Flame retardant and mechanical properties of natural fi magnesium hydroxide

Polymer Degradation and Stability 83, 363-367 DOI: 10.1016/s0141-3910(03)00280-5

Citation Report

#	Article	IF	CITATIONS
1	Thermal degradation of lignocellulosic materials treated with several acids. Journal of Analytical and Applied Pyrolysis, 2005, 74, 337-343.	5.5	27
2	Synergistic effect of natural zeolites on flame retardant additives. Polymer Degradation and Stability, 2005, 89, 478-483.	5.8	172
3	Preparation of submicron-sized Mg(OH)2 particles through precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262, 220-231.	4.7	63
4	Tensile properties and stress whitening of polypropylene/polyolefin elastomer/magnesium hydroxide flame retardant composites for cable insulating application. Journal of Applied Polymer Science, 2005, 97, 2311-2318.	2.6	61
5	Effect of layering pattern on dynamic mechanical properties of randomly oriented short banana/sisal hybrid fiber-reinforced polyester composites. Journal of Applied Polymer Science, 2005, 97, 2168-2174.	2.6	54
6	Toughening of Polypropylene Highly Filled with Aluminum Hydroxide. Polymers and Polymer Composites, 2005, 13, 139-150.	1.9	11
7	Intensification of Precipitation Using Narrow Channel Reactors:  Magnesium Hydroxide Precipitation. Industrial & Engineering Chemistry Research, 2005, 44, 5500-5507.	3.7	24
8	Preparation and properties of superfine Mg(OH)2 flame retardant. Transactions of Nonferrous Metals Society of China, 2006, 16, 488-492.	4.2	35
9	Modeling and investigation of the reinforcing effect of maize hull in PE matrix composites. Polymers for Advanced Technologies, 2006, 17, 825-829.	3.2	8
10	Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene-composites. Polymer Degradation and Stability, 2006, 91, 1079-1085.	5.8	64
11	Effects of polystyrene-encapsulated magnesium hydroxide on rheological and flame-retarding properties of HIPS composites. Polymer Degradation and Stability, 2006, 91, 3266-3273.	5.8	44
12	Failure mode characterization in maize hull filled polyethylene composites by acoustic emission. Polymer Testing, 2006, 25, 353-357.	4.8	18
13	Irradiation crosslinking and halogen-free flame retardation of EVA using hydrotalcite and red phosphorus. Radiation Physics and Chemistry, 2006, 75, 557-563.	2.8	51
14	Thermal and mechanical properties of polypropylene–wood powder composites. Journal of Applied Polymer Science, 2006, 100, 4173-4180.	2.6	106
15	The properties and morphologies of composites based on sulfated EPDM ionomer toughed polypropylene highly filled with Mg(OH)2. Journal of Applied Polymer Science, 2006, 102, 295-302.	2.6	14
16	Morphology and mechanical properties of high-impact polystyrene/elastomer/magnesium hydroxide composites. Journal of Applied Polymer Science, 2006, 102, 5184-5190.	2.6	39
17	Low-Cost Processing of Plastic Waste Composites. Polymer-Plastics Technology and Engineering, 2006, 45, 865-869.	1.9	8
18	Effects of Magnesium Hydroxide on Combustion Products of Polystyrene. Chinese Journal of Chemical Physics, 2007, 20, 185-190.	1.3	6

#	Article	IF	CITATIONS
19	Fabrication and Properties of Nano-Al(OH) ₃ /Mg(OH) ₂ /Micro-Capsulated APP/PP Flame Retardant Composites. Key Engineering Materials, 2007, 334-335, 849-852.	0.4	0
20	Behaviour of poly(ethylene:vinyl acetate) and polyether urethane-urea during thermal decomposition. , 2007, , .		3
21	Layered hydroxide salts: Synthesis, properties and potential applications. Solid State Ionics, 2007, 178, 1143-1162.	2.7	316
22	Surface treatment of magnesium hydroxide to improve its dispersion in organic phase by the ultrasonic technique. Applied Surface Science, 2007, 253, 7393-7397.	6.1	52
23	Effect of rubbers on the flame retardancy of EVA/ultrafine fully vulcanized powdered rubber/nanomagnesium hydroxide ternary composites. Polymer Composites, 2007, 28, 479-483.	4.6	8
24	Flame retardancy and toughening of high impact polystyrene. Polymer Composites, 2007, 28, 551-559.	4.6	14
25	A novel method to prepare zinc hydroxystannate-coated inorganic fillers and its effect on the fire properties of PVC cable materials. Polymer Engineering and Science, 2007, 47, 1163-1169.	3.1	34
26	Development of wood-substituted composites from highly filled polybenzoxazine–phenolic novolac alloys. Polymer Engineering and Science, 2007, 47, 140-149.	3.1	33
