Electrochemical Behaviour of First Row Transition Meta A Comparative Study in Acetonitrile

European Journal of Inorganic Chemistry 2004, 619-628 DOI: 10.1002/ejic.200300292

Citation Report

#	Article	IF	CITATIONS
1	Oxidation of cycloalkanes with hydrogen peroxide in the presence of Keggin-type polyoxotungstates. Catalysis Today, 2004, 91-92, 211-214.	2.2	26
2	A comparative study between Keggin-type tungstophosphates and tungstosilicates in the oxidation of cyclooctane with hydrogen peroxide. Journal of Molecular Catalysis A, 2004, 222, 159-165.	4.8	52
3	Synthesis, crystal structure and two-dimensional infrared correlation spectroscopy of a layer-like transition metal (TM)-oxalate templated polyoxovanadium borate. Journal of Solid State Chemistry, 2005, 178, 3563-3570.	1.4	44
4	Association of Keggin-type anions with cationic meso-substituted porphyrins: synthesis, characterization and oxidative catalytic studies. Journal of Molecular Catalysis A, 2005, 231, 35-45.	4.8	62
5	Investigation of the Pronounced Medium Effects Observed in the Voltammetry of the Highly Charged Lacunary Anions [α-SiW11O39]8-and [α-PW11O39]7 Inorganic Chemistry, 2006, 45, 8563-8574.	1.9	49
6	Electrochemical characterization of glassy carbon electrodes modified with hybrid inorganic-organic single-layer of α-Keggin type polyoxotungstates. Journal of Solid State Electrochemistry, 2006, 10, 10-17.	1.2	15
7	Electrochemical behavior and multilayer films of the sandwich-type polyoxotungstate complex {K10Co4(H2O)2(PW9O34)2}. Materials Letters, 2006, 60, 3622-3626.	1.3	17
8	Electrochemical Behavior of Polyoxometalates [XW11MoO40]nâ^'(X=P, Si, Ge withn=3, 4) in Aqueous and DMF Solution. Chinese Journal of Chemistry, 2006, 24, 316-320.	2.6	4
9	New Polyoxotungstates with Ln(III) and Co(II) and Their Immobilization in Silica Particles. Materials Science Forum, 2006, 514-516, 1206-1210.	0.3	2
10	Synthesis and Characterization of New Rareâ€Earth Sandwichâ€Type Tungstoarsenates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2006, 36, 335-344.	0.6	2
11	Correlation between Redox Properties and Component of Multicomponent Heteropolysilicates with the Same Structure. Journal of Chemical Research, 2007, 2007, 445-450.	0.6	0
12	Density Functional Theory and ab Initio Study of Electronic and Electrochemistry Properties of the Tetranuclear Sandwich Complex [FeIII4(H2O)2(PW9O34)2]6 Inorganic Chemistry, 2007, 46, 4022-4027.	1.9	40
13	Structural Studies of Keggin-Type Polyoxotungstates by Extended X-ray Absorption Fine Structure Spectroscopy. European Journal of Inorganic Chemistry, 2007, 2007, 1027-1038.	1.0	31
14	Two novel Keggin tungstocobaltates grafted by cobaltII complex group(s): K[Co(phen)2(H2O)]2[HCoW12O40]Å·2H2O and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]}·0.5H2O. Solid State Sciences, 2007, 9, 1012-	1.5 1019.	11
15	Functionalisation of glassy carbon electrodes with deposited tetrabutylammonium microcrystalline salts of lacunary and metal-substituted α-Keggin-polyoxosilicotungstates. Electrochimica Acta, 2008, 53, 6580-6588.	2.6	22
16	Transition Metal Substituted Polyoxotungstates in the Catalytic Oxidation of 1H-Indene and 1,2-Dihydronaphthalene with Hydrogen Peroxide. Catalysis Letters, 2009, 128, 281-289.	1.4	20
17	Extended architectures based on sandwich-type polyanions and transition metal complex cations. Journal of Molecular Structure, 2009, 923, 153-161.	1.8	7
18	Iron-substituted polyoxotungstates as catalysts in the oxidation of indane and tetralin with hydrogen peroxide. Applied Catalysis A: General, 2009, 366, 275-281.	2.2	31

