Towards a structural classification of phosphate bindin complexes: An automated all-against-all structural com

Proteins: Structure, Function and Bioinformatics 56, 250-260 DOI: 10.1002/prot.20123

Citation Report

#	Article	IF	CITATIONS
1	Characterization of TRZ1, a yeast homolog of the human candidate prostate cancer susceptibility gene ELAC2 encoding tRNase Z. BMC Molecular Biology, 2005, 6, 12.	3.0	51
2	Generation and analysis of a protein-protein interface data set with similar chemical and spatial patterns of interactions. Proteins: Structure, Function and Bioinformatics, 2005, 61, 6-20.	1.5	44
3	Novel CÎ \pm NN Structural Motif for Protein Recognition of Phosphate Ions. Journal of Molecular Biology, 2005, 345, 611-629.	2.0	25
4	Using a Library of Structural Templates to Recognise Catalytic Sites and Explore their Evolution in Homologous Families. Journal of Molecular Biology, 2005, 347, 565-581.	2.0	122
5	A Searchable Database for Comparing Proteinâ^'Ligand Binding Sites for the Analysis of Structureâ^'Function Relationships. Journal of Chemical Information and Modeling, 2006, 46, 736-742.	2.5	30
6	Fold Independent Structural Comparisons of Protein–Ligand Binding Sites for Exploring Functional Relationships. Journal of Molecular Biology, 2006, 355, 1112-1124.	2.0	98
7	The fragment transformation method to detect the protein structural motifs. Proteins: Structure, Function and Bioinformatics, 2006, 63, 636-643.	1.5	17
8	Complementarity of hydrophobic properties in ATP-protein binding: A new criterion to rank docking solutions. Proteins: Structure, Function and Bioinformatics, 2006, 66, 388-398.	1.5	21
9	SitesBase: a database for structure-based protein-ligand binding site comparisons. Nucleic Acids Research, 2006, 34, D231-D234.	6.5	84
10	The Poisson Index: a new probabilistic model for protein–ligand binding site similarity. Bioinformatics, 2007, 23, 3001-3008.	1.8	17
11	New opportunities for protease ligand-binding site comparisons using SitesBase. Biochemical Society Transactions, 2007, 35, 561-565.	1.6	4
12	Cavity detection and matching for binding site recognition. Theoretical Computer Science, 2008, 408, 151-162.	0.5	11
13	A simple and fuzzy method to align and compare druggable ligandâ€binding sites. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1755-1778.	1.5	96
14	Method for comparing the structures of protein ligandâ€binding sites and application for predicting protein–drug interactions. Proteins: Structure, Function and Bioinformatics, 2008, 72, 367-381.	1.5	48
15	Chemocavity: Specific Concavity in Protein Reserved for the Binding of Biologically Functional Small Molecules. Journal of Chemical Information and Modeling, 2008, 48, 1679-1685.	2.5	4
16	Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Bioinformatics, 2008, 24, i105-i111.	1.8	89
17	Regulation of <i>Lactobacillus casei</i> Sorbitol Utilization Genes Requires DNA-Binding Transcriptional Activator GutR and the Conserved Protein GutM. Applied and Environmental Microbiology, 2008, 74, 5731-5740.	1.4	26
18	MultiBind and MAPPIS: webservers for multiple alignment of protein 3D-binding sites and their interactions. Nucleic Acids Research, 2008, 36, W260-W264.	6.5	86

