path 112 3 planning., 2013,,. New developments in the primal–dual column generation technique. European Journal of Operational Research, 2013, 224, 41-51.

#	Article	IF	CITATIONS
114	Exact and hybrid methods for the multiperiod field service routing problem. Central European Journal of Operations Research, 2013, 21, 359-377.	1.1	19
115	Team Orienteering Problem with Decreasing Profits. Electronic Notes in Discrete Mathematics, 2013, 41, 285-293.	0.4	33
116	A complementary tool to enhance the effectiveness of existing methods for heterogeneous fixed fleet vehicle routing problem. Applied Mathematical Modelling, 2013, 37, 4316-4324.	2.2	13
117	The Pickup and Delivery Problem with Cross-Docking. Computers and Operations Research, 2013, 40, 1085-1093.	2.4	60
118	Lifted and Local Reachability Cuts for the Vehicle Routing Problem with Time Windows. Computers and Operations Research, 2013, 40, 2004-2010.	2.4	8
119	Implementation of a three-stage approach for the dynamic resource-constrained shortest-path sub-problem in branch-and-price. Computers and Operations Research, 2013, 40, 385-394.	2.4	9
120	A column generation approach for a school bus routing problem with resource constraints. Computers and Operations Research, 2013, 40, 566-583.	2.4	66
121	Rich routing problems arising in supply chain management. European Journal of Operational Research, 2013, 224, 435-448.	3.5	87
122	Proportion-based robust optimization and team orienteering problem with interval data. European Journal of Operational Research, 2013, 226, 19-31.	3.5	4
123	Time-Sensitive Route Planning Using Location-Based Data. , 2013, , .		1
124	Column Generation for a Multitrip Vehicle Routing Problem with Time Windows, Driver Work Hours, and Heterogeneous Fleet. Mathematical Problems in Engineering, 2013, 2013, 1-13.	0.6	14
125	A survey of resource constrained shortest path problems: Exact solution approaches. Networks, 2013, 62, 183-200.	1.6	100
126	A Continuous Time Model of Multi-vehicle Routing Problems: A Column Generation Approach. , 2013, , .		1
127	A HYBRID COLUMN GENERATION ALGORITHM BASED ON METAHEURISTIC OPTIMIZATION. Transport, 2013, 31, 389-407.	0.6	3
128	Modeling and solution of practical airline crew scheduling problems. , 2013, , .		4
129	U.S. Postal Airmail Routing Optimization. Transportation Research Record, 2013, 2334, 21-28.	1.0	2
130	Theoretical Aspects of the Integrated Route Planning Problem. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 427-432.	0.4	3
131	Exploiting Set-Based Structures to Accelerate Dynamic Programming Algorithms for the Elementary Shortest Path Problem with Resource Constraints. SSRN Electronic Journal, 2013, , .	0.4	0

#	Article	IF	Citations
132	Motion Planning of a Mobile Cartesian Manipulator for Optimal Harvesting of 2-D Crops. Transactions of the ASABE, 2014, , 283-295.	1.1	1
133	Solving Large Distribution Problems in Supply Chain Networks by a Column Generation Approach. International Journal of Operations Research and Information Systems, 2014, 5, 50-80.	1.0	4
134	Home health care crew scheduling and routing problem with stochastic service times. , 2014, , .		9
135	Chapter 3: New Exact Algorithms for the Capacitated Vehicle Routing Problem. , 2014, , 59-86.		32
136	Chapter 9: Four Variants of the Vehicle Routing Problem. , 2014, , 241-271.		29
137	A new consistent vehicle routing problem for the transportation of people with disabilities. Networks, 2014, 63, 211-224.	1.6	42
138	A Branch-Price-and-Cut approach for solving the medium-term home health care planning problem. Networks, 2014, 64, 143-159.	1.6	75
139	Advances in Communication Networking. Lecture Notes in Computer Science, 2014, , .	1.0	1
140	An exact solution for vehicle routing problems with semi-hard resource constraints. Computers and Industrial Engineering, 2014, 76, 366-377.	3.4	10
141	Transit Bus Scheduling with Limited Energy. Transportation Science, 2014, 48, 521-539.	2.6	147
142	Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints. European Journal of Operational Research, 2014, 234, 49-60.	3.5	66
143	A branch-cut-and-price algorithm for the vehicle routing problem with stochastic demands. Computers and Operations Research, 2014, 50, 141-153.	2.4	66
144	A priori orienteering with time windows and stochastic wait times at customers. European Journal of Operational Research, 2014, 239, 70-79.	3.5	36
145	The distance constrained multiple vehicle traveling purchaser problem. European Journal of Operational Research, 2014, 235, 73-87.	3.5	31
146	Combined location and routing problems for drug distribution. Discrete Applied Mathematics, 2014, 165, 130-145.	0.5	32
147	Exact and heuristic algorithms for solving the generalized vehicle routing problem with flexible fleet size. International Transactions in Operational Research, 2014, 21, 153-175.	1.8	35
148	A branch-and-price algorithm for the multi-depot heterogeneous-fleet pickup and delivery problem with soft time windows. Mathematical Programming Computation, 2014, 6, 171-197.	3.2	42
149	A branch-and-cut-and-price approach for the pickup and delivery problem with shuttle routes. European Journal of Operational Research, 2014, 236, 849-862.	3.5	41