27	Effects of elastomer on morphology, flammability and rheological properties of HIPS/PS-encapsulated Mg(OH)2 composites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2023-2030.	2.1	10
28	Effects of shell thickness of polystyrene-encapsulated Mg(OH)2 on flammability and rheological properties of high-impact polystyrene composites. Polymer International, 2007, 56, 1135-1141.	3.1	12
29	Fire Retardancy of Natural Fibre Reinforced Sheet Moulding Compound. Applied Composite Materials, 2007, 14, 251-264.	2.5	66
30	The effects of magnesium hydroxide on flash pyrolysis of polystyrene. Journal of Analytical and Applied Pyrolysis, 2007, 78, 32-39.	5.5	43
31	Investigation of flame retardancy and physical–mechanical properties of zinc borate and aluminum hydroxide propylene composites. Materials & Design, 2008, 29, 1051-1056.	5.1	116
32	Mechanical properties of low-density polyethylene/nano-magnesium hydroxide composites prepared by an in situ bubble stretching method. Journal of Polymer Research, 2008, 15, 59-65.	2.4	19
33	Effects of intumescent formulation for acrylic-based coating on flame-retardancy of painted red lauan (Parashorea spp.) thin plywood. Wood Science and Technology, 2008, 42, 593-607.	3.2	30
34	Polypropylene composites filled by magnesium hydroxide coprecipitated with foreign ions. Polymers for Advanced Technologies, 2008, 19, 1353-1360.	3.2	14
35	Influence of some additives on the performance of wood flour/polyolefin composites. Journal of Applied Polymer Science, 2008, 109, 2243-2249.	2.6	14
36	Influence of magnesium source on the crystallization behaviors of magnesium hydroxide. Journal of Crystal Growth, 2008, 310, 3771-3778	1.5	43

#	Article	IF	CITATIONS
37	Effects of High-Energy Electron Beam Irradiation on the Properties of Flame-Retardant HDPE/EVA/Mg(OH) ₂ Composites. Polymer-Plastics Technology and Engineering, 2008, 47, 1097-1100.	1.9	11
38	Thermogravimetric Analysis of a Cellulosic Fabric Incorporated by Synthetic Ammonium Magnesium Phosphate as a Flame-Retardant. Polymer-Plastics Technology and Engineering, 2008, 47, 307-312.	1.9	6
39	Synthesis of Mono-Dispersed Mg(OH)2Nanoflakelets. Journal of Dispersion Science and Technology, 2008, 29, 1010-1012.	2.4	6
40	Polyurethane–zinc borate composites with high oxidative stability and flame retardancy. Polymer Degradation and Stability, 2009, 94, 1072-1075.	5.8	50
41	Mechanical properties and flammability of sisal/PP composites: Effect of flame retardant type and content. Composites Part B: Engineering, 2009, 40, 613-618.	12.0	120
42	Supercritical CO2-assisted, silicone-modified wood for enhanced fire resistance. Journal of Materials Science, 2009, 44, 1275-1282.	3.7	11
43	TG comparison between the efficiency of deposited ammonium bromide and ammonium chloride on the flame-retardancy imparted to cotton fabric. Journal of Thermal Analysis and Calorimetry, 2009, 96, 535-540.	3.6	7
44	The effect of AlBr3 additive on the thermal degradation of PMMA A study using TG-DTA-DTG, IR and PY-GC-MS techniques. Journal of Thermal Analysis and Calorimetry, 2009, 96, 873-881.	3.6	18
45	Degradation and flammability behavior of PP/ banana and glass fiber-based hybrid composites. International Journal of Plastics Technology, 2009, 13, 47-67.	3.1	13
46	Effect of compatibilizers on thermal stability and mechanical properties of magnesium hydroxide filled polypropylene composites. Thermochimica Acta, 2009, 483, 36-40.	2.7	40
47	Studies on melt flow properties during capillary extrusion of PP/Al(OH)3/Mg(OH)2 flame retardant composites. Polymer Testing, 2009, 28, 907-911.	4.8	28
48	Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Composites Science and Technology, 2009, 69, 214-219.	7.8	159
49	Polystyrene/magnesium hydroxide nanocomposite particles prepared by surface-initiated in-situ polymerization. Applied Surface Science, 2009, 255, 5714-5720.	6.1	36
50	Effect of NaOH Treatments on Jute and Coir Fiber PP Composites. Advanced Composite Materials, 2009, 18, 197-208.	1.9	27
51	Effects of Magnesium Hydroxide Containing Copper Compound on the Properties of Polypropylene Composites. Polymer-Plastics Technology and Engineering, 2009, 48, 432-439.	1.9	2
52	Recent Development in Natural Fiber Reinforced Polypropylene Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 1169-1189.	3.1	639
53	Synthesis and Characterization of Magnesium Hydroxide Using a Bubbling Setup. Industrial & Engineering Chemistry Research, 2009, 48, 763-768.	3.7	24
