Discrete Metal-Based Catalysts for the Copolymerization Reactivity, Optimization, and Mechanism

Angewandte Chemie - International Edition 43, 6618-6639

DOI: 10.1002/anie.200460442

Citation Report

#	Article	IF	CITATIONS
1	Rare earth metal complexes based on \hat{l}^2 -diketiminato and novel linked bis(\hat{l}^2 -diketiminato) ligands: Synthesis, structural characterization and catalytic application in epoxide/CO2-copolymerization. Journal of Organometallic Chemistry, 2005, 690, 5182-5197.	0.8	107
2	Gas-Phase Catalysis by Atomic and Cluster Metal Ions: The Ultimate Single-Site Catalysts. Angewandte Chemie - International Edition, 2005, 44, 2336-2354.	7.2	782
4	Alternating Copolymerization of Cyclohexene Oxide and CO2 Catalyzed by Zinc Complexes with New 3-Amino-2-cyanoimidoacrylate Ligands. Advanced Synthesis and Catalysis, 2005, 347, 1325-1328.	2.1	51
5	Copolymerization of Cyclohexene Oxide with CO2 by Using Intramolecular Dinuclear Zinc Catalysts. Chemistry - A European Journal, 2005, 11, 3668-3678.	1.7	213
6	On the Formation of Aliphatic Polycarbonates from Epoxides with Chromium(III) and Aluminum(III) Metal-Salen Complexes. Chemistry - A European Journal, 2005, 11, 6298-6314.	1.7	203
7	Discrete Metal-Based Catalysts for the Copolymerization of CO2 and Epoxides: Discovery, Reactivity, Optimization, and Mechanism. ChemInform, 2005, 36, no.	0.1	O
8	Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. Journal of Organometallic Chemistry, 2005, 690, 3490-3497.	0.8	352
9	Genetic Engineering of Protein-Based Polymers: The Example of Elastinlike Polymers. Advances in Polymer Science, 2005, , 119-167.	0.4	42
10	Synthesis of Carbonated Fatty Methyl Esters Using Supercritical Carbon Dioxide. Journal of Agricultural and Food Chemistry, 2005, 53, 9608-9614.	2.4	78
11	Aluminium triisopropoxide: An inexpensive and easy-to-handle catalyst of the copolymerisation of cyclohexene oxide with CO2. Green Chemistry, 2005, 7, 659.	4.6	26
12	The improved synthesis of carbonated soybean oil using supercritical carbon dioxide at a reduced reaction time. Green Chemistry, 2005, 7, 849.	4.6	100
13	Synthesis and structural characterisation of novel linked bis (\hat{l}^2 -diketiminato) rare earth metal complexes. Dalton Transactions, 2005, , 1565-1566.	1.6	44
14	Measurement and Modeling of the High-Pressure Phase Behavior of the Binary System Carbon Dioxide + 1,2-Epoxycyclohexane. Journal of Chemical & Engineering Data, 2005, 50, 1879-1882.	1.0	10
15	Alternating Copolymerization of CO2and Propylene Oxide Catalyzed by CollI(salen)/Lewis Base. Macromolecules, 2005, 38, 6251-6253.	2.2	133
16	Bimetallic Anilido-Aldimine Zinc Complexes for Epoxide/CO2Copolymerization. Journal of the American Chemical Society, 2005, 127, 3031-3037.	6.6	276
17	Aliphatic Poly(urethaneâ^amine)s Synthesized by Copolymerization of Aziridines and Supercritical Carbon Dioxide. Macromolecules, 2005, 38, 6429-6434.	2.2	88
18	Single-Site Catalysis by Bimetallic Zinc Calixarene Inclusion Complexes. Organic Letters, 2005, 7, 5123-5126.	2.4	42
19	Ring-Opening Polymerization of Trimethylene Carbonate Using Aluminum(III) and Tin(IV) Salen Chloride Catalysts. Macromolecules, 2005, 38, 5406-5410.	2.2	111

#	Article	IF	CITATIONS
20	Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide. Dalton Transactions, 2006, , 5390.	1.6	97
21	Carbon dioxide and related heterocumulenes at zinc and lithium cations: bioinspired reactions and principles. Dalton Transactions, 2006, , 4191-4206.	1.6	39
22	Synthesis and structures of some heterometallic [(Li, Y)2, (M3, Ce) (M = Li or Na), (Li, Zr2) and (Li, Zr)4] oligomeric diamides derived from 1,2-bis(neopentylamino)benzene. Dalton Transactions, 2006, , 2991.	1.6	19
23	Synthesis and structures of some bimetallic (Li/Ca, Li/Zn, Li/Li) diamides derived from 1,2-bis(neopentylamino)benzene and of Li2[{N(SiMe2NPri2)}2C6H4-1,2](thf)3. Dalton Transactions, 2006, , 1181-1187.	1.6	21
24	The Literature of Heterocyclic Chemistry, Part IX, 2002–2004. Advances in Heterocyclic Chemistry, 2006, , 145-258.	0.9	15
25	Chiral Salen Complexes:Â An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts. Chemical Reviews, 2006, 106, 3987-4043.	23.0	641
26	Copolymerization of cyclohexene oxide and carbon dioxide using (salen)Co(iii) complexes: synthesis and characterization of syndiotactic poly(cyclohexene carbonate). Dalton Transactions, 2006, , 237-249.	1.6	133
27	Racemic N-aryl bis(amidines) and bis(amidinates): on the trail of enantioselective organolanthanide catalysts. Dalton Transactions, 2006, , 1544-1553.	1.6	36
28	Bimetallic Fluorine-Substituted Anilidoâ^'Aldimine Zinc Complexes for CO2/(Cyclohexene Oxide) Copolymerization. Inorganic Chemistry, 2006, 45, 4228-4237.	1.9	93
29	Catalytic Asymmetric Addition of Carbon Dioxide to Propylene Oxide with Unprecedented Enantioselectivity. Organic Letters, 2006, 8, 4401-4404.	2.4	134
30	Alternating copolymerization of propylene oxide and carbon dioxide with highly efficient and selective (salen)Co(III) catalysts: Effect of ligand and cocatalyst variation. Journal of Polymer Science Part A, 2006, 44, 5182-5191.	2.5	134
31	Monoaryloxo ytterbium(III) chlorides supported by \hat{I}^2 -diketiminato ligands as novel initiators for the living ring-opening polymerization of \hat{E} -caprolactone. Journal of Polymer Science Part A, 2006, 44, 1147-1152.	2.5	21
32	Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage. Catalysis Today, 2006, 115, 73-79.	2.2	274
33	Process development for the catalytic conversion of cyclohexene oxide and carbon dioxide into poly(cyclohexene carbonate). Catalysis Today, 2006, 115, 162-169.	2.2	11
34	Aluminum bisphenoxides: Promising challengers for a catalyzed copolymerization of cyclohexene oxide with CO2. Catalysis Today, 2006, 115, 151-161.	2.2	28
35	Structural characterization and thermal and mechanical properties of poly(propylene) Tj ETQq1 1 0.784314 rgBT Technology, 2006, 66, 913-918.	Overlock 3.8	10 Tf 50 14 149
36	A new amidoimidomalonate zinc complex with a sedecameric solid state structure catalyzing the copolymerization of CO2 and cyclohexene oxide. Journal of Organometallic Chemistry, 2006, 691, 3397-3402.	0.8	26
37	Manganese and cobalt 3-oxobutylideneaminato complexes: Design and application for enantioselective reactions. Science and Technology of Advanced Materials, 2006, 7, 184-196.	2.8	15

3

#	Article	IF	Citations
38	Aspects of carbon dioxide utilization. Catalysis Today, 2006, 115, 33-52.	2.2	430
39	3-Amino-2-cyano-imidoacrylate ligands and their zinc complexes for the copolymerisation of CO2 and epoxides: Living character and temperature optimisation. Catalysis Today, 2006, 115, 146-150.	2.2	10
40	Selective Formation of Polycarbonate over Cyclic Carbonate: Copolymerization of Epoxides with Carbon Dioxide Catalyzed by a Cobalt(III) Complex with a Piperidinium End-Capping Arm. Angewandte Chemie - International Edition, 2006, 45, 7274-7277.	7.2	340
42	Insertion reaction of carbon dioxide into Sn–OR bond. Synthesis, structure and DFT calculations of di- and tetranuclear isopropylcarbonato tin(iv) complexes. Dalton Transactions, 2006, , 5167-5175.	1.6	50
43	General Classification of Organometallic Reactions. , 2007, , 93-117.		2
44	Enantioselective Incorporation of Carbon Dioxide into Epoxides Catalyzed by Optically Active Cobalt(II) Complexes. Bulletin of the Chemical Society of Japan, 2007, 80, 1391-1401.	2.0	49
45	Silica-Grafted Diethylzinc and a Silsesquioxane-Based Zinc Alkyl Complex as Catalysts for the Alternating Oxiraneâ^'Carbon Dioxide Copolymerization. Organometallics, 2007, 26, 4204-4211.	1.1	32
46	Zinc anilido-oxazolinate complexes as initiators for ring opening polymerization. Dalton Transactions, 2007, , 4073.	1.6	42
47	Dinuclear Zinc Complexes Based on Parallel β-Diiminato Binding Sites:  Syntheses, Structures, and Properties as CO2/Epoxide Copolymerization Catalysts. Organometallics, 2007, 26, 3668-3676.	1.1	74
48	Two Components in a Molecule:Â Highly Efficient and Thermally Robust Catalytic System for CO2/Epoxide Copolymerization. Journal of the American Chemical Society, 2007, 129, 8082-8083.	6.6	290
49	Polymerization of Epoxides. , 2007, , 595-621.		1
50	(Tetramethyltetraazaannulene)chromium Chloride:Â A Highly Active Catalyst for the Alternating Copolymerization of Epoxides and Carbon Dioxide. Inorganic Chemistry, 2007, 46, 5474-5476.	1.9	61
51	Inquiry into the Formation of Cyclic Carbonates during the (Salen)CrX Catalyzed CO ₂ /Cyclohexene Oxide Copolymerization Process in the Presence of Ionic Initiators. Macromolecules, 2007, 40, 7727-7729.	2.2	88
52	Transformation of Carbon Dioxide. Chemical Reviews, 2007, 107, 2365-2387.	23.0	3,426
53	Mono- versus Bis-chelate Formation in Triazenide and Amidinate Complexes of Magnesium and Zinc. Inorganic Chemistry, 2007, 46, 9988-9997.	1.9	87
54	A tricarbonyl rhenium(i) complex with a pendant pyrrolidinium moiety as a robust and recyclable catalyst for chemical fixation of carbon dioxide in ionic liquid. Chemical Communications, 2007, , 2175.	2.2	44
55	Making Plastics from Carbon Dioxide:  Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chemical Reviews, 2007, 107, 2388-2410.	23.0	1,462
56	Copolymerization of carbon dioxide and propylene oxide with zinc glutarate as catalyst in the presence of compounds containing active hydrogen. Journal of Applied Polymer Science, 2007, 104, 15-20.	1.3	18

#	Article	lF	CITATIONS
57	Synthesis of Cyclic Carbonates from Atmospheric Pressure Carbon Dioxide Using Exceptionally Active Aluminium(salen) Complexes as Catalysts. European Journal of Inorganic Chemistry, 2007, 2007, 3323-3326.	1.0	267
58	Further studies related to the copolymerization of cyclohexene oxide and carbon dioxide catalyzed by chromium Schiff base complexes. Crystal structures of two μ-hydroxo-bridged Schiff base dimers of chromium(III). Inorganica Chimica Acta, 2007, 360, 523-528.	1.2	25
59	Synthesis and Structural Characterization of βâ€Diketiminato Yttrium Complexes and their Application in Epoxide/CO ₂ â€Copolymerization. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 2367-2373.	0.6	58
60	The role of quantum chemistry in the elucidation of the elementary mechanisms of catalytic processes: from atoms, to surfaces, to enzymes. Theoretical Chemistry Accounts, 2007, 117, 765-779.	0.5	37
61	Cycloaddition of carbon dioxide to epichlorohydrin using ionic liquid as a catalyst. Korean Journal of Chemical Engineering, 2007, 24, 547-550.	1.2	27
62	Effects of imidazolium salts as cocatalysts on the copolymerization of CO2 with epoxides catalyzed by (salen)CrIIICl complex. Polymer, 2007, 48, 3921-3924.	1.8	37
63	A ruthenium complex exhibiting high catalytic efficiency for the formation of propylene carbonate from carbon dioxide. Journal of Molecular Catalysis A, 2007, 277, 35-39.	4.8	28
64	A novel and faster route for the synthesis of polyether-polycarbonate from carbon dioxide and epoxide through microwave irradiation. Research on Chemical Intermediates, 2008, 34, 835-844.	1.3	9
65	Effect of cocatalyst and carbon dioxide pressure on the synthesis of polycarbonate from phenyl glycidyl ether and carbon dioxide. Korean Journal of Chemical Engineering, 2008, 25, 693-696.	1.2	6
66	Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zni£¿Co ^{III} double metal cyanide complex hybrid catalysts with a nanolamellar structure. Journal of Polymer Science Part A, 2008, 46, 3128-3139.	2.5	67
67	Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regioâ€specific poly(propylene carbonate) with high molecular weight. Journal of Polymer Science Part A, 2008, 46, 5959-5967.	2.5	79
68	Asymmetric, regio―and stereoâ€selective alternating copolymerization of CO ₂ and propylene oxide catalyzed by chiral chromium Salan complexes. Journal of Polymer Science Part A, 2008, 46, 6102-6113.	2.5	114
69	Alternating copolymerization of cyclohexene oxide and carbon dioxide catalyzed by noncyclopentadienyl rareâ€earth metal bis(alkyl) complexes. Journal of Polymer Science Part A, 2008, 46, 6810-6818.	2.5	69
70	Synthesis of oligomer with carbonate and ether unit from phenyl glycidyl ether and carbon dioxide, using immobilized imidazolium salt catalyst. Polymers for Advanced Technologies, 2008, 19, 1436-1440.	1.6	10
71	A Dinuclear Iron Complex Based on Parallel Malonate Binding Sites: Cooperative Activation of Dioxygen and Biomimetic Ligand Oxidation. Chemistry - A European Journal, 2008, 14, 9377-9388.	1.7	22
72	A Robust Ionic Liquid as Reaction Medium and Efficient Organocatalyst for Carbon Dioxide Fixation. ChemSusChem, 2008, $1,67$ -70.	3.6	69
73	Bifunctional Metalâ€Salen Complexes as Efficient Catalysts for the Fixation of CO ₂ with Epoxides under Solventâ€Free Conditions. ChemSusChem, 2008, 1, 236-241.	3.6	180
74	Copolymerization of carbon dioxide and epoxides with a novel effective Zn–Ni doubleâ€metal cyanide complex. Journal of Applied Polymer Science, 2008, 107, 3871-3877.	1.3	32

#	Article	IF	CITATIONS
75	Thermally stable poly(propylene carbonate) synthesized by copolymerizing with bulky naphthalene containing monomer. Journal of Applied Polymer Science, 2008, 108, 1037-1043.	1.3	21
76	Thermally stable aliphatic polycarbonate containing bulky carbazole pendants. Journal of Applied Polymer Science, 2008, 108, 3626-3631.	1.3	17
77	Synthesis and properties of aliphatic polycarbonates derived from carbon dioxide, propylene oxide and maleic anhydride. Journal of Applied Polymer Science, 2008, 109, 4121-4129.	1.3	51
78	Alkylzinc Carboxylates as Efficient Precursors for Zinc Oxocarboxylates and Sulfidocarboxylates. Angewandte Chemie - International Edition, 2008, 47, 573-576.	7.2	69
79	A Highly Active and Recyclable Catalytic System for CO ₂ /Propylene Oxide Copolymerization. Angewandte Chemie - International Edition, 2008, 47, 7306-7309.	7.2	284
82	Synthesis and structures of some sterically hindered zinc complexes containing 6-membered and rings. Journal of Organometallic Chemistry, 2008, 693, 1861-1869.	0.8	39
83	Catalytic performance of quaternary ammonium salts in the reaction of butyl glycidyl ether and carbon dioxide. Journal of Industrial and Engineering Chemistry, 2008, 14, 157-160.	2.9	64
84	Synthesis of cyclic carbonate from vinyl cyclohexene oxide and CO2 using ionic liquids as catalysts. Catalysis Today, 2008, 131, 130-134.	2.2	79
85	Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides. Tetrahedron: Asymmetry, 2008, 19, 1947-1953.	1.8	80
86	Oxiranes and Oxirenes: Monocyclic. , 2008, , 173-233.		8
87	Dinuclear Zinc Complexes Using Pentadentate Phenolate Ligands. Inorganic Chemistry, 2008, 47, 11711-11719.	1.9	57
88	Bimetallic Calcium and Zinc Complexes with Bridged \hat{I}^2 -Diketiminate Ligands: Investigations on Epoxide/CO ₂ Copolymerization. Organometallics, 2008, 27, 6178-6187.	1.1	137
89	X-Ray crystal structures of five-coordinate (salen)MnN3 derivatives and their binding abilities towards epoxides: chemistry relevant to the epoxide–CO2 copolymerization process. Dalton Transactions, 2008, , 5031.	1.6	15
90	Mechanistic Studies of the Copolymerization Reaction of Oxetane and Carbon Dioxide to Provide Aliphatic Polycarbonates Catalyzed by (Salen)CrX Complexes. Journal of the American Chemical Society, 2008, 130, 6523-6533.	6.6	124
91	Synthesis of new dipyridinylamine and dipyridinylmethane ligands and their coordination chemistry with Mg(ii) and Zn(ii). New Journal of Chemistry, 2008, 32, 2150.	1.4	28
92	Studies of the Carbon Dioxide and Epoxide Coupling Reaction in the Presence of Fluorinated Manganese(III) Acacen Complexes: Kinetics of Epoxide Ring-Opening. Inorganic Chemistry, 2008, 47, 4977-4987.	1.9	15
93	Polymers from Renewable Resources: A Perspective for a Special Issue of Polymer Reviews. Polymer Reviews, 2008, 48, 1-10.	5.3	808
94	Dinuclear iron complexes based on parallel \hat{l}^2 -diiminato binding sites: syntheses, structures and reaction with O2. Dalton Transactions, 2008, , 1917.	1.6	18

#	Article	IF	CITATIONS
95	Moderate route for the utilization of CO2-microwave induced copolymerization with cyclohexene oxide using highly efficient double metal cyanide complex catalysts based on Zn3[Co(CN)6]. Green Chemistry, 2008, 10, 678.	4.6	61
96	Epoxy functionalised poly(l̂ μ -caprolactone): synthesis and application. Chemical Communications, 2008, , 5806.	2.2	33
97	An Exploration of the Coupling Reactions of Epoxides and Carbon Dioxide Catalyzed by Tetramethyltetraazaannulene Chromium(III) Derivatives: Formation of Copolymers versus Cyclic Carbonates. Inorganic Chemistry, 2008, 47, 11868-11878.	1.9	43
98	Mechanistic Insight into the Initiation Step of the Coupling Reaction of Oxetane or Epoxides and CO ₂ Catalyzed by (salen)CrX Complexes. Inorganic Chemistry, 2008, 47, 10000-10008.	1.9	82
99	Hydrogen-Bonded Thermostable Liquid Crystalline Complex Formed by Biodegradable Polymer and Amphiphilic Molecules. Macromolecules, 2008, 41, 3175-3180.	2.2	53
102	The Quest for Ring Opening of Oxaphosphirane Complexes: A Coupledâ€Cluster and Density Functional Study of CH ₃ PO Isomers and Their Cr(CO) ₅ Complexes. Chemistry - A European Journal, 2009, 15, 2594-2601.	1.7	42
103	Synthesis, Characterization, and Catalytic Application of Aluminum Anilidoâ€Oxazolinate Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 2129-2135.	1.0	29
104	Syntheses and Structures of Trisâ€Ĵ²â€Diketiminate Lanthanide Complexes and Their High Activity for Ringâ€Opening Polymerization of ϵâ€Caprolactone and <scp>L</scp> â€Lactide. European Journal of Inorganic Chemistry, 2009, 2009, 4110-4118.	1.0	31
105	Alternating Copolymerization of Carbon Dioxide and Propylene Oxide Catalyzed by Cobalt Schiff Base Complex. Macromolecular Chemistry and Physics, 2009, 210, 1224-1229.	1.1	34
106	Highly Active Dizinc Catalyst for the Copolymerization of Carbon Dioxide and Cyclohexene Oxide at One Atmosphere Pressure. Angewandte Chemie - International Edition, 2009, 48, 931-933.	7.2	302
107	N,Oâ€chelate aluminum and zinc complexes: synthesis and catalysis in the ringâ€opening polymerization of εâ€caprolactone. Applied Organometallic Chemistry, 2009, 23, 9-18.	1.7	33
108	Cross-linkable and thermally stable aliphatic polycarbonates derived from CO2, propylene oxide and maleic anhydride. Journal of Polymer Research, 2009, 16, 91-97.	1.2	29
109	Efficient coupling of CO2 and epoxides with bis(phenoxyiminato) cobalt(III)/Lewis base catalysts. Journal of Molecular Catalysis A, 2009, 312, 87-91.	4.8	29
110	Carbon dioxide/propylene oxide coupling reaction catalyzed by chromium salen complexes. Polymer, 2009, 50, 441-446.	1.8	28
111	Alternating copolymerization of carbon dioxide and propylene oxide by single-component cobalt salen complexes with various axial group. Polymer, 2009, 50, 5071-5075.	1.8	38
112	Synthesis of cyclic carbonate from allyl glycidyl ether and carbon dioxide using ionic liquid-functionalized amorphous silica. Catalysis Today, 2009, 148, 350-354.	2.2	67
113	Di- and Tri-Zinc Catalysts for the Low-Pressure Copolymerization of CO ₂ and Cyclohexene Oxide. Inorganic Chemistry, 2009, 48, 9535-9542.	1.9	123
114	Pentanuclear Complexes for a Series of Alkylzinc Carboxylates. Organometallics, 2009, 28, 5828-5832.	1.1	33

#	Article	IF	CITATIONS
115	Alternating Copolymerization of Cyclohexene Oxide with Carbon Dioxide Catalyzed by (salalen)CrCl Complexes. Macromolecules, 2009, 42, 6972-6980.	2.2	174
116	Copolymerization of Epoxides and Carbon Dioxide. Evidence Supporting the Lack of Dual Catalysis at a Single Metal Site. Inorganic Chemistry, 2009, 48, 8668-8677.	1.9	47
117	Polymerization of Enantiopure Monomers Using Syndiospecific Catalysts: A New Approach To Sequence Control in Polymer Synthesis. Journal of the American Chemical Society, 2009, 131, 16042-16044.	6.6	233
118	The synthesis of organic carbonates from carbon dioxide. Chemical Communications, 2009, , 1312.	2.2	965
119	Elucidation of the Structure of a Highly Active Catalytic System for CO ₂ /Epoxide Copolymerization: A salen-Cobaltate Complex of an Unusual Binding Mode. Inorganic Chemistry, 2009, 48, 10455-10465.	1.9	111
120	Magnesium complexes containing bis-amido-oxazolinate ligands as efficient catalysts for ring opening polymerisation of l-lactide. Dalton Transactions, 2009, , 9068.	1.6	56
121	(Salen)Co(II)/ $\langle i \rangle$ n $\langle i \rangle$ -Bu $\langle sub \rangle$ 4 $\langle sub \rangle$ NX Catalysts for the Coupling of CO $\langle sub \rangle$ 2 $\langle sub \rangle$ and Oxetane: Selectivity for Cyclic Carbonate Formation in the Production of Poly-(trimethylene carbonate). Macromolecules, 2009, 42, 4063-4070.	2.2	68
122	Synthesis and Stabilization of Novel Aliphatic Polycarbonate from Renewable Resource. Macromolecules, 2009, 42, 9251-9254.	2.2	45
123	Synthesis and catalytic application of aluminium anilido-pyrazolate complexes. Dalton Transactions, 2009, , 9800.	1.6	41
124	Binding of 4-(<i>N</i> , <i>N-</i> dimethylamino)pyridine to Salen- and Salan-Cr(III) Cations: A Mechanistic Understanding on the Difference in Their Catalytic Activity for CO ₂ /Epoxide Copolymerization. Inorganic Chemistry, 2009, 48, 2830-2836.	1.9	72
125	Mechanistic Aspects of the Copolymerization of CO ₂ with Epoxides Using a Thermally Stable Single-Site Cobalt(III) Catalyst. Journal of the American Chemical Society, 2009, 131, 11509-11518.	6.6	311
126	One-component catalysts for cyclic carbonate synthesis. Chemical Communications, 2009, , 2577.	2.2	212
127	Unusual selectivity of a (pincer)Ni-hydride reacting with CO2. Dalton Transactions, 2009, , 1283.	1.6	16
128	Copolymerization of CO2 and cyclohexene oxide using a lysine-based (salen)CrIIICl catalyst. Dalton Transactions, 2009, , 5406.	1.6	38
129	Highly Selective and Reactive (salan)CrCl Catalyst for the Copolymerization and Block Copolymerization of Epoxides with Carbon Dioxide. Macromolecules, 2009, 42, 6992-6998.	2.2	139
130	New Class of Catalysts for Alternating Copolymerization of Alkylene Oxide and Carbon Dioxide. Chemistry Letters, 2010, 39, 1066-1068.	0.7	24
131	Carbon dioxideâ€based copolymers: Environmental benefits of PPC, an industrially viable catalyst. Biotechnology Journal, 2010, 5, 1164-1180.	1.8	158
132	Immortal CO ₂ /Propylene Oxide Copolymerization: Precise Control of Molecular Weight and Architecture of Various Block Copolymers. Macromolecules, 2010, 43, 7398-7401.	2.2	141