#	Article	IF	CITATIONS
150	Integer programming models for the multidimensional assignment problem with star costs. European Journal of Operational Research, 2014, 235, 553-568.	3.5	17
151	Bi-objective decision support system for routing and scheduling of hazardous materials. Socio-Economic Planning Sciences, 2014, 48, 135-148.	2.5	64
152	The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem. Transportation Research, Part E: Logistics and Transportation Review, 2014, 62, 1-22.	3.7	24
153	Reoptimization strategies for a dynamic vehicle routing problem with mixed backhauls. Networks, 2014, 64, 214-231.	1.6	15
154	A Branch-and-Price Approach To Manage Cargo Consolidation and Distribution in Supply Chains. Industrial & Engineering Chemistry Research, 2014, 53, 17226-17239.	1.8	4
155	Pricing routines for vehicle routing with time windows on road networks. Computers and Operations Research, 2014, 51, 331-337.	2.4	31
156	Operations Research Proceedings 2013. Operations Research Proceedings: Papers of the Annual Meeting = VortrÃge Der Jahrestagung / DGOR, 2014, , .	0.1	0
157	A new exact algorithm to solve the multi-trip vehicle routing problem with time windows and limited duration. 4or, 2014, 12, 235-259.	1.0	48
158	A branch-and-cut algorithm for the capacitated profitable tour problem. Discrete Optimization, 2014, 14, 78-96.	0.6	23
159	A Branch-and-Price Algorithm for the Multidepot Vehicle Routing Problem with Interdepot Routes. Transportation Science, 2014, 48, 425-441.	2.6	49
160	Aircraft maintenance, routing, and crew scheduling planning for airlines with a single fleet and a single maintenance and crew base. Computers and Industrial Engineering, 2014, 75, 68-78.	3.4	32
161	Efficient elementary and restricted non-elementary route pricing. European Journal of Operational Research, 2014, 239, 102-111.	3.5	46
162	Multiple-criterion shortest path algorithms for global path planning of unmanned combat vehicles. Computers and Industrial Engineering, 2014, 71, 57-69.	3.4	24
163	The shortest-path problem with resource constraints with -loop elimination and its application to the capacitated arc-routing problem. European Journal of Operational Research, 2014, 238, 415-426.	3.5	21
164	Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach. European Journal of Operational Research, 2014, 236, 789-799.	3.5	95
165	Scheduled paratransit transport systems. Transportation Research Part B: Methodological, 2014, 67, 18-34.	2.8	20
166	A set-covering based heuristic algorithm for the periodic vehicle routing problem. Discrete Applied Mathematics, 2014, 163, 53-64.	0.5	74
167	A practical model of routing problems for automated guided vehicles with acceleration and deceleration. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2014, 8,	0.3	4

ARTICLE IF CITATIONS # Production scheduling for hot rolling processes with time windows in the steel industry. 0.6 2 168 International Journal of Agile Systems and Management, 2014, 7, 179. Vehicle routing problems with different service constraints: A branchâ€andâ€cutâ€andâ€price algorithm. Networks, 2014, 64, 282-291. 169 1.6 Sustainable Optimization of Winter Road Maintenance Services Under Real-time Information. Procedia 170 1.2 8 Engineering, 2014, 85, 183-192. A railroad maintenance problem solved with a cut and column generation matheuristic. Networks, 171 2015, 66, 40-56. Using column generation to compute lower bound sets for bi-objective combinatorial optimization 172 1.0 0 problems. RAIRO - Operations Research, 2015, 49, 527-554. A Multiple-Starting-Path Approach to the Resource-Constrained<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:math>th Elementary Shortest Path Problem. Mathematical Problems in Engineering, 2015, 2015, 1-7 Analytic centre stabilization of column generation algorithm for the capacitated vehicle routing 174 1.6 5 problem. Optimization Methods and Software, 2015, 30, 1109-1125. A TOPSIS method for vehicle route selection in seaports — A real case analysis of a container terminal in North West Europe., 2015,,. A Column Generation Based Heuristic for the Capacitated Vehicle Routing Problem with 176 0.5 2 Three-dimensional Loading Constraints. IFAC-PapersOnLine, 2015, 48, 448-453. Two exact algorithms for the traveling umpire problem. European Journal of Operational Research, 3.5 2015, 243, 932-943. Reaching the elementary lower bound in the vehicle routing problem with time windows. Networks, 179 1.6 14 2015, 65, 88-99. Co-operation in the Parallel Memetic Algorithm. International Journal of Parallel Programming, 2015, 1.1 43, 812-839. The discrete time window assignment vehicle routing problem. European Journal of Operational 181 3.5 64 Research, 2015, 244, 379-391. Time-dependent routing problems: A review. Computers and Operations Research, 2015, 64, 189-197. 184 2.4 183 The aircraft routing problem with refueling. Optimization Letters, 2015, 9, 1609-1624. 185 0.9 13 A branch-and-price approach to evaluate the role of cross-docking operations in consolidated supply chains. Computers and Chemical Engineering, 2015, 80, 15-29. A branch-and-price algorithm for the home health care scheduling and routing problem with 188 stochastic service times and skill requirements. International Journal of Production Research, 2015, 4.9 98 53, 7450-7464. Modeling and Solving Vehicle Routing Problems with Many Available Vehicle Types. Springer 189 0.1 Proceedings in Mathematics and Statistics, 2015, , 113-138.

# 190	ARTICLE A Mobile Application for Real-Time Multimodal Routing Under a Set of Users' Preferences. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2015, 19, 149-166.	IF 2.6	CITATIONS
192	A column generation approach for a multi-attribute vehicle routing problem. European Journal of Operational Research, 2015, 241, 888-906.	3.5	40
193	A Branch-and-Price-and-Cut Algorithm for Heterogeneous Pickup and Delivery Problems with Configurable Vehicle Capacity. Transportation Science, 2015, 49, 254-270.	2.6	52
194	Freight railway operator timetabling and engine scheduling. European Journal of Operational Research, 2015, 241, 309-319.	3.5	8
195	A branch-and-price approach for a multi-period vehicle routing problem. Computers and Operations Research, 2015, 55, 167-184.	2.4	52
196	A new formulation and approach for the black and white traveling salesman problem. Computers and Operations Research, 2015, 53, 96-106.	2.4	6
197	A Branch-and-Cut-and-Price Algorithm for the Two-Echelon Capacitated Vehicle Routing Problem. Transportation Science, 2015, 49, 355-368.	2.6	50
198	Solving the Orienteering Problem with Time Windows via the Pulse Framework. Computers and Operations Research, 2015, 54, 168-176.	2.4	17
199	A new warmstarting strategy for the primal-dual column generation method. Mathematical Programming, 2015, 152, 113-146.	1.6	10
200	The Shortest Path Problems in Battery-Electric Vehicle Dispatching with Battery Renewal. Sustainability, 2016, 8, 607.	1.6	7
201	An efficient column generation heuristic for vehicle routing with multiple use of vehicles for a rental business. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2016, 10, JAMDSM0050-JAMDSM0050.	0.3	0
202	Decentralized allocation of tasks with temporal and precedence constraints to a team of robots. , $2016,$, .		11
203	On the shortest path problem with negative cost cycles. Computational Optimization and Applications, 2016, 63, 559-583.	0.9	5
204	QoT-aware multicast provisioning using column generation in mixed-line-rate optical networks. , 2016, , .		3
205	A Column Generation Based Heuristic for the Multicommodity-ring Vehicle Routing Problem. Transportation Research Procedia, 2016, 12, 227-238.	0.8	4
206	Column Generation based heuristic for the Vehicle Routing Problem with Time-Dependent Demand. IFAC-PapersOnLine, 2016, 49, 526-531.	0.5	7
207	Using Constraint Programming for the Urban Transit Crew Rescheduling Problem. Lecture Notes in Computer Science, 2016, , 636-649.	1.0	2
208	A branch-and-price based heuristic for the stochastic vehicle routing problem with hard time windows. Electronic Notes in Discrete Mathematics, 2016, 52, 325-332.	0.4	7