54	A TG-FTIR investigation into smoke suppression mechanism of magnesium hydroxide in asphalt combustion process. Journal of Analytical and Applied Pyrolysis, 2010, 87, 217-223.	5.5	67

#	ARTICLE	IF	CITATIONS
55	painted red lauan (Parashorea sp.) plywood. Journal of Wood Science, 2010, 56, 208-215.	1.9	7
56	Investigation of flame retardancy and physical–mechanical properties of zinc borate/boric acid polyester composites. Journal of Applied Polymer Science, 2010, 115, 2550-2555.	2.6	19
57	Transparent magnesium hydroxide/acrylate nanocomposite films. Journal of Applied Polymer Science, 2010, 116, 2197-2204.	2.6	1
58	Flammability and mechanical properties of wood flourâ€filled polypropylene composites. Journal of Applied Polymer Science, 2010, 116, 2714-2722.	2.6	35
59	Evaluation of various fire retardants for use in wood flour–polyethylene composites. Polymer Degradation and Stability, 2010, 95, 1903-1910.	5.8	181
60	Preparation of magnesium hydroxide nanoplates using a bubbling setup. Powder Technology, 2010, 198, 292-297.	4.2	31
61	Flammability of Natural Fiber-reinforced Composites and Strategies for Fire Retardancy: A Review. Journal of Thermoplastic Composite Materials, 2010, 23, 871-893.	4.2	244
62	Recent Past about WPC Work. Engineering Materials, 2010, , 77-102.	0.6	0
63	Flammability in WPC Composites. Engineering Materials, 2010, , 129-147.	0.6	3
64	Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 954-963.	7.6	244
65	Thermogravimetric Evaluation of Magnesium Hydroxide and Red Phosphorous Flame Retarded Methyl Vinyl Silicone Rubber. Advanced Materials Research, 0, 396-398, 162-165.	0.3	2
67	Study of flammability and thermal properties of high-impact polystyrene nanocomposites. Polymer Degradation and Stability, 2011, 96, 2104-2111.	5.8	20
68	Tensile properties, swelling, and water absorption behavior of riceâ€huskâ€powderâ€filled polypropylene/(recycled acrylonitrileâ€butadiene rubber) composites. Journal of Vinyl and Additive Technology, 2011, 17, 190-197.	3.4	25
69	Synergistic effect of organically modified layered double hydroxide on thermal and flame-retardant properties of poly(butyl acrylate–vinyl acetate). Journal of Polymer Research, 2011, 18, 1971-1981.	2.4	27
70	Synergistic fire retardancy of colemanite, a natural hydrated calcium borate, in high-impact polystyrene containing brominated epoxy and antimony oxide. Polymer Degradation and Stability, 2011, 96, 798-807.	5.8	29
71	Study on mechanical properties and phase morphology of polypropylene/polyolefin elastomer/magnesium hydroxide ternary composites. Polymers for Advanced Technologies, 2011, 22, 657-663.	3.2	21
72	Magnesium hydroxide modified by 1â€nâ€tetradecylâ€3â€carboxymethyl imidazolium chloride and its effects on the properties of LLDPE. Polymer Engineering and Science, 2011, 51, 1519-1524.	3.1	8
73	Pyrolysis properties and kinetic model of an asphalt binder containing a flame retardant. Journal of Applied Polymer Science, 2011, 119, 2661-2665.	2.6	11

#	ARTICLE	IF	CITATIONS
74	Melt shear viscosity of PP/AI(OH) ₃ /Mg(OH) ₂ flame retardant composites at high extrusion rates. Journal of Applied Polymer Science, 2011, 119, 1835-1841.	2.6	22
75	Properties of flat-pressed wood plastic composites containing fire retardants. Journal of Applied Polymer Science, 2011, 122, 3201-3210.	2.6	19
76	Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Materials & Design, 2011, 32, 1990-1999.	5.1	161
77	Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochimica Acta, 2011, 515, 43-50.	2.7	44
78	Effect of Flame Retardant on Flame Retardancy and Mechanical Properties of Glass Fiber/Polypropylene Composites. Advanced Materials Research, 2011, 264-265, 652-656.	0.3	3
79	Preparation and Properties of Tapioca Starch-Banana Fiber Composites Modified with Magnesium Hydroxide. Advanced Materials Research, 0, 194-196, 1707-1710.	0.3	1
80	Biomimetic Synthesis of Zinc Hydroxystannate-Coated Calcium Carbonate and its Application in PVC. Advanced Materials Research, 2011, 197-198, 277-280.	0.3	0
81	Study on the Preparation and Properties of Thermoplastic Tapioca Starch / Magnesium Hydroxide Composites. Advanced Materials Research, 0, 221, 278-282.	0.3	1
82	Effect of Addition of Boric Acid and Borax on Fire-Retardant and Mechanical Properties of Urea Formaldehyde Saw Dust Composites. International Journal of Carbohydrate Chemistry, 2011, 2011, 1-6.	1.5	45