#	Article	IF	CITATIONS
19	Role of Nucleotide Binding in Septin-Septin Interactions and Septin Localization in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2008, 28, 5120-5137.	1.1	47
20	Detecting evolutionary relationships across existing fold space, using sequence order-independent profile–profile alignments. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5441-5446.	3.3	241
21	Insights into the Mechanism of Progressive RNA Degradation by the Archaeal Exosome. Journal of Biological Chemistry, 2008, 283, 14120-14131.	1.6	50
22	Fast screening of protein surfaces using geometric invariant fingerprints. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16622-16626.	3.3	58
23	A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics, 2009, 25, i305-i312.	1.8	89
24	Comprehensive Structural Classification of Ligand-Binding Motifs in Proteins. Structure, 2009, 17, 234-246.	1.6	43
25	Structural motifs recurring in different folds recognize the same ligand fragments. BMC Bioinformatics, 2009, 10, 182.	1.2	13
26	LigMatch: A Multiple Structure-Based Ligand Matching Method for 3D Virtual Screening. Journal of Chemical Information and Modeling, 2009, 49, 2056-2066.	2.5	35
27	Computational toxicology: an overview of the sources of data and of modelling methods. Expert Opinion on Drug Metabolism and Toxicology, 2009, 5, 1-14.	1.5	63
28	Binding Site Similarity Analysis for the Functional Classification of the Protein Kinase Family. Journal of Chemical Information and Modeling, 2009, 49, 318-329.	2.5	82
29	A Graph-Based Approach for Protein-Protein Docking. , 2009, , .		1
30	AltPS: A Structural Alignment Tool for Protein Surfaces Using Similarity of Local Atomic Environments. IPSJ Transactions on Bioinformatics, 2010, 3, 2-9.	0.2	0
31	Analysis of substructural variation in families of enzymatic proteins with applications to protein function prediction. BMC Bioinformatics, 2010, 11, 242.	1.2	15
32	Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discovery Today, 2010, 15, 656-667.	3.2	249
33	Assessing 3D scores for protein structure fragment mining. Open Access Bioinformatics, 2010, , 67.	0.9	1
34	Homology-Modelling Protein–Ligand Interactions: Allowing for Ligand-Induced Conformational Change. Journal of Molecular Biology, 2010, 399, 645-661	2.0	27
35	Modular architecture of nucleotide-binding pockets. Nucleic Acids Research, 2010, 38, 3809-3816.	6.5	24
36	The Relevance of Peptides That Bind FeS Clusters, Phosphate Groups, Cations or Anions for Prebiotic Evolution. , 2011, , 155-166.		0

#	Article	IF	CITATIONS
37	PocketAlign A Novel Algorithm for Aligning Binding Sites in Protein Structures. Journal of Chemical Information and Modeling, 2011, 51, 1725-1736.	2.5	36
38	ReverseScreen3D: A Structure-Based Ligand Matching Method To Identify Protein Targets. Journal of Chemical Information and Modeling, 2011, 51, 624-634.	2.5	59
39	Old friends in new guise: repositioning of known drugs with structural bioinformatics. Briefings in Bioinformatics, 2011, 12, 312-326.	3.2	136
40	Functional Capabilities of the Earliest Peptides and the Emergence of Life. Genes, 2011, 2, 671-688.	1.0	44
41	Hierarchical Bayesian Modeling of Pharmacophores in Bioinformatics. Biometrics, 2011, 67, 611-619.	0.8	5
42	Ligand binding site superposition and comparison based on Atomic Property Fields: identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites. BMC Bioinformatics, 2011, 12, S35.	1.2	28
43	Using Multiple Microenvironments to Find Similar Ligand-Binding Sites: Application to Kinase Inhibitor Binding. PLoS Computational Biology, 2011, 7, e1002326.	1.5	60
44	Phosphate binding sites identification in protein structures. Nucleic Acids Research, 2011, 39, 1231-1242.	6.5	15
45	GIRAF: a method for fast search and flexible alignment of ligand binding interfaces in proteins at atomic resolution. Biophysics (Nagoya-shi, Japan), 2012, 8, 79-94.	0.4	4
46	Structure-based computational analysis of protein binding sites for function and druggability prediction. Journal of Biotechnology, 2012, 159, 123-134.	1.9	100
47	Hidden Relationship between Conserved Residues and Locally Conserved Phosphate-Binding Structures in NAD(P)-Binding Proteins. Journal of Physical Chemistry B, 2012, 116, 5644-5652.	1.2	10
48	Revelation of a Catalytic Calcium-Binding Site Elucidates Unusual Metal Dependence of a Human Apyrase. Journal of the American Chemical Society, 2012, 134, 15595-15603.	6.6	23
50	Cofactorâ€binding sites in proteins of deviating sequence: Comparative analysis and clustering in torsion angle, cavity, and fold space. Proteins: Structure, Function and Bioinformatics, 2012, 80, 626-648.	1.5	19
51	PDBâ€scale analysis of known and putative ligandâ€binding sites with structural sketches. Proteins: Structure, Function and Bioinformatics, 2012, 80, 747-763.	1.5	23
52	Signatures of the ATPâ€binding pocket as a basis for structural classification of the serine/threonine protein kinases of gramâ€positive bacteria. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1363-1376.	1.5	9
53	A synthetic hexapeptide designed to resemble a proteinaceous pâ€ŀoop nest is shown to bind inorganic phosphate. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1418-1424.	1.5	46
54	Exhaustive comparison and classification of ligandâ€binding surfaces in proteins. Protein Science, 2013, 22, 1379-1391.	3.1	6
55	Nucleotide binding architecture for secreted cytotoxic endoribonucleases. Biochimie, 2013, 95, 1087-1097.	1.3	33