#	Article	IF	CITATIONS
209	Computational Logistics. Lecture Notes in Computer Science, 2016, , .	1.0	2
210	A Branch&Price&Cut algorithm for the Vehicle Routing Problem with Intermediate Replenishment Facilities. Electronic Notes in Discrete Mathematics, 2016, 55, 93-96.	0.4	1
211	The Team Orienteering Pick-Up and Delivery Problem with Time Windows and its applications in fleet sizing. RAIRO - Operations Research, 2016, 50, 503-517.	1.0	5
212	Framework branch-and-price algorithm for yard management problem at container terminals. , 2016, , .		1
213	An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints. Transportation Science, 2016, 50, 348-357.	2.6	68
214	A dynamic programming approach to integrated assembly planning and supplier assignment with lead time constraints. International Journal of Production Research, 2016, 54, 2691-2708.	4.9	7
215	Evaluation of Cost Structure and Impact of Parameters in Location-routing Problem with Time Windows. Transportation Research Procedia, 2016, 12, 213-226.	0.8	8
216	Exact methods for solving the elementary shortest and longest path problems. Annals of Operations Research, 2016, 244, 313-348.	2.6	5
217	Integrating Timetabling and Crew Scheduling at a Freight Railway Operator. Transportation Science, 2016, 50, 878-891.	2.6	17
218	The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations. European Journal of Operational Research, 2016, 252, 995-1018.	3.5	374
219	Integer programming formulations for the elementary shortest path problem. European Journal of Operational Research, 2016, 252, 122-130.	3.5	64
220	Branch-and-price algorithm for the location-routing problem with time windows. Transportation Research, Part E: Logistics and Transportation Review, 2016, 86, 1-19.	3.7	42
221	Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem. European Journal of Operational Research, 2016, 249, 93-104.	3.5	61
222	A priori optimization with recourse for the vehicle routing problem with hard time windows and stochastic service times. European Journal of Operational Research, 2016, 249, 55-66.	3.5	87
223	Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows. European Journal of Operational Research, 2016, 249, 551-559.	3.5	76
224	Exact approaches for the pickup and delivery problem with loading cost. Omega, 2016, 59, 131-145.	3.6	16
225	The Orienteering Problem with Time Windows Applied to Robotic Melon Harvesting. Journal of Optimization Theory and Applications, 2016, 168, 246-267.	0.8	7
226	Enhanced exact solution methods for the Team Orienteering Problem. International Journal of Production Research, 2016, 54, 591-601.	4.9	58

#	Article	IF	CITATIONS
227	Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft Computing, 2016, 20, 2309-2327.	2.1	87
228	Single vehicle routing with predefined client sequence and multiple warehouse returns: the case of two warehouses. Central European Journal of Operations Research, 2016, 24, 709-730.	1.1	9
229	Optimization of a city logistics transportation system with mixed passengers and goods. EURO Journal on Transportation and Logistics, 2017, 6, 81-109.	1.3	124
230	An Exact Approach for a Variant of the Pollution-Routing Problem. Transportation Science, 2017, 51, 607-628.	2.6	63
231	The Traveling Purchaser Problem and its variants. European Journal of Operational Research, 2017, 259, 1-18.	3.5	47
232	Branch-and-price and adaptive large neighborhood search for the truck and trailer routing problem with time windows. Computers and Operations Research, 2017, 83, 28-44.	2.4	54
233	A dynamic programming operator for tour location problems applied to the covering tour problem. Journal of Heuristics, 2017, 23, 53-80.	1.1	4
234	A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations. Transportation Research Part B: Methodological, 2017, 100, 115-137.	2.8	64
235	Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster. European Journal of Operational Research, 2017, 261, 530-539.	3.5	46
236	A survey of the standard location-routing problem. Annals of Operations Research, 2017, 259, 389-414.	2.6	99
237	Simultaneous delivery time and aperture shape optimization for the volumetric-modulated arc therapy (VMAT) treatment planning problem. Physics in Medicine and Biology, 2017, 62, 5589-5611.	1.6	12
238	Resource constrained routing and scheduling: Review and research prospects. European Journal of Operational Research, 2017, 263, 737-754.	3.5	76
239	A Combined column generation and heuristics for railway short-term rolling stock planning with regular inspection constraints. Computers and Operations Research, 2017, 81, 14-25.	2.4	21
240	A Polyhedral Study of the Elementary Shortest Path Problem with Resource Constraints. Lecture Notes in Computer Science, 2017, , 79-93.	1.0	1
241	Optimal solution for travelling salesman problem using heuristic shortest path algorithm with imprecise arc length. AIP Conference Proceedings, 2017, , .	0.3	2
242	A complementarity equilibrium model for electric vehicles with charging. International Journal of Transportation Science and Technology, 2017, 6, 255-271.	2.0	8
243	Decentralized multi-robot allocation of tasks with temporal and precedence constraints. Advanced Robotics, 2017, 31, 1193-1207.	1.1	21
244	New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows. INFORMS Journal on Computing, 2017, 29, 489-502.	1.0	87