#	Article	IF	CITATIONS
133	From Limestone to Catalysis: Application of Calcium Compounds as Homogeneous Catalysts. Chemical Reviews, 2010, 110, 3852-3876.	23.0	547
134	Thermal and weathering degradation of poly(propylene carbonate). Polymer Degradation and Stability, 2010, 95, 1039-1044.	2.7	50
135	Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide. Science China Chemistry, 2010, 53, 1566-1570.	4.2	23
136	Highly regio- and stereo-selective copolymerization of CO2 with racemic propylene oxide catalyzed by unsymmetrical (S,S,S)-salenCo(III) complexes. Science China Chemistry, 2010, 53, 1646-1652.	4.2	48
137	Cycloaddition of CO2 to Epoxides Using a Highly Active Co(III) Complex of Tetraamidomacrocyclic Ligand. Catalysis Letters, 2010, 137, 1-7.	1.4	62
138	Microwave Assisted Synthesis of Cyclic Carbonate Using Homogeneous and Heterogeneous Ionic Liquid Catalysts. Topics in Catalysis, 2010, 53, 462-469.	1.3	33
139	Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium–Salen Complexes. Chemistry - A European Journal, 2010, 16, 6828-6843.	1.7	352
141	Protonationâ€Induced Rearrangement of an Oxaphosphirane Complex. Angewandte Chemie - International Edition, 2010, 49, 2615-2618.	7.2	31
142	Pressure dependence of the CO ₂ /propylene oxide copolymerization catalyzed by zinc glutarate. Journal of Applied Polymer Science, 2010, 118, 366-371.	1.3	19
143	Synthesis and Electrochemistry of Schiff Base Cobalt(III) Complexes and Their Catalytic Activity for Copolymerization of Epoxide and Carbon Dioxide. Macromolecular Chemistry and Physics, 2010, 211, 669-676.	1.1	19
144	Molecular structures of three coordinate zinc and cadmium complexes that feature \hat{I}^2 -diketiminato and anilido-imine ligands. Polyhedron, 2010, 29, 1881-1890.	1.0	28
145	One-pot terpolymerization of CO2, cyclohexene oxide and maleic anhydride using a highly active heterogeneous double metal cyanide complex catalyst. Polymer, 2010, 51, 5719-5725.	1.8	68
146	Solvent free synthesis of organometallic catalysts for the copolymerisation of carbon dioxide and propylene oxide. Applied Catalysis B: Environmental, 2010, 98, 101-111.	10.8	30
147	Carbon Dioxide Fixation with Dialkyltellurium(IV) Dihydroxides. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 765-769.	0.6	8
148	[CoCl(TPPyP)], A Novel Bifunctional Catalyst for the Coupling Reaction of Carbon Dioxide and Propylene Oxide. Journal of Chemical Research, 2010, 34, 361-364.	0.6	1
149	Anion variation on a cobalt(iii) complex of salen-type ligand tethered by four quaternary ammonium salts for CO2/epoxide copolymerization. Dalton Transactions, 2010, 39, 2622.	1.6	80
151	Conformationally Flexible Dimeric Salphen Complexes for Bifunctional Catalysis. Journal of the American Chemical Society, 2010, 132, 14367-14369.	6.6	149
152	Factors Influencing the Ring-Opening Polymerization of Racemic \hat{l}^2 -Butyrolactone Using Cr ^{III} (salphen). Macromolecules, 2010, 43, 9311-9317.	2.2	41

#	Article	IF	CITATIONS
153	Iron(II) Complexes with Tetradentate Bis(aminophenolate) Ligands: Synthesis and Characterization, Solution Behavior, and Reactivity with O ₂ . Inorganic Chemistry, 2010, 49, 11106-11117.	1.9	36
155	An overview of CO2 capture technologies. Energy and Environmental Science, 2010, 3, 1645.	15.6	1,376
156	Controlled synthesis of mononuclear or binuclear aryloxo ytterbium complexes supported by \hat{l}^2 -diketiminate ligand and their activity for polymerization of $\hat{l}\mu$ -caprolactone and L-lactide. Dalton Transactions, 2010, 39, 6877.	1.6	29
157	Multinuclear Zinc Pentafluorobenzene Carboxylates: Synthesis, Characterization, and Hydrogen Storage Capability. Organometallics, 2010, 29, 6129-6132.	1.1	24
158	Measurement and Modeling of the High-Pressure Phase Behavior of the Carbon Dioxide + Propene Oxide Binary System. Journal of Chemical & Engineering Data, 2010, 55, 3379-3382.	1.0	6
159	Highly Active, Bifunctional Co(III)-Salen Catalyst for Alternating Copolymerization of CO ₂ with Cyclohexene Oxide and Terpolymerization with Aliphatic Epoxides. Macromolecules, 2010, 43, 1396-1402.	2.2	186
160	Controlled Synthesis of Camptothecinâ^'Polylactide Conjugates and Nanoconjugates. Bioconjugate Chemistry, 2010, 21, 111-121.	1.8	62
161	Terpolymerizations of CO ₂ , Propylene Oxide, and Various Epoxides Using a Cobalt(III) Complex of Salen-Type Ligand Tethered by Four Quaternary Ammonium Salts. Macromolecules, 2010, 43, 903-908.	2.2	131
162	Chemistry of Carbon Dioxide Relevant to Its Utilization: A Personal Perspective. Inorganic Chemistry, 2010, 49, 10765-10780.	1.9	306
163	Highly Selective Synthesis of CO ₂ Copolymer from Styrene Oxide. Macromolecules, 2010, 43, 9202-9204.	2.2	138
164	Highly Active Di- and Trimetallic Cobalt Catalysts for the Copolymerization of CHO and CO ₂ at Atmospheric Pressure. Macromolecules, 2010, 43, 2291-2298.	2.2	177
165	One-Pot Conversions of Olefins to Cyclic Carbonates and Secondary Allylic and Homoallylic Amines to Cyclic Carbamates. Journal of Organic Chemistry, 2010, 75, 7745-7756.	1.7	39
167	The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy and Environmental Science, 2010, 3, 43-81.	15.6	1,929
168	Recent developments in carbon dioxide utilization under mild conditions. Dalton Transactions, 2010, 39, 3347.	1.6	549
169	Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12, 1514.	4.6	1,174
170	Integrated Catalytic Conversion of \hat{I}^3 -Valerolactone to Liquid Alkenes for Transportation Fuels. Science, 2010, 327, 1110-1114.	6.0	988
171	A facile catalytic synthesis of trimethylene carbonate from trimethylene oxide and carbon dioxide. Green Chemistry, 2010, 12, 1376.	4.6	91
173	Bimetallic mechanism operating in the copolymerization of propylene oxide with carbon dioxide catalyzed by cobalt–salen complexes. Chemical Science, 2010, 1, 369.	3.7	151

#	Article	IF	CITATIONS
174	Tuning the Selectivity of the Oxetane and CO ₂ Coupling Process Catalyzed by (Salen)CrCl/ <i>n</i> -Bu ₄ NX: Cyclic Carbonate Formation vs Aliphatic Polycarbonate Production. Macromolecules, 2010, 43, 5996-6003.	2.2	80
175	Synthesis and characterisation of trigonal C2-chiral di- and tetra-substituted bis(oxazoline) alkyl zinc complexes and their reactivity towards protic reagents. Dalton Transactions, 2011, 40, 1768.	1.6	12
176	Structure and pulsed EPR characterization of N,N′-bis(5-tert-butylsalicylidene)-1,2-cyclohexanediamino-vanadium(iv) oxide and its adducts with propylene oxide. Dalton Transactions, 2011, 40, 7454.	1.6	10
177	Amido analogues of zincocenes and cadmocenes. Dalton Transactions, 2011, 40, 1641.	1.6	15
178	Bimetallic aluminium(acen) complexes as catalysts for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Catalysis Science and Technology, 2011, 1, 93.	2.1	76
179	Unprecedented binding and activation of CS2 in a dinuclear copper(i) complex. Chemical Communications, 2011 , 47 , 6374 .	2.2	30
180	Preparation of flame-retarding poly(propylene carbonate). Green Chemistry, 2011, 13, 3469.	4.6	78
181	Structural and catalytic studies of zinc complexes containing amido-oxazolinate ligands. Dalton Transactions, 2011, 40, 12886.	1.6	26
182	A bimetallic iron(<scp>iii</scp>) catalyst for CO ₂ /epoxide coupling. Chemical Communications, 2011, 47, 212-214.	2.2	390
183	Carbon Dioxide Coordination and Activation by Niobium Oxide Molecules. Journal of Physical Chemistry A, 2011, 115, 14361-14369.	1.1	21
184	Organocatalytic Synthesis and Postpolymerization Functionalization of Allyl-Functional Poly(carbonate)s. Macromolecules, 2011, 44, 2084-2091.	2.2	134
185	Catalytic Cyclic Carbonate Synthesis Using Epoxide and Carbon Dioxide: Combined Catalytic Effect of Both Cation and Anion of an Ionic CrV(O) Amido Macrocyclic Complex. Industrial & Engineering Chemistry Research, 2011, 50, 7800-7807.	1.8	32
186	Dinuclear Copper Complexes Based on Parallel β-Diiminato Binding Sites and their Reactions with O ₂ : Evidence for a Cuâ^Oâ^Cu Entity. Inorganic Chemistry, 2011, 50, 2133-2142.	1.9	47
187	Synthesis of Poly(indene carbonate) from Indene Oxide and Carbon Dioxideâ€"A Polycarbonate with a Rigid Backbone. Journal of the American Chemical Society, 2011, 133, 18610-18613.	6.6	86
188	Tetravalent Metal Complexes as a New Family of Catalysts for Copolymerization of Epoxides with Carbon Dioxide. Journal of the American Chemical Society, 2011, 133, 10720-10723.	6.6	161
189	Imidazolidene Carboxylate Bound MBPh ₄ Complexes (M = Li, Na) and Their Relevance in Transcarboxylation Reactions. Journal of Organic Chemistry, 2011, 76, 8413-8420.	1.7	39
190	Ring-Opening Copolymerization of Maleic Anhydride with Epoxides: A Chain-Growth Approach to Unsaturated Polyesters. Journal of the American Chemical Society, 2011, 133, 10724-10727.	6.6	232
191	Reactions of Topologically Related "nacnacH-CN―and "P-nacnacH-CN―Chelate Ligand Systems with HB(C ₆ F ₅) ₂ . Organometallics, 2011, 30, 2377-2384.	1.1	17

#	Article	IF	CITATIONS
192	The Influence of the Metal (Al, Cr, and Co) and the Substituents of the Porphyrin in Controlling the Reactions Involved in the Copolymerization of Propylene Oxide and Carbon Dioxide by Porphyrin Metal(III) Complexes. 1. Aluminum Chemistry. Inorganic Chemistry, 2011, 50, 4481-4492.	1.9	117
193	How Does the Nickel Pincer Complex Catalyze the Conversion of CO ₂ to a Methanol Derivative? A Computational Mechanistic Study. Inorganic Chemistry, 2011, 50, 3816-3825.	1.9	159
194	Formation of a Reversible, Intramolecular Main-Group Metal–CO ₂ Adduct. Inorganic Chemistry, 2011, 50, 11288-11290.	1.9	44
195	Chemical architectonics for complex inorganic materials. Bioinorganic Reaction Mechanisms, 2011, 7, .	0.5	0
196	Clean and rapid synthesis of double metal cyanide complexes using mechanochemistry. Green Chemistry, 2011, 13, 2701.	4.6	42
197	Connection of polymer chains using diepoxide in CO2/propylene oxide copolymerizations. Polymer Chemistry, 2011, 2, 950.	1.9	55
199	Fully Degradable and Well-Defined Brush Copolymers from Combination of Living CO ₂ /Epoxide Copolymerization, Thiol–Ene Click Reaction and ROP of Îμ-caprolactone. Macromolecules, 2011, 44, 9882-9886.	2.2	64
200	Mechanistic Investigation and Reaction Kinetics of the Low-Pressure Copolymerization of Cyclohexene Oxide and Carbon Dioxide Catalyzed by a Dizinc Complex. Journal of the American Chemical Society, 2011, 133, 17395-17405.	6.6	191
201	Perfectly Alternating Copolymerization of CO ₂ and Epichlorohydrin Using Cobalt(III)-Based Catalyst Systems. Journal of the American Chemical Society, 2011, 133, 15191-15199.	6.6	198
202	Alternating copolymerization of CO2 and styrene oxide with Co(iii)-based catalyst systems: differences between styrene oxide and propylene oxide. Energy and Environmental Science, 2011, 4, 5084.	15.6	94
203	Solvent Dependence of the Structure of Ethylzinc Acetate and Its Application in CO2/Epoxide Copolymerization. Organometallics, 2011, 30, 2223-2229.	1.1	20
204	One-component bimetallic aluminium(salen)-based catalysts for cyclic carbonate synthesis and their immobilization. Dalton Transactions, 2011, 40, 3885-3902.	1.6	146
205	Aliphatic Polycarbonates Produced from the Coupling of Carbon Dioxide and Oxetanes and Their Depolymerization via Cyclic Carbonate Formation. Macromolecules, 2011, 44, 2568-2576.	2.2	62
206	Catalysts for CO ₂ /epoxide copolymerisation. Chemical Communications, 2011, 47, 141-163.	2.2	731
207	Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chemical Society Reviews, 2011, 40, 2435.	18.7	771
208	Alternating copolymerization of CO2 with propylene oxide and terpolymerization with aliphatic epoxides by bifunctional cobalt Salen complex. Polymer Journal, 2011, 43, 121-125.	1.3	25
210	From CO2 to dimethyl carbonate with dialkyldimethoxystannanes: the key role of monomeric species. Physical Chemistry Chemical Physics, 2011, 13, 2401-2408.	1.3	38
211	Alternating Copolymerization of Propylene Oxide/Alkylene Oxide and Carbon Dioxide: Tuning Thermal Properties of Polycarbonates. Chemistry Letters, 2011, 40, 209-211.	0.7	21

#	Article	IF	CITATIONS
212	Synergistic effect of alkali halide and Lewis base on the catalytic synthesis of cyclic carbonate from CO2 and epoxide. Chemical Physics Letters, 2011, 512, 273-277.	1.2	70
213	Material Properties of Poly(Propylene Carbonates). Advances in Polymer Science, 2011, , 29-48.	0.4	115
214	Salen Metal Complexes as Catalysts for the Synthesis of Polycarbonates from Cyclic Ethers and Carbon Dioxide. Advances in Polymer Science, 2011, , 1-27.	0.4	12
215	Direct synthesis of cyclic carbonates from olefins and CO2 catalyzed by a MoO2(acac)2-quaternary ammonium salt system. Green Chemistry, 2011, 13, 2518.	4.6	74
216	Synthesis, Structure, and Reactivity of a Mononuclear Organozinc Hydride Complex: Facile Insertion of CO ₂ into a Zn–H Bond and CO ₂ -Promoted Displacement of Siloxide Ligands. Journal of the American Chemical Society, 2011, 133, 9708-9711.	6.6	113
217	Copolymerization of propylene oxide and carbon dioxide in the presence of diphenylmethane diisoyanate. Journal of Polymer Research, 2011, 18, 1479-1486.	1.2	15
218	Multinuclear Cu(II) Schiff Base Complex as Efficient Catalyst for the Chemical Coupling of CO2 and Epoxides: Synthesis, X-ray Structural Characterization and Catalytic Activity. Catalysis Letters, 2011, 141, 717-725.	1.4	44
219	Alternating copolymerization of cyclohexene oxide and carbon dioxide under cobalt porphyrin catalyst. Chinese Journal of Polymer Science (English Edition), 2011, 29, 602-608.	2.0	10
220	3,5-Lutidine coordinated zinc(II) aryl carboxylate complexes: Precursors for zinc(II) oxide. Inorganica Chimica Acta, 2011, 372, 191-199.	1.2	15
221	Copolymerization of carbon dioxide and propylene oxide under inorganic oxide supported rare earth ternary catalyst. Journal of Polymer Science Part A, 2011, 49, 3797-3804.	2.5	22
222	Stereoregular polycarbonate synthesis: Alternating copolymerization of CO ₂ with aliphatic terminal epoxides catalyzed by multichiral cobalt(III) complexes. Journal of Polymer Science Part A, 2011, 49, 4894-4901.	2.5	73
223	Thermal and pH responsive high molecular weight poly(urethaneâ€amine) with high urethane content. Journal of Polymer Science Part A, 2011, 49, 5162-5168.	2.5	28
224	Toughening of poly(propylene carbonate) by hyperbranched poly(esterâ€amide) via hydrogen bonding interaction. Polymer International, 2011, 60, 1697-1704.	1.6	38
225	Metalâ€Catalyzed Synthesis of Alternating Copolymers. Macromolecular Rapid Communications, 2011, 32, 169-185.	2.0	106
226	Synthesis of Hydrogels from Polyallylamine with Carbon Dioxide as Gellant: Development of Reversible CO ₂ Absorbent. Macromolecular Rapid Communications, 2011, 32, 404-410.	2.0	23
227	Immobilized DMAP Derivatives Rivaling Homogeneous DMAP. European Journal of Organic Chemistry, 2011, 2011, 1527-1533.	1.2	38
228	Transformation of Nickelalactones to Methyl Acrylate: On the Way to a Catalytic Conversion of Carbon Dioxide. ChemSusChem, 2011, 4, 1275-1279.	3.6	59
229	Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain . ChemSusChem, 2011, 4, 1216-1240.	3.6	639

#	Article	IF	Citations
230	Myth or Reality? Fixation of Carbon Dioxide into Complex Organic Matter under Mild Conditions. ChemSusChem, 2011, 4, 1259-1263.	3.6	246
231	Carbon Dioxide Recycling: Emerging Largeâ€Scale Technologies with Industrial Potential. ChemSusChem, 2011, 4, 1194-1215.	3.6	520
232	Improving the processability of biodegradable polymer by stearate additive. Journal of Applied Polymer Science, 2011, 120, 692-700.	1.3	10
233	Ringâ€opening polymerization of trimethylenecarbonate by the bridged diphenoxo ytterbium (II) complex. Journal of Applied Polymer Science, 2011, 120, 2693-2698.	1.3	4
238	Stereocomplex of Poly(propylene carbonate): Synthesis of Stereogradient Poly(propylene carbonate) by Regio―and Enantioselective Copolymerization of Propylene Oxide with Carbon Dioxide. Angewandte Chemie - International Edition, 2011, 50, 4868-4871.	7.2	170
239	A Palladiumâ€Catalyzed Multicomponent Coupling Approach to Ï€â€Conjugated Oligomers: Assembling Imidazoleâ€Based Materials from Imines and Acyl Chlorides. Angewandte Chemie - International Edition, 2011, 50, 6552-6556.	7.2	56
240	Catalytic Hydrocarboxylation of Alkenes and Alkynes with CO ₂ . Angewandte Chemie - International Edition, 2011, 50, 6210-6212.	7.2	114
241	Transformation of Carbon Dioxide with Homogeneous Transitionâ€Metal Catalysts: A Molecular Solution to a Global Challenge?. Angewandte Chemie - International Edition, 2011, 50, 8510-8537.	7.2	1,439
242	Bifunctional cobalt Salen complex: a highly selective catalyst for the coupling of CO ₂ and epoxides under mild conditions. Applied Organometallic Chemistry, 2011, 25, 424-428.	1.7	18
243	On the Mechanism of Irreversible Carbon Dioxide Binding with a Frustrated Lewis Pair: Solventâ€Assisted Frustration and Transitionâ€State Entropic Encouragement. Chemistry - A European Journal, 2011, 17, 6501-6507.	1.7	24
244	Differences in Reactivity of Epoxides in the Copolymerisation with Carbon Dioxide by Zincâ∈Based Catalysts: Propylene Oxide versus Cyclohexene Oxide. Chemistry - A European Journal, 2011, 17, 8858-8869.	1.7	71
245	Recent advances in CO2/epoxide copolymerization—New strategies and cooperative mechanisms. Coordination Chemistry Reviews, 2011, 255, 1460-1479.	9.5	636
246	Effects of steric/basic properties of Lewis bases on the degree of aggregation of zinc(II) pivalate complexes. Inorganica Chimica Acta, 2011, 370, 122-131.	1.2	11
247	Aminotroponiminate zinc complexes as catalysts for the intramolecular hydroamination. Journal of Organometallic Chemistry, 2011, 696, 406-418.	0.8	53
248	Silicon containing new salicylaldimine Pd(II) and Co(II) metal complexes as efficient catalysts in transformation of carbon dioxide (CO2) to cyclic carbonates. Journal of Organometallic Chemistry, 2011, 696, 1372-1379.	0.8	37
249	Orthogonal Modification of Norbornene-Functional Degradable Polymers. ACS Macro Letters, 2012, 1, 1285-1290.	2.3	64
250	Carbon Dioxide Mediated Stereoselective Copper-Catalyzed Reductive Coupling of Alkynes and Thiols. Organic Letters, 2012, 14, 1780-1783.	2.4	86
251	Synthesis of ureas from titanium imido complexes using CO ₂ as a C-1 reagent at ambient temperature and pressure. Organic and Biomolecular Chemistry, 2012, 10, 1334-1338.	1.5	21

#	Article	IF	CITATIONS
252	Diversity of carboxylate binding in a new tetranuclear zinc cluster: correlation between spectroscopic investigations and carboxylate binding modes. RSC Advances, 2012, 2, 1774.	1.7	20
253	Influence of the Metal (Al, Cr, and Co) and the Substituents of the Porphyrin in Controlling the Reactions Involved in the Copolymerization of Propylene Oxide and Carbon Dioxide by Porphyrin Metal(III) Complexes. 2. Chromium Chemistry. Inorganic Chemistry, 2012, 51, 12041-12052.	1.9	63
254	Concomitant Reactivity of the $<$ i>m-Terphenylindium Dihydroxide [2,6-Mes ₂ C ₆ H ₃ In(OH) ₂] ₄ toward Carbon Dioxide and Ethylene Glycol. Organometallics, 2012, 31, 3802-3805.	1.1	5
255	Chiral Amido-Oxazolinate Zinc Complexes for Asymmetric Alternating Copolymerization of CO ₂ and Cyclohexene Oxide. Organometallics, 2012, 31, 7394-7403.	1.1	50
256	Depolymerization of Polycarbonates Derived from Carbon Dioxide and Epoxides to Provide Cyclic Carbonates. A Kinetic Study. Macromolecules, 2012, 45, 5916-5922.	2.2	97
257	Di-cobalt(ii) catalysts for the copolymerisation of CO2 and cyclohexene oxide: support for a dinuclear mechanism?. Chemical Science, 2012, 3, 1245.	3.7	117
258	Kinetic Studies of the Alternating Copolymerization of Cyclic Acid Anhydrides and Epoxides, and the Terpolymerization of Cyclic Acid Anhydrides, Epoxides, and CO ₂ Catalyzed by (salen)Cr ^{III} Cl. Macromolecules, 2012, 45, 2242-2248.	2.2	207
259	Phosphasalen Yttrium Complexes: Highly Active and Stereoselective Initiators for Lactide Polymerization. Inorganic Chemistry, 2012, 51, 2157-2169.	1.9	104
260	Formation of Phosphino-Substituted Isocyanate by Reaction of CO ₂ with Group 2 Complexes Based on the (Me ₃ Si)(<i>i</i>)-Pr ₂ P)NH Ligand. Inorganic Chemistry, 2012, 51, 1162-1169.	1.9	20
261	Enhanced Asymmetric Induction for the Copolymerization of CO ₂ and Cyclohexene Oxide with Unsymmetric Enantiopure SalenCo(III) Complexes: Synthesis of Crystalline CO ₂ -Based Polycarbonate. Journal of the American Chemical Society, 2012, 134, 5682-5688.	6.6	140
262	Experimental and Computational Investigation of the Mechanism of Carbon Dioxide/Cyclohexene Oxide Copolymerization Using a Dizinc Catalyst. Macromolecules, 2012, 45, 6781-6795.	2.2	123
263	Solvent-Driven Reductive Activation of Carbon Dioxide by Gold Anions. Journal of the American Chemical Society, 2012, 134, 18804-18808.	6.6	85
265	Recent advances on polyoxometalate-based molecular and composite materials. Chemical Society Reviews, 2012, 41, 7384.	18.7	783
266	CO ₂ Copolymers from Epoxides: Catalyst Activity, Product Selectivity, and Stereochemistry Control. Accounts of Chemical Research, 2012, 45, 1721-1735.	7.6	576
267	Cobalt catalysts for the coupling of CO ₂ and epoxides to provide polycarbonates and cyclic carbonates. Chemical Society Reviews, 2012, 41, 1462-1484.	18.7	1,017
268	Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO ₂ ; Using Water to Synthesize Polycarbonate Polyols. Journal of the American Chemical Society, 2012, 134, 15676-15679.	6.6	261
269	What's new with CO2? Recent advances in its copolymerization with oxiranes. Green Chemistry, 2012, 14, 2665.	4.6	299
270	Dual Catalyst System for Asymmetric Alternating Copolymerization of Carbon Dioxide and Cyclohexene Oxide with Chiral Aluminum Complexes: Lewis Base as Catalyst Activator and Lewis Acid as Monomer Activator. Macromolecules, 2012, 45, 8172-8192.	2.2	85