84	Preparation and Characterization of Mg(OH) ₂ Flame-Retardant with Particular Morphology via Hydrothermal Process. Advanced Materials Research, 0, 306-307, 1311-1316.	0.3	5
85	Preparation and Characterization of Magnesium Hydroxide by Hydrothermal Modification. Advanced Materials Research, 2011, 332-334, 767-770.	0.3	0
86	Electrical and mechanical properties of phenoxy/multiwalled carbon nanotubes multifilament yarn processed by melt spinning. Textile Reseach Journal, 2012, 82, 2106-2115.	2.2	11
87	Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 2012, 37, 1552-1596.	24.7	2,982
88	Flammability, Biodegradability and Mechanical Properties of Bio-Composites Waste Polypropylene/Kenaf Fiber Containing Nano CaCO3 with Diammonium Phosphate. Procedia Chemistry, 2012, 4, 282-287.	0.7	39
89	Influence of Bentonite Clay Content in HDPE Nanocomposites. Materials Science Forum, 2012, 727-728, 1780-1784.	0.3	0
90	Preparation and characterization of poly(glycidyl methacrylate) grafted from magnesium hydroxide particles via SI-ATRP. Applied Surface Science, 2012, 258, 6127-6135.	6.1	16
91	Synergistic catalysis effects of lanthanum oxide in polypropylene/magnesium hydroxide flame retarded system. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1177-1186.	7.6	39
92	Study on the Organic–Inorganic Hybrid Polyphosphazene Nanotube as a Flame Retardant for Polypropylene. Journal of Macromolecular Science - Physics, 2012, 51, 269-274.	1.0	8

#	Article	IF	CITATIONS
93	Sisal fiber (SF) reinforced recycled polypropylene (RPP) composites. International Journal of Plastics Technology, 2012, 16, 150-165.	3.1	17
95	Flame-Retardant Properties of PP/Al(OH)3/Mg(OH)2/POE/ZB Nanocomposites. Polymer-Plastics Technology and Engineering, 2012, 51, 439-445.	1.9	25
96	Combustion properties of asphalt binder containing flame retardant. Fire and Materials, 2012, 36, 97-106.	2.0	19
97	Influence of poly(<i>n</i> â€octadecyl acrylate) on mechanical properties, melting behavior, and morphology of polypropylene/aluminum trihydroxide composites. Fire and Materials, 2012, 36, 614-622.	2.0	4
98	AlBr3 impact on the thermal degradation of P(S-co-MMA): a study performed by contemporary techniques. Iranian Polymer Journal (English Edition), 2012, 21, 143-155.	2.4	5
99	Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood–fiber composites. Composites Part B: Engineering, 2012, 43, 150-158.	12.0	176
100	Polypropylene composites with natural fibers and wood – General mechanical property profiles. Composites Science and Technology, 2012, 72, 550-557.	7.8	158
101	Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood–polypropylene composites. Construction and Building Materials, 2012, 33, 63-69.	7.2	78
102	Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs. European Journal of Wood and Wood Products, 2012, 70, 215-224.	2.9	28
103	Improving the flame retardancy of the polypropylene/aramid fiber composites by the introduction of decabromodiphenyl ethane and antimony trioxide. Journal of Applied Polymer Science, 2013, 127, 1446-1453.	2.6	9
104	Synthesis of magnesium hydroxide nanofiller and its use for improving thermal properties of new poly(etherâ€amide). Journal of Applied Polymer Science, 2013, 127, 2004-2009.	2.6	20
105	Synergistic effects of hydroxides and dimethyl methylphosphonate on rigid halogenâ€free and flameâ€retarding polyurethane foams. Journal of Applied Polymer Science, 2013, 128, 347-353.	2.6	41
106	Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials, 2013, 47, 1431-1435.	7.2	65
107	Mechanical properties of eco-friendly recycled polymer composites: a comparative study of theoretical and experimental results. International Journal of Plastics Technology, 2013, 17, 75-93.	3.1	5
108	Improved Thermal Conductivity and Flame Retardancy in Polystyrene/Poly(vinylidene fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC Nanoparticles. ACS Applied Materials & Interfaces, 2013, 5, 6915-6924.	8.0	153
109	Effect of nanoclay and magnesium hydroxide on some properties of HDPE/wheat straw composites. Fibers and Polymers, 2013, 14, 304-310.	2.1	16
110	Addition of flame retardants in epoxy mortars: Thermal and mechanical characterization. Construction and Building Materials, 2013, 42, 266-270.	7.2	19
111	Combustion behavior of polypropylene-based composites used in industrial plasticollar. Composite Interfaces, 2013, 20, 241-253.	2.3	1