#	Article	IF	CITATIONS
245	Empirical analysis for the VRPTW with a multigraph representation for the road network. Computers and Operations Research, 2017, 88, 103-116.	2.4	45
246	The stochastic vehicle routing problem, a literature review, Part II: solution methods. EURO Journal on Transportation and Logistics, 2017, 6, 349-388.	1.3	69
247	Route relaxations on GPU for vehicle routing problems. European Journal of Operational Research, 2017, 258, 456-466.	3.5	8
248	A heuristic for cumulative vehicle routing using column generation. Discrete Applied Mathematics, 2017, 228, 140-157.	0.5	16
249	An Exact Method for Vehicle Routing and Truck Driver Scheduling Problems. Transportation Science, 2017, 51, 737-754.	2.6	43
250	A column generation based heuristic for the capacitated vehicle routing problem with three-dimensional loading constraints. International Journal of Production Research, 2017, 55, 1730-1747.	4.9	21
251	Branch-and-price approaches for the Multiperiod Technician Routing and Scheduling Problem. European Journal of Operational Research, 2017, 257, 55-68.	3.5	75
252	Mathematical model and exact algorithm for the home care worker scheduling and routing problem with lunch break requirements. International Journal of Production Research, 2017, 55, 558-575.	4.9	81
253	Branch and Price and Cut for the Split-Delivery Vehicle Routing Problem with Time Windows and Linear Weight-Related Cost. Transportation Science, 2017, 51, 668-687.	2.6	43
254	Application of machine learning for fuel consumption modelling of trucks. , 2017, , .		46
255	Exact Algorithm for the Capacitated Team Orienteering Problem with Time Windows. Mathematical Problems in Engineering, 2017, 2017, 1-6.	0.6	4
256	Operational Research. Springer Proceedings in Mathematics and Statistics, 2018, , .	0.1	2
257	Models and Advanced Optimization Algorithms for the Integrated Management of Logistics Operations. Springer Proceedings in Mathematics and Statistics, 2018, , 313-324.	0.1	1
258	A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm. European Journal of Operational Research, 2018, 271, 866-881.	3.5	30
259	Column Generation Based Approaches for Combined Routing and Scheduling. Electronic Notes in Discrete Mathematics, 2018, 64, 155-164.	0.4	2
260	A shortest-path-based approach for the stochastic knapsack problem with non-decreasing expected overfilling costs. Computers and Operations Research, 2018, 97, 111-124.	2.4	5
261	Evaluating the impact of optimization algorithms for patient transits dispatching using discrete event simulation. Operations Research for Health Care, 2018, 19, 134-155.	0.8	8
262	Dynamic Orienteering on a Network of Queues. Transportation Science, 2018, 52, 691-706.	2.6	20

ARTICLE IF CITATIONS # Joint Optimization for Multicast Provisioning in Mixed-Line-Rate Optical Networks With a Column 263 2.7 10 Generation Approach. Journal of Lightwave Technology, 2018, 36, 637-649. Generating guitar solos by integer programming. Journal of the Operational Research Society, 2018, 69, 971-985. 264 2.1 Column generation algorithms for bi-objective combinatorial optimization problems with a min–max 265 1.5 3 objective. EURO Journal on Computational Optimization, 2018, 6, 117-142. Daily scheduling of caregivers with stochastic times. International Journal of Production Research, 266 4.9 2018, 56, 3245-3261. The vehicle routing problem with hard time windows and stochastic service times. EURO Journal on 267 1.3 38 Transportation and Logistics, 2018, 7, 223-251. Time-Dependent Hazardous-Materials Network Design Problem. Transportation Science, 2018, 52, 454-473. 2.6 The Time Window Assignment Vehicle Routing Problem with Time-Dependent Travel Times. 269 2.6 49 Transportation Science, 2018, 52, 261-276. Task assignment with start time-dependent processing times for personnel at check-in counters. 1.3 Journal of Scheduling, 2018, 21, 93-109. The time-dependent capacitated profitable tour problem with time windows and precedence 271 3.5 34 constraints. European Journal of Operational Research, 2018, 264, 1058-1073. Indexing Discrete Sets in a Label Setting Algorithm for Solving the Elementary Shortest Path Problem with Resource Constraints., 2018,,. Coverage Path Planning for a UAS Imagery Mission using Column Generation with a Turn Penalty., 273 5 2018,,. A branch-price-and-cut algorithm for the vehicle routing problem with time windows and multiple 274 1.1 deliverymen. Top, 2018, 26, 437-464. A multi-population algorithm to solve the VRP with stochastic service and travel times. Computers 275 3.4 37 and Industrial Engineering, 2018, 125, 144-156. Reformulations and branch-and-price algorithm for the Minimum Cost Hop-and-root Constrained 2.4 Forest Problem. Computers and Operations Research, 2018, 98, 38-55. The time-dependent pickup and delivery problem with time windows. Transportation Research Part B: 277 2.8 60 Methodological, 2018, 116, 1-24. Drones path planning for WSN data gathering: A column generation heuristic approach., 2018,,. 278 A branch-and-price algorithm for the multi-trip multi-repairman problem with time windows. 279 3.7 20 Transportation Research, Part E: Logistics and Transportation Review, 2018, 116, 25-41. A branch-and-price algorithm for a vehicle routing with demand allocation problem. European 24 Journal of Operational Research, 2019, 272, 523-538.