CITATION REPORT

#	Article	IF	CITATIONS
19	11-Tungstophosphate with Iron(II) and Hydrogen Peroxide Efficiently Detached Bacterial Biofilm. Biological and Pharmaceutical Bulletin, 2009, 32, 1783-1789.	0.6	1
20	Catalytic activity of iron-substituted polyoxotungstates in the oxidation of aromatic compounds with hydrogen peroxide. Monatshefte FA1⁄4r Chemie, 2010, 141, 1223-1235.	0.9	25
21	Transition-Metal-Substituted Keggin-Type Germanotungstates for Catalytic Conversion of Carbon Dioxide to Cyclic Carbonate. Catalysis Letters, 2010, 139, 38-41.	1.4	38
22	Electrochemical behaviour of self-assembly multilayer films based on iron-substituted α-Keggin polyoxotungstates. Thin Solid Films, 2010, 518, 5881-5888.	0.8	40
23	Ab initio study of the antiferromagnetic coupling in the wheel-shaped [Cu20Cl(OH)24(H2O)12(P8W48O184)]25– anion. Physical Chemistry Chemical Physics, 2010, 12, 2716.	1.3	10
24	Electrocatalytic Water Oxidation Beginning with the Cobalt Polyoxometalate [Co ₄ (H ₂ O) ₂ (PW ₉ O ₃₄) ₂](Identification of Heterogeneous CoO _{<i>x</i>} as the Dominant Catalyst. Journal of the American Chemical Society. 2011, 133, 14872-14875.)–6.6	>: ₃₉₄
25	Oxidation of Polycyclic Aromatic Hydrocarbons with Hydrogen Peroxide in the Presence of Transition Metal Monoâ€6ubstituted Kegginâ€Type Polyoxometalates. ChemCatChem, 2011, 3, 771-779.	1.8	34
26	Manganese Mono-Substituted Borotungstate: Characterization and Catalytic Application. Materials Science Forum, 2012, 730-732, 975-980.	0.3	0
27	Organic–inorganic hybrid materials based on iron(iii)-polyoxotungstates and 1-butyl-3-methylimidazolium cations. Dalton Transactions, 2012, 41, 12145.	1.6	21
28	Phosphotungstates as catalysts for monoterpenes oxidation: Homo- and heterogeneous performance. Catalysis Today, 2013, 203, 95-102.	2.2	52
29	Differentiating Homogeneous and Heterogeneous Water Oxidation Catalysis: Confirmation that [Co ₄ (H ₂ O) ₂ (α-PW ₉ O ₃₄) ₂] ^{ Is a Molecular Water Oxidation Catalyst. Journal of the American Chemical Society, 2013, 135, 14110-14118.}	•10ậ€" <td>^{up}} 196</td>	^{up} } 196
30	Multifunctional catalyst based on sandwich-type polyoxotungstate and MIL-101 for liquid phase oxidations. Catalysis Today, 2013, 210, 142-148.	2.2	56
31	Water Oxidation Catalysis Beginning with 2.5 μM [Co ₄ (H ₂ O) ₂ (PW ₉ O ₃₄) ₂](Investigation of the True Electrochemically Driven Catalyst at ≥600 mV Overpotential at a Glassy Carbon Electrode. ACS Catalysis, 2013, 3, 1209-1219.	D– <td>>: 124</td>	>: 124
32	Insights into the electrochemical behaviour of composite materials: Monovacant polyoxometalates @ porous metal-organic framework. Electrochimica Acta, 2013, 87, 853-859.	2.6	32
33	Monovacant polyoxometalates incorporated into MIL-101(Cr): novel heterogeneous catalysts for liquid phase oxidation. Applied Catalysis A: General, 2013, 453, 316-326.	2.2	103
34	Mono-substituted silicotungstates as active catalysts for sustainable oxidations: homo- and heterogeneous performance. New Journal of Chemistry, 2013, 37, 2341.	1.4	35
35	SiW ₁₁ Fe@MILâ€101(Cr) Composite: A Novel and Versatile Electrocatalyst. ChemElectroChem, 2014, 1, 1293-1300.	1.7	15
36	Effect on selective adsorption of ethane and ethylene of the polyoxometalates impregnation in the metal-organic framework MIL-101. Adsorption, 2014, 20, 533-543.	1.4	27