#	Article	IF	CITATIONS
112	Ultrasound-promoted coating of silk yarn with different morphology of magnesium hydroxide nanostructures. Ultrasonics Sonochemistry, 2013, 20, 729-733.	8.2	10
113	The mechanism of flame and smoke retardancy of asphalt mortar containing composite flame retardant material. Construction and Building Materials, 2013, 41, 852-856.	7.2	26
114	Flame retardancy and thermal degradation behaviors of polypropylene composites with novel intumescent flame retardant and manganese dioxide. Journal of Analytical and Applied Pyrolysis, 2013, 104, 59-67.	5.5	42
115	Limited oxygen index levels of impregnated Scots pine wood. Thermochimica Acta, 2013, 573, 181-185.	2.7	22
116	Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and ethylene vinyl acetate blends. Nuclear Instruments & Methods in Physics Research B, 2013, 299, 42-50.	1.4	44
117	A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 2013, 47, 424-442.	5.1	1,055
118	In situ characterization of the growth of CNx carbon nano-structures as oxygen reduction reaction catalysts. Journal of Catalysis, 2013, 304, 100-111.	6.2	31
119	Effect of zinc borate and wood flour on thermal degradation and fire retardancy of Polyvinyl chloride (PVC) composites. Journal of Analytical and Applied Pyrolysis, 2013, 100, 230-236.	5.5	110
120	Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene. Composites Part B: Engineering, 2013, 52, 233-238.	12.0	67
121	Combined effects of boron and compatibilizer on dimensional stability and mechanical properties of wood/HDPE composites. Composites Part B: Engineering, 2013, 44, 745-749.	12.0	40
122	Thermorheological Properties and Thermal Stability of Polyethylene/Wood Composites. Journal of Macromolecular Science - Physics, 2013, 52, 1115-1127.	1.0	13
123	Fabrication of polystyrene/agave particle biocomposites using compression molding technique: evaluation of flammability, biodegradability, mechanical and thermal behaviour. Bulletin of Materials Science, 2013, 36, 1207-1216.	1.7	2
124	Influence of mineral fillers on the fire retardant properties of woodâ€polypropylene composites. Fire and Materials, 2013, 37, 612-620.	2.0	21
125	Newly High-Performance Wood-Substituted Composites Based on Polybenzoxazines. Engineering Materials, 2013, , 83-115.	0.6	Ο
126	Effect of Attapulgite Modification on Properties of Polypropylene Nanocomposites. Applied Mechanics and Materials, 0, 320, 407-412.	0.2	5
127	Properties of polypropylene/hemp fibers flame-retardant composites: Effects of different processing methods. Journal of Reinforced Plastics and Composites, 2013, 32, 644-653.	3.1	9
128	Low combustible polypropylene/flax/magnesium hydroxide composites: mechanical, flame retardation characterization and recycling effect. Journal of Reinforced Plastics and Composites, 2013, 32, 1030-1043.	3.1	33
129	Effect of Flame Retardants on Performance of PALF/ABS Composites. Advanced Materials Research, 2013, 747, 351-354.	0.3	5

#	Article	IF	CITATIONS
130	Zinc Hydroxystannate-Coated Mineral Grade Mg(OH) ₂ as Flame-Retardant and Smoke Suppression for Flexible PVC. Advanced Materials Research, 0, 652-654, 481-484.	0.3	4
131	Properties of Fire Retardant Thermoplastic Vulcanizates from NR/PP Blends Filled with Aluminium Trihydrate and Magnesium Hydroxide with Reference to the Effect of Mixing Methods. Advanced Materials Research, 0, 844, 297-300.	0.3	3
132	Changes in electrical insulation properties of fire resistant cables during a fire incident. , 2013, , .		0
133	Impact fracture toughness and morphology of polypropylene/Mg(OH)2 composites. Journal of Polymer Engineering, 2013, 33, 721-725.	1.4	7
134	Extrudate swell behavior of polypropylene composites filled with microencapsulated red phosphorus. Journal of Applied Polymer Science, 2013, 129, 3497-3501.	2.6	11
135	Ceramic sheet hybrid kenaf reinforced polypropylene biocomposites. Journal of Applied Polymer Science, 2013, 130, 1917-1922.	2.6	1
136	The Effect of Fire Retardants on the Flammability, Mechanical Properties, and Wettability of Co-Extruded PP-Based Wood-Plastic Composites. BioResources, 2013, 9, .	1.0	12
137	Phosphate Derivative Flame Retardants on Properties of Pineapple Leaf Fiber/Abs Composites. Polymers and Polymer Composites, 2014, 22, 591-598.	1.9	5
138	Comparative Performance of Three Magnesium Compounds on Thermal Degradation Behavior of Red Gum Wood. Materials, 2014, 7, 637-652.	2.9	14