#	ARTICLE	IF	CITATIONS
281	Column generation for vehicle routing problems with multiple synchronization constraints. European Journal of Operational Research, 2019, 272, 699-711.	3.5	30
282	The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology. European Journal of Operational Research, 2019, 272, 879-904.	3.5	143
283	Genetic Algorithms for Solving Shortest Path Problem in Maze-Type Network with Precedence Constraints. Wireless Personal Communications, 2019, 105, 427-442.	1.8	7
284	A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems. Transportation Science, 2019, 53, 1001-1022.	2.6	18
285	Exact Branch-Price-and-Cut Algorithms for Vehicle Routing. Transportation Science, 2019, 53, 946-985.	2.6	126
286	Persistent Multi-Robot Mapping in an Uncertain Environment. , 2019, , .		2
287	The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method. Transportation Science, 2019, 53, 1043-1066.	2.6	54
288	Branch-and-Bound for Bi-objective Integer Programming. INFORMS Journal on Computing, 2019, 31, 805-822.	1.0	19
289	Cover Inequalities for a Vehicle Routing Problem with Time Windows and Shifts. Transportation Science, 2019, 53, 1354-1371.	2.6	7
290	A genetic algorithm based column generation method for multi-depot electric bus vehicle scheduling. , 2019, , .		4
291	Nested branch-and-price-and-cut for vehicle routing problems with multiple resource interdependencies. European Journal of Operational Research, 2019, 276, 549-565.	3.5	8
292	The Dynamic-Demand Joint Replenishment Problem with Approximated Transportation Costs. European Journal of Operational Research, 2019, 276, 1013-1033.	3.5	17
293	An Exact Algorithm for a Rich Vehicle Routing Problem with Private Fleet and Common Carrier. Transportation Science, 2019, 53, 986-1000.	2.6	12
294	Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles. Networks and Spatial Economics, 2019, 19, 633-668.	0.7	13
295	Vehicle routing problem with drones. Transportation Research Part B: Methodological, 2019, 122, 350-364.	2.8	252
296	Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study. Public Transport, 2019, 11, 1-25.	1.7	11
297	Vehicle routing for a mid-day meal delivery distribution system. Heliyon, 2019, 5, e01158.	1.4	2
298	Revised Pulse Algorithm for Elementary Shortest Path Problem with Resource Constraints. , 2019, , .		1

#	Article	IF	CITATIONS
299	A matheuristic for a multimodal long haul routing problem. EURO Journal on Transportation and Logistics, 2019, 8, 397-433.	1.3	19
300	Exact Algorithms for the Vehicle Routing Problem with Time Windows and Combinatorial Auction. Transportation Science, 2019, 53, 427-441.	2.6	16
301	Branch-and-Price–Based Algorithms for the Two-Echelon Vehicle Routing Problem with Time Windows. Transportation Science, 2019, 53, 463-479.	2.6	60
302	An exact bidirectional <i>A</i> ^{â<t< sup=""> approach for solving resourceâ€constrained shortest path problems. Networks, 2019, 73, 187-205.</t<>}	1.6	31
303	A rollout algorithm for the resource constrained elementary shortest path problem. Optimization Methods and Software, 2019, 34, 1056-1074.	1.6	5
304	Algorithms for non-linear and stochastic resource constrained shortest path. Mathematical Methods of Operations Research, 2019, 89, 281-317.	0.4	7
305	A branchâ€∎ndâ€price algorithm for the vehicle routing problem with time windows on a road network. Networks, 2019, 73, 401-417.	1.6	21
306	A branch-and-price-and-cut algorithm for a pickup and delivery problem in retailing. Omega, 2019, 89, 71-91.	3.6	29
307	Selective pricing in branch-price-and-cut algorithms for vehicle routing. EURO Journal on Transportation and Logistics, 2019, 8, 147-168.	1.3	5
308	The price of discretizing time: a study in service network design. EURO Journal on Transportation and Logistics, 2019, 8, 195-216.	1.3	21
309	Optimizing resource recharging location-routing plans: A resource-space-time network modeling framework for railway locomotive refueling applications. Computers and Industrial Engineering, 2019, 127, 1241-1258.	3.4	21
310	Bounded dynamic programming algorithm for the job shop problem with sequence dependent setup times. Operational Research, 2020, 20, 1701-1728.	1.3	6
311	Exact and heuristic dynamic programming algorithms for the traveling salesman problem with flexible time windows. Optimization Letters, 2020, 14, 579-609.	0.9	7
312	An efficient exact approach for the constrained shortest path tour problem. Optimization Methods and Software, 2020, 35, 1-20.	1.6	19
313	Energy-Constrained Multi-UAV Coverage Path Planning for an Aerial Imagery Mission Using Column Generation. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 97, 125-139.	2.0	51
314	The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model. Soft Computing, 2020, 24, 6741-6769.	2.1	28
315	Exact solution of the soft-clustered vehicle-routing problem. European Journal of Operational Research, 2020, 280, 164-178.	3.5	20
316	Bidirectional labeling for solving vehicle routing and truck driver scheduling problems. European Journal of Operational Research, 2020, 283, 108-124.	3.5	18

#	Article	IF	CITATIONS
317	Finding the nucleolus of the vehicle routing game with time windows. Applied Mathematical Modelling, 2020, 80, 334-344.	2.2	3
318	On the Shortest Path Problems with Edge Constraints. , 2020, , .		3
319	The Commute Trip-Sharing Problem. Transportation Science, 2020, 54, 1640-1675.	2.6	8
320	A cooperative rich vehicle routing problem in the last-mile logistics industry in rural areas. Transportation Research, Part E: Logistics and Transportation Review, 2020, 141, 102024.	3.7	32
322	A New Understanding of Marketing and "Doing Good― Marketing's Power in the TMT and Corporate Social Responsibility. Journal of Business Ethics, 2022, 176, 89-109.	3.7	9
323	The Effect of Limited Resources in the Dynamic Vehicle Routing Problem with Mixed Backhauls. Information (Switzerland), 2020, 11, 414.	1.7	3
324	Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility. Transportation Research Part B: Methodological, 2020, 142, 143-173.	2.8	23
325	A Global Path Planner for Safe Navigation of Autonomous Vehicles in Uncertain Environments. Sensors, 2020, 20, 6103.	2.1	7
326	An exact algorithm for the multi-period inspector scheduling problem. Computers and Industrial Engineering, 2020, 145, 106515.	3.4	3
327	Variable Fixing for Two-Arc Sequences in Branch-Price-and-Cut Algorithms on Path-Based Models. Transportation Science, 2020, 54, 1170-1188.	2.6	12
328	An Exact Algorithm for Agile Earth Observation Satellite Scheduling with Time-Dependent Profits. Computers and Operations Research, 2020, 120, 104946.	2.4	27
329	The Vehicle Routing Problem with Partial Outsourcing. Transportation Science, 2020, 54, 1034-1052.	2.6	7
330	Scheduling jobs with release dates on identical parallel machines by minimizing the total weighted completion time. Computers and Operations Research, 2020, 123, 105018.	2.4	10
331	A Heuristic Branch-Cut-and-Price Algorithm for the ROADEF/EURO Challenge on Inventory Routing. Transportation Science, 2020, 54, 313-329.	2.6	5
332	An exact algorithm for the electric-vehicle routing problem with nonlinear charging time. Journal of the Operational Research Society, 2021, 72, 1461-1485.	2.1	46
333	Linear edge costs and labeling algorithms: The case of the timeâ€dependent vehicle routing problem with time windows. Networks, 2020, 76, 24-53.	1.6	10
334	An efficient and general approach for the joint order batching and picker routing problem. European Journal of Operational Research, 2020, 285, 497-512.	3.5	40
335	Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach. European Journal of Operational Research, 2020, 285, 825-843.	3.5	8