#	Article	IF	CITATIONS
56	Fast Protein Binding Site Comparison via an Index-Based Screening Technology. Journal of Chemical Information and Modeling, 2013, 53, 411-422.	2.5	21
57	Structure-Based Target Druggability Assessment. Methods in Molecular Biology, 2013, 986, 141-164.	0.4	15
58	Identification of Similar Binding Sites to Detect Distant Polypharmacology. Molecular Informatics, 2013, 32, 976-990.	1.4	50
59	Rapid Catalytic Template Searching as an Enzyme Function Prediction Procedure. PLoS ONE, 2013, 8, e62535.	1.1	28
60	Exploiting structural information for drug-target assessment. Future Medicinal Chemistry, 2014, 6, 319-331.	1.1	27
61	eMatchSite: Sequence Order-Independent Structure Alignments of Ligand Binding Pockets in Protein Models. PLoS Computational Biology, 2014, 10, e1003829.	1.5	29
62	Conformational Behavior of Flavin Adenine Dinucleotide: Conserved Stereochemistry in Bound and Free States. Journal of Physical Chemistry B, 2014, 118, 13486-13497.	1.2	18
63	Extraction of Protein Binding Pockets in Close Neighborhood of Bound Ligands Makes Comparisons Simple Due to Inherent Shape Similarity. Journal of Chemical Information and Modeling, 2014, 54, 3229-3237.	2.5	10
64	Predictive <i>in silico</i> off-target profiling in drug discovery. Future Medicinal Chemistry, 2014, 6, 295-317.	1.1	38
65	Sequence-motif Detection of NAD(P)-binding Proteins: Discovery of a Unique Antibacterial Drug Target. Scientific Reports, 2014, 4, 6471.	1.6	38
66	Acceleration of Binding Site Comparisons by Graph Partitioning. Molecular Informatics, 2015, 34, 550-558.	1.4	2
67	Protein function from its emergence to diversity in contemporary proteins. Physical Biology, 2015, 12, 045002.	0.8	53
68	Systematic investigation of sequence and structural motifs that recognize ATP. Computational Biology and Chemistry, 2015, 56, 131-141.	1.1	3
69	The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets. Antibiotics, 2016, 5, 28.	1.5	81
70	Impact of Binding Site Comparisons on Medicinal Chemistry and Rational Molecular Design. Journal of Medicinal Chemistry, 2016, 59, 4121-4151.	2.9	104
71	Nucleotide binding database NBDB – a collection of sequence motifs with specific protein-ligand interactions. Nucleic Acids Research, 2016, 44, D301-D307.	6.5	25
72	Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1699-1712.	1.5	3
74	In Silico Target Druggability Assessment: From Structural to Systemic Approaches. Methods in Molecular Biology, 2019, 1953, 63-88.	0.4	5