#	Article	IF	CITATIONS
271	Efficient pathway for CO2 transformation to cyclic carbonates by heterogeneous Cu and Zn salen complexes. Journal of Organometallic Chemistry, 2012, 713, 104-111.	0.8	26
272	Tandem Metal-Coordination Copolymerization and Organocatalytic Ring-Opening Polymerization via Water To Synthesize Diblock Copolymers of Styrene Oxide/CO ₂ and Lactide. Journal of the American Chemical Society, 2012, 134, 17739-17745.	6.6	149
273	Recycling CO ₂ ? Computational Considerations of the Activation of CO ₂ with Homogeneous Transition Metal Catalysts. ChemCatChem, 2012, 4, 1703-1712.	1.8	60
274	Oneâ€Pot Terpolymerization of CO ₂ , Propylene Oxide and Lactide Using Rareâ€earth Ternary Catalyst. Chinese Journal of Chemistry, 2012, 30, 2121-2125.	2.6	30
275	Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of lowâ€molecular weight oligo(carbonateâ€ether) diols with tunable carbonate unit content. Journal of Polymer Science Part A, 2012, 50, 5177-5184.	2.5	71
276	A Bioinspired Zn ^{II} /Fe ^{III} Heterobimetallic Catalyst for Thia-Michael Addition. Organometallics, 2012, 31, 4106-4109.	1.1	18
277	Synthesis of Dianionic β-Diketiminate Lanthanide Amides L′LnN(SiMe ₃) ₂ (THF) by Deprotonation of the β-Diketiminate Ligand L (L =) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 507 Td ({[(2,6- <i>i </i>) and the Transformation with [HNEt ₃][BPh ₄] to the Cationic Samarium Amide [LSmN(SiMe ₃) ₂][BPh ₄]. Organometallics, 2012, 31, 1017-1024.	r _{2< 1.1}	/sub>C <sub: 29</sub:
278	Zinc Catalysts for On-Demand Hydrogen Generation and Carbon Dioxide Functionalization. Journal of the American Chemical Society, 2012, 134, 17462-17465.	6.6	227
279	Trimetallic magnesium complexes bearing amine-bis(benzotriazole phenolate) derivatives as bifunctional catalysts for ring-opening polymerization and CO2/epoxide coupling. Chemical Communications, 2012, 48, 9628.	2.2	40
280	ROP of Cyclic Carbonates and ROP of Macrocycles. , 2012, , 247-308.		13
281	Synthesis, reactivity and applications of zinc–zinc bonded complexes. Chemical Society Reviews, 2012, 41, 3759.	18.7	108
282	Synthesis of cyclic carbonates using monometallic, and helical bimetallic, aluminium complexes. Catalysis Science and Technology, 2012, 2, 1021.	2.1	72
283	Photochemically Generated Transients from \hat{I}° (sup>2- and \hat{I}° (sup>3-Triphos Derivatives of Group 6 Metal Carbonyls and Their Reactivity with Olefins. Organometallics, 2012, 31, 3163-3170.	1.1	4
284	Easy-to-handle ionic transition metal complexes in the formation of carbonates from epoxides and CO2: A N4-ligand system based on N,N-bis(2-pyridinecarboxamide)-1,2-benzene. Polyhedron, 2012, 48, 92-98.	1.0	33
285	Technical advance on the fixation of carbon dioxide from cement kiln. Procedia Engineering, 2012, 27, 1359-1363.	1.2	0
286	Mechanistic Basis for High Reactivity of (salen)Co–OTs in the Hydrolytic Kinetic Resolution of Terminal Epoxides. Journal of Organic Chemistry, 2012, 77, 2486-2495.	1.7	53
287	Role of the co-catalyst in the asymmetric coupling of racemic epoxides with CO2 using multichiral Co(iii) complexes: product selectivity and enantioselectivity. Chemical Science, 2012, 3, 2094.	3.7	93
288	Ring-Opening Polymerization of Epoxides Catalyzed by Uranyl Complexes: An Experimental and Theoretical Study of the Reaction Mechanism. Inorganic Chemistry, 2012, 51, 9132-9140.	1.9	23

#	Article	IF	CITATIONS
289	Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2. Catalysis Science and Technology, 2012, 2, 2169.	2.1	336
290	Preparation of thermoplastic polyurethanes using in situ generated poly(propylene carbonate)-diols. Polymer Chemistry, 2012, 3, 1215.	1.9	76
291	Cobaltoporphyrin-Catalyzed CO ₂ /Epoxide Copolymerization: Selectivity Control by Molecular Design. Macromolecules, 2012, 45, 6840-6849.	2.2	104
292	Copolymerization of Cyclohexene Oxide and CO ₂ with a Chromium Diamine-bis(phenolate) Catalyst. Inorganic Chemistry, 2012, 51, 9095-9103.	1.9	53
293	Syntheses of cyclic carbonates with amidinium halide catalysts in reusable, reversible, room-temperature ionic liquids or acetonitrile. Green Chemistry, 2012, 14, 209-216.	4.6	45
295	(Salan)CrCl, an effective catalyst for the copolymerization and terpolymerization of epoxides and carbon dioxide. Journal of Polymer Science Part A, 2012, 50, 127-133.	2.5	58
296	Mechanistic insight into initiation and chain transfer reaction of CO ₂ /cyclohexene oxide copolymerization catalyzed by zinccobalt double metal cyanide complex catalysts. Journal of Polymer Science Part A, 2012, 50, 2924-2934.	2.5	50
297	Synthesis of biodegradable polymers from renewable resources. Polymer Chemistry, 2012, 3, 836-851.	1.9	389
298	A New Application Area for Agâ€NHCs: CO ₂ Fixation Catalyst. ChemCatChem, 2012, 4, 831-835.	1.8	31
299	Synthesis and properties of regio-regular poly(2-furyloxirane) using tri-isobutyl aluminium as catalyst. Journal of Polymer Research, 2012, 19, 1.	1.2	0
300	Ether linkage in poly $(1,2$ -propylene carbonate), a key structure factor to tune its performances. Journal of Polymer Research, 2012, 19, 1.	1.2	13
301	Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO2 and propylene oxide under zinc-cobalt double metal cyanide complex. Journal of Polymer Research, 2012, 19, 1.	1.2	47
302	Quantum Chemical Determination of Stable Intermediates on CO2 Adsorption Onto Metal(Salen) Complexes. Topics in Catalysis, 2012, 55, 260-266.	1.3	4
303	Stereoregular poly(cyclohexene carbonate)s: Unique crystallization behavior. Chinese Journal of Polymer Science (English Edition), 2012, 30, 487-492.	2.0	73
304	Coupling of carbon dioxide with neat propylene oxide catalyzed by aminebisphenolato cobalt(II)/(III) complexes and ionic co-catalysts. Catalysis Communications, 2012, 18, 165-167.	1.6	43
305	Recent developments in carbon dioxide utilization for the production of organic chemicals. Coordination Chemistry Reviews, 2012, 256, 1384-1405.	9.5	526
306	Ligand acceleration in Znl2-catalyzed intramolecular hydroamination of unfunctionalized olefins. Tetrahedron Letters, 2012, 53, 4393-4396.	0.7	24
307	Carboxylation of pincer PCP platinum methoxide complexes under formation of metalla carbonates. Polyhedron, 2012, 32, 24-29.	1.0	19

#	Article	IF	CITATIONS
308	Effects of compatibilizers on the mechanical, morphological, and thermal properties of poly(propylene carbonate)/poly(methyl methacrylate) blends. Macromolecular Research, 2013, 21, 1182-1187.	1.0	18
309	Stereoselective Synthesis with Carbon Dioxide. Advanced Synthesis and Catalysis, 2013, 355, 2115-2138.	2.1	278
310	Synthesis of cyclic carbonates with carbon dioxide and cesium carbonate. Green Chemistry, 2013, 15, 2086.	4.6	78
311	Asymmetric cycloaddition of CO2 and an epoxide using recyclable bifunctional polymeric Co(iii) salen complexes under mild conditions. Catalysis Science and Technology, 2013, 3, 2661.	2.1	38
312	Poly(Propylene Carbonate) from Carbon Dioxide: Challenges for Largeâ€Scale Application. Chemie-Ingenieur-Technik, 2013, 85, 437-446.	0.4	22
313	Polystyreneâ€Supported Nâ€Heterocyclic Carbene–Silver Complexes as Robust and Efficient Catalysts for the Reaction of Carbon Dioxide and Propargylic Alcohols. Advanced Synthesis and Catalysis, 2013, 355, 2019-2028.	2.1	87
314	Novel polymer electrolyte from poly(carbonate-ether) and lithium tetrafluoroborate for lithium–oxygen battery. Journal of Power Sources, 2013, 242, 677-682.	4.0	19
315	From Carbon Dioxide to Valuable Products under Homogeneous Catalysis. , 2013, , 563-586.		4
316	Small Number of Active Sites and Single-Locus Kinetics Revealed in (salph)Co-Catalyzed Ethylene Oxide Polymerization. ACS Catalysis, 2013, 3, 2150-2153.	5.5	11
317	Copolymerization of Carbon Dioxide and Propylene Oxide Catalyzed by Salen Complexes. Advanced Materials Research, 0, 734-737, 2159-2162.	0.3	1
318	Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science and Technology, 2013, 3, 2509.	2.1	270
319	Dual catalysis: new approaches for the polymerization of lactones and polar olefins. Dalton Transactions, 2013, 42, 9024.	1.6	50
320	Density Functional Theory Mechanistic Study of the Reduction of CO ₂ to CH ₄ Catalyzed by an Ammonium Hydridoborate Ion Pair: CO ₂ Activation via Formation of a Formic Acid Entity. Inorganic Chemistry, 2013, 52, 12098-12107.	1.9	65
321	Oxygen/Sulfur Scrambling During the Copolymerization of Cyclopentene Oxide and Carbon Disulfide: Selectivity for Copolymer vs Cyclic [Thio]carbonates. Macromolecules, 2013, 46, 8102-8110.	2.2	55
322	Unexpected Câ€"H Bond Activation Promoted by Bimetallic Lanthanide Amido Complexes Bearing a META-Phenylene-Bridged Bis(β-diketiminate) Ligand. Organometallics, 2013, 32, 1876-1881.	1.1	28
323	Reactivity of Dianionic I2-Diketiminato Samarium Amide LSmN(SiMe ₃) ₂ (THF) (L =) IJ E toward ArC≡N (Ar = C ₆ H ₅ , <i>p</i> Ph ₂ Câ•Câ•N ^{3(1) Sup>8 Sub>8 Facile Route for Modification of Dianionic Î2-Diketiminato}	.1Qq1 1 0. 1.1	./84314 rgB 7
324	Solvent-Mediated Reduction of Carbon Dioxide in Anionic Complexes with Silver Atoms. Journal of Physical Chemistry A, 2013, 117, 10764-10771.	1.1	69
325	Catalytic Coupling of Cyclopentene Oxide and CO ₂ Utilizing Bifunctional (salen)Co(III) and (salen)Cr(III) Catalysts: Comparative Processes Involving Binary (salen)Cr(III) Analogs. ACS Catalysis, 2013, 3, 3050-3057.	5.5	77

#	Article	IF	CITATIONS
326	Regioselective and Alternating Copolymerization of Carbonyl Sulfide with Racemic Propylene Oxide. Macromolecules, 2013, 46, 5899-5904.	2.2	80
327	Synthesis of CO ₂ -Derived Poly(indene carbonate) from Indene Oxide Utilizing Bifunctional Cobalt(III) Catalysts. Macromolecules, 2013, 46, 5929-5934.	2.2	47
328	An Efficient Method of Depolymerization of Poly(cyclopentene carbonate) to Its Comonomers: Cyclopentene Oxide and Carbon Dioxide. Macromolecules, 2013, 46, 5850-5855.	2.2	82
329	High activity and switchable selectivity in the synthesis of cyclic and polymeric cyclohexene carbonates with iron amino triphenolate catalysts. Green Chemistry, 2013, 15, 3083.	4.6	135
330	Conversion of Carbon Dioxide into Several Potential Chemical Commodities Following Different Pathways - A Review. Materials Science Forum, 0, 764, 1-82.	0.3	20
331	Synthesis and characterization of Co(iii) amidoamine complexes: influence of substituents of the ligand on catalytic cyclic carbonate synthesis from epoxide and carbon dioxide. Dalton Transactions, 2013, 42, 13151.	1.6	37
332	A one-step strategy for thermally and mechanically reinforced pseudo-interpenetrating poly(propylene carbonate) networks by terpolymerization of CO2, propylene oxide and pyromellitic dianhydride. Journal of Materials Chemistry A, 2013, 1, 3556.	5.2	30
333	Reaction of CO ₂ with propylene oxide and styrene oxide catalyzed by a chromium(<scp>iii</scp>) amine-bis(phenolate) complex. Dalton Transactions, 2013, 42, 9233-9244.	1.6	51
334	Facile insertion of CO2 into metal–phenoxide bonds. Green Chemistry, 2013, 15, 1356.	4.6	25
335	Catalytic performance of montmorillonite clay ion-exchanged with ionic liquids in the cycloaddition of carbon dioxide to allyl glycidyl ether. Catalysis Today, 2013, 200, 24-29.	2.2	31
336	Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 2013, 15, 584.	4.6	868
337	Thermodynamics of the Carbon Dioxide–Epoxide Copolymerization and Kinetics of the Metal-Free Degradation: A Computational Study. Macromolecules, 2013, 46, 83-95.	2.2	73
338	Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chemical Society Reviews, 2013, 42, 1312-1336.	18.7	302
339	Thermally Induced Nanoimprinting of Biodegradable Polycarbonates Using Dynamic Covalent Cross-Links. ACS Macro Letters, 2013, 2, 19-22.	2.3	39
340	Catalytic fixation of CO ₂ to cyclic carbonates by phosphonium chlorides immobilized on fluorous polymer. Green Chemistry, 2013, 15, 110-115.	4.6	114
341	Rise of the Zinc Age in Homogeneous Catalysis?. ACS Catalysis, 2013, 3, 150-158.	5.5	178
342	Potassium, zinc, and magnesium complexes of a bulky OOO-tridentate bis(phenolate) ligand: synthesis, structures, and studies of cyclic ester polymerisation. Dalton Transactions, 2013, 42, 9313.	1.6	74
343	Metal complexes with heteroscorpionate ligands based on the bis(pyrazol-1-yl)methane moiety: Catalytic chemistry. Coordination Chemistry Reviews, 2013, 257, 1806-1868.	9.5	155

#	Article	IF	CITATIONS
344	Biodegradable poly(carbonateâ€ether)s with thermoresponsive feature at body temperature. Journal of Polymer Science Part A, 2013, 51, 282-289.	2.5	40
345	Cobalt(III)â€complexâ€mediated terpolymerization of CO 2 , styrene oxide, and epoxides with an electronâ€donating group. Journal of Polymer Science Part A, 2013, 51, 874-879.	2.5	28
346	Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. Journal of CO2 Utilization, 2013, 3-4, 74-92.	3.3	166
347	Relative basicities of cyclic ethers and esters. Chemistry of importance to ring-opening co- and terpolymerization reactions. Polyhedron, 2013, 58, 139-143.	1.0	26
348	Synthesis of Atactic and Isotactic Poly $(1,2$ -glycerol carbonate)s: Degradable Polymers for Biomedical and Pharmaceutical Applications. Journal of the American Chemical Society, 2013, 135, 6806-6809.	6.6	117
349	Hypervalent organoantimony and -bismuth compounds with pendant arm ligands. Coordination Chemistry Reviews, 2013, 257, 818-879.	9.5	114
350	Mechanism for alternating copolymerization of CO2 and propylene oxide in diethylzinc–water catalytic system: A DFT study. Journal of CO2 Utilization, 2013, 2, 39-48.	3.3	14
351	The coupling of carbon dioxide and epoxides by phenanthroline derivatives containing different Cu(II) complexes as catalyst. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 113, 432-438.	2.0	12
352	Effect of polymerization conditions on the polymer properties of CO2-cyclohexene oxide copolymer prepared by double metal cyanide catalyst. Journal of Industrial and Engineering Chemistry, 2013, 19, 1939-1943.	2.9	9
353	Organophophorous Ester Degradation by Chromium(III) Terephthalate Metal–Organic Framework (MIL-101) Chelated to <i>N</i> , <i>N</i> ,Dimethylaminopyridine and Related Aminopyridines. ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS Appli	4.0	104
354	Crystalline CO2 Copolymer from Epichlorohydrin via Co(III)-Complex-Mediated Stereospecific Polymerization. Macromolecules, 2013, 46, 2128-2133.	2.2	82
355	Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 2013, 46, 1689-1712.	2.2	437
356	On the chemical fixation of supercritical carbon dioxide with epoxides catalyzed by ionic salts: an in situ FTIR and Raman study. Catalysis Science and Technology, 2013, 3, 1046.	2.1	62
357	Selective coupling of carbon dioxide and epoxystyrene via salicylaldimine-, thiophenaldimine-, and quinolinaldimine-iron(II), iron(III), chromium(III), and cobalt(III)/Lewis base catalysts. Transition Metal Chemistry, 2013, 38, 253-257.	0.7	20
358	Synthesis, characterization, electrochemical properties and conversions of carbon dioxide to cyclic carbonates mononuclear and multinuclear oxime complexes using as catalyst. Inorganica Chimica Acta, 2013, 394, 635-644.	1.2	17
359	Aluminium coordination complexes in copolymerization reactions of carbon dioxide and epoxides. Dalton Transactions, 2013, 42, 8998.	1.6	79
360	Aluminium complexes containing pyrazolyl–phenolate ligands as catalysts for ring opening polymerization of Îμ-caprolactone. Journal of Organometallic Chemistry, 2013, 725, 15-21.	0.8	17
361	Magnesium and zinc complexes containing pendant pyrazolyl–phenolate ligands as catalysts for ring opening polymerisation of cyclic esters. Journal of Organometallic Chemistry, 2013, 738, 1-9.	0.8	22

#	Article	IF	CITATIONS
363	Influence of the Metal (Al, Cr, and Co) and Substituents of the Porphyrin in Controlling Reactions Involved in Copolymerization of Propylene Oxide and Carbon Dioxide by Porphyrin Metal(III) Complexes. 3. Cobalt Chemistry. Inorganic Chemistry, 2013, 52, 4547-4553.	1.9	48
364	Copolymerization of Epoxides with Carbon Dioxide Catalyzed by Iron–Corrole Complexes: Synthesis of a Crystalline Copolymer. Journal of the American Chemical Society, 2013, 135, 8456-8459.	6.6	128
365	Mechanistic Insights into the Reduction of Carbon Dioxide with Silanes over Nâ€Heterocyclic Carbene Catalysts. ChemCatChem, 2013, 5, 1490-1496.	1.8	70
366	Calcium complexes containing oxalamidinate ligands as catalysts for Îμ-caprolactone polymerization. Dalton Transactions, 2013, 42, 9255-9262.	1.6	17
367	Depolymerization of Poly(indene carbonate). A Unique Degradation Pathway. Macromolecules, 2013, 46, 3228-3233.	2.2	37
368	Zn(<scp>ii</scp>), Cd(<scp>ii</scp>) and Cu(<scp>ii</scp>) complexes of 2,5-bis{N-(2,6-diisopropylphenyl)iminomethyl}pyrrole: synthesis, structures and their high catalytic activity for efficient cyclic carbonate synthesis Dalton Transactions, 2013, 42, 1238-1248.	1.6	72
369	Synthesis, characterization and reactivity of single-site aluminium amides bearing benzotriazole phenoxide ligands: catalysis for ring-opening polymerization of lactide and carbon dioxide/propylene oxide coupling. Dalton Transactions, 2013, 42, 11488.	1.6	47
370	CO ₂ /ethylene oxide copolymerization and ligand variation for a highly active salen–cobalt(<scp>iii</scp>) complex tethering 4 quaternary ammonium salts. Dalton Transactions, 2013, 42, 9245-9254.	1.6	37
371	Preparation of High-Molecular-Weight Aliphatic Polycarbonates by Condensation Polymerization of Diols and Dimethyl Carbonate. Macromolecules, 2013, 46, 3301-3308.	2.2	124
372	Base initiated depolymerization of polycarbonates to epoxide and carbon dioxide co-monomers: a computational study. Green Chemistry, 2013, 15, 1578.	4.6	53
373	Highly Regioselective and Alternating Copolymerization of Racemic Styrene Oxide and Carbon Dioxide via Heterogeneous Double Metal Cyanide Complex Catalyst. Macromolecules, 2013, 46, 3693-3697.	2.2	42
374	Inorganic and Organozinc Fluorocarboxylates: Synthesis, Structure and Materials Chemistry. Inorganic Chemistry, 2013, 52, 5515-5526.	1.9	10
375	Kinetic Study on the Coupling of CO ₂ and Epoxides Catalyzed by Co(III) Complex with an Inter- or Intramolecular Nucleophilic Cocatalyst. Macromolecules, 2013, 46, 1343-1349.	2.2	76
376	Efficient catalyst removal and recycling in copolymerization of epoxides with carbon dioxide via simple liquid–liquid phase separation. Chemical Communications, 2013, 49, 9332.	2.2	15
377	Studies of Ring-Opening Reactions of Styrene Oxide by Chromium Tetraphenylporphyrin Initiators. Mechanistic and Stereochemical Considerations. Macromolecules, 2013, 46, 692-698.	2.2	87
378	A Oneâ€Pot Synthesis of a Triblock Copolymer from Propylene Oxide/Carbon Dioxide and Lactide: Intermediacy of Polyol Initiators. Angewandte Chemie - International Edition, 2013, 52, 10602-10606.	7.2	150
379	Effect of salenâ€metal complexes on thermosensitive reversibility of stimuliâ€responsive waterâ€soluble poly(urethane amine)s. Journal of Applied Polymer Science, 2013, 129, 3696-3703.	1.3	4
380	Copolymerisation of Propylene Oxide and Carbon Dioxide by Dinuclear Cobalt Porphyrins. ChemCatChem, 2013, 5, 3269-3280.	1.8	29

