Neurotoxic prostaglandin J2 enhances cyclooxygenasethrough the p38MAPK pathway: A death wish?

Journal of Neuroscience Research 78, 824-836 DOI: 10.1002/jnr.20346

Citation Report

#	Article	IF	CITATIONS
2	15-Deoxy-delta12,14-prostaglandin J2, a neuroprotectant or a neurotoxicant?. Toxicology, 2005, 216, 232-243.	4.2	26
3	A time course analysis of cyclooxygenase-2 suggests a role in spatial memory retrieval in rats. Neuroscience Research, 2006, 54, 171-179.	1.9	35
4	Protection of RPE Cells from Oxidative Injury by 15-Deoxy-Δ12,14-Prostaglandin J2by Augmenting GSH and Activating MAPK. , 2006, 47, 5098.		58
5	Integrative roles of transforming growth factor- \hat{l} ± in the cytoprotection mechanisms of gastric mucosal injury. BMC Gastroenterology, 2006, 6, 22.	2.0	11
6	Prostaglandin J2 reduces catechol-O-methyltransferase activity and enhances dopamine toxicity in neuronal cells. Neurobiology of Disease, 2006, 22, 294-301.	4.4	18
7	Prostaglandin J2 Alters Pro-survival and Pro-death Gene Expression Patterns and 26 S Proteasome Assembly in Human Neuroblastoma Cells. Journal of Biological Chemistry, 2006, 281, 21377-21386.	3.4	37
8	Cytoskeleton/Endoplasmic Reticulum Collapse Induced by Prostaglandin J2 Parallels Centrosomal Deposition of Ubiquitinated Protein Aggregates. Journal of Biological Chemistry, 2006, 281, 23274-23284.	3.4	31
9	Neuroinflammatory mechanisms in Parkinson's disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Experimental Neurology, 2007, 208, 1-25.	4.1	491
10	Identification of Actin as a 15-Deoxy-Δ12,14-prostaglandin J2Target in Neuroblastoma Cells: Mass Spectrometric, Computational, and Functional Approaches To Investigate the Effect on Cytoskeletal Derangementâ€. Biochemistry, 2007, 46, 2707-2718.	2.5	73
11	15d-PGJ2 induces apoptosis of mouse oligodendrocyte precursor cells. Journal of Neuroinflammation, 2007, 4, 18.	7.2	27
12	15â€deoxyâ€delta 12,14â€prostaglandin J ₂ inhibits the synthesis of the acute phase protein SIP24 in cartilage: Involvement of COXâ€2 in resolution of inflammation. Journal of Cellular Physiology, 2008, 217, 433-441.	4.1	17
13	Pharmacological Enhancement of Neuronal Survival. Critical Reviews in Toxicology, 2008, 38, 349-389.	3.9	45
14	Subchronic infusion of the product of inflammation prostaglandin J2 models sporadic Parkinson's disease in mice. Journal of Neuroinflammation, 2009, 6, 18.	7.2	38
15	The use of Cox-2 and PPARÎ ³ signaling in anti-cancer therapies. Experimental and Therapeutic Medicine, 2010, 1, 257-264.	1.8	20
16	Functional Aspects of Redox Control During Neuroinflammation. Antioxidants and Redox Signaling, 2010, 13, 193-247.	5.4	60
17	Inflammation After Stroke: Mechanisms and Therapeutic Approaches. Translational Stroke Research, 2010, 1, 74-84.	4.2	79
18	Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain, 2010, 150, 358-368.	4.2	126
19	Assessment of Proteasome Impairment and Accumulation/Aggregation of Ubiquitinated Proteins in Neuronal Cultures. Methods in Molecular Biology, 2011, 793, 273-296.	0.9	38

CITATION REPORT

#	Article	IF	CITATIONS
20	Neurodegeneration. Methods in Molecular Biology, 2011, , .	0.9	9
21	In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 744-759.	4.8	369
22	Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury. Neurobiology of Disease, 2011, 41, 318-328.	4.4	54
23	PCJ2 Provides Prolonged CNS Stroke Protection by Reducing White Matter Edema. PLoS ONE, 2012, 7, e50021.	2.5	30
24	Increased Generation of Cyclopentenone Prostaglandins after Brain Ischemia and Their Role in Aggregation of Ubiquitinated Proteins in Neurons. Neurotoxicity Research, 2013, 24, 191-204.	2.7	31
25	S-Nitrosoglutathione Induces Ciliary Neurotrophic Factor Expression in Astrocytes, Which Has Implications to Protect the Central Nervous System under Pathological Conditions. Journal of Biological Chemistry, 2013, 288, 3831-3843.	3.4	31
26	Immune Responses in Parkinson's Disease: Interplay between Central and Peripheral Immune Systems. BioMed Research International, 2014, 2014, 1-9.	1.9	91
27	PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1707-1719.	3.8	33
28	Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Frontiers in Molecular Neuroscience, 2014, 7, 104.	2.9	86
29	Prostaglandin J2: a potential target for halting inflammationâ€induced neurodegeneration. Annals of the New York Academy of Sciences, 2016, 1363, 125-137.	3.8	33
30	Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimer's disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials, 2017, 145, 106-127.	11.4	72
31	Chronic voluntary oral methamphetamine induces deficits in spatial learning and hippocampal protein kinase Mzeta with enhanced astrogliosis and cyclooxygenase-2 levels. Heliyon, 2018, 4, e00509.	3.2	12
32	Prostaglandin J2 promotes O-GlcNAcylation raising APP processing by α- and β-secretases: relevance to Alzheimer's disease. Neurobiology of Aging, 2018, 62, 130-145.	3.1	8
33	Prostaglandin D2/J2 signaling pathway in a rat model of neuroinflammation displaying progressive parkinsonian-like pathology: potential novel therapeutic targets. Journal of Neuroinflammation, 2018, 15, 272.	7.2	18
34	Integrated communications between cyclooxygenaseâ€2 and Alzheimer's disease. FASEB Journal, 2019, 33, 13-33.	0.5	47
35	PACAP27 mitigates an ageâ€dependent hippocampal vulnerability to PGJ2â€induced spatial learning deficits and neuroinflammation in mice. Brain and Behavior, 2020, 10, e01465.	2.2	11
36	Electrophiles against (Skin) Diseases: More Than Nrf2. Biomolecules, 2020, 10, 271.	4.0	20
37	Inflammation as a Mediator of Oxidative Stress and UPS Dysfunction. , 2006, , 105-131.		5

#	Article	IF	CITATIONS
38	A systematic review for the development of Alzheimer's disease in in vitro models: a focus on different inducing agents. Frontiers in Aging Neuroscience, 0, 15, .	3.4	0
39	Elucidation for the pharmacological effects and mechanism of Shen Bai formula in treating myocardial injury based on energy metabolism and serum metabolomic approaches. Journal of Ethnopharmacology, 2023, , 117670.	4.1	0

CITATION REPORT