#	Article	IF	CITATIONS
37	Synthesis and properties of new materials with cobalt(II), iron(III) and manganese(III)-substituted Keggin polyoxotungstates and 1-alkyl-3-methylimidazolium cations. Polyhedron, 2015, 101, 109-117.	1.0	9
38	Hybrid methyl green/cobalt-polyoxotungstate nanostructured films: Self-assembly, electrochemical and electrocatalytic properties. Applied Surface Science, 2015, 347, 40-47.	3.1	7
39	Bridging the opposite chemistries of tantalum and tungsten polyoxometalates. Dalton Transactions, 2015, 44, 15813-15822.	1.6	24
40	Homogeneous catalytic oxidation of styrene and styrene derivatives with hydrogen peroxide in the presence of transition metal-substituted polyoxotungstates. Catalysis Science and Technology, 2015, 5, 351-363.	2.1	63
41	A recoverable sandwich phosphorotungstate stabilized palladium (0) catalyst for aerobic oxidation of alcohols in water. Applied Catalysis A: General, 2016, 523, 304-311.	2.2	11
42	Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Applied Catalysis A: General, 2016, 521, 83-89.	2.2	70
43	Cesium salts of niobo-tungstate isopolyanions with intermediate group V–group VI character. New Journal of Chemistry, 2016, 40, 928-936.	1.4	15
44	Effect of cobalt location in Keggin-type heteropoly catalysts on aerobic oxidation of cyclooctane: Experimental and theoretical study. Applied Catalysis A: General, 2017, 542, 317-326.	2.2	26
45	Functionalization of Keggin-type nickel substituted phosphotungstate by imidazole: synthesis, characterization, and catalytic activity. Journal of Materials Science, 2017, 52, 4689-4699.	1.7	13
46	Effects of Competitive Active-Site Ligand Binding on Proton- and Electron-Transfer Properties of the [Co4(H2O)2(PW9O34)2]10â^' Polyoxometalate Water Oxidation Catalyst. Journal of Cluster Science, 2017, 28, 839-852.	1.7	6
47	Catalytic homogeneous oxidation of monoterpenes and cyclooctene with hydrogen peroxide in the presence of sandwich-type tungstophosphates [M4(H2O)2(PW9O34)2]nâ~, M = Coll, MnII and FeIII. Journal of Molecular Catalysis A, 2017, 426, 593-599.	4.8	18
48	Electrochemistry of Polyoxometalates: From Fundamental Aspects to Applications. ChemElectroChem, 2018, 5, 823-838.	1.7	118
49	Leaching-free encapsulation of cobalt-polyoxotungstates in MIL-100 (Fe) for highly reproducible photocatalytic water oxidation. Applied Catalysis A: General, 2018, 567, 132-138.	2.2	54
50	Assessing the Electrocatalytic Properties of the {Cp*Rh ^{III} } ²⁺ â€Polyoxometalate Derivative [H ₂ PW ₁₁ O ₃₉ {Rh ^{III} Cp*(OH ₂)}] ^{3â€"towards CO₂ Reduction, European Journal of Inorganic Chemistry, 2019, 387-393.})))	22
51	Regioselective oxidative carbon-oxygen bond cleavage catalysed by copper(II) complexes: A relevant model study for lytic polysaccharides monooxygenases activity. Journal of Catalysis, 2019, 372, 352-361.	3.1	19
52	An Organofunctionalized Polyoxovanadium Cluster as a Molecular Model of Interfacial Pseudocapacitance. ACS Applied Energy Materials, 2019, 2, 8985-8993.	2.5	17
53	New Path for Polyoxometalates: Controlled Synthesis and Characterization of Metalâ€6ubstituted Tungstosulfates. European Journal of Inorganic Chemistry, 2020, 2020, 682-689.	1.0	1
54	Metal-substituted tungstosulfates with Keggin structure: synthesis and characterization. Dalton Transactions, 2020, 49, 2766-2770.	1.6	11

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Benzene Hydroxylation by Bioinspired Copper(II) Complexes: Coordination Geometry versus Reactivity. Inorganic Chemistry, 2020, 59, 5918-5928.	1.9	28
56	Modified Mn substituted POMs: Synthetic strategies, structural diversity to applications. Progress in Materials Science, 2021, 118, 100759.	16.0	19
57	Polyoxometalate-based electrolyte materials in redox flow batteries: Current trends and emerging opportunities. Materials Reports Energy, 2022, 2, 100094.	1.7	6
58	Investigation of isotherms and isosteric heat of adsorption for PW11@HKUST-1 composite. Journal of Solid State Chemistry, 2022, 314, 123363.	1.4	12
59	Unveiling the structural transformations of the PW ₁₁ Co@ZIF-67 nanocomposite induced by thermal treatment. Dalton Transactions, 2022, 51, 17844-17857.	1.6	3
60	The Cluster Design and Redox Behavior Characterization of Polyoxometalates for Redox Flow Batteries. Chemistry - an Asian Journal, 2022, 17, .	1.7	3
61	Ultrafast black-color tunability of electrochromic dimming films using cobalt polyoxometalate-anchored nickel oxide nanoparticles. Journal of Materials Chemistry A, 2023, 11, 3038-3050.	5.2	2