#	Article	IF	CITATIONS
381	Propargylâ€Functional Aliphatic Polycarbonate Obtained from Carbon Dioxide and Glycidyl Propargyl Ether. Macromolecular Rapid Communications, 2013, 34, 1395-1400.	2.0	33
382	Ringâ€Opening Polymerization Reactions of Propylene Oxide Catalyzed by Porphyrin Metal (3+) Complexes of Aluminum, Chromium and Cobalt. Chemical Record, 2013, 13, 549-560.	2.9	20
383	Biodegradable CO ₂ â€based polycarbonates with rapid and reversible thermal response at body temperature. Journal of Polymer Science Part A, 2013, 51, 1893-1898.	2.5	25
384	Hydrophilic CO ₂ â€based biodegradable polycarbonates: Synthesis and rapid thermoâ€responsive behavior. Journal of Polymer Science Part A, 2013, 51, 2834-2840.	2.5	39
385	Microstructure Analysis of a CO ₂ Copolymer from Styrene Oxide at the Diad Level. Chemistry - an Asian Journal, 2013, 8, 1854-1862.	1.7	8
386	Flexibly Tethered Dinuclear Zinc Complexes: A Solution to the Entropy Problem in CO ₂ /Epoxide Copolymerization Catalysis?. Angewandte Chemie - International Edition, 2013, 52, 9821-9826.	7.2	142
387	Conformational Isomerism in Monomeric, Lowâ€Coordinate Group 12 Complexes Stabilized by a Naphthylâ€Substituted <i>m</i> å€Terphenyl Ligand. Chemistry - A European Journal, 2013, 19, 11446-11453.	1.7	7
388	A One-step Strategy for Reinforced Poly(propylene carbonate) with Partial Crosslinking via Terpolymerization of CO2 and Propylene Oxide Using Triglycidyl Isocyanurate. Chemistry Letters, 2013, 42, 714-716.	0.7	7
391	Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts. Beilstein Journal of Organic Chemistry, 2014, 10, 1787-1795.	1.3	65
395	Perfectly Alternating Copolymerization of Propylene Oxide and CO ₂ over SalenCo/SalenCr Complexes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 589-597.	1.2	7
396	Oxo-Bridged Bimetallic Group 4 Complexes Bearing Amine-Bis(benzotriazole phenolate) Derivatives as Bifunctional Catalysts for Ring-Opening Polymerization of Lactide and Copolymerization of Carbon Dioxide with Cyclohexene Oxide. Organometallics, 2014, 33, 7091-7100.	1.1	58
397	Direct conversion of <scp>CO₂</scp> with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. Journal of Chemical Technology and Biotechnology, 2014, 89, 19-33.	1.6	135
398	Tandem catalysis: a new approach to polypeptides and cyclic carbonates. Chemical Communications, 2014, 50, 13773-13776.	2.2	20
400	Renaissance of aliphatic polycarbonates: New techniques and biomedical applications. Journal of Applied Polymer Science, 2014, 131 , .	1.3	87
401	Crystalline-gradient polycarbonates prepared from enantioselective terpolymerization of meso-epoxides with CO2. Nature Communications, 2014, 5, 5687.	5.8	85
402	Study on the Thermal Degradation Kinetics of Biodegradable Poly(propylene carbonate) during Melt Processing by Population Balance Model and Rheology. Industrial & Engineering Chemistry Research, 2014, 53, 18411-18419.	1.8	17
404	Valorization of Carbon Dioxide to Organic Products with Organocatalysts. Green Chemistry and Sustainable Technology, 2014, , 3-37.	0.4	2
405	Structure and potential applications of amido lanthanide complexes chelated by bifunctional \hat{l}^2 -diketiminate ligand. Journal of Organometallic Chemistry, 2014, 759, 1-10.	0.8	20

#	Article	IF	Citations
406	Transformation and Utilization of Carbon Dioxide. Green Chemistry and Sustainable Technology, 2014,	0.4	59
407	Novel chromium (III) complexes with N4-donor ligands as catalysts for the coupling of CO2 and epoxides in supercritical CO2. Journal of Molecular Catalysis A, 2014, 381, 161-170.	4.8	27
408	Highly Active Aluminium Catalysts for the Formation of Organic Carbonates from CO ₂ and Oxiranes. Chemistry - A European Journal, 2014, 20, 2264-2275.	1.7	165
409	Structurally well-characterized zinc complexes bearing imine-benzotriazole phenoxide ligands: Synthesis, photoluminescent properties and catalysis for carbon dioxide/epoxide coupling. Journal of Organometallic Chemistry, 2014, 754, 16-25.	0.8	16
410	Synthesis, Structure, and Catalytic Activity of Tridentate, Baseâ€Functionalized βâ€Ketiminate Zinc Complexes in Ringâ€Opening Polymerization of Lactide. European Journal of Inorganic Chemistry, 2014, 2014, 2230-2240.	1.0	31
411	A concise review of computational studies of the carbon dioxide–epoxide copolymerization reactions. Polymer Chemistry, 2014, 5, 3949-3962.	1.9	107
412	Experimental and theoretical studies on CO2 and propylene oxide (PO) copolymerization catalyzed by ZnEt2–glycerine–Y(CCl3COO)3 ternary catalyst. Journal of Organometallic Chemistry, 2014, 753, 63-71.	0.8	14
413	Carbon Dioxide Capture and Use: Organic Synthesis Using Carbon Dioxide from Exhaust Gas. Angewandte Chemie - International Edition, 2014, 53, 771-774.	7.2	103
414	Carbon dioxide (CO ₂) as sustainable feedstock for polyurethane production. Green Chemistry, 2014, 16, 1865-1870.	4.6	307
415	Copolymerization of carbon dioxide and butadiene via a lactone intermediate. Nature Chemistry, 2014, 6, 325-331.	6.6	138
416	Sequestering CO2 for Short-Term Storage in MOFs: Copolymer Synthesis with Oxiranes. ACS Catalysis, 2014, 4, 1511-1515.	5 . 5	47
417	Synthesis and high-throughput testing of multilayered supported ionic liquid catalysts for the conversion of CO ₂ and epoxides into cyclic carbonates. Catalysis Science and Technology, 2014, 4, 1598-1607.	2.1	88
418	Easily accessible bifunctional Zn(salpyr) catalysts for the formation of organic carbonates. Catalysis Science and Technology, 2014, 4, 1615-1621.	2.1	67
419	Chromium complexes with tridentate NN′O Schiff base ligands as catalysts for the coupling of CO2 and epoxides. Journal of Molecular Catalysis A, 2014, 383-384, 143-152.	4.8	32
420	Manganeseâ€Corrole Complexes as Versatile Catalysts for the Ringâ€Opening Homo―and Coâ€Polymerization of Epoxide. Chemistry - A European Journal, 2014, 20, 4789-4795.	1.7	102
421	Catalysis for the Valorization of Exhaust Carbon: from CO ₂ to Chemicals, Materials, and Fuels. Technological Use of CO ₂ . Chemical Reviews, 2014, 114, 1709-1742.	23.0	2,428
422	Copolymerization of CO \langle sub \rangle 2 \langle /sub \rangle and Cyclohexene Oxide: \hat{I}^2 -Diketiminate-Supported Zn(II)OMe and Zn(II)Et Complexes as Initiators. Organometallics, 2014, 33, 217-224.	1.1	22
423	Towards sustainable polymer chemistry with homogeneous metal-based catalysts. Green Chemistry, 2014, 16, 1673-1686.	4.6	80

#	Article	IF	Citations
424	Personal Adventures in the Synthesis of Copolymers from Carbon Dioxide and Cyclic Ethers. Advances in Inorganic Chemistry, 2014 , , $1-23$.	0.4	7
425	A green catalysis of CO2 fixation to aliphatic cyclic carbonates by a new ionic liquid system. Applied Catalysis A: General, 2014, 472, 160-166.	2.2	34
426	Chromium(<scp>iii</scp>) amine-bis(phenolate) complexes as catalysts for copolymerization of cyclohexene oxide and CO ₂ . Catalysis Science and Technology, 2014, 4, 1547-1555.	2.1	33
427	Development of a Halideâ€Free Aluminiumâ€Based Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 15005-15008.	1.7	81
428	Mechanistic Understanding of Dinuclear Cobalt(III) Complex Mediated Highly Enantioselective Copolymerization of <i>meso</i> -Epoxides with CO ₂ . Macromolecules, 2014, 47, 7775-7788.	2.2	108
429	Copolymerization and Cycloaddition Products Derived from Coupling Reactions of 1,2-Epoxy-4-cyclohexene and Carbon Dioxide. Postpolymerization Functionalization via Thiol–Ene Click Reactions. Macromolecules, 2014, 47, 7347-7353.	2.2	63
430	Green polycarbonates prepared by the copolymerization of CO $<$ sub $>$ 2 $<$ /sub $>$ with epoxides. Journal of Applied Polymer Science, 2014, 131, .	1.3	153
431	Poly(propylene succinate): A New Polymer Stereocomplex. Journal of the American Chemical Society, 2014, 136, 15897-15900.	6.6	141
432	New cobalt, iron and chromium catalysts based on easy-to-handle N ₄ -chelating ligands for the coupling reaction of epoxides with CO ₂ . Dalton Transactions, 2014, 43, 3285-3296.	1.6	57
433	Synthesis of fully alternating polycarbonate with low T _g from carbon dioxide and bio-based fatty acid. RSC Advances, 2014, 4, 36183-36188.	1.7	39
434	Sequence-Controlled Ring-Opening Polymerization: Synthesis of New Polyester Structures. ACS Symposium Series, 2014, , 349-368.	0.5	4
435	Copolymerization of cyclohexene oxide with CO ₂ catalyzed by tridentate N-heterocyclic carbene titanium(<scp>iv</scp>) complexes. Dalton Transactions, 2014, 43, 4242-4246.	1.6	45
436	Tuning ligand electronics and peripheral substitution on cobalt salen complexes: structure and polymerisation activity. Dalton Transactions, 2014, 43, 4295-4304.	1.6	66
437	Mechanism studies of terpolymerization of phthalic anhydride, propylene epoxide, and carbon dioxide catalyzed by ZnGA. RSC Advances, 2014, 4, 9503-9508.	1.7	52
438	Alternating copolymerization of dihydrocoumarin and epoxides catalyzed by chromium salen complexes: a new route to functional polyesters. Chemical Communications, 2014, 50, 6322.	2.2	50
439	Dinuclear metal catalysts: improved performance of heterodinuclear mixed catalysts for CO ₂ â€"epoxide copolymerization. Chemical Communications, 2014, 50, 4164-4167.	2.2	123
440	Synthesis of cyclic carbonates catalysed by aluminium heteroscorpionate complexes. Catalysis Science and Technology, 2014, 4, 1674-1684.	2.1	87
441	Toughening of poly(propylene carbonate) using rubbery non-isocyanate polyurethane: Transition from brittle to marginally tough. Polymer, 2014, 55, 5460-5468.	1.8	18

#	Article	IF	CITATIONS
442	Bimetallic nickel and cobalt complexes as high-performance catalysts for copolymerization of carbon dioxide with cyclohexene oxide. Polymer Chemistry, 2014, 5, 4875-4878.	1.9	40
443	Functional poly(carbonate-co-ether) synthesis from glycidyl methacrylate/CO ₂ copolymerization catalyzed by Zn–Co(<scp>iii</scp>) double metal cyanide complex catalyst. RSC Advances, 2014, 4, 3188-3194.	1.7	26
444	Enantiopure Isotactic PCHC Synthesized by Ring-Opening Polymerization of Cyclohexene Carbonate. Macromolecules, 2014, 47, 4230-4235.	2.2	95
445	Versatile metal complexes of 2,5-bis{N-(2,6-di isopropylphenyl)iminomethyl}pyrrole for epoxide–CO2 coupling and ring opening polymerization of Îμ-caprolactone. RSC Advances, 2014, 4, 6094.	1.7	12
446	Effects of method of preparation on catalytic activity of Co–Zn double-metal cyanide catalysts for copolymerization of CO2 and epoxide. Applied Catalysis A: General, 2014, 482, 300-308.	2.2	38
447	Reduction of bicarbonate and carbonate to formate in molecular zinc complexes. Catalysis Science and Technology, 2014, 4, 1578.	2.1	25
448	Cu(II) complexes of sterically and electronically divergent \hat{I}^2 -diketiminate ligands: Structural and electrochemical aspects. Polyhedron, 2014, 81, 329-334.	1.0	5
449	Copolymerization of CO $<$ sub $>$ 2 $<$ /sub $>$ and meso epoxides using enantioselective \hat{l}^2 -diiminate catalysts: a route to highly isotactic polycarbonates. Chemical Science, 2014, 5, 4004.	3.7	128
450	Stereospecific CO ₂ Copolymers from 3,5-Dioxaepoxides: Crystallization and Functionallization. Macromolecules, 2014, 47, 1269-1276.	2.2	80
451	Postpolymerization Functionalization of Copolymers Produced from Carbon Dioxide and 2-Vinyloxirane: Amphiphilic/Water-Soluble CO ₂ -Based Polycarbonates. Macromolecules, 2014, 47, 3806-3813.	2.2	64
452	Highly Enantioselective Catalytic System for Asymmetric Copolymerization of Carbon Dioxide and Cyclohexene Oxide. Chemistry - A European Journal, 2014, 20, 12394-12398.	1.7	51
453	Preparation of CO ₂ /Diene Copolymers: Advancing Carbon Dioxide Based Materials. Angewandte Chemie - International Edition, 2014, 53, 7402-7404.	7.2	12
454	Carbon Dioxide as a Protecting Group: Highly Efficient and Selective Catalytic Access to Cyclic <i>cis</i> à€Diol Scaffolds. Angewandte Chemie - International Edition, 2014, 53, 10416-10419.	7.2	176
455	Controlled Synthesis of Multiâ€Arm Star Polyether–Polycarbonate Polyols Based on Propylene Oxide and CO ₂ . Macromolecular Rapid Communications, 2014, 35, 198-203.	2.0	28
456	Ligand influences on homoleptic Group 12 m-terphenyl complexes. Dalton Transactions, 2014, 43, 14257-14264.	1.6	10
457	Activities comparison of Schiff base zinc and tri-zinc complexes for alternating copolymerization of CO2 and epoxides. Polymer Chemistry, 2014, 5, 3838.	1.9	21
458	Availability of Other Aliphatic Polycarbonates Derived from Geometric Isomers of Butene Oxide and Carbon Dioxide Coupling Reactions. Macromolecules, 2014, 47, 4943-4948.	2.2	35
459	One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: the special role of trimesic acid as an initiation-transfer agent. Polymer Chemistry, 2014, 5, 6171-6179.	1.9	55

#	Article	IF	Citations
460	Chemoselective Polymerization Control: From Mixedâ€Monomer Feedstock to Copolymers. Angewandte Chemie - International Edition, 2014, 53, 1607-1610.	7.2	192
462	Coupling reaction between CO2 and cyclohexene oxide: selective control from cyclic carbonate to polycarbonate by ligand design of salen/salalen titanium complexes. Catalysis Science and Technology, 2014, 4, 3964-3972.	2.1	60
463	Isocyanate―and Phosgeneâ€Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide. Macromolecular Rapid Communications, 2014, 35, 1238-1254.	2.0	263
464	Chaining up carbon dioxide. Nature Chemistry, 2014, 6, 276-277.	6.6	18
465	Highly active Cr(<scp>iii</scp>) catalysts for the reaction of CO ₂ with epoxides. Catalysis Science and Technology, 2014, 4, 1652-1657.	2.1	56
466	Stereoselective Epoxide Polymerization and Copolymerization. Chemical Reviews, 2014, 114, 8129-8152.	23.0	379
467	Synthesis and Characterization of Hydroxyl-Functionalized Poly(propylene carbonate). Macromolecules, 2014, 47, 492-497.	2.2	46
468	Solid, double-metal cyanide catalysts for synthesis of hyperbranched polyesters and aliphatic polycarbonates. Journal of Chemical Sciences, 2014, 126, 499-509.	0.7	10
469	Alternating copolymerization of CO2 and propylene oxide catalyzed by C2v-porphyrin cobalt: Selectivity control and a kinetic study. Journal of Catalysis, 2014, 313, 159-167.	3.1	43
470	Zinc/magnesium–sodium/lithium heterobimetallic triphenolates: Synthesis, characterization, and application as catalysts in the ring-opening polymerization of l-lactide and CO2/epoxide coupling. Journal of Molecular Catalysis A, 2014, 393, 175-181.	4.8	26
471	Kinetics and thermodynamics of the decarboxylation of 1,2-glycerol carbonate to produce glycidol: computational insights. Green Chemistry, 2014, 16, 247-252.	4.6	19
472	Structurally Diverse Copper Complexes Bearing NNO-Tridentate Schiff-Base Derivatives as Efficient Catalysts for Copolymerization of Carbon Dioxide and Cyclohexene Oxide. Inorganic Chemistry, 2014, 53, 5109-5116.	1.9	44
473	Chromium-Catalyzed CO ₂ â€"Epoxide Copolymerization. Organometallics, 2014, 33, 4401-4409.	1,1	18
474	Alternating copolymerization of carbonyl sulfide and Cyclohexene Oxide catalyzed by zinc–cobalt double metal cyanide complex. Polymer, 2014, 55, 3688-3695.	1.8	45
475	Efficient Fixation of CO ₂ by a Zincâ€Coordinated Conjugated Microporous Polymer. ChemSusChem, 2014, 7, 2110-2114.	3.6	101
477	An Investigation of the Pathways for Oxygen/Sulfur Scramblings during the Copolymerization of Carbon Disulfide and Oxetane. Macromolecules, 2015, 48, 5526-5532.	2.2	49
478	Synthesis of Cyclic Carbonates Catalysed by Aluminium Heteroscorpionate Complexes. Chemistry - A European Journal, 2015, 21, 9850-9862.	1.7	104
480	Mechanistic Aspects of a Highly Active Dinuclear Zinc Catalyst for the Coâ€polymerization of Epoxides and CO ₂ . Chemistry - A European Journal, 2015, 21, 8148-8157.	1.7	58

#	Article	IF	CITATIONS
481	A Metalâ€Free Synthesis of Nâ€Aryl Carbamates under Ambient Conditions. Angewandte Chemie - International Edition, 2015, 54, 11686-11690.	7.2	108
482	Highly Chemoselective Catalytic Coupling of Substituted Oxetanes and Carbon Dioxide. Chemistry - A European Journal, 2015, 21, 10754-10762.	1.7	88
483	Titanium Alkoxide Complexes as Catalysts for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. European Journal of Inorganic Chemistry, 2015, 2015, 5363-5367.	1.0	19
485	Construction of Versatile and Functional Nanostructures Derived from CO ₂ â€based Polycarbonates. Angewandte Chemie - International Edition, 2015, 54, 10206-10210.	7.2	84
486	Anion effect controlling the selectivity in the zinc-catalysed copolymerisation of CO ₂ and cyclohexene oxide. Beilstein Journal of Organic Chemistry, 2015, 11, 42-49.	1.3	16
487	Surprisingly facile CO ₂ insertion into cobalt alkoxide bonds: A theoretical investigation. Beilstein Journal of Organic Chemistry, 2015, 11, 1340-1351.	1.3	15
488	Transition Metal-Catalyzed Carboxylation of Organic Substrates with Carbon Dioxide. Topics in Organometallic Chemistry, 2015, , 225-278.	0.7	20
489	Dinuclear Metal Complex-Mediated Formation of CO2-Based Polycarbonates. Topics in Organometallic Chemistry, 2015, , 101-141.	0.7	22
490	A facile one-step synthesis of star-shaped alkynyl carbonates from CO2. Chemical Communications, 2015, 51, 11225-11228.	2.2	5
491	Silica-supported zinc glutarate catalyst synthesized by rheological phase reaction used in the copolymerization of carbon dioxide and propylene oxide. Journal of Polymer Research, 2015, 22, 1.	1.2	12
492	Organocatalytic polymerization of ethylene carbonate. Materials Today Communications, 2015, 5, 1-9.	0.9	14
493	Transformation of CO2 to Value-Added Materials. Journal of Molecular and Engineering Materials, 2015, 03, 1540007.	0.9	3
494	Synthesis of Cyclohexene Carbonate Catalyzed by Polymer-Supported Catalysts. Synthetic Communications, 2015, 45, 702-713.	1.1	2
495	Experimental and Computational Insights into Carbon Dioxide Fixation by RZnOH Species. Chemistry - A European Journal, 2015, 21, 5496-5503.	1.7	10
496	Structure-induced catalytic activity of Coâ€"Zn double-metal cyanide complexes for terpolymerization of propylene oxide, cyclohexene oxide and CO ₂ . RSC Advances, 2015, 5, 18196-18203.	1.7	16
497	Dinuclear zinc catalysts with unprecedented activities for the copolymerization of cyclohexene oxide and CO ₂ . Chemical Communications, 2015, 51, 4579-4582.	2.2	133
498	Syndioselective ring-opening polymerization and copolymerization of trans-1,4-cyclohexadiene carbonate mediated by achiral metal- and organo-catalysts. Polymer Chemistry, 2015, 6, 1961-1971.	1.9	28
499	Ethylene carbonate/cyclic ester random copolymers synthesized by ring-opening polymerization. Polymer Chemistry, 2015, 6, 1972-1985.	1.9	22

#	Article	IF	CITATIONS
500	Green Catalytic Synthesis of Heterocyclic Structures Using Carbon Dioxide and Related Motifs., 2015, , 141-162.		2
501	Recent advances in carbon dioxide based copolymers. Journal of CO2 Utilization, 2015, 11, 3-9.	3.3	111
502	Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chemical Communications, 2015, 51, 6459-6479.	2.2	471
503	New Iron Pyridylaminoâ€Bis(Phenolate) Catalyst for Converting CO ₂ into Cyclic Carbonates and Crossâ€Linked Polycarbonates. ChemSusChem, 2015, 8, 1034-1042.	3.6	111
504	Adding Value to Power Station Captured CO ₂ : Tolerant Zn and Mg Homogeneous Catalysts for Polycarbonate Polyol Production. ACS Catalysis, 2015, 5, 1581-1588.	5 . 5	128
505	Branched poly(1,4-butylene carbonate- <i>co</i> thermoplastics. Journal of Polymer Science Part A, 2015, 53, 914-923.	2.5	16
506	Carbon Dioxide/Epoxide Copolymerization via a Nanosized Zinc–Cobalt(III) Double Metal Cyanide Complex: Substituent Effects of Epoxides on Polycarbonate Selectivity, Regioselectivity and Glass Transition Temperatures. Macromolecules, 2015, 48, 536-544.	2.2	74
507	Using sustainable metals to carry out "green―transformations: Fe- and Cu-catalyzed CO2 monetization. Coordination Chemistry Reviews, 2015, 288, 69-97.	9.5	70
508	Using carbon dioxide as a building block in organic synthesis. Nature Communications, 2015, 6, 5933.	5.8	1,581
509	Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catalysis, 2015, 5, 1353-1370.	5.5	865
510	Polymers from CO2—An Industrial Perspective. , 2015, , 59-71.		6
511	Al ^{III} â€Catalysed Formation of Poly(limonene)carbonate: DFT Analysis of the Origin of Stereoregularity. Chemistry - A European Journal, 2015, 21, 6115-6122.	1.7	116
512	Zr(<scp>iv</scp>) complexes containing salan-type ligands: synthesis, structural characterization and role as catalysts towards the polymerization of lµ-caprolactone, rac-lactide, ethylene, homopolymerization and copolymerization of epoxides with CO ₂ . RSC Advances, 2015, 5, 28536-28553.	1.7	48
514	Amineâ€bis(phenolato)cobalt(II) Catalysts for the Formation of Organic Carbonates from Carbon Dioxide and Epoxides. European Journal of Inorganic Chemistry, 2015, 2015, 1766-1774.	1.0	32
515	Fixation of atmospheric carbon dioxide by ruthenium complexes bearing an NHC-based pincer ligand: formation of a methylcarbonato complex and its methylation. Dalton Transactions, 2015, 44, 5303-5305.	1.6	21
516	Imino(phenoxide) compounds of magnesium: Synthesis, structural characterization, and polymerization studies. Journal of Polymer Science Part A, 2015, 53, 1474-1491.	2.5	19
517	Magnesium complexes of the N, O polydentate scaffold: Synthesis, structural characterization and polymerization studies. Polymer, 2015, 70, 38-51.	1.8	16
518	Direct synthesis of propylene carbonate from propylene and carbon dioxide catalyzed by quaternary ammonium heteropolyphosphatotungstate–TBAB system. Journal of Energy Chemistry, 2015, 24, 353-358.	7.1	12