#	Article	IF	CITATIONS
336	Fuzzy green vehicle routing problem for designing a three echelons supply chain. Journal of Cleaner Production, 2020, 259, 120774.	4.6	45
337	An exact algorithm for inland container transportation network design. Transportation Research Part B: Methodological, 2020, 135, 41-82.	2.8	20
338	On the road to better routes: Five decades of published research on the vehicle routing problem. Networks, 2021, 77, 66-87.	1.6	9
339	A column generation approach for an emission-oriented vehicle routing problem on a multigraph. European Journal of Operational Research, 2021, 288, 794-809.	3.5	30
340	The Migratory Beekeeping Routing Problem: Model and an Exact Algorithm. INFORMS Journal on Computing, 2021, 33, 319-335.	1.0	1
341	The Joint Network Vehicle Routing Game. Transportation Science, 2021, 55, 179-195.	2.6	9
342	A branch and cut algorithm for the time-dependent profitable tour problem with resource constraints. European Journal of Operational Research, 2021, 289, 879-896.	3.5	8
343	Electric vehicle routing with flexible time windows: a column generation solution approach. Transportation Letters, 2021, 13, 97-103.	1.8	28
344	The Time-Dependent Vehicle Routing Problem with Time Windows and Road-Network Information. SN Operations Research Forum, 2021, 2, 1.	0.6	1
345	A Building Information Model enabled Multiple Traveling Salesman Problem for building interior patrols. Advanced Engineering Informatics, 2021, 47, 101237.	4.0	11
346	Branch-and-Price for a Multi-attribute Technician Routing and Scheduling Problem. SN Operations Research Forum, 2021, 2, 1.	0.6	7
347	A Branch-and-Cut-and-Price Algorithm for the Electric Vehicle Routing Problem with Multiple Technologies. SN Operations Research Forum, 2021, 2, 1.	0.6	6
348	The EMS vehicle patient transportation problem during a demand surge. Journal of Global Optimization, 2021, 79, 989-1006.	1.1	7
349	An enhanced branch-and-price algorithm for the integrated production and transportation scheduling problem. International Journal of Production Research, 2022, 60, 1874-1889.	4.9	30
350	The benefits of autonomous vehicles for community-based trip sharing. Transportation Research Part C: Emerging Technologies, 2021, 124, 102929.	3.9	13
351	Branch-Price-and-Cut Algorithms for the Vehicle Routing Problem with Stochastic and Correlated Travel Times. Operations Research, 2021, 69, 436-455.	1.2	9
352	The Steiner bi-objective shortest path problem. EURO Journal on Computational Optimization, 2021, 9, 100004.	1.5	3
353	An exact algorithm for the resource constrained home health care vehicle routing problem. Annals of Operations Research, 2021, 304, 397-425.	2.6	11

#	Article	IF	CITATIONS
354	Suburban Demand Responsive Transit Service With Rental Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2391-2403.	4.7	12
355	A multiâ€vehicle covering tour problem with speed optimization. Networks, 2022, 79, 119-142.	1.6	3
356	Workforce Scheduling with Order-Picking Assignments in Distribution Facilities. Transportation Science, 2021, 55, 725-746.	2.6	10
357	Machine-Learning–Based Column Selection for Column Generation. Transportation Science, 2021, 55, 815-831.	2.6	32
358	Branch-and-price-and-cut methods for the electric vehicle routing problem with time windows. International Journal of Production Research, 2022, 60, 5332-5353.	4.9	20
359	Scheduling heterogeneous delivery tasks on a mixed logistics platform. European Journal of Operational Research, 2022, 298, 680-698.	3.5	4
360	The joint network vehicle routing game with optional customers. Computers and Operations Research, 2021, 133, 105375.	2.4	2
361	A column generation approach for the driver scheduling problem with staff cars. Public Transport, 0, , 1.	1.7	3
362	Stochastic Bi-level Programming Model for Home Healthcare Scheduling Problems Considering the Degree of Satisfaction with Visit Time. Journal of Systems Science and Systems Engineering, 2021, 30, 572-599.	0.8	6
363	Solving multi-depot electric vehicle scheduling problem by column generation and genetic algorithm. Applied Soft Computing Journal, 2021, 112, 107774.	4.1	35
364	Minimising emissions in traffic assignment with non-monotonic arc costs. Transportation Research Part B: Methodological, 2021, 153, 70-90.	2.8	4
365	An exact dynamic programming approach to segmented isotonic regression. Omega, 2021, 105, 102516.	3.6	2
366	Solving the battery swap station location-routing problem with a mixed fleet of electric and conventional vehicles using a heuristic branch-and-price algorithm with an adaptive selection scheme. Expert Systems With Applications, 2021, 186, 115683.	4.4	23
367	A robust optimization approach with probe-able uncertainty. European Journal of Operational Research, 2022, 296, 218-239.	3.5	1
369	The k-Color Shortest Path Problem. AIRO Springer Series, 2019, , 367-376.	0.4	4
370	A Column Generation Based Label Correcting Approach for the Sensor Management in an Information Collection Process. Studies in Computational Intelligence, 2013, , 77-89.	0.7	5
371	A Column Generation Approach to Home Care Staff Routing and Scheduling. Operations Research Proceedings: Papers of the Annual Meeting = VortrÃ g e Der Jahrestagung / DGOR, 2014, , 317-323.	0.1	1
372	A Tabu Search Optimization for Multicast Provisioning in Mixed-Line-Rate Optical Networks. Lecture Notes in Computer Science, 2014, , 14-25.	1.0	3