#	Article	IF	CITATIONS
75	Advances and Challenges in Computational Target Prediction. Journal of Chemical Information and Modeling, 2019, 59, 1728-1742.	2.5	76
76	Binding site matching in rational drug design: algorithms and applications. Briefings in Bioinformatics, 2019, 20, 2167-2184.	3.2	33
77	The mycolic acid reductase Rv2509 has distinct structural motifs and is essential for growth in slowâ€growing mycobacteria. Molecular Microbiology, 2020, 113, 521-533.	1.2	4
78	Small Molecule Inhibitors of DYRK1A Identified by Computational and Experimental Approaches. International Journal of Molecular Sciences, 2020, 21, 6826.	1.8	8
79	New techniques and strategies in drug discovery. Chinese Chemical Letters, 2020, 31, 1695-1708.	4.8	82
80	Binding-Site Match Maker (BSMM): A Computational Method for the Design of Multi-Target Ligands. Molecules, 2020, 25, 1821.	1.7	0
81	A second shell residue modulates a conserved ATP-binding site with radically different affinities for ATP. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129766.	1.1	4
82	A fast protein binding site comparison algorithm for proteomeâ€wide protein function prediction and drug repurposing. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1541-1556.	1.5	9
83	Phosphate binding sites prediction in phosphorylation-dependent protein–protein interactions. Bioinformatics, 2021, 37, 4712-4718.	1.8	0
84	3D Motifs. , 2009, , 187-216.		3
84 85	3D Motifs. , 2009, , 187-216. 3D Motifs. , 2017, , 361-392.		3
84 85 86	3D Motifs., 2009, , 187-216. 3D Motifs., 2017, , 361-392. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117.	0.8	3 7 12
84 85 86 87	3D Motifs., 2009, , 187-216. 3D Motifs., 2017, , 361-392. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117.	0.8	3 7 12 10
84 85 86 87 88	3D Motifs., 2009, , 187-216. 3D Motifs., 2017, , 361-392. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117. New Structural and Functional Contexts of the Dx[DN]xDG Linear Motif: Insights into Evolution of Calcium-Binding Proteins. PLoS ONE, 2011, 6, e21507.	0.8 0.8 1.1	3 7 12 10 53
84 85 86 87 88 88	3D Motifs., 2009, , 187-216. 3D Motifs., 2017, , 361-392. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117. New Structural and Functional Contexts of the Dx[DN]xDG Linear Motif: Insights into Evolution of Calcium-Binding Proteins. PLoS ONE, 2011, 6, e21507. Identification of Nucleotide-Binding Sites in Protein Structures: A Novel Approach Based on Nucleotide Modularity. PLoS ONE, 2012, 7, e50240.	0.8 0.8 1.1 1.1	3 7 12 10 53 6
84 85 86 87 88 88 89 90	3D Motifs., 2009, 187-216. 3D Motifs., 2017, 361-392. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117. New Structural and Functional Contexts of the Dx[DN]xDG Linear Motif: Insights into Evolution of Calcium-Binding Proteins. PLoS ONE, 2011, 6, e21507. Identification of Nucleotide-Binding Sites in Protein Structures: A Novel Approach Based on Nucleotide Modularity. PLoS ONE, 2012, 7, e50240. Similarity search for local protein structures at atomic resolution by exploiting a database management system. Biophysics (Nagoya-shi, Japan), 2007, 3, 75-84.	0.8 0.8 1.1 1.1 0.4	3 7 12 10 53 6 23
 84 85 86 87 88 89 90 91 	3D Motifs., 2009, , 187-216. 3D Motifs., 2017, , 361-392. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities. F1000Research, 2013, 2, 117. New Structural and Functional Contexts of the Dx[DN]xDG Linear Motif: Insights into Evolution of Calcium-Binding Proteins. PLoS ONE, 2011, 6, e21507. Identification of Nucleotide-Binding Sites in Protein Structures: A Novel Approach Based on Nucleotide Modularity. PLoS ONE, 2012, 7, e50240. Similarity search for local protein structures at atomic resolution by exploiting a database management system. Biophysics (Nagoya-shi, Japan), 2007, 3, 75-84. FCANAL: Structure based protein function prediction method. Application to enzymes and binding proteins. Chem-Bio Informatics Journal, 2005, 5, 39-55.	0.8 0.8 1.1 1.1 0.4 0.1	3 7 12 10 53 6 23 1

#	Article	IF	CITATIONS
93	Correction of the Taxonomic Composition of Human Gut Microbiota: Serine-Threonine Protein Kinases as Biotargets. Biology Bulletin Reviews, 2020, 10, 495-506.	0.3	0
94	Estimating the Similarity between Protein Pockets. International Journal of Molecular Sciences, 2022, 23, 12462.	1.8	9
95	Surface ID: A Geometry-aware System for Protein Molecular Surface Comparison. Bioinformatics, 0, , .	1.8	0