#	Article	IF	CITATIONS
519	Quantum mechanical study of the reaction of CO2 and ethylene oxide catalyzed by metalâ \in "salen complexes: effect of the metal center and the axial ligand. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 351-370.	0.8	5
520	Cyclohexene oxide/carbon dioxide copolymerization by chromium(<scp>iii</scp>) amino-bis(phenolato) complexes and MALDI-TOF MS analysis of the polycarbonates. Polymer Chemistry, 2015, 6, 6305-6315.	1.9	30
521	CO2 utilization in the perspective of industrial ecology, an overview. Journal of CO2 Utilization, 2015, 12, 101-108.	3.3	205
522	Studies on Comonomer Compositional Distribution of Poly(propylene carbonate-propylene oxide) Copolymer and Its Effect on the Thermal, Mechanical and Oxygen Barrier Properties of Fractions. Journal of Macromolecular Science - Physics, 2015, 54, 275-285.	0.4	4
523	CO2-producing polymer micelles. Polymer Degradation and Stability, 2015, 120, 149-157.	2.7	4
524	Quaternary onium modified SalenCoXY catalysts for alternating copolymerization of CO2 and propylene oxide: A kinetic study. Journal of Catalysis, 2015, 329, 317-324.	3.1	19
525	Thermal degradation of poly(lactide-co-propylene carbonate) measured by TG/FTIR and Py-GC/MS. Polymer Degradation and Stability, 2015, 117, 16-21.	2.7	26
526	Asymmetric Copolymerization of Cyclopentene Oxide and CO2 Using a Dinuclear Zinc–AzePhenol Catalyst: Enlightened by DFT Calculations. Macromolecules, 2015, 48, 1651-1657.	2.2	48
527	Nonisothermal crystallization behavior and kinetics of poly(l-lactide-co-propylene carbonate). Journal of Thermal Analysis and Calorimetry, 2015, 121, 877-883.	2.0	8
528	A review of copolymerization of green house gas carbon dioxide and oxiranes to produce polycarbonate. Journal of Cleaner Production, 2015, 102, 1-17.	4.6	53
529	A MALDI-TOF MS analysis study of the binding of 4-(N,N-dimethylamino)pyridine to amine-bis(phenolate) chromium(<scp>iii</scp>) chloride complexes: mechanistic insight into differences in catalytic activity for CO ₂ /epoxide copolymerization. Faraday Discussions, 2015, 183, 31-46.	1.6	16
531	Synthesis of Sequence-Regulated Polymers: Alternating Polyacetylene through Regioselective Anionic Polymerization of Butadiene Derivatives. ACS Macro Letters, 2015, 4, 372-376.	2.3	55
532	Metal Complexes Catalyzed Cyclization with CO2. Topics in Organometallic Chemistry, 2015, , 39-71.	0.7	9
533	A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-lonic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries. Electrochimica Acta, 2015, 175, 134-140.	2.6	73
534	Recent developments in the synthesis of sequence controlled polymers. Science China Chemistry, 2015, 58, 1651-1662.	4.2	35
535	Nanoporous Polymers Incorporating Sterically Confined <i>N</i> -Heterocyclic Carbenes for Simultaneous CO ₂ Capture and Conversion at Ambient Pressure. Chemistry of Materials, 2015, 27, 6818-6826.	3.2	116
536	Combining Sustainable Polymerization Routes for the Preparation of Polyesters, Polycarbonates, and Copolymers. ACS Symposium Series, 2015, , 135-146.	0.5	2
537	Carboxylic acid derivatives via catalytic carboxylation of unsaturated hydrocarbons: whether the nature of a reductant may determine the mechanism of CO ₂ incorporation?. Dalton Transactions, 2015, 44, 16212-16223.	1.6	31

#	Article	IF	CITATIONS
538	Conversion of Carbon Dioxide to Methanol Using a C–H Activated Bis(imino)pyridine Molybdenum Hydroboration Catalyst. Inorganic Chemistry, 2015, 54, 7506-7515.	1.9	37
539	Carbon Dioxide Copolymerization Study with a Sterically Encumbering Naphthalene-Derived Oxide. ACS Catalysis, 2015, 5, 5421-5430.	5.5	20
540	Immobilization of Heteroleptic Bis(oxazoline) Zinc Catalysts on SBA-15 for Asymmetric Hydrosilylation. Organometallics, 2015, 34, 5146-5154.	1.1	9
541	Sequence Selective Polymerization Catalysis: A New Route to ABA Block Copoly(ester- <i>b</i> -carbonate- <i>b</i> -ester). Macromolecules, 2015, 48, 6047-6056.	2.2	117
542	Polypyrrole Nanofibers Supported Cr(III)(salen)Cl Catalyst: A Novel Polymer Supported Catalyst for Alternating Copolymerization of Cyclohexene Oxide with Carbon dioxide. Catalysis Letters, 2015, 145, 1913-1921.	1.4	10
543	Highly regioselective and alternating copolymerization of carbonyl sulfide with phenyl glycidyl ether. Polymer Chemistry, 2015, 6, 6955-6958.	1.9	38
544	An Examination of the Steric and Electronic Effects in the Copolymerization of Carbonyl Sulfide and Styrene Oxide. Macromolecules, 2015, 48, 6057-6062.	2.2	46
545	CO2-Mediated Formation of Chiral Fine Chemicals. Topics in Organometallic Chemistry, 2015, , 171-197.	0.7	23
546	Factors influencing catalytic activity of Coâ€"Zn double-metal cyanide complexes for alternating polymerization of epoxides and CO2. Applied Catalysis A: General, 2015, 506, 163-172.	2,2	19
547	Copolymerization of CO ₂ and Cyclohexene Oxide Mediated by Yb(salen)-Based Complexes. Macromolecules, 2015, 48, 8197-8207.	2.2	53
548	Highly efficient one-pot/one-step synthesis of multiblock copolymers from three-component polymerization of carbon dioxide, epoxide and lactone. Chemical Science, 2015, 6, 1530-1536.	3.7	51
549	Trivalent Titanium Salen Complex: Thermally Robust and Highly Active Catalyst for Copolymerization of CO ₂ and Cyclohexene Oxide. ACS Catalysis, 2015, 5, 393-396.	5.5	59
550	Terpolymerization of propylene oxide and vinyl oxides with CO ₂ : copolymer cross-linking and surface modification via thiol–ene click chemistry. Polymer Chemistry, 2015, 6, 1768-1776.	1.9	50
551	Kinetics of the (salen)Cr(<scp>iii</scp>)- and (salen)Co(<scp>iii</scp>)-catalyzed copolymerization of epoxides with CO ₂ , and of the accompanying degradation reactions. Polymer Chemistry, 2015, 6, 1103-1117.	1.9	37
552	Intensified Co-Oligomerization of Propylene Oxide and Carbon Dioxide in a Continuous Heat Exchanger Loop Reactor at Elevated Pressures. Organic Process Research and Development, 2015, 19, 735-739.	1.3	13
553	Renewable polycarbonates and polyesters from 1,4-cyclohexadiene. Green Chemistry, 2015, 17, 300-306.	4.6	177
554	Insight into the reaction mechanisms between CO2 and epoxides over Zn(II) phenoxide catalytic system – A DFT study. Journal of Organometallic Chemistry, 2015, 775, 67-75.	0.8	11
555	Facilely synthesized benzotriazole phenolate zirconium complexes as versatile catalysts for copolymerization of carbon dioxide with cyclohexene oxide and lactide polymerization. Dalton Transactions, 2015, 44, 598-607.	1.6	31

#	Article	IF	CITATIONS
556	Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether. Catalysis Today, 2015, 245, 61-67.	2.2	116
557	Pyrazole Supported Zinc(II) Benzoates as Catalysts for the Ring Opening Copolymerization of Cyclohexene Oxide and Carbon Dioxide. Catalysts, 2016, 6, 17.	1.6	22
558	Cs ₂ CO ₃ -promoted polycondensation of CO ₂ with diols and dihalides for the synthesis of miscellaneous polycarbonates. Polymer Chemistry, 2016, 7, 4944-4952.	1.9	31
559	A DFT Study on the Coâ€polymerization of CO ₂ and Ethylene: Feasibility Analysis for the Direct Synthesis of Polyethylene Esters. ChemSusChem, 2016, 9, 1614-1622.	3.6	20
560	Bimetallic Nickel Complexes that Bear Diamineâ€Bis(Benzotriazole Phenolate) Derivatives as Efficient Catalysts for the Copolymerization of Carbon Dioxide with Epoxides. ChemCatChem, 2016, 8, 984-991.	1.8	33
561	Carboxylation of Phenols with CO ₂ at Atmospheric Pressure. Chemistry - A European Journal, 2016, 22, 6798-6802.	1.7	65
562	Catalytic Coupling of Carbon Dioxide with Terpene Scaffolds: Access to Challenging Bioâ€Based Organic Carbonates. ChemSusChem, 2016, 9, 1304-1311.	3.6	102
563	Substrateâ€Controlled Product Divergence: Conversion of CO ₂ into Heterocyclic Products. Angewandte Chemie, 2016, 128, 4040-4044.	1.6	40
564	Chopping highâ€molecular weight poly(1,4â€butylene carbonateâ€ <i>co</i> â€aromatic ester)s for macropolyol synthesis. Journal of Applied Polymer Science, 2016, 133, .	1.3	11
565	High yield synthesis of biodegradable poly(propylene carbonate) from carbon dioxide and propylene oxide. Polymers for Advanced Technologies, 2016, 27, 1191-1194.	1.6	7
566	Synthesis of Cyclic Carbonates Catalysed by Chromium and Aluminium Salphen Complexes. Chemistry - A European Journal, 2016, 22, 2100-2107.	1.7	116
567	Nanoparticulate TiO ₂ â€Supported Double Metal Cyanide Catalyst for the Copolymerization of CO ₂ with Propylene Oxide. European Journal of Inorganic Chemistry, 2016, 2016, 1944-1949.	1.0	26
568	Sustainable polymers from renewable resources. Nature, 2016, 540, 354-362.	13.7	1,902
569	Robust Zinc Complexes that Contain Pyrrolidineâ€Based Ligands as Recyclable Catalysts for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. ChemCatChem, 2016, 8, 234-243.	1.8	44
570	Selective synthesis of carbon monoxide via formates in reverse water–gas shift reaction over alumina-supported gold catalyst. Journal of Energy Chemistry, 2016, 25, 306-310.	7.1	44
571	Synthesis, characterization and catalytic activity of new bis(N-2,6-diphenylphenol-R-salicylaldiminato)Pd(II) complexes in Suzuki-Miyaura and CO2 fixation reactions. Journal of Organometallic Chemistry, 2016, 811, 81-90.	0.8	15
572	Zn-salen complexes with multiple hydrogen bonding donor and protic ammonium bromide: Bifunctional catalysts for CO2 fixation with epoxides at atmospheric pressure. Journal of Molecular Catalysis A, 2016, 420, 208-215.	4.8	64
573	Cooperative rare earth metal–zinc based heterometallic catalysts for copolymerization of CO2 and cyclohexene oxide. Green Chemistry, 2016, 18, 4270-4275.	4.6	64

#	Article	IF	CITATIONS
574	Development of Highly Active and Regioselective Catalysts for the Copolymerization of Epoxides with Cyclic Anhydrides: An Unanticipated Effect of Electronic Variation. Journal of the American Chemical Society, 2016, 138, 7107-7113.	6.6	123
575	Fixation of carbon dioxide concurrently or in tandem with free radical polymerization for highly transparent polyacrylates with specific UV absorption. Polymer Chemistry, 2016, 7, 3731-3739.	1.9	18
576	Gradient terpolymers with long $\hat{l}\mu$ -caprolactone rich sequence derived from propylene oxide, CO2, and $\hat{l}\mu$ -caprolactone catalyzed by zinc glutarate. European Polymer Journal, 2016, 84, 245-255.	2.6	18
577	Halide-Free Synthesis of Cyclic and Polycarbonates. , 2016, , 413-434.		4
578	Beyond Chlorine Reagents: Organic Carbonate Chemistry. , 2016, , 457-482.		0
579	Poly(monothiocarbonate)s from the Alternating and Regioselective Copolymerization of Carbonyl Sulfide with Epoxides. Accounts of Chemical Research, 2016, 49, 2209-2219.	7.6	142
580	New Feedstocks and Chemistry for Lower CO ₂ â€Footprint: Today, Tomorrow, and in the Future. ChemBioEng Reviews, 2016, 3, 204-218.	2.6	3
581	Synthesis and structural characterization of titanium and zirconium complexes containing half-salen ligands as catalysts for polymerization reactions. New Journal of Chemistry, 2016, 40, 9824-9839.	1.4	37
582	Copolymerization of CO2 and propylene oxide using ZnGA/DMC composite catalyst for high molecular weight poly(propylene carbonate). Journal of CO2 Utilization, 2016, 16, 86-96.	3.3	25
583	Dinuclear and Trinuclear Nickel Complexes as Effective Catalysts for Alternating Copolymerization on Carbon Dioxide and Cyclohexene Oxide. Inorganic Chemistry, 2016, 55, 7843-7851.	1.9	27
584	Polymer cyclization inhibits thermal decomposition of carbon-dioxide-derived poly(propylene) Tj ETQq0 0 0 rgBT	/Oyerlock	19 Tf 50 342
585	Crystalline Polyesters from CO \langle sub \rangle 2 \langle /sub \rangle and 2-Butyne via Î \pm -Methylene-Î 2 -butyrolactone Intermediate. Macromolecules, 2016, 49, 5782-5787.	2.2	41
586	Alternating Copolymerization of Propylene Oxide and Cyclohexene Oxide with Tricyclic Anhydrides: Access to Partially Renewable Aliphatic Polyesters with High Glass Transition Temperatures. Macromolecules, 2016, 49, 6394-6400.	2.2	128
587	Terpolymers Derived from Limonene Oxide and Carbon Dioxide: Access to Cross-Linked Polycarbonates with Improved Thermal Properties. Macromolecules, 2016, 49, 6285-6295.	2.2	101
588	Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioetherâ€Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structureâ€"Reactivity Relationship and Mechanistic DFT Study. Advanced Synthesis and Catalysis, 2016, 358, 3231-3243.	2.1	74
589	Synthesis of Chiral (i) C (sub) 2 (sub) (i) -Symmetric Bimetallic Zinc Complexes of Amido-Oxazolinates and Their Application in Copolymerization of CO (sub) 2 (sub) and Cyclohexene Oxide. Chemistry Select, 2016, 1, 3175-3183.	0.7	13
590	Metal-Free Alternating Copolymerization of CO ₂ with Epoxides: Fulfilling "Green― Synthesis and Activity. Journal of the American Chemical Society, 2016, 138, 11117-11120.	6.6	246
592	Tertiary amines: A new class of highly efficient organocatalysts for CO2 fixations. Journal of Industrial and Engineering Chemistry, 2016, 44, 210-215.	2.9	48

#	Article	IF	CITATIONS
593	In Situ Generation of Co ^{III} â€"Salen Complexes for Copolymerization of Propylene Oxide and CO ₂ . Chemistry - A European Journal, 2016, 22, 13677-13681.	1.7	24
594	Sterically (un)encumbered mer-tridentate N-heterocyclic carbene complexes of titanium(<scp>iv</scp>) for the copolymerization of cyclohexene oxide with CO ₂ . Dalton Transactions, 2016, 45, 14734-14744.	1.6	31
595	Post-functionalization of fully biobased poly(limonene carbonate)s: Synthesis, characterization and coating evaluation. European Polymer Journal, 2016, 85, 466-477.	2.6	28
596	Direct Copolymerization of CO2 and Diols. Scientific Reports, 2016, 6, 24038.	1.6	98
597	Substrateâ€Controlled Product Divergence: Conversion of CO ₂ into Heterocyclic Products. Angewandte Chemie - International Edition, 2016, 55, 3972-3976.	7.2	131
598	Halogenated meso-phenyl Mn(III) porphyrins as highly efficient catalysts for the synthesis of polycarbonates and cyclic carbonates using carbon dioxide and epoxides. Journal of Molecular Catalysis A, 2016, 423, 489-494.	4.8	38
599	Correlation between Solvation Structure and Ion-Conductive Behavior of Concentrated Poly(ethylene carbonate)-Based Electrolytes. Journal of Physical Chemistry C, 2016, 120, 12385-12391.	1.5	135
600	Mono- and bis-N-heterocyclic carbene complexes of tantalum and niobium with high oxidation states. New Journal of Chemistry, 2016, 40, 6270-6275.	1.4	18
601	Ni- and Fe-catalyzed Carboxylation of Unsaturated Hydrocarbons with CO2. Topics in Current Chemistry, 2016, 374, 45.	3.0	69
602	Carbon Dioxide/Epoxide Reactions Catalyzed by Bimetallic Salalen Aluminum Complexes. ChemCatChem, 2016, 8, 455-460.	1.8	48
603	Catalysts for CO ₂ /epoxide ring-opening copolymerization. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150085.	1.6	168
604	Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization. Renewable and Sustainable Energy Reviews, 2016, 59, 1269-1297.	8.2	143
605	Mechanistic Insights into Water-Mediated Tandem Catalysis of Metal-Coordination CO ₂ /Epoxide Copolymerization and Organocatalytic Ring-Opening Polymerization: One-Pot, Two Steps, and Three Catalysis Cycles for Triblock Copolymers Synthesis. Macromolecules, 2016, 49, 807-814.	2.2	108
606	Environmentally Benign CO ₂ -Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum–Polymer Conjugates. Journal of the American Chemical Society, 2016, 138, 4626-4633.	6.6	49
607	Lithium-Assisted Copolymerization of CO ₂ /Cyclohexene Oxide: A Novel and Straightforward Route to Polycarbonates and Related Block Copolymers. Macromolecules, 2016, 49, 2484-2492.	2.2	28
608	DFT studies on the origin of regioselective ring-opening of terminal epoxides during copolymerization with CO2. Chinese Journal of Polymer Science (English Edition), 2016, 34, 439-445.	2.0	4
609	Highly active and selective Zn(II)-NN′O Schiff base catalysts for the cycloaddition of CO 2 to epoxides. Journal of CO2 Utilization, 2016, 14, 10-22.	3.3	38
610	Using carbon dioxide and its sulfur analogues as monomers in polymer synthesis. Polymer, 2016, 82, 406-431.	1.8	90

#	Article	IF	CITATIONS
611	Chemical fixation of CO2 to cyclic carbonates using Al(III) \hat{I}^2 -aminoalcohol based efficient catalysts: An experimental and computational studies. Journal of Molecular Catalysis A, 2016, 417, 135-144.	4.8	10
612	Chromium complexes containing a tetradentate [OSSO]-type bisphenolate ligand as a novel family of catalysts for the copolymerization of carbon dioxide and 4-vinylcyclohexene oxide. RSC Advances, 2016, 6, 22821-22826.	1.7	27
613	In Situ Generated ABA Block Copolymers from CO ₂ , Cyclohexene Oxide, and Poly(dimethylsiloxane)s. ACS Macro Letters, 2016, 5, 419-423.	2.3	38
614	Putting carbon dioxide to work. Nature, 2016, 531, 180-181.	13.7	30
615	Reaction Mechanisms in the Direct Carboxylation of Alcohols, Polyols, Cyclic Ethers, and Cyclic Amines to Afford Monomeric Compounds and Polymeric Materials., 2016, , 183-235.		2
616	Reaction Mechanisms in Carbon Dioxide Conversion., 2016,,.		70
617	Solid poly-N-heterocyclic carbene catalyzed CO2 reduction with hydrosilanes. Journal of Catalysis, 2016, 343, 46-51.	3.1	45
618	Bimetallic bis(benzotriazole iminophenolate) cobalt, nickel and zinc complexes as versatile catalysts for coupling of carbon dioxide with epoxides and copolymerization of phthalic anhydride with cyclohexene oxide. Catalysis Science and Technology, 2016, 6, 1779-1791.	2.1	73
619	One-step solvent-free synthesis of cyclic carbonates by oxidative carboxylation of styrenes over a recyclable Ti-containing catalyst. Applied Catalysis B: Environmental, 2016, 181, 363-370.	10.8	49
620	An efficient and recyclable tetraoxo-coordinated zinc catalyst for the cycloaddition of epoxides with carbon dioxide at atmospheric pressure. Green Chemistry, 2016, 18, 226-231.	4.6	156
621	Cheap and fast: oxalic acid initiated CO ₂ -based polyols synthesized by a novel preactivation approach. Polymer Chemistry, 2016, 7, 146-152.	1.9	27
622	Carbon Dioxide and Organometallics. Topics in Organometallic Chemistry, 2016, , .	0.7	14
623	Recent advances on tailor-made titanium catalysts for biopolymer synthesis. Coordination Chemistry Reviews, 2016, 306, 65-85.	9.5	57
624	Iron and cobalt salicylaldimine complexes as catalysts for epoxide and carbon dioxide coupling: effects of substituents on catalytic activity. Transition Metal Chemistry, 2017, 42, 117-122.	0.7	13
625	A Facile and Green Route for Conversion of Bifunctional Epoxide and Vegetable Oils to Cyclic Carbonate: A Green Route to CO2 Fixation. ChemistrySelect, 2017, 2, 1431-1435.	0.7	21
626	Pd and Ni complexes of a novel vinylidene βâ€diketimine ligand: Their application as catalysts in Heck coupling and alkyne trimerization. Applied Organometallic Chemistry, 2017, 31, e3696.	1.7	5
627	Nickel-Catalyzed Coupling of Carbon Dioxide with Cyclohexene Oxide by Well-Characterized Bis(N-Heterocyclic Carbene) Carbazolide Complexes. Organometallics, 2017, 36, 291-297.	1.1	21
628	Carbon oxygenate transformations by actinide compounds and catalysts. Nature Reviews Chemistry, 2017, 1, .	13.8	92

#	Article	IF	CITATIONS
629	Mechanistic Studies of Cyclohexene Oxide/CO ₂ Copolymerization by a Chromium(III) Pyridylamineâ€Bis(Phenolate) Complex. ChemSusChem, 2017, 10, 1266-1273.	3.6	24
630	A Simple Zinc Catalyst for Carbamate Synthesis Directly from CO ₂ . ChemSusChem, 2017, 10, 1501-1508.	3.6	56
631	Effect of Zn/Co initial preparation ratio in the activity of double metal cyanide catalysts for propylene oxide and CO2 copolymerization. European Polymer Journal, 2017, 88, 280-291.	2.6	13
634	\hat{l}^2 -Diketiminate complexes of the first row transition metals: applications in catalysis. Dalton Transactions, 2017, 46, 4483-4498.	1.6	93
635	Switchable catalytic processes involving the copolymerization of epoxides and carbon dioxide for the preparation of block polymers. Inorganic Chemistry Frontiers, 2017, 4, 412-419.	3.0	30
636	CO ₂ -Controlled One-Pot Synthesis of AB, ABA Block, and Statistical Terpolymers from \hat{l}^2 -Butyrolactone, Epoxides, and CO ₂ . Journal of the American Chemical Society, 2017, 139, 6787-6790.	6.6	131
637	Copolymerization of Carbon Dioxide with Epoxides Catalyzed by Structurally Well-Characterized Dinickel Bis(benzotriazole iminophenolate) Complexes: Influence of Carboxylate Ligands on the Catalytic Performance. Inorganic Chemistry, 2017, 56, 6141-6151.	1.9	41
638	Synthesis of vegetable-oil based polymer by terpolymerization of epoxidized soybean oil, propylene oxide and carbon dioxide. Science of the Total Environment, 2017, 598, 931-936.	3.9	27
639	A Titanium Dioxide Supported Gold Nanoparticle Catalyst for the Selective Nâ€Formylation of Functionalized Amines with Carbon Dioxide and Hydrogen. ChemCatChem, 2017, 9, 3632-3636.	1.8	53
640	Perfectly Alternating and Regioselective Copolymerization of Carbonyl Sulfide and Epoxides by Metalâ€Free Lewis Pairs. Angewandte Chemie - International Edition, 2017, 56, 5774-5779.	7.2	162
641	Multinuclear cobalt-salen complexes with phenylene linker for epoxide polymerizations. Journal of Polymer Science Part A, 2017, 55, 2150-2159.	2.5	12
642	Selective Synthesis of Cyclic Carbonate by Salalen–Aluminum Complexes and Mechanistic Studies. ChemSusChem, 2017, 10, 1217-1223.	3.6	37
644	Unique Base-Initiated Depolymerization of Limonene-Derived Polycarbonates. ACS Macro Letters, 2017, 6, 684-688.	2.3	77
645	Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal–Organic Frameworks. Advanced Materials, 2017, 29, 1701139.	11.1	522
646	Perfectly Alternating and Regioselective Copolymerization of Carbonyl Sulfide and Epoxides by Metalâ€Free Lewis Pairs. Angewandte Chemie, 2017, 129, 5868-5873.	1.6	31
647	Kinetic and mechanistic investigation for the copolymerization of CO ₂ and cyclohexene oxide catalyzed by trizinc complexes. Polymer Chemistry, 2017, 8, 3632-3640.	1.9	15
648	Coordination behavior of bis-phenolate saturated and unsaturated N-heterocyclic carbene ligands to zirconium: reactivity and activity in the copolymerization of cyclohexene oxide with CO ₂ . Dalton Transactions, 2017, 46, 8065-8076.	1.6	23
649	The ability of a zinc pyrrolidine complex to catalyze the synthesis of cyclic carbonates from carbon dioxide and epoxides: a mechanistic theoretical investigation. Dalton Transactions, 2017, 46, 9030-9035.	1.6	17