#	Article	IF	CITATIONS
374	A Selector Operator-Based Adaptive Large Neighborhood Search for the Covering Tour Problem. Lecture Notes in Computer Science, 2015, , 170-185.	1.0	2
375	Variable Neighborhood Search for the Elementary Shortest Path Problem with Loading Constraints. Lecture Notes in Computer Science, 2015, , 474-489.	1.0	3
376	Minimum Makespan Vehicle Routing Problem with Compatibility Constraints. Lecture Notes in Computer Science, 2017, , 244-253.	1.0	3
377	Solving the Longest Simple Path Problem with Constraint-Based Techniques. Lecture Notes in Computer Science, 2012, , 292-306.	1.0	4
378	Dynamic Programming Approaches for Solving Shortest Path Problem in Transportation: Comparison and Application. Lecture Notes in Electrical Engineering, 2020, , 141-160.	0.3	2
379	Heuristic column generation for designing an express circular packaging distribution network. Operational Research, 2022, 22, 1103-1126.	1.3	5
380	Congestion and Pollution, Vehicle Routing Problem of a Logistics Provider in Thailand. Open Transportation Journal, 2019, 13, 203-212.	0.4	4
381	Vehicle Routing Models and Algorithms for Winter Road Spreading Operations. , 0, , 15-45.		4
382	Coastal shuttle tanker inventory routing model with a discrete loaded quantity. Applied Economics, 2021, 53, 6120-6137.	1.2	2
383	An exact algorithm for two-dimensional vector packing problem with volumetric weight and general costs. European Journal of Operational Research, 2022, 300, 20-34.	3.5	4
385	A Solution for Time-Dependent Multimodal Shortest Path Problem. Journal of Applied Sciences, 2009, 9, 3804-3812.	0.1	2
387	Decomposition Techniques for Hybrid MILP/CP Models applied to Scheduling and Routing Problems. Springer Optimization and Its Applications, 2011, , 135-167.	0.6	1
388	Optimization in Designing Complex Communication Networks. Springer Optimization and Its Applications, 2012, , 3-37.	0.6	0
389	Application of Column Generation for Train-set Scheduling Problems with Regular Maintenance Constraints. IEEJ Transactions on Electronics, Information and Systems, 2012, 132, 151-159.	0.1	0
390	Application of Graph Theory in Grain and Oil Deployment. Journal of Service Science and Management, 2015, 08, 502-515.	0.4	0
391	Energy-Efficient Location-Routing Problem with Time Windows with Dynamic Demand. Industrial and Systems Engineering Review, 2015, 3, 17-36.	0.2	2
392	A Branch-and-Price Algorithm for the Vehicle Routing Problem with 2-Dimensional Loading Constraints. Lecture Notes in Computer Science, 2016, , 321-336.	1.0	2
393	A Shortest-Path-Based Approach for the Stochastic Knapsack Problem with Non-Decreasing Expected Overfilling Costs. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
394	A mixed-integer linear programming model for optimal vessel scheduling in offshore oil and gas operations. Journal of Industrial and Management Optimization, 2017, 13, 1601-1623.	0.8	0
395	Research on Vehicle Routing Problem with Time Windows Restrictions. Lecture Notes in Computer Science, 2018, , 763-770.	1.0	0
396	Exact Method Approaches for the Differential Harvest Problem. Lecture Notes in Computer Science, 2020, , 492-510.	1.0	0
397	cspy: A Python package with a collection of algorithms for the (Resource) Constrained Shortest Path problem. Journal of Open Source Software, 2020, 5, 1655.	2.0	5
398	Improved Simulated Annealing Algorithm for Vehicle Routing Problem with Multiple Time Windows using Column Generation. , 2020, , .		0
399	Matheuristics and Column Generation for a Basic Technician Routing Problem. Algorithms, 2021, 14, 313.	1.2	6
400	A constraint-programming based decomposition method for the Generalised Workforce Scheduling and Routing Problem (GWSRP). International Journal of Production Research, 0, , 1-19.	4.9	6
401	Automated Tuning of a Column Generation Algorithm. Lecture Notes in Computer Science, 2020, , 201-215.	1.0	1
402	Solving a Real-World Multi-attribute VRP Using a Primal-Based Approach. Lecture Notes in Computer Science, 2020, , 286-296.	1.0	0
403	The Rainbow Steiner Tree Problem. Computers and Operations Research, 2022, 139, 105621.	2.4	1
404	Improving Column Generation for Vehicle Routing Problems via Random Coloring and Parallelization. INFORMS Journal on Computing, 2022, 34, 953-973.	1.0	3
405	Exact Branch-Price-and-Cut for a Hospital Therapist Scheduling Problem with Flexible Service Locations and Time-Dependent Location Capacity. INFORMS Journal on Computing, 2022, 34, 1157-1175.	1.0	4
406	Intelligent Scheduling Strategy of Electric Locomotive Robots for Underground Mining. IEEE Access, 2021, 9, 161533-161545.	2.6	1
407	Routing optimization of shared autonomous electric vehicles under uncertain travel time and uncertain service time. Transportation Research, Part E: Logistics and Transportation Review, 2022, 157, 102548.	3.7	20
409	Branch-and-price-and-cut for the electric vehicle relocation problem in one-way carsharing systems. Omega, 2022, 109, 102609.	3.6	18
410	Branch-and-Price Approaches for Real-Time Vehicle Routing with Picking, Loading, and Soft Time Windows. INFORMS Journal on Computing, 2022, 34, 2192-2211.	1.0	1
411	A Branch-and-Price-and-Cut Algorithm for the Vehicle Routing Problem with Two-Dimensional Loading Constraints. Transportation Science, 0, , .	2.6	1
412	Exact algorithms for the multiple depot vehicle scheduling problem with heterogeneous vehicles, split loads and toll-by-weight scheme. Computers and Industrial Engineering, 2022, 168, 108137.	3.4	2