139	Progress in Preparation of Nano-Sized Magnesium Hydroxide from Concentrated Seawater and Brine. Advanced Materials Research, 0, 989-994, 540-543.	0.3	0
140	Effect of Fumed Silica and Zinc Borate on the Thermal Property of ABS/Magnesium Hydroxide Flame Retardant Composites. Advanced Materials Research, 0, 997, 424-427.	0.3	1
141	Obtaining magnesium hydroxide of micro- or nanostructure on the basis of technical raw materials. Gospodarka Surowcami Mineralnymi / Mineral Resources Management, 2014, 30, 133-141.	0.2	1
142	Flame retardant and thermal decomposition properties of flexible polyurethane foams filled with several halogen-free flame retardants. Polymer Engineering and Science, 2014, 54, 2497-2507.	3.1	27
143	Effects of irradiation on the mechanical, electrical, and flammability properties of (lowâ€density) Tj ETQq1 1 0.78 Vinyl and Additive Technology, 2014, 20, 91-98.	4314 rgBT 3.4	- /Overlock 17
144	Mechanical properties and morphology for polypropylene composites filled with microencapsulated red phosphorus. Polymers for Advanced Technologies, 2014, 25, 347-352.	3.2	3
145	Effect of modified nanofillers on fire retarded high-density polyethylene/wood composites. Journal of Composite Materials, 2014, 48, 3771-3783.	2.4	15
146	Improvement of Inflammability and Biodegradability of Bio-Composites Using Recycled Polypropylene with Kenaf Fiber Containing Mixture Fire Retardant. Advanced Materials Research, 2014, 950, 18-23.	0.3	14
147	Influence of Raw Material Concentration on Product Characterization of Magnesium Hydroxide Prepared via Ammonia Method. Advanced Materials Research, 2014, 900, 337-343.	0.3	0

#	Article	IF	CITATIONS
148	Preparation of Flame Retardant Modified with Titanate for Asphalt Binder. Advances in Materials Science and Engineering, 2014, 2014, 1-8.	1.8	7
149	A Review of the Flammability Factors of Kenaf and Allied Fibre Reinforced Polymer Composites. Advances in Materials Science and Engineering, 2014, 2014, 1-8.	1.8	36
150	Mechanistic study of thermal behavior of poly(vinyl acetate) blended with aluminum tribromide: an investigation aided by IR and Py–GC–MS techniques. Journal of Thermal Analysis and Calorimetry, 2014, 115, 759-769.	3.6	4
151	Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Materials & Design, 2014, 54, 425-429.	5.1	179
152	Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Composites Part B: Engineering, 2014, 56, 249-253.	12.0	148
153	Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Composites Part B: Engineering, 2014, 57, 126-135.	12.0	142
154	Review on flammability of biofibres and biocomposites. Carbohydrate Polymers, 2014, 111, 149-182.	10.2	161
155	Investigation of enhancing effect of nano-montmorillonite on fire-retardant added low-density polyethylene–ethylene vinyl acetate hybrid system. Journal of Thermoplastic Composite Materials, 2014, 27, 1515-1529.	4.2	10
156	Dispersion and roles of montmorillonite on structural, flammability, thermal and mechanical behaviours of electron beam irradiated flame retarded nanocomposite. Composites Part B: Engineering, 2014, 61, 41-48.	12.0	52
157	Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites. Polymer Degradation and Stability, 2014, 104, 87-94.	5.8	83
158	Lowâ€ŧemperature synthesis of Mg(OH) ₂ nanoparticles from MgO as halogenâ€free flame retardant for polypropylene. Fire and Materials, 2014, 38, 145-154.	2.0	16
159	Structure–morphology–mechanical properties relationship of some polypropylene/lignocellulosic composites. Materials & Design, 2014, 56, 763-772.	5.1	73
160	Improvement on fire retardancy of wood flour/polypropylene composites using various fire retardants. Polymer Degradation and Stability, 2014, 100, 79-85.	5.8	88
161	Effects of Sawdust Content and Alkali Treatment on Mechanical and Flame Retarding Properties of Sawdust/Recycled High Density Polyethylene Composites. Advanced Materials Research, 0, 970, 79-83.	0.3	0
162	Synergy Effects of Wood Flour and Fire Retardants in Flammability of Wood-plastic Composites. Energy Procedia, 2014, 56, 48-56.	1.8	31
163	Mechanically robust, flame-retardant and anti-bacterial nanocomposite films comprised of cellulose nanofibrils and magnesium hydroxide nanoplatelets in a regenerated cellulose matrix. Cellulose, 2014, 21, 1859-1872.	4.9	49