#	Article	IF	CITATIONS
650	Potassium complexes supported by monoanionic tetradentate amino-phenolate ligands: synthesis, structure and catalysis in the ring-opening polymerization of rac-lactide. Dalton Transactions, 2017, 46, 6087-6097.	1.6	16
651	Completely Recyclable Monomers and Polycarbonate: Approach to Sustainable Polymers. Angewandte Chemie, 2017, 129, 4940-4944.	1.6	34
652	Completely Recyclable Monomers and Polycarbonate: Approach to Sustainable Polymers. Angewandte Chemie - International Edition, 2017, 56, 4862-4866.	7.2	175
653	Biobased Polycarbonate as a Gas Separation Membrane and "Breathing Glass―for Energy Saving Applications. Advanced Materials Technologies, 2017, 2, 1700026.	3.0	50
654	Synthesis of <i>cis,syndiotactic-</i> A <i>-alt</i> -B Copolymers from Enantiomerically Pure <i>Endo</i> -2-Substituted-5,6-Norbornenes. Journal of the American Chemical Society, 2017, 139, 5043-5046.	6.6	20
655	Efficient, selective and sustainable catalysis of carbon dioxide. Green Chemistry, 2017, 19, 3707-3728.	4.6	797
656	Effect of imidazolium ionic liquids anions on copolymerization of CO 2 with cyclohexene oxide by Cr III (Salen)Cl. Catalysis Today, 2017, 289, 115-120.	2.2	6
658	Mechanistic Insights into the Carbon Dioxide/Cyclohexene Oxide Copolymerization Reaction: Is One Metal Center Enough?. ChemSusChem, 2017, 10, 1233-1240.	3.6	28
659	Thermal degradation behavior of Copoly(propylene carbonate $\hat{l}\mu$ -caprolactone) investigated using TG/FTIR and Py-GC/MS methodologies. Polymer Testing, 2017, 58, 13-20.	2.3	15
660	Perturbations and 3R in carbon management. Environmental Science and Pollution Research, 2017, 24, 4413-4432.	2.7	9
661	A quest for polycarbonates provided via sustainable epoxide/CO ₂ copolymerization processes. Green Chemistry, 2017, 19, 4990-5011.	4.6	221
662	Synthesis and characterization of trimetallic cobalt, zinc and nickel complexes containing amine-bis(benzotriazole phenolate) ligands: efficient catalysts for coupling of carbon dioxide with epoxides. Dalton Transactions, 2017, 46, 15399-15406.	1.6	35
663	Porous polymeric hollow fibers as bifunctional catalysts for CO2 conversion to cyclic carbonates. Journal of CO2 Utilization, 2017, 21, 589-596.	3.3	24
664	Highly Active and Readily Accessible Prolineâ€Based Dizinc Catalyst for CO ₂ /Epoxide Copolymerization. Chemistry - A European Journal, 2017, 23, 16472-16475.	1.7	19
665	Rapid copolymerization of canola oil derived epoxide monomers with anhydrides and carbon dioxide (CO ₂). Polymer Chemistry, 2017, 8, 6431-6442.	1.9	6
666	Synthesis of poly(1,2-glycerol carbonate)–paclitaxel conjugates and their utility as a single high-dose replacement for multi-dose treatment regimens in peritoneal cancer. Chemical Science, 2017, 8, 8443-8450.	3.7	23
667	Computer-aided rational design of Fe(<scp>iii</scp>)-catalysts for the selective formation of cyclic carbonates from CO ₂ and internal epoxides. Catalysis Science and Technology, 2017, 7, 4375-4387.	2.1	34
668	Multiarm Polycarbonate Star Polymers with a Hyperbranched Polyether Core from CO ₂ and Common Epoxides. Macromolecules, 2017, 50, 6577-6585.	2.2	15

#	Article	IF	CITATIONS
669	Asymmetric Hydrolytic and Aminolytic Kinetic Resolution of Racemic Epoxides using Recyclable Macrocyclic Chiral Cobalt(III) Salen Complexes. Advanced Synthesis and Catalysis, 2017, 359, 3990-4001.	2.1	23
670	Bio-derived polymers for coating applications: comparing poly(limonene carbonate) and poly(cyclohexadiene carbonate). Polymer Chemistry, 2017, 8, 6099-6105.	1.9	76
671	Stereoregular CO ₂ Copolymers from Epoxides with an Electron-Withdrawing Group: Crystallization and Unexpected Stereocomplexation. Macromolecules, 2017, 50, 7062-7069.	2.2	34
672	Metallfreie Borâ€haltige Heterogenkatalysatoren. Angewandte Chemie, 2017, 129, 15712-15724.	1.6	19
673	Metalâ€Free Boronâ€Containing Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2017, 56, 15506-15518.	7.2	114
674	Synthesis, characterization and catalytic activity of rare-earth metal amides incorporating cyclohexyl bridged bis $(\hat{l}^2$ -diketiminato) ligands. RSC Advances, 2017, 7, 42792-42799.	1.7	9
675	Câ°'H Carboxylation of Aromatic Compounds through CO ₂ Fixation. ChemSusChem, 2017, 10, 3317-3332.	3.6	179
676	Activation of (salen)CoI complex by phosphorane for carbon dioxide transformation at ambient temperature and pressure. Green Chemistry, 2017, 19, 3908-3915.	4.6	66
677	Preparation of chlorinated poly(propylene carbonate) and its distinguished properties. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1086-1096.	2.0	6
678	Salcyâ€Naphthalene Cobalt Complexes as Catalysts for the Synthesis of High Molecular Weight Polycarbonates. ChemCatChem, 2017, 9, 3974-3981.	1.8	10
679	A nitrogen rich polymer as an organo-catalyst for cycloaddition of CO ₂ to epoxides and its application for the synthesis of polyurethane. Sustainable Energy and Fuels, 2017, 1, 1620-1629.	2.5	49
681	Highly Efficient Synthesis of Functionalizable Polymers from a CO ₂ /1,3-Butadiene-Derived Lactone. ACS Macro Letters, 2017, 6, 1373-1378.	2.3	30
682	Chemoselective RAFT Polymerization of a Trivinyl Monomer Derived from Carbon Dioxide and 1,3-Butadiene: From Linear to Hyperbranched. Macromolecules, 2017, 50, 9598-9606.	2.2	36
683	CO ₂ -Tuned Sequential Synthesis of Stereoblock Copolymers Comprising a Stereoregularity-Adjustable Polyester Block and an Atactic CO ₂ -Based Polycarbonate Block. Macromolecules, 2017, 50, 9207-9215.	2.2	28
685	Structural Characterization of Tridentate N-Heterocyclic Carbene Titanium(IV) Benzyloxide, Silyloxide, Acetate, and Azide Complexes and Assessment of Their Efficacies for Catalyzing the Copolymerization of Cyclohexene Oxide with CO ₂ . Organometallics, 2017, 36, 4477-4489.	1.1	21
686	Expanding the scope of organocatalysis for alternating copolymerization of dihydrocoumarin and styrene oxide. European Polymer Journal, 2017, 95, 693-701.	2.6	17
687	Synthesis of novel single site tin porphyrin complexes and the catalytic activity of tin tetrakis (4-fluorophenyl) porphyrin over ?-caprolactone. Journal of Porphyrins and Phthalocyanines, 2017, 21, 231-237.	0.4	6
688	A Lewis acid \hat{l}^2 -diiminato-zinc-complex as all-rounder for co- and terpolymerisation of various epoxides with carbon dioxide. Chemical Science, 2017, 8, 1876-1882.	3.7	89

#	Article	IF	CITATIONS
689	Copolymerization of carbon dioxide with cyclohexene oxide catalyzed by bimetallic dysprosium complexes containing hydrazineâ€functionalized Schiffâ€base derivatives. Journal of Polymer Science Part A, 2017, 55, 321-328.	2.5	22
690	Copolymerization of Epoxides and CO ₂ : Polymer Chemistry for Incorporation in Undergraduate Inorganic Chemistry. Journal of Chemical Education, 2017, 94, 1691-1695.	1.1	17
691	Chemical fixation and conversion of CO2 into cyclic and cage-type metal carbonates. Coordination Chemistry Reviews, 2017, 334, 199-231.	9.5	44
692	Organocatalyzed Synthesis of Oleochemical Carbonates from CO ₂ and Renewables. ChemSusChem, 2017, 10, 1076-1079.	3.6	95
693	Biodegradable and Bio-based Green Blends from Carbon Dioxide-Derived Bioplastic and Poly(Butylene) Tj ETQq0	0 0 rgBT /	Overlock 10 ⁻
694	Polymers from carbon dioxide: Polycarbonates, polyurethanes. Current Opinion in Green and Sustainable Chemistry, 2017, 3, 61-66.	3.2	49
695	Titanium, hafnium, and tantalum complexes of a potentially triphenolate phosphine ligand that is unexpectedly prone to O-protonation. Polyhedron, 2017, 125, 164-172.	1.0	10
696	Solventless Coupling of Epoxides and CO2 in Compressed Medium Catalysed by Fluorinated Metalloporphyrins. Catalysts, 2017, 7, 210.	1.6	16
697	Blends and IPNs of Polyurethane Polymers With Block Copolymers. , 2017, , 153-168.		0
698	Alternative Copolymerization of Carbon Dioxide and Epichlorohydrin, and Successive Quaternization of Obtained Aliphatic Polycarbonate. Kobunshi Ronbunshu, 2017, 74, 534-541.	0.2	0
699	Chemical fixation of carbon dioxide to cyclic carbonates catalyzed by zinc(II) complex bearing 1,2-disubstituted benzimidazole ligand. Chinese Journal of Catalysis, 2018, 39, 245-249.	6.9	26
700	Kinetic Studies of Copolymerization of Cyclohexene Oxide with CO ₂ by a Diamino-bis(phenolate) Chromium(III) Complex. Inorganic Chemistry, 2018, 57, 3097-3106.	1.9	36
701	Alternating copolymerization of epoxides with carbon dioxide or cyclic anhydrides using bimetallic nickel and cobalt catalysts: Preparation of hydrophilic nanofibers from functionalized polyesters. Polymer, 2018, 141, 1-11.	1.8	39
702	Anionic Copolymerization of Carbonyl Sulfide with Epoxides via Alkali Metal Alkoxides. Chinese Journal of Chemistry, 2018, 36, 625-629.	2.6	18
703	A Oneâ€Step Route to CO ₂ â€Based Block Copolymers by Simultaneous ROCOP of CO ₂ /Epoxides and RAFT Polymerization of Vinyl Monomers. Angewandte Chemie, 2018, 130, 3655-3659.	1.6	13
704	Copolymerization of carbon dioxide and propylene oxide by several metallosalenâ€based bifunctional catalysts. Journal of the Chinese Chemical Society, 2018, 65, 841-849.	0.8	8
705	Isospecific Copolymerization of Cyclohexene Oxide and Carbon Dioxide Catalyzed by Dialkylmagnesium Compounds. Macromolecules, 2018, 51, 846-852.	2.2	15
706	Synthesis and properties of CO2-based plastics: Environmentally-friendly, energy-saving and biomedical polymeric materials. Progress in Polymer Science, 2018, 80, 163-182.	11.8	162

#	Article	IF	CITATIONS
707	Comments on the depolymerization of polycarbonates derived from epoxides and carbon dioxide: A mini review. Polymer Degradation and Stability, 2018, 149, 45-51.	2.7	41
708	Microphase separation idea to toughen CO2-based waterborne polyurethane. Polymer, 2018, 138, 211-217.	1.8	14
709	Carbon dioxide-based copolymers with various architectures. Progress in Polymer Science, 2018, 82, 120-157.	11.8	115
710	Erbium Mixedâ€Ligand βâ€Diketiminatoâ€Diamido Complex: Unusual Structure of Diamide Ligand. ChemistrySelect, 2018, 3, 1262-1267.	0.7	3
711	Synthesis of CO ₂ -Based Block Copolymers via Chain Transfer Polymerization Using Macroinitiators: Activity, Blocking Efficiency, and Nanostructure. Macromolecules, 2018, 51, 791-800.	2.2	35
712	A Oneâ€Step Route to CO ₂ â€Based Block Copolymers by Simultaneous ROCOP of CO ₂ /Epoxides and RAFT Polymerization of Vinyl Monomers. Angewandte Chemie - International Edition, 2018, 57, 3593-3597.	7.2	77
713	Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO ₂ Fixation Reactions. Chemistry - A European Journal, 2018, 24, 7278-7297.	1.7	107
714	Copolymerization of CO2 and epoxides mediated by zinc organyls. RSC Advances, 2018, 8, 3673-3679.	1.7	5
715	Temperatureâ€responsive Catalyst for the Coupling Reaction of Carbon Dioxide and Propylene Oxide. Chinese Journal of Chemistry, 2018, 36, 299-305.	2.6	14
716	Construction of Autonomic Self-Healing CO ₂ -Based Polycarbonates via One-Pot Tandem Synthetic Strategy. Macromolecules, 2018, 51, 1308-1313.	2.2	40
717	Quantum mechanical DFT elucidation of CO ₂ catalytic conversion mechanisms: Three examples. International Journal of Quantum Chemistry, 2018, 118, e25572.	1.0	10
718	Ag nanoparticles supported on UiO-66 for selective oxidation of styrene. Inorganic Chemistry Communication, 2018, 88, 47-50.	1.8	31
719	Lanthanide Complexes Supported by a Trizinc Crown Ether as Catalysts for Alternating Copolymerization of Epoxide and CO ₂ : Telomerization Controlled by Carboxylate Anions. Angewandte Chemie - International Edition, 2018, 57, 2492-2496.	7.2	103
720	Direct Polymerization of Carbon Dioxide, Diynes, and Alkyl Dihalides under Mild Reaction Conditions. Macromolecules, 2018, 51, 42-48.	2.2	52
721	Synthesis of CO2-derived polycarbonates with high glass transition temperatures. Polymer Journal, 2018, 50, 301-307.	1.3	11
722	Functional Polycarbonates from Carbon Dioxide and Tailored Epoxide Monomers: Degradable Materials and Their Application Potential. Advanced Functional Materials, 2018, 28, 1704302.	7.8	141
723	Lanthanoidkomplexe mit Trizinkâ€Kronenether als Katalysatoren fýr die alternierende Copolymerisation von Epoxid und CO ₂ : eine durch Carboxylatâ€Anionen kontrollierte Telomerisierung. Angewandte Chemie, 2018, 130, 2518-2522.	1.6	15
724	Two dimensional Zn-stilbenedicarboxylic acid (SDC) metal-organic frameworks for cyclic carbonate synthesis from CO2 and epoxides. Korean Journal of Chemical Engineering, 2018, 35, 1373-1379.	1.2	10

#	ARTICLE	IF	CITATIONS
725	A Bifunctional \hat{l}^2 -Diiminate Zinc Catalyst with CO ₂ /Epoxides Copolymerization and RAFT Polymerization Capacities for Versatile Block Copolymers Construction. Macromolecules, 2018, 51, 3640-3646.	2.2	39
726	Reinforcement of polymeric nanoassemblies for ultra-high drug loadings, modulation of stiffness and release kinetics, and sustained therapeutic efficacy. Nanoscale, 2018, 10, 8360-8366.	2.8	10
727	Multiblock copolymers of PPC with oligomeric PBS: with low brittle–toughness transition temperature. RSC Advances, 2018, 8, 14722-14731.	1.7	7
728	Chiral basket-handle porphyrin-Co complexes for the catalyzed asymmetric cycloaddition of CO 2 to epoxides. Chinese Journal of Catalysis, 2018, 39, 997-1003.	6.9	17
729	Block Copolymers of Aliphatic Polycarbonates: Combination of Immortal Epoxide/Carbon-dioxide Copolymerization and Atom Transfer Radical Polymerization of Vinyl Monomers. Chemistry Letters, 2018, 47, 580-583.	0.7	5
7 30	Acid-base bifunctional catalyst: Carboxyl ionic liquid immobilized on MIL-101-NH2 for rapid synthesis of propylene carbonate from CO2 and propylene oxide under facile solvent-free conditions. Microporous and Mesoporous Materials, 2018, 267, 84-92.	2.2	59
731	Oneâ€pot regioselective and stereoselective terpolymerization of <i>rac</i> à€lactide, CO ₂ and <i>rac</i> à€propylene oxide with TPPMCI (M = Cr, Co, Al)/PPNCI binary catalyst. Polymer International, 2018, 67, 883-893.	1.6	7
732	Catalysis as an Enabling Science for Sustainable Polymers. Chemical Reviews, 2018, 118, 839-885.	23.0	669
733	Titanium complexes containing tridentate [ONO] type Schiff base ligands for the cycloaddition reaction of CO2 to propylene oxide. Polyhedron, 2018, 141, 191-197.	1.0	11
734	Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chemical Reviews, 2018, 118, 434-504.	23.0	1,571
735	HCAII-inspired catalysts for making carbon dioxide-based copolymers: The role of metal-hydroxide bond. Chinese Journal of Polymer Science (English Edition), 2018, 36, 139-148.	2.0	15
736	Ring-opening polymerization of trimethylene carbonate to poly(trimethylene carbonate) diol over a heterogeneous high-temperature calcined CeO2 catalyst. Chemical Communications, 2018, 54, 14017-14020.	2.2	10
738	One-Pot Synthesis of Ion-Containing CO ₂ -Based Polycarbonates Using Protic Ionic Liquids as Chain Transfer Agents. Macromolecules, 2018, 51, 9122-9130.	2.2	20
739	Alternating Copolymerization of CO ₂ and Cyclohexene Oxide by New Pyridylamidozinc(II) Catalysts. Macromolecules, 2018, 51, 9871-9877.	2.2	14
740	Study on Thermal Decomposition Behaviors of Terpolymers of Carbon Dioxide, Propylene Oxide, and Cyclohexene Oxide. International Journal of Molecular Sciences, 2018, 19, 3723.	1.8	12
741	Metal N,N-dialkylcarbamates as easily available catalytic precursors for the carbon dioxide/propylene oxide coupling under ambient conditions. Journal of CO2 Utilization, 2018, 28, 168-173.	3.3	16
742	What Catalysis Can Do for Boosting CO2 Utilization. Advances in Catalysis, 2018, , 49-111.	0.1	7
743	Dual Organocatalysts for Highly Active and Selective Synthesis of Linear Poly(\hat{l}^3 -butyrolactone)s with High Molecular Weights. Macromolecules, 2018, 51, 8705-8711.	2.2	74

#	ARTICLE	IF	CITATIONS
744	Copolymerization of carbon dioxide and epoxides by metal coordination complexes. Coordination Chemistry Reviews, 2018, 376, 565-587.	9.5	159
74 5	B(C ₆ F ₅) ₃ : a robust catalyst for the activation of CO ₂ and dimethylamine borane for the <i>N</i> formylation reactions. New Journal of Chemistry, 2018, 42, 15847-15851.	1.4	32
746	Dinuclear iron(iii) complexes bearing phenylene-bridged bis(amino triphenolate) ligands as catalysts for the copolymerization of cyclohexene oxide with carbon dioxide or phthalic anhydride. Polymer Chemistry, 2018, 9, 4733-4743.	1.9	26
747	Cycloaddition of carbon dioxide to epoxides catalysed by supported ionic liquids. Catalysis Science and Technology, 2018, 8, 3081-3089.	2.1	44
748	CO ₂ /Epoxide Coupling and the ROP of $\hat{l}\mu$ -Caprolactone: Mg and Al Complexes of \hat{l}^3 -Phosphino-ketiminates as Dual-Purpose Catalysts. Organometallics, 2018, 37, 1656-1664.	1.1	17
749	Precise synthesis of sulfur-containing polymers via cooperative dual organocatalysts with high activity. Nature Communications, 2018, 9, 2137.	5.8	106
750	Synthesis and characterization of polybenzimidazole membranes for gas separation with improved gas permeability: A grafting and blending approach. Journal of Membrane Science, 2018, 564, 587-597.	4.1	19
751	Design of Betaine Functional Catalyst for Efficient Copolymerization of Oxirane and CO2. Macromolecules, 2018, 51, 6057-6062.	2.2	10
752	Stereocontrolled, Divergent, Al(III)-Catalyzed Coupling of Chiral <i>N</i> -Aryl Epoxy Amines and CO ₂ . Organic Letters, 2018, 20, 5036-5039.	2.4	24
7 53	Across the Board: Arjan Kleij. ChemSusChem, 2018, 11, 2842-2844.	3.6	8
754	Lewis Acid Enhancement of Proton Induced CO ₂ Cleavage: Bond Weakening and Ligand Residence Time Effects. Journal of the American Chemical Society, 2018, 140, 10121-10125.	6.6	56
755	The Electrochemical Conversion of Carbon Dioxide to Carbon Monoxide Over Nanomaterial Based Cathodic Systems: Measures to Take to Apply This Laboratory Process Industrially. , 2018, , 83-131.		2
756	Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs. Molecules, 2018, 23, 298.	1.7	18
757	Enhanced Poly(Propylene Carbonate) with Thermoplastic Networks: A One-Pot Synthesis from Carbon Dioxide, Propylene Oxide, and a Carboxylic Dianhydride. Polymers, 2018, 10, 552.	2.0	13
758	Theoretical Mechanistic Investigation into Metal-Free Alternating Copolymerization of CO ₂ and Epoxides: The Key Role of Triethylborane. Macromolecules, 2018, 51, 5600-5607.	2.2	61
7 59	Effect of Azide and Chloride Binding to Diamino-bis(phenolate) Chromium Complexes on CO ₂ /Cyclohexene Oxide Copolymerization. Organometallics, 2018, 37, 2507-2518.	1.1	20
760	Mechanical reinforcement in poly(propylene carbonate) nanocomposites using double percolation networks by dual volume exclusions. Composites Science and Technology, 2018, 167, 364-370.	3.8	23
761	Synthesis and Properties of Networks Based on Thiolâ€ene Chemistry Using a CO ₂ â€Based δâ€Lactone. Macromolecular Rapid Communications, 2018, 39, e1800395.	2.0	18

#	Article	IF	CITATIONS
762	Synthesis of Polycarbonate Diols(PCDLs) via Two-step Process Using CH3COONa as an Effective Catalyst. Chemical Research in Chinese Universities, 2018, 34, 578-583.	1.3	7
763	lron(III) <i>N</i> , <i>N</i> êDialkylcarbamateâ€Catalyzed Formation of Cyclic Carbonates from CO ₂ and Epoxides under Ambient Conditions by Dynamic CO ₂ Trapping as Carbamato Ligands. ChemSusChem, 2018, 11, 2737-2743.	3.6	31
764	Exploring the conformational space of cobalt(III) $\hat{a}\in$ salen catalyst for CO 2 /epoxide copolymerization: Effect of quaternary ammonium salts on preference of alternative isomers. Journal of Computational Chemistry, 2018, 39, 1854-1867.	1.5	11
765	[OSSO]-Type Iron(III) Complexes for the Low-Pressure Reaction of Carbon Dioxide with Epoxides: Catalytic Activity, Reaction Kinetics, and Computational Study. ACS Catalysis, 2018, 8, 6882-6893.	5. 5	103
766	Homogeneous Metallic Oligomer Catalyst with Multisite Intramolecular Cooperativity for the Synthesis of CO ₂ -Based Polymers. ACS Catalysis, 2019, 9, 8669-8676.	5.5	51
767	Iron Complexes for Cyclic Carbonate and Polycarbonate Formation: Selectivity Control from Ligand Design and Metal-Center Geometry. Inorganic Chemistry, 2019, 58, 11231-11240.	1.9	37
768	Towards Extended Zinc Ethylsulfinate Networks by Stepwise Insertion of Sulfur Dioxide into Znâ^'C Bonds. Chemistry - A European Journal, 2019, 25, 14072-14080.	1.7	2
769	Multifunctional Linear and Hyperbranched Five-Membered Cyclic Carbonate-Based Polymers Directly Generated from CO ₂ and Alkyne-Based Three-Component Polymerization. Macromolecules, 2019, 52, 5546-5554.	2.2	33
770	A Rational Investigation of the Lewis Acid-Promoted Coupling of Carbon Dioxide with Cyclohexene Oxide: Towards CO2-Sourced Polycyclohexene Carbonate under Solvent- and Cocatalyst-Free Conditions. Journal of Carbon Research, 2019, 5, 39.	1.4	2
771	Approach for Introducing a Single Metal Complex into a Polymer Chain: Metallo-Chain Transfer Agents in CO ₂ or COS/Epoxide Copolymerization Processes. Macromolecules, 2019, 52, 5217-5222.	2.2	13
772	Core–Shell Starch Nanoparticles Improve the Mechanical and Thermal Properties of Poly(propylene) Tj ETQq0 (O 0 ₃ . <u>2</u> BT /0	Overlock 10 T
773	Synthesis and characterization of di-nuclear bis(benzotriazole iminophenolate) cobalt complexes: catalysis for the copolymerization of carbon dioxide with epoxides. Dalton Transactions, 2019, 48, 12239-12249.	1.6	22
774	Recent Progress on COS-derived Polymers. Chinese Journal of Polymer Science (English Edition), 2019, 37, 951-958.	2.0	26
775	Advances in the use of CO ₂ as a renewable feedstock for the synthesis of polymers. Chemical Society Reviews, 2019, 48, 4466-4514.	18.7	438
776	Selective Conversion of Carbon Dioxide to Formaldehyde via a Bis(silyl)acetal: Incorporation of Isotopically Labeled C1 Moieties Derived from Carbon Dioxide into Organic Molecules. Journal of the American Chemical Society, 2019, 141, 17754-17762.	6.6	68
777	Terpolymerization of \hat{l}^2 -Butyrolactone, Epoxides, and CO ₂ : Chemoselective CO ₂ -Switch and Its Impact on Kinetics and Material Properties. Macromolecules, 2019, 52, 8476-8483.	2.2	52
778	Enhanced Poly(propylene carbonate) with Thermoplastic Networks: A Cross-Linking Role of Maleic Anhydride Oligomer in CO2/PO Copolymerization. Polymers, 2019, 11, 1467.	2.0	10
779	Quinoline-8-olato-chromium catalysts with pseudohalogen effects for the CO2/cyclohexene epoxide copolymerization. European Polymer Journal, 2019, 120, 109245.	2.6	4