#	Article	IF	CITATIONS
413	Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing. Annals of Operations Research, 2023, 327, 89-127.	2.6	15
414	Learning-Based Branch-and-Price Algorithms for the Vehicle Routing Problem with Time Windows and Two-Dimensional Loading Constraints. INFORMS Journal on Computing, 2022, 34, 1419-1436.	1.0	14
415	A branch-and-price algorithm for location-routing problems with pick-up stations in the last-mile distribution system. European Journal of Operational Research, 2022, 303, 1258-1276.	3.5	14
416	A Branch and Price Algorithm for the Heterogeneous Fleet Multi-Depot Multi-Trip Vehicle Routing Problem with Time Windows. Transportation Science, 2022, 56, 1636-1657.	2.6	5
417	Multiâ€øbjective optimization of the maritime cargo routing and scheduling problem. International Transactions in Operational Research, 2024, 31, 221-245.	1.8	6
422	Vehicle Routing with Stochastic Demands and Partial Reoptimization. Transportation Science, 2022, 56, 1393-1408.	2.6	7
423	Joint routing and charging optimization for eVTOL aircraft recovery. Aerospace Science and Technology, 2022, 126, 107595.	2.5	2
424	New neighborhoods and an iterated local search algorithm for the generalized traveling salesman problem. EURO Journal on Computational Optimization, 2022, 10, 100029.	1.5	4
426	A novel greedy adaptive ant colony algorithm for shortest path of irrigation groups. Mathematical Biosciences and Engineering, 2022, 19, 9018-9038.	1.0	1
427	A column generation based approach for an integrated production and transportation scheduling problem with dual delivery modes. International Journal of Production Research, 2023, 61, 5483-5501.	4.9	4
428	Branch-Cut-and-Price for the Time-Dependent Green Vehicle Routing Problem with Time Windows. INFORMS Journal on Computing, 2023, 35, 14-30.	1.0	3
429	An Exact Price-Cut-and-Enumerate Method for the Capacitated Multitrip Vehicle Routing Problem with Time Windows. Transportation Science, 2023, 57, 230-251.	2.6	6
430	A Chance-Constrained Two-Echelon Vehicle Routing Problem with Stochastic Demands. Transportation Science, 2023, 57, 252-272.	2.6	7
431	The Pickup and Delivery Problem with Time Windows and Incompatibility Constraints in Cold Chain Transportation. Transportation Science, 2023, 57, 444-462.	2.6	2
432	Metro crew planning with day-off pattern, duty type, and rostering scheme considerations. Transportation Research Part C: Emerging Technologies, 2022, 143, 103832.	3.9	4
433	Power Management for Noise Aware Path Planning of Hybrid UAVs. , 2022, , .		2
434	The resource constrained clustered shortest path tree problem: Mathematical formulation and Branch&Price solution algorithm. Networks, 0, , .	1.6	0
435	Branch-and-Price for Drone Delivery Service Planning in Urban Airspace. Transportation Science, 2023, 57, 843-865.	2.6	1

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
436	Vehicle and UAV Collaborative Delivery Path Optimization Model. Mathematics, 2022,	10, 3744.	1.1	13
437	Machine-Learning–Based Arc Selection for Constrained Shortest Path Problems in Co Generation. INFORMS Journal on Optimization, 2023, 5, 191-210.	blumn	0.9	9
438	Long-term audit staff scheduling and planning: A case study of Brazilian civil aviation a Journal of Air Transport Management, 2023, 106, 102318.	uthority.	2.4	2
439	Approximate solution of the shortest path problem with resource constraints and appl vehicle routing problems. Electronic Research Archive, 2023, 31, 615-632.	ications to	0.4	0
440	Consolidating Bus Charger Deployment and Fleet Management for Public Transit Elect Life-Cycle Cost Analysis Framework. Engineering, 2023, 21, 45-60.	rification: A	3.2	4
441	Recent advances in vehicle routing with stochastic demands: Bayesian learning for com demands and elementary branch-price-and-cut. European Journal of Operational Resear 1081-1093.	related rch, 2023, 306,	3.5	3
442	Branch-And-Price Algorithm for the Tramp Ship Routing and Scheduling Problem Consid Speed and Payload. Journal of Marine Science and Engineering, 2022, 10, 1811.	dering Ship	1.2	1
443	On-Demand Delivery from Stores: Dynamic Dispatching and Routing with Random Den Manufacturing and Service Operations Management, 2023, 25, 595-612.	nand.	2.3	12
444	Systematic Review of the Latest Scientific Publications on the Vehicle Routing Problem Journal of Operational Research, 2023, 40, .	. Asia-Pacific	0.9	1
445	A New Exact Algorithm for Single-Commodity Vehicle Routing with Split Pickups and D INFORMS Journal on Computing, 2023, 35, 31-49.	eliveries.	1.0	1
446	Integrated optimization of bus bridging service design and passenger assignment in re rail transit disruptions. Transportation Research Part C: Emerging Technologies, 2023,	sponse to urban 150, 104098.	3.9	9
447	A stabilized branch-and-price-and-cut algorithm for the waste transportation problem v transportation. Computers and Industrial Engineering, 2023, 178, 109143.	vith split	3.4	3
448	Optimizing first-mile ridesharing services to intercity transit hubs. Transportation Rese Emerging Technologies, 2023, 150, 104082.	arch Part C:	3.9	3
449	A branch-and-price-and-cut algorithm for the vehicle routing problem with load-depend Transportation Research Part B: Methodological, 2023, 171, 80-110.	ent drones.	2.8	6
450	Efficient Navigation for Constrained Shortest Path with Adaptive Expansion Control. , 2	2022,,.		1
451	A branch-price-and-cut algorithm for a time-dependent green vehicle routing problem v consideration of traffic congestion. Computers and Industrial Engineering, 2023, 177,	vith the 109093.	3.4	6
462	Selective vehicle routing problem with reserved requests and time windows. , 2023, , .			0
468	Vehicle Routing Problem with Fair Profits and Time Windows (VRP-FPTW). , 2023, , .			0

ARTICLE

IF CITATIONS