164	Mechanical properties and morphology of intumescent flame retardant filled polypropylene composites. Polymers for Advanced Technologies, 2014, 25, 638-643.	3.2	15
165	Preparation and characterization of microencapsulated ammonium polyphosphate with UMF and its application in WPCs. Construction and Building Materials, 2014, 65, 151-158.	7.2	46

#	Article	IF	CITATIONS
166	Preparation of magnesium hydroxide flame retardant from light calcined powder by ammonia circulation method. Powder Technology, 2014, 260, 98-104.	4.2	26
167	Effect of Bentonite and Zinc Borate (ZB) Addition on Recycled Polypropylene Composites against Tensile and Burning Rate Properties. Advanced Materials Research, 0, 1105, 56-61.	0.3	6
168	Changes of insulation resistance of fire resistant cable under fire conditions. , 2015, , .		0
169	Green composites based on highâ€density polyethylene andSaccharum spontaneum: Effect of filler content on morphology, thermal, and mechanical properties. Polymer Composites, 2015, 36, 2157-2166.	4.6	13
170	A facile strategy to fabricate microencapsulated expandable graphite as a flameâ€retardant for rigid polyurethane foams. Journal of Applied Polymer Science, 2015, 132, .	2.6	20
171	Atomistic simulation of defected magnesium hydroxide as flame retardants. Transactions of Nonferrous Metals Society of China, 2015, 25, 4080-4088.	4.2	10
172	Selectively located aluminum hydroxide in rubber phase in a TPV: Towards to a halogen-free flame retardant thermoplastic elastomer with ultrahigh flexibility. Polymer Composites, 2015, 36, 1258-1265.	4.6	9
173	Flammability and thermal behavior of polypropylene composites containing dihydrogen phosphate anionâ€intercalated layered double hydroxides. Polymer Composites, 2015, 36, 2230-2237.	4.6	23
174	Full Factorial Design Analysis on Mechanical Properties of Electron Beam Irradiated-Flame Retarded LDPE/EVA Composites. Applied Mechanics and Materials, 0, 786, 58-62.	0.2	0
175	Preservation, protection and modification of wood composites. , 2015, , 253-310.		7
176	A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015, 2015, 1-15.	2.7	1,058
177	Impacts of Limestone Particle Size on the Performance of Flexible Wood Fiber Composite Floor. Advances in Materials Science and Engineering, 2015, 2015, 1-5.	1.8	1
178	Sound-Absorbing and Flame-Retarding Property of Nonwoven Compounded PU foam Planks. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	1.0	2
179	Natural fibers. , 2015, , 102-143.		41
180	A Study of Fire Retardant Effect in Natural Fiber Composite Panels with Magnesium Hydroxide and Zinc Borate as Additives. Applied Mechanics and Materials, 0, 815, 148-152.	0.2	4
181	New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochimica Acta, 2015, 157, 282-289.	5.2	87
182	Effect of zinc borate on mechanical and dielectric properties of metallocene linear low-density polyethylene/rubbers/magnesium oxide composite for wire and cable applications. Iranian Polymer Journal (English Edition), 2015, 24, 279-288.	2.4	10
183	Flame-retardant wrapped ramie fibers towards suppressing "candlewick effect―of polypropylene/ramie fiber composites. Chinese Journal of Polymer Science (English Edition), 2015, 33, 84-94.	3.8	32

#	Article	IF	Citations
184	Synergistic effect of expanded graphite, diammonium phosphate and Cloisite 15A on flame retardant properties of EVA and EVA/wax phase-change blends. Journal of Materials Science, 2015, 50, 3485-3494.	3.7	28
185	Flame retardant polymer composites. Fibers and Polymers, 2015, 16, 705-717.	2.1	164
186	The Effects of Coupling Agent on the Flame Retardant Properties of PP/ATH Nanocomposites. Advanced Materials Research, 0, 1115, 406-409.	0.3	1
187	Influence of zinc borate on the flame retardancy and thermal stability of intumescent flame retardant polypropylene composites. Journal of Analytical and Applied Pyrolysis, 2015, 115, 224-232.	5.5	66
188	Multifunctional polymer composites using natural fiber reinforcements. , 2015, , 71-101.		6
189	Fluorescence Chemosensor for Determination of Carbon Dioxide and Its Application for Biodegradation Analysis of Polymers. Spectroscopy Letters, 2015, 48, 767-774.	1.0	1
190	Bio-based Wood Polymer Nanocomposites: A Sustainable High-Performance Material for Future. Advanced Structured Materials, 2015, , 233-257.	0.5	3
191	The thermo-oxidative stability and flammability of wood/polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1955-1962.	3.6	34