#	Article	IF	CITATIONS
780	Highly elastic and degradable thermoset elastomers from CO ₂ -based polycarbonates and bioderived polyesters. Polymer Chemistry, 2019, 10, 5265-5270.	1.9	8
781	Ring-opening polymerization of epoxides and ring-opening copolymerization of CO2 with epoxides by a zinc amino-bis(phenolate) catalyst. European Polymer Journal, 2019, 120, 109237.	2.6	21
782	Chromium Amino-bis(phenolate) Complexes as Catalysts for Ring-Opening Polymerization of Cyclohexene Oxide. Macromolecules, 2019, 52, 7403-7412.	2.2	19
783	Progress in metal-free cooperative catalysis for the ring-opening copolymerization of cyclic anhydrides and epoxides. European Polymer Journal, 2019, 121, 109276.	2.6	44
784	Nickel-catalyzed copolymerization of carbon dioxide with internal epoxides by di-nuclear bis (benzotriazole iminophenolate) complexes. European Polymer Journal, 2019, 120, 109224.	2.6	14
785	Air-stable di-nuclear yttrium complexes as versatile catalysts for lactide polymerization and copolymerization of epoxides with carbon dioxide or phthalic anhydride. Polymer, 2019, 167, 21-30.	1.8	14
786	Renewable Resource-Based Polymers. , 2019, , 1-28.		5
787	<i>En route</i> to CO ₂ -containing renewable materials: catalytic synthesis of polycarbonates and non-isocyanate polyhydroxyurethanes derived from cyclic carbonates. Chemical Communications, 2019, 55, 1360-1373.	2.2	85
788	CO ₂ -fixation into cyclic and polymeric carbonates: principles and applications. Green Chemistry, 2019, 21, 406-448.	4.6	574
789	Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. Journal of CO2 Utilization, 2019, 34, 115-148.	3.3	32
790	Innovative sustainable conversion from CO2 and biodiesel-based crude glycerol waste to bio-based polycarbonates. Journal of CO2 Utilization, 2019, 34, 198-206.	3.3	13
791	Thermodynamic considerations in CO ₂ utilization. AICHE Journal, 2019, 65, e16695.	1.8	18
792	Recent advances of "soft―bio-polycarbonate plastics from carbon dioxide and renewable bio-feedstocks via straightforward and innovative routes. Journal of CO2 Utilization, 2019, 34, 40-52.	3.3	42
793	Anionic hafnium species: an active catalytic intermediate for the coupling of epoxides with CO ₂ ?. Chemical Communications, 2019, 55, 7227-7230.	2.2	13
794	Facile preparation and synergy study of DMC/ZnGA composite catalyst for the synthesis of oligo (propyleneâ€carbonate) diols. Applied Organometallic Chemistry, 2019, 33, e4999.	1.7	10
795	Triethyl borane-regulated selective production of polycarbonates and cyclic carbonates for the coupling reaction of CO ₂ with epoxides. Polymer Chemistry, 2019, 10, 3621-3628.	1.9	47
796	Bio-based polycarbonates from renewable feedstocks and carbon dioxide. Advances in Bioenergy, 2019, , 183-208.	0.5	4
797	Synthesis of Cyclic Carbonates from CO2 and Epoxide Catalyzed by Co, Ni and Cu Complexes in Ionic Liquids. Catalysis Letters, 2019, 149, 1825-1832.	1.4	13

#	Article	IF	CITATIONS
798	Discrete iron-based complexes: Applications in homogeneous coordination-insertion polymerization catalysis. Coordination Chemistry Reviews, 2019, 390, 127-170.	9.5	43
799	Aldehyde Carboxylation: A Concise DFT Mechanistic Study and a Hypothetical Role of CO2 in the Origin of Life. Synlett, 2019, 30, 987-996.	1.0	8
800	Salen complexes of zirconium and hafnium: synthesis, structural characterization and polymerization studies. Polymer Chemistry, 2019, 10, 3444-3460.	1.9	20
801	Conversion of CO2 to Valuable Chemicals: Organic Carbonate as Green Candidates for the Replacement of Noxious Reactants. Studies in Surface Science and Catalysis, 2019, , 125-144.	1.5	10
802	Neutral boron [(L1-3)BPh2] and cationic charged boron [(L1a-3a)BPh2] complexes for chemical CO ₂ conversion to obtain cyclic carbonates under ambient conditions. Sustainable Energy and Fuels, 2019, 3, 1066-1077.	2.5	31
803	Carboxylate Salts as Ideal Initiators for the Metal-Free Copolymerization of CO ₂ with Epoxides: Synthesis of Well-Defined Polycarbonates Diols and Polyols. Macromolecules, 2019, 52, 2431-2438.	2.2	65
804	Combination of Ethylene, 1,3-Butadiene, and Carbon Dioxide into Ester-Functionalized Polyethylenes via Palladium-Catalyzed Coupling and Insertion Polymerization. Macromolecules, 2019, 52, 2504-2512.	2.2	46
805	Chain transfer agents utilized in epoxide and CO ₂ copolymerization processes. Green Chemistry, 2019, 21, 2214-2223.	4.6	88
806	Dinuclear Co-Salcy Complexes with a Dibenzofuran Linker for Copolymerizations of Epoxides with Cyclic Anhydrides or Carbon Dioxide. Chemistry Letters, 2019, 48, 479-482.	0.7	1
807	Relative reactivities of epoxide monomers during copolymerization with carbon dioxide. Advanced Industrial and Engineering Polymer Research, 2019, 2, 178-185.	2.7	2
808	A double-site Lewis pair for highly active and living synthesis of sulfur-containing polymers. Polymer Chemistry, 2019, 10, 6555-6560.	1.9	17
809	Monomodal Ultrahigh-Molar-Mass Polycarbonate Homopolymers and Diblock Copolymers by Anionic Copolymerization of Epoxides with CO ₂ . ACS Macro Letters, 2019, 8, 1594-1598.	2.3	42
810	Fast, selective and metal-free ring-opening polymerization to synthesize polycarbonate/polyester copolymers with high incorporation of ethylene carbonate using an organocatalytic phosphazene base. Polymer Chemistry, 2019, 10, 5905-5912.	1.9	15
811	Poly(Alkyl Glycidate Carbonate)s as Degradable Pressureâ€6ensitive Adhesives. Angewandte Chemie, 2019, 131, 1421-1425.	1.6	4
812	Homogeneous Iron Catalysts in the Reaction of Epoxides with Carbon Dioxide. Advanced Synthesis and Catalysis, 2019, 361, 265-282.	2.1	82
813	Diverse Coordinative Zinc Complexes Containing Amido-Pyridinate Ligands: Structural and Catalytic Studies. Frontiers in Chemistry, 2018, 6, 615.	1.8	3
814	High-Efficiency Construction of CO ₂ -Based Healable Thermoplastic Elastomers via a Tandem Synthetic Strategy. ACS Sustainable Chemistry and Engineering, 2019, 7, 1372-1380.	3.2	41
815	Poly(Alkyl Glycidate Carbonate)s as Degradable Pressureâ€6ensitive Adhesives. Angewandte Chemie - International Edition, 2019, 58, 1407-1411.	7.2	34

#	Article	IF	CITATIONS
816	Carbon Management and Greenhouse Gas Mitigation. , 2020, , 312-335.		8
817	Preparation of chlorinated poly(propylene carbonate) and its effects on the mechanical properties of poly(propylene carbonate)/starch blends as a compatibilizer. Polymer Bulletin, 2020, 77, 1327-1342.	1.7	5
818	Copolymerization of carbon dioxide and propylene oxide catalyzed by two kinds of bifunctional salenâ€cobalt(III) complexes bearing four quaternary ammonium salts. Journal of the Chinese Chemical Society, 2020, 67, 72-79.	0.8	7
819	Cobalt complexes containing salen-type pyridoxal ligand and DMSO for cycloaddition of carbon dioxide to propylene oxide. Polyhedron, 2020, 178, 114353.	1.0	6
821	Photoactive Metal–Organic Framework for the Reduction of Aryl Halides by the Synergistic Effect of Consecutive Photoinduced Electron-Transfer and Hydrogen-Atom-Transfer Processes. ACS Applied Materials & Diterfaces, 2020, 12, 2199-2206.	4.0	66
822	Metal-Free Alternating Copolymerization of Nonstrained \hat{I}^3 -Selenobutyrolactone with Epoxides for Selenium-Rich Polyesters. Macromolecules, 2020, 53, 203-211.	2.2	23
823	Palladium–salen-bridged ionic networks immobilized on magnetic dendritic silica fibers for the synthesis of cyclic carbonates by oxidative carboxylation. New Journal of Chemistry, 2020, 44, 1269-1277.	1.4	7
824	Repurposing poly(monothiocarbonate)s to poly(thioether)s with organic bases. Polymer Chemistry, 2020, 11, 309-314.	1.9	10
825	Placing Single-Metal Complexes into the Backbone of CO2-Based Polycarbonate Chains, Construction of Nanostructures for Prospective Micellar Catalysis. Organometallics, 2020, 39, 1612-1618.	1.1	17
827	CO2 fixation by cycloaddition of mono/disubstituted epoxides using acyl amide decorated Co(II) MOF as a synergistic heterogeneous catalyst. Applied Catalysis A: General, 2020, 590, 117375.	2.2	42
828	Group 4 complexes as catalysts for the transformation of CO2 into polycarbonates and cyclic carbonates. Journal of Organometallic Chemistry, 2020, 907, 121067.	0.8	25
829	Highly efficient cycloaddition of diluted and waste CO2 into cyclic carbonates catalyzed by porous ionic copolymers. Journal of CO2 Utilization, 2020, 36, 169-176.	3.3	74
830	DMC-Mediated Copolymerization of CO2 and POâ€"Mechanistic Aspects Derived from Feed and Polymer Composition. Catalysts, 2020, 10, 1066.	1.6	13
831	Quasi-Living Copolymerization of Aryl Isocyanates and Epoxides. ACS Macro Letters, 2020, 9, 1542-1546.	2.3	16
832	Carbon dioxide utilization: A paradigm shift with CO2 economy. Chemical Engineering Journal Advances, 2020, 3, 100013.	2.4	50
833	Mechanistic Studies Inform Design of Improved Ti(salen) Catalysts for Enantioselective [3 + 2] Cycloaddition. Journal of the American Chemical Society, 2020, 142, 18471-18482.	6.6	32
834	Unsaturated and Benzannulated N-Heterocyclic Carbene Complexes of Titanium and Hafnium: Impact on Catalysts Structure and Performance in Copolymerization of Cyclohexene Oxide with CO2. Molecules, 2020, 25, 4364.	1.7	8
835	Kinetic Study and Nonlinear Phenomenon during the Copolymerization of CO 2 with meso â€Epoxides Catalyzed by Various Bimetallic Co III Complexes. Macromolecular Chemistry and Physics, 2020, 221, 2000247.	1.1	7

#	Article	IF	CITATIONS
836	Deciphering Structure–Functionality Relationship of Polycarbonate-Based Polyelectrolytes by AIE Technology. Macromolecules, 2020, 53, 5839-5846.	2.2	16
837	Effect of Quaternary Phosphonium Salts as Cocatalysts on Epoxide/CO ₂ Copolymerization Catalyzed by salen-Type Cr(III) Complexes. Organometallics, 2020, 39, 2653-2664.	1.1	24
838	Paving way for sustainable earth-abundant metal based catalysts for chemical fixation of CO ₂ into epoxides for cyclic carbonate formation. Catalysis Reviews - Science and Engineering, 2022, 64, 356-443.	5.7	43
839	Rare-Earth Metal Complexes Supported by Polydentate Phenoxy-Type Ligand Platforms: C–H Activation Reactivity and CO2/Epoxide Copolymerization Catalysis. Inorganic Chemistry, 2020, 59, 16976-16987.	1.9	9
840	Aliphatic polycarbonates derived from epoxides and CO2: A comparative study of poly(cyclohexene) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
841	Versatility of Boron-Mediated Coupling Reaction of Oxetanes and Epoxides with CO ₂ : Selective Synthesis of Cyclic Carbonates or Linear Polycarbonates. ACS Sustainable Chemistry and Engineering, 2020, 8, 13056-13063.	3.2	44
842	Metal Complexes Bearing Sulfur-Containing Ligands as Catalysts in the Reaction of CO2 with Epoxides. Catalysts, 2020, 10, 825.	1.6	21
843	Recycling a Borate Complex for Synthesis of Polycarbonate Polyols: Towards an Environmentally Friendly and Costâ€Effective Process. ChemSusChem, 2020, 13, 5080-5087.	3.6	30
844	From terpenes to sustainable and functional polymers. Polymer Chemistry, 2020, 11, 5109-5127.	1.9	117
845	Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts. Applied Energy, 2020, 277, 115557.	5.1	104
846	Catalysis of carbon dioxide and oxetanes to produce aliphatic polycarbonates. Green Chemistry, 2020, 22, 7707-7724.	4.6	32
847	Synthesis and effective catalytic performance in cycloaddition reactions with CO ₂ of boronate esters <i>versus</i> N-heterocyclic carbene (NHC)-stabilized boronate esters. Sustainable Energy and Fuels, 2020, 4, 5682-5696.	2.5	30
848	Recent advances in the use of catalysts based on natural products for the conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2020, 22, 7665-7706.	4.6	110
849	A New Dinuclear Cobalt Complex for Copolymerization of CO2 and Propylene Oxide: High Activity and Selectivity. Molecules, 2020, 25, 4095.	1.7	9
850	Monodisperse Macromolecules by Self-Interrupted Living Polymerization. Journal of the American Chemical Society, 2020, 142, 15265-15270.	6.6	37
851	Broadening the Scope of Steroidal Scaffolds: The Umpolung of a Bis-Primary Amine Precatalyst for the Insertion of CO ₂ into Epoxides. Organic Letters, 2020, 22, 6988-6992.	2.4	5
852	(Pyrazolylethyl-amine)zinc(II) carboxylate complexes as catalysts for the copolymerization of CO2 and cyclohexene oxide. Polyhedron, 2020, 190, 114767.	1.0	2
853	Theoretical study on preference of open polymer vs. cyclic products in CO2/epoxide copolymerization with cobalt(III)-salen bifunctional catalysts. Journal of Molecular Modeling, 2020, 26, 113.	0.8	8

#	Article	IF	CITATIONS
854	Alternating Copolymerization of CO ₂ and Cyclohexene Oxide Catalyzed by Cobalt–Lanthanide Mixed Multinuclear Complexes. Inorganic Chemistry, 2020, 59, 7928-7933.	1.9	45
855	Ring-opening alternating copolymerization of epichlorohydrin and cyclic anhydrides using single- and two-component metal-free catalysts. European Polymer Journal, 2020, 134, 109820.	2.6	14
856	Scalable Bifunctional Organoboron Catalysts for Copolymerization of CO ₂ and Epoxides with Unprecedented Efficiency. Journal of the American Chemical Society, 2020, 142, 12245-12255.	6.6	126
857	Aldimineâ€Thioetherâ€Phenolate Based Mono―and Bimetallic Zinc Complexes as Catalysts for the Reaction of CO ₂ with Cyclohexene Oxide. European Journal of Inorganic Chemistry, 2020, 2020, 1645-1653.	1.0	12
858	Partners in catalysis. Nature Chemistry, 2020, 12, 324-326.	6.6	11
859	Heteronuclear, Monomer-Selective Zn/Y Catalyst Combines Copolymerization of Epoxides and CO2 with Group-Transfer Polymerization of Michael-Type Monomers. ACS Macro Letters, 2020, 9, 571-575.	2.3	13
860	All-Polycarbonate Thermoplastic Elastomers Based on Triblock Copolymers Derived from Triethylborane-Mediated Sequential Copolymerization of CO ₂ with Various Epoxides. Macromolecules, 2020, 53, 5297-5307.	2.2	55
861	Siteâ€Selective, Multistep Functionalizations of CO ₂ â€Based Hyperbranched Poly(alkynoate)s toward Functional Polymetric Materials. Advanced Science, 2020, 7, 2000465.	5.6	24
862	An unprecedented transformation mode in aluminium oxazolineâ€amidoâ€phenolate complexes. Applied Organometallic Chemistry, 2020, 34, e5464.	1.7	5
863	Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coordination Chemistry Reviews, 2020, 408, 213173.	9.5	272
864	Bimetallic Cobalt Complex-Mediated Enantioselective Terpolymerizations of Carbon Dioxide, Cyclohexene Oxide, and \hat{l}^2 -Butyrolactone. Organometallics, 2020, 39, 1628-1633.	1.1	26
865	Amine-oxide hybrid materials in combination with cobalt for the catalyzed cycloaddition of carbon dioxide and propylene oxide. Catalysis Today, 2020, 358, 45-50.	2.2	5
866	Asymmetric Alternating Copolymerization of CO ₂ with <i>meso</i> -Epoxides: Ring Size Effects of Epoxides on Reactivity, Enantioselectivity, Crystallization, and Degradation. Macromolecules, 2020, 53, 2912-2918.	2.2	23
867	Reductive Coupling of Carbon Dioxide and an Aldehyde Mediated by a Copper(I) Complex toward the Synthesis of α-Hydroxycarboxylic Acids. Organic Letters, 2020, 22, 4922-4926.	2.4	10
868	Electroreductive Cobaltâ€Catalyzed Carboxylation: Crossâ€Electrophile Electrocoupling with Atmospheric CO ₂ . Angewandte Chemie - International Edition, 2020, 59, 12842-12847.	7.2	92
869	Elektroâ€reduktive Cobaltâ€katalysierte Carboxylierung: Kreuzelektrophile Elektrokupplung mit atmosphĀ ¤ schem CO ₂ . Angewandte Chemie, 2020, 132, 12942-12947.	1.6	18
870	A new class of organoplatinum-based DFNS for the production of cyclic carbonates from olefins and CO ₂ . RSC Advances, 2020, 10, 15044-15051.	1.7	8
871	Polyurethanes and Polyallophanates via Sequence-Selective Copolymerization of Epoxides and Isocyanates. Journal of the American Chemical Society, 2020, 142, 8136-8141.	6.6	36

#	Article	IF	Citations
872	Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: Solid polymer electrolytes. MRS Energy & Sustainability, 2020, 7, 1.	1.3	27
873	Tungstate ionic liquids as catalysts for CO2 fixation into epoxides. Molecular Catalysis, 2020, 486, 110854.	1.0	11
874	Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials, 2020, 5, 501-516.	23.3	735
875	Highly active bimetallic nickel catalysts for alternating copolymerization of carbon dioxide with epoxides. Polymer Chemistry, 2020, 11, 3225-3236.	1.9	20
876	Polycarbonate-block-polycycloalkenes via epoxide/carbon dioxide copolymerization and ring-opening metathesis polymerization. Polymer Journal, 2021, 53, 203-208.	1.3	1
877	[OSSO]-bisphenolate metal complexes: A powerful and versatile tool in polymerization catalysis. Coordination Chemistry Reviews, 2021, 429, 213644.	9.5	17
878	The Synthesis of Cyclic Carbonates from Oxidative Carboxylation Under Mild Conditions Using Al/FPS Nanocatalyst. Catalysis Letters, 2021, 151, 600-611.	1.4	5
879	Randomly Distributed Sulfur Atoms in the Main Chains of CO ₂ â€Based Polycarbonates: Enhanced Optical Properties. Angewandte Chemie, 2021, 133, 4361-4367.	1.6	7
880	The compatibilization of poly (propylene carbonate)/poly (lactic acid) blends in presence of core-shell starch nanoparticles. Carbohydrate Polymers, 2021, 254, 117321.	5.1	22
881	Randomly Distributed Sulfur Atoms in the Main Chains of CO ₂ â€Based Polycarbonates: Enhanced Optical Properties. Angewandte Chemie - International Edition, 2021, 60, 4315-4321.	7.2	31
882	In-situ real-time monitoring of hydroxyethyl modification in obtaining uniform lignin derivatives. European Polymer Journal, 2021, 142, 110082.	2.6	10
883	Atomic―and Molecularâ€Level Functionalizations of Polymeric Carbon Nitride for Solar Fuel Production. Solar Rrl, 2021, 5, 2000440.	3.1	15
884	Alternating terpolymerization of carbon dioxide, propylene oxide, and various epoxides with bulky side groups for the tuning of thermal properties. Polymer Journal, 2021, 53, 121-127.	1.3	3
885	Fast-scan chip-calorimetry measurement on crystallization and enthalpy relaxation kinetics of isotactic poly(cyclohexene carbonate). Journal of Polymer Research, 2021, 28, 1.	1.2	1
886	Cycloaddition of carbon dioxide to epoxides by highly active constrained aluminum chloride complexes. Dalton Transactions, 2021, 50, 11039-11048.	1.6	12
887	Conversion of carbon dioxide to valuable compounds. , 2021, , 307-352.		0
888	CO2 Conversion into Chemicals and Fuel: India's Perspective. Green Energy and Technology, 2021, , 105-122.	0.4	1
889	Introduction to the Organometallic Chemistry of Carbon Dioxide. , 2021, , .		0

#	Article	IF	CITATIONS
890	Alternating Copolymerization of Carbon Dioxide with Epoxides Using Highly Active Dinuclear Nickel Complexes: Catalysis and Kinetics. Inorganic Chemistry, 2021, 60, 852-865.	1.9	23
891	Dinuclear [OSSO]-Fe complexes for the reaction of CO ₂ with epoxides. Catalysis Science and Technology, 2021, 11, 4702-4707.	2.1	8
892	The contribution of metalloporphyrin complexes in molecular sensing and in sustainable polymerization processes: a new and unique perspective. Dalton Transactions, 2021, 50, 7898-7916.	1.6	14
893	Metal Complexes as Catalysts/Moderators for Polymerization Reactions. , 2021, , 410-464.		3
894	Conversion of CO ₂ to Heterocyclohexenol Carboxylic Acids through a Metal–Organic Framework Sponge. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7389-7395.	4.0	22
895	Pinwheel-Shaped Tetranuclear Organoboron Catalysts for Perfectly Alternating Copolymerization of CO ₂ and Epichlorohydrin. Journal of the American Chemical Society, 2021, 143, 3455-3465.	6.6	105
898	Theoretical Study on Epoxide Ring-opening in CO2/Epoxide Copolymerization Catalyzed by Bifunctional Salen-Type Cobalt(III) Complexes: Influence of Stereoelectronic Factors. Catalysts, 2021, 11, 328.	1.6	10
899	Organic Electrochemistry: Molecular Syntheses with Potential. ACS Central Science, 2021, 7, 415-431.	5. 3	335
900	Highly Active Chromium Complexes Supported by Constrained Schiff-Base Ligands for Cycloaddition of Carbon Dioxide to Epoxides. Inorganic Chemistry, 2021, 60, 6147-6151.	1.9	34
902	Carbon dioxide copolymers: Emerging sustainable materials for versatile applications. SusMat, 2021, 1, 88-104.	7.8	44
903	Ionic Liquid Supported on DFNS Nanoparticles Catalyst in Synthesis of Cyclic Carbonates by Oxidative Carboxylation. Catalysis Letters, 2022, 152, 87-97.	1.4	7
904	Heterotrimetallic Carbon Dioxide Copolymerization and Switchable Catalysts: Sodium is the Key to High Activity and Unusual Selectivity. Angewandte Chemie, 2021, 133, 13484-13491.	1.6	9
905	Heterocycle/Heteroallene Ringâ€Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	88
906	Carbon capture using membrane-based materials and its utilization pathways. Chemical Papers, 2021, 75, 4413.	1.0	8
907	Heterotrimetallic Carbon Dioxide Copolymerization and Switchable Catalysts: Sodium is the Key to High Activity and Unusual Selectivity. Angewandte Chemie - International Edition, 2021, 60, 13372-13379.	7.2	49
909	Heterocycle/Heteroallene Ring Opening Copolymerisation: Selective Catalysis Delivering Alternating Copolymers. Angewandte Chemie, 0, , .	1.6	17
910	Salenâ€decorated Periodic Mesoporous Organosilica: From Metalâ€assisted Epoxidation to Metalâ€free CO 2 Insertion. Chemistry - an Asian Journal, 2021, 16, 2126-2135.	1.7	3
911	Bis(phenolate)-functionalized N-heterocyclic carbene complexes of oxo- and imido-vanadium(V). Inorganica Chimica Acta, 2021, 521, 120301.	1.2	7

#	Article	IF	Citations
912	Alternating copolymerization of CO2 and cyclohexene oxide initiated by rare-earth metal complexes stabilized by o-phenylenediamine-bridged tris(phenolate) ligand. Journal of Rare Earths, 2021, , .	2.5	8
913	Direct Conversion from Carbon Dioxide to Luminescent Poly(\hat{l}^2 -alkoxyacrylate)s via Multicomponent Tandem Polymerization-Induced Emission. Macromolecules, 2021, 54, 9019-9026.	2.2	20
915	Earth-abundant bimetallic and multimetallic catalysts for Epoxide/CO2 ring-opening copolymerization. Tetrahedron, 2021, 98, 132433.	1.0	15
916	Synthesis and characterization of ionic functionalized cobalt and chromium complexes derived from salicylaldimine ligands: Application as catalysts in the coupling of carbon dioxide with propylene oxide. Inorganica Chimica Acta, 2021, 527, 120563.	1.2	0
917	Green polyols for polyurethane applications and nanomaterials. , 2021, , 41-68.		0
918	Synthesis of functional CO2-based polycarbonates via dinuclear nickel nitrophenolate-based catalysis for degradable surfactant and drug-loaded nanoparticle applications. Polymer Chemistry, 2021, 12, 1244-1259.	1.9	20
919	Chiral salenCo(<scp>iii</scp>) complexes with bulky substituents as catalysts for stereoselective alternating copolymerization of racemic propylene oxide with carbon dioxide and succinic anhydride. Polymer Chemistry, 2021, 12, 1776-1786.	1.9	8
920	Copolymerization of lactide, epoxides and carbon dioxide: a highly efficient heterogeneous ternary catalyst system. Polymer Chemistry, 2021, 12, 1700-1706.	1.9	18
921	Conversion of CO2 into Polymers. , 2019, , 323-347.		3
922	Recent Developments in Catalytic Activation of Renewable Resources for Polymer Synthesis. Topics in Organometallic Chemistry, 2012, , 175-224.	0.7	35
923	Carbon Dioxide as C-1 Block for the Synthesis of Polycarbonates. Green Chemistry and Sustainable Technology, 2014, , 163-200.	0.4	7
924	Synthesis and structural characterization of bis(2-pyridylthio)(p-tolylthio)methyl zinc complexes and the catalytic hydrosilylation of CO2. Polyhedron, 2020, 187, 114542.	1.0	14
925	Catalysis and kinetics for alternating copolymerization of carbon dioxide with epoxides using dinuclear nickel catalysts of pyrazolyl based diamine-bisphenolate ligands. Polymer, 2020, 200, 122553.	1.8	6
926	CO2-Based Block Copolymers: Present and Future Designs. Trends in Chemistry, 2020, 2, 750-763.	4.4	78
927	Mechanism of Initiation Stereocontrol in Polymerization of <i>rac</i> -Lactide by Aluminum Complexes Supported by Indolide–Imine Ligands. Macromolecules, 2020, 53, 1809-1818.	2.2	13
928	Ti(IV)–Tris(phenolate) Catalyst Systems for the Ring-Opening Copolymerization of Cyclohexene Oxide and Carbon Dioxide. Organometallics, 2020, 39, 1619-1627.	1.1	19
929	Structure–Property Relationships of Poly(ethylene carbonate) and Poly(propylene carbonate). ACS Omega, 2017, 2, 4808-4819.	1.6	19
930	(Acetato-κ <i>O</i>)(2-{[2-(dimethylamino)ethylimino](phenyl)methyl}-5-methoxyphenolato-κ ³ <i>Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m1434-m1434.</i>	N,).2 <i>).1</i>	l′, <i>°</i>

#	Article	IF	CITATIONS
931	CHAIN EXTENSION OF MALEIC ANHYDRIDE END-CAPPED POLY(1,2-CYCLOHEXYLENE CARBONATE) BY BISOXAZOLINES. Acta Polymerica Sinica, 2011, 011, 772-777.	0.0	2
932	COPOLYMERIZATION OF CYCLOHEXENE OXIDE AND CARBON DIOXIDE CATALYZED BY ALUMINUM PORPHYRIN. Acta Polymerica Sinica, 2011, 011, 784-790.	0.0	3
933	DIELS-ALDER REACTION OF FURFURYL GLYCIDYL ETHER/CARBON DIOXIDE COPOLYMER. Acta Polymerica Sinica, 2011, 011, 1336-1340.	0.0	3
934	COPOLYMERIZATION OF CARBON DIOXIDE AND PROPYLENE OXIDE UNDER <i>in-situ</i> SUPPORTED RARE EARTH TERNARY CATALYST. Acta Polymerica Sinica, 2012, 012, 446-452.	0.0	2
935	PROGRESS IN FUNCTIONAL CARBON DIOXIDE BASED ALIPHATIC POLYCARBONATES. Acta Polymerica Sinica, 2013, 013, 600-608.	0.0	3
936	Coupling Reaction of CO2 with Epoxides by Binary Catalytic System of Lewis Acids and Onium Salts. Bulletin of the Korean Chemical Society, 2006, 27, 1171-1174.	1.0	29
937	Efficient Synthesis of a Highly Active Catalyst for CO2/Epoxide Copolymerization. Bulletin of the Korean Chemical Society, 2009, 30, 745-748.	1.0	18
938	Cobalt(III) Complexes of Various Salen-Type Ligand Bearing Four Quaternary Ammonium Salts and Their Reactivity for CO2/Epoxide Copolymerization. Bulletin of the Korean Chemical Society, 2010, 31, 829-834.	1.0	11
939	Greenhouse Gas Conversion by Homogeneous Salen Catalyst Systems under Very Mild Reaction Condition. Journal of the Korean Chemical Society, 2013, 57, 525-528.	0.2	1
940	Catalytic Transformation of Carbon Dioxide to Organic Carbonates. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 921-933.	0.0	4
941	Fabrication and Characterization of Environmentally Friendly PLA/PPC/PLA Multilayer Film. Porrime, 2013, 37, 249-253.	0.0	3
942	One-Pot, Room-Temperature Conversion of CO ₂ into Porous Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 16750-16757.	6.6	14
943	Copolymerization of carbon dioxide and oxetane catalyzed by aluminum porphyrin complex system. Journal of Polymer Science, 2021, 59, 3122-3130.	2.0	5
945	Cycloaddition and Crosslinking Reactions of CO2and Glycidyl Methacrylate using Ionic Liquid. Korean Chemical Engineering Research, 2013, 51, 342-346.	0.2	0
946	Carbon Dioxide-Based Polymers. , 2014, , 1-9.		0
947	CO2-Abtrennung und -Nutzung. , 2015, , 511-567.		0
948	Preparation, characterization and crystal structure of dinuclear zinc(II) carboxylate complex with 1-(pyridin-4-yl)ethanone and 4-methylbenzoate based ligands. European Journal of Chemistry, 2016, 7, 448-453.	0.3	2
949	Conversion of CO2 into Polymers. , 2018, , 1-25.		1

#	Article	IF	CITATIONS
950	Study on the Process Condition for Producing Ethylene Carbonate in Commercial. Journal of Climate Change Research, 2019, 10, 473-478.	0.1	O
951	Coupling of CO ₂ and epoxides catalysed by novel <i>N</i> fused mesoionic carbene complexes of nickel(<scp>ii</scp>). Dalton Transactions, 2021, 50, 17361-17371.	1.6	7
952	Conversion of CO2 to High Value Products. Advances in Chemical and Materials Engineering Book Series, 2020, , 48-95.	0.2	3
953	Synthesis of Diverse Polycarbonates by Organocatalytic Copolymerization of CO2 and Epoxides: From High Pressure and Temperature to Ambient Conditions. Angewandte Chemie, 0, , .	1.6	6
954	Bimetallic Nickel Complexes Containing Benzotriazole-Derived Diamine-Bisphenolate Ligands as Highly Active Catalysts for the Copolymerization of Carbon Dioxide with Cyclohexene Oxide: Synthesis, Catalysis, and Kinetics. Organometallics, 0, , .	1.1	10
955	Synthesis of Diverse Polycarbonates by Organocatalytic Copolymerization of CO ₂ and Epoxides: From High Pressure and Temperature to Ambient Conditions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
956	Alternating Chain Growth Copolymerization of Isothiocyanates and Epoxides. Macromolecules, 2021, 54, 10529-10536.	2.2	7
957	Chain-transfer-catalyst: strategy for construction of site-specific functional CO2-based polycarbonates. Science China Chemistry, 2022, 65, 162-169.	4.2	8
958	Porous Hexacyanometallate(III) Complexes as Catalysts in the Ring-Opening Copolymerization of CO2 and Propylene Oxide. Catalysts, 2021, 11, 1450.	1.6	4
959	Modular Organoboron Catalysts Enable Transformations with Unprecedented Reactivity. Accounts of Chemical Research, 2021, 54, 4434-4448.	7.6	85
960	Polymerization of Epoxides. , 2022, , 431-455.		1
961	Strategies for tuning the catalytic activity of zinc complexes in the solvent-free coupling reaction of CO2 and cyclohexene oxide. Inorganica Chimica Acta, 2022, 532, 120753.	1.2	3
962	Main Group Complexes in Polymer Synthesis. , 2021, , .		0
964	Recent developments in state-of-the-art silica-modified catalysts for the fixation of CO ₂ in epoxides to form organic carbonates. Sustainable Energy and Fuels, 2022, 6, 1198-1248.	2.5	22
965	Transformations of Carbon Dioxide under Homogeneous Catalysis Conditions (A Review). Petroleum Chemistry, 2022, 62, 1-39.	0.4	13
966	Explorations into the sustainable synthesis of cyclic and polymeric carbonates and thiocarbonates from eugenol-derived monomers and their reactions with CO ₂ , COS, or CS ₂ . Green Chemistry, 2022, 24, 2535-2541.	4.6	11
967	Fully renewable photocrosslinkable polycarbonates from cellulose-derived monomers. Green Chemistry, 2022, 24, 2871-2881.	4.6	11
968	Catalytic reduction of carbon dioxide by a zinc hydride compound, [Tptm]ZnH, and conversion to the methanol level. Dalton Transactions, 2022, 51, 5868-5877.	1.6	4

#	Article	IF	CITATIONS
969	Biobased Synthesis and Biodegradability of CO2-Based Polycarbonates. Advances in Polymer Science, 2022, , 177-195.	0.4	1
970	Polymeric Materials Based on Carbon Dioxide: A Brief Review of Studies Carried Out at the Faculty of Chemistry, Warsaw University of Technology. Polymers, 2022, 14, 718.	2.0	5
971	Dinuclear Nickel and Cobalt Complexes Containing Biocompatible Carboxylate Derivatives as Effective Catalysts for Coupling of Carbon Dioxide with Epoxides: Synthesis, Characterization, and Catalysis. Organometallics, 2022, 41, 594-605.	1,1	9
972	Simple and Efficient Synthesis of Functionalized Cyclic Carbonate Monomers Using Carbon Dioxide. ACS Macro Letters, 2022, 11, 368-375.	2.3	12
973	Revisiting Reduction of CO ₂ to Oxalate with First-Row Transition Metals: Irreproducibility, Ambiguous Analysis, and Conflicting Reactivity. Jacs Au, 2022, 2, 731-744.	3.6	11
974	Utilization of CO2-Available Organocatalysts for Reactions with Industrially Important Epoxides. Catalysts, 2022, 12, 298.	1.6	15
975	Modification of ZnCoPBA by different organic ligands and its application in the cycloaddition of CO2 and epoxides. Journal of Chemical Sciences, 2022, 134, 1.	0.7	2
977	Fixation of carbon dioxide to aryl/aromatic carboxylic acids. Journal of CO2 Utilization, 2022, 59, 101939.	3.3	19
978	Mechanism and Design Principles for Controlling Stereoselectivity in the Copolymerization of CO ₂ /Cyclohexene Oxide by Indium(III) Phosphasalen Catalysts. ACS Catalysis, 2021, 11, 15244-15251.	5 . 5	7
979	Environmentally benign metal catalyst for the ring-opening copolymerization of epoxide and CO2: state-of-the-art, opportunities, and challenges. Green Chemical Engineering, 2022, 3, 111-124.	3.3	14
980	CO2/Propylene Oxide Copolymerization with a Bifunctional Catalytic System Composed of Multiple Ammonium Salts and a Salen Cobalt Complex Containing Sulfonate Anions. Macromolecular Research, 2021, 29, 855-863.	1.0	4
981	Self-Healable and Recyclable Biomass-Derived Polyurethane Networks through Carbon Dioxide Immobilization. Polymers, 2021, 13, 4381.	2.0	4
982	Ti and Zr amino-tris(phenolate) catalysts for the synthesis of cyclic carbonates from CO2 and epoxides. Green Chemical Engineering, 2022, 3, 171-179.	3.3	7
983	Studies of the Interactions of the Tungsten Pentacarbonyl Fluoride Anion with Carbon Dioxide. Polyhedron, 2022, , 115852.	1.0	0
985	A sustainable approach for the synthesis of recyclable cyclic CO ₂ -based polycarbonates. Chemical Science, 2022, 13, 6283-6290.	3.7	26
986	Orthogonally grown polycarbonate and polyvinyl block copolymers from mechanistically distinct (co)polymerizations. Polymer Chemistry, 2022, 13, 2988-2998.	1.9	4
987	Organocatalytic selective coupling of episulfides with carbon disulfide for the synthesis of poly(trithiocarbonate)s and cyclic trithiocarbonates. Polymer Chemistry, 2022, 13, 3471-3478.	1.9	5
988	Advances in the Synthesis of Copolymers from Carbon Dioxide, Dienes, and Olefins. Accounts of Chemical Research, 2022, 55, 1524-1532.	7.6	23

#	Article	IF	CITATIONS
989	The Terpenes Limonene, Pinene(s), and Related Compounds: Advances in Their Utilization for Sustainable Polymers and Materials. Advances in Polymer Science, 2022, , 35-64.	0.4	2
990	Recent Advances in RO(CO)P of Bio-Based Monomers. Sustainable Chemistry, 2022, 3, 259-285.	2.2	6
991	Structural and Electronic Studies of Substituted $\langle i \rangle m \langle i \rangle$ -Terphenyl Group 12 Complexes. Organometallics, 0, , .	1.1	2
992	Transition Metal Hexacyanoferrate(II) Complexes as Catalysts in the Ring-Opening Copolymerization of CO2 and Propylene Oxide. Topics in Catalysis, 2022, 65, 1541-1555.	1.3	5
993	Controlled synthesis of aliphatic polycarbonate diols using dimethyl carbonate and various diols. Journal of the Chinese Chemical Society, 2022, 69, 995-1001.	0.8	3
994	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. Chinese Chemical Letters, 2023, 34, 107592.	4.8	35
996	Metalâ€free terpolymerization of propylene oxide, carbon dioxide, and carbonyl sulfide: A facile route to sulfurâ€containing polycarbonates with gradient sequences. Journal of Polymer Science, 2022, 60, 3414-3419.	2.0	5
997	Partners in Epoxide Copolymerization Catalysis: Approach to High Activity and Selectivity. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1331-1348.	2.0	14
998	Preparation and characterization of Schiff base nickel complexes and their application in the coupling reaction of cyclohexene oxide and carbon dioxide. Journal of the Chinese Chemical Society, 2022, 69, 1419-1430.	0.8	3
999	3D Printed CO ₂ â€Based Triblock Copolymers and Postâ€Printing Modification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
1000	3DÂPrinted CO2â€Based Triblock Copolymers and Postâ€Printing Modification. Angewandte Chemie, 0, , .	1.6	0
1001	Heterogeneous catalysts for the conversion of CO2 into cyclic and polymeric carbonates. Advances in Catalysis, 2022, , 151-187.	0.1	2
1002	Transformation of carbon dioxide, a greenhouse gas, into useful components and reducing global warming: A comprehensive review. International Journal of Energy Research, 2022, 46, 17926-17951.	2.2	9
1003	Multifunctional Catalysts for Ring-Opening Copolymerizations. ACS Catalysis, 2022, 12, 11037-11070.	5 . 5	57
1004	Structural Tuning Enhanced Catalytic Activity of Amido Aluminum Complexes for the Ring-Opening Polymerization of \hat{l}_{μ} -Caprolactone. Journal of Organometallic Chemistry, 2022, , 122493.	0.8	2
1005	Precision copolymerization of CO2 and epoxides enabled by organoboron catalysts., 2022, 1, 892-901.		24
1006	Dinuclear Nickel Complexes Using Hexadentate Benzothiazole-Based Diamine-Bisphenolate Ligands: Highly Active Catalysts for Copolymerization of Carbon Dioxide with Epoxides. Inorganic Chemistry, 2022, 61, 12835-12846.	1.9	5
1007	Aluminum derivatives incorporating 4,4′-methylenebis(cyclohexyl) linked dehydroacetic acid-imine ligands: structural aspects, CO2/styrene oxide coupling reaction. Journal of Organometallic Chemistry, 2022, 977, 122470.	0.8	1

#	Article	IF	CITATIONS
1008	Direct CO ₂ Transformation to Aliphatic Polycarbonates. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	13
1009	Zinc Complexes with N4-Donor Ligands as Catalysts for the Co2/Epoxides Cycloaddition. SSRN Electronic Journal, 0, , .	0.4	0
1010	Tertiary and Quaternary Phosphonium Borane Bifunctional Catalysts for CO ₂ /Epoxide Copolymerization: A Mechanistic Investigation Using In Situ Raman Spectroscopy. ACS Catalysis, 2022, 12, 11870-11885.	5.5	18
1011	Alternating copolymerization of carbon dioxide with alicyclic epoxides using bimetallic nickel(II) complex catalysts containing benzotriazole-based salen-type derivatives: Catalysis and kinetics. Polymer, 2022, 260, 125371.	1.8	2
1012	Facile Tandem Copolymerization of <i>O</i> -Carboxyanhydrides and Epoxides to Synthesize Functionalized Poly(ester- <i>b</i> -carbonates). Journal of the American Chemical Society, 2022, 144, 20687-20698.	6.6	8
1013	Biobased Bifunctional Monomers toward Functionalizable Polycarbonates and Poly(cyclic olefin)s with Tunable Properties. Macromolecules, 2022, 55, 9232-9241.	2.2	10
1014	Bifunctional organoboron–phosphonium catalysts for coupling reactions of CO ₂ and epoxides. RSC Advances, 2022, 12, 32440-32447.	1.7	11
1015	Copolymerization of Carbonyl Sulfide and Propylene Oxide via a Heterogeneous Prussian Blue Analogue Catalyst with High Productivity and Selectivity. Chemistry - an Asian Journal, 2023, 18, .	1.7	2
1016	Theoretical Analysis of Physical and Chemical CO ₂ Absorption by Tri- and Tetraepoxidized Imidazolium Ionic Liquids. Journal of Physical Chemistry B, 2022, 126, 9901-9910.	1.2	6
1017	An insight to the role of perchlorate counter ions and different non-covalent interactions in the solid state structures of mono-anionic malonic acid bridged trinuclear mixed valence cationic complexes of cobalt with tetradentate N2O2 donor ligands. Inorganica Chimica Acta, 2023, 547, 121324.	1.2	4
1018	Synthesis of Cyclic Carbonate from Carbon Dioxide and Epoxides Using Bicobalt Complexes Absorbed on DFNS. Catalysis Letters, 2023, 153, 2900-2909.	1.4	1
1019	Synthesis of 1,3â€Dioxanâ€2â€ones by Photoâ€Aerobic Seleniumâ€Ï€â€Acid Multicatalysis. European Journal of Organic Chemistry, 0, , .	1.2	1
1020	Synthesis of Heterometallic Rare Earth(<scp>III</scp>)–Cobalt(<scp>II</scp>) Complexes and Their Application in Alternating Copolymerization of Cyclohexene Oxide and Carbon Dioxide. Chinese Journal of Chemistry, 2023, 41, 805-813.	2.6	3
1021	Alkyl borane-mediated metal-free ring-opening (co)polymerizations of oxygenated monomers. Progress in Polymer Science, 2023, 136, 101644.	11.8	32
1022	Facile Synthesis of Polycarbonate Diol via Copolymerization of CO2 and Cyclohexene Oxide Catalysed by a Combination of One-Component Phosphonium Borane Lewis Pair and Water. Chinese Journal of Polymer Science (English Edition), 2023, 41, 735-744.	2.0	6
1023	Elucidation of the Alternating Copolymerization Mechanism of Epoxides or Aziridines with Cyclic Anhydrides in the Presence of Halide Salts. Angewandte Chemie, 2023, 135, .	1.6	1
1024	Carbon Capture: Materials and Process Engineering. , 2012, , 385-429.		1
1025	Carbon Dioxide Utilisation in the Production of Chemicals, Fuels and Materials. , 2012, , 430-481.		1

#	Article	IF	CITATIONS
1026	Borane catalysis for epoxide (co)polymerization. Polymer Chemistry, 2023, 14, 1834-1862.	1.9	14
1027	Ethylene carbonate generated efficiently via ethylene oxide and CO2 on the Li-MgO(100) surface based on the synergistic activation of bimetals without halogen. Fuel, 2023, 342, 127823.	3.4	1
1028	Ring-opening copolymerization of CO2 with epoxides catalyzed by binary catalysts containing half salen aluminum compounds and quaternary phosphonium salt. Molecular Catalysis, 2023, 540, 113053.	1.0	1
1029	Schiff base Cu(II) complexes as catalysts in the transformation of CO2 to cyclic carbonates at both high and atmospheric pressure. Journal of Molecular Structure, 2023, 1284, 135331.	1.8	3
1030	Copolymerization of Carbon Dioxide with 1,2-Butylene Oxide and Terpolymerization with Various Epoxides for Tailorable Properties. Polymers, 2023, 15, 748.	2.0	1
1031	Elucidation of the Alternating Copolymerization Mechanism of Epoxides or Aziridines with Cyclic Anhydrides in the Presence of Halide Salts. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
1032	Synthesis of Polycarbonates from CO ₂ Promoted by Immobilized Ionic Liquid Functionalized diâ€Mg Complex Catalyst. ChemCatChem, 2023, 15, .	1.8	0
1034	Influence of structural properties of zinc complexes with N4-donor ligands on the catalyzed cycloaddition of CO2 to epoxides into cyclic carbonates. Molecular Catalysis, 2023, 538, 112992.	1.0	1
1035	Synthesis of Random, Gradient, and Block-like Terpolycarbonates via One-Pot Terpolymerization of Epoxide, CO ₂ , and Six-Membered Cyclic Carbonates. Macromolecules, 2023, 56, 2062-2069.	2.2	1
1036	Current Challenges and Perspectives in CO ₂ -Based Polymers. Macromolecules, 2023, 56, 1759-1777.	2.2	15
1037	Sustainable Synthesis of CO ₂ -Derived Polycarbonates from the Natural Product, Eugenol: Terpolymerization with Propylene Oxide. Macromolecules, 2023, 56, 2362-2369.	2.2	6
1038	Polyketones from Carbon Dioxide and Ethylene by Integrating Electrochemical and Organometallic Catalysis. ACS Catalysis, 2023, 13, 4053-4059.	5.5	6
1039	A Highâ€Valent Ruâ^'PCP Pincer Catalyst for the Hydrogenation of Organic Carbonates. Israel Journal of Chemistry, 2023, 63, .	1.0	4
1040	Water-Assisted Transformation of Aluminum Alloys to Ceramic Nanowires and Aerogels. , 0, , .		0
1041	Investigating the effect of different catalytic systems on chain structure and end groups of CO2-based polycarbonates by MALDI-TOF mass spectrometry. European Polymer Journal, 2023, 192, 112058.	2.6	1
1060	Base-mediated carboxylation of <i>C</i> -nucleophiles with CO ₂ . Organic and Biomolecular Chemistry, 0, , .	1.5	0
1073	Sustainability in thermoplastic elastomers. , 2024, , 511-527.		0
1074	(Co)polymerization Reactions with Participation of Cyclic Monomers Catalyzed by Double Metal Cyanide Catalysts. Polymer Science - Series B, 2023, 65, 717-732.	0.3	0

Article IF Citations