192	Flame Retardant of Cellulosic Materials and Their Composites. Engineering Materials, 2015, , 247-314.	0.6	25
193	Melt flow properties and morphology of polypropylene composites filled with microencapsulated red phosphorus. Journal of Thermoplastic Composite Materials, 2015, 28, 275-286.	4.2	5
194	An Effective Way To Flame-Retard Biocomposite with Ethanolamine Modified Ammonium Polyphosphate and Its Flame Retardant Mechanisms. Industrial & Engineering Chemistry Research, 2015, 54, 3524-3531.	3.7	90
195	Dynamic mechanical characterizations and road performances of flame retardant asphalt mortars and concretes. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 1036-1042.	1.0	7
196	Mg(OH)2 nanoparticles produced at room temperature by an innovative, facile, and scalable synthesis route. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	30
197	Improvement of the flame retardancy of wood-fibre/polypropylene composites with ideal mechanical properties by a novel intumescent flame retardant system. RSC Advances, 2015, 5, 59865-59873.	3.6	32
198	A novel and effective method to fabricate flame retardant and smoke suppressed flexible polyurethane foam. RSC Advances, 2015, 5, 67878-67885.	3.6	22
199	Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene. Nuclear Instruments & Methods in Physics Research B, 2015, 360, 36-45.	1.4	8
200	Testing of the fire-proof functionality of cable insulation under fire conditions via insulation resistance measurements. Engineering Failure Analysis, 2015, 57, 334-349.	4.0	21
201	The Effect of Sokka Clay on the Tensile and Burning Properties of rPP/Clay Composite. Advanced Materials Research, 0, 1123, 338-342.	0.3	5

#	Article	IF	CITATIONS
202	The effect of sugarcane bagasse fiber on the properties of recycled high density polyethylene. Journal of Composite Materials, 2015, 49, 3251-3262.	2.4	38
203	Mechanical properties and flame-retardant of PP/MRP/Mg(OH)2/Al(OH)3 composites. Composites Part B: Engineering, 2015, 71, 74-81.	12.0	50
204	Evaluation of intumescent fire retardants and synergistic agents for use in wood flour/recycled polypropylene composites. Construction and Building Materials, 2015, 76, 273-278.	7.2	49
205	Properties of wood flour/expanded polystyrene waste composites modified with diammonium phosphate flame retardant. Polymer Composites, 2015, 36, 604-612.	4.6	37
206	Reaction-to-Fire Properties of Wood–Polypropylene Composites Containing Different Fire Retardants. Fire Technology, 2015, 51, 53-65.	3.0	9
207	Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement: Journal of the International Measurement Confederation, 2015, 60, 6-12.	5.0	111
208	Influence of fire retardants on the reactionâ€ŧoâ€fire properties of coextruded wood–polypropylene composites. Fire and Materials, 2016, 40, 535-543.	2.0	19
209	A review on flammability of epoxy polymer, cellulosic and non-cellulosic fiber reinforced epoxy composites. Polymers for Advanced Technologies, 2016, 27, 577-590.	3.2	86
210	Cable insulation properties changes through nanofillers: Nanoclays as a counterpart to the traditional fire retardants. , 2016, , .		2
211	Effects of nanoparticles on tensile, electrical, and thermal properties of Hemp/PBTG composites. Fibers and Polymers, 2016, 17, 1934-1944.	2.1	5
212	Effect of single flame retardant aluminum tri-hydroxide and boric acid against inflammability and biodegradability of recycled PP/KF composites. AIP Conference Proceedings, 2016, , .	0.4	4
213	Sustainable eco–composites obtained from waste derived biochar: a consideration in performance properties, production costs, and environmental impact. Journal of Cleaner Production, 2016, 129, 159-168.	9.3	89
214	Thermal degradation and flammability behavior of fire-retarded wood flour/polypropylene composites. Journal of Fire Sciences, 2016, 34, 226-239.	2.0	11
215	Synthesis and characterisation of novel flame retardant polyurethanes containing designed phosphorus units. Journal of Polymer Research, 2016, 23, 1.	2.4	18
216	Design of New Complexes of Inorganic Salts Based on Lithium and Magnesium Hydroxides and Carbonates for Usage as Propellants and Flame Retardants. Journal of Physical Chemistry A, 2016, 120, 7764-7770.	2.5	5
217	Effects of organophosphorus and mineral based flame retardants on combustibility and mechanical performances of natural fiber reinforced composites. World Journal of Engineering, 2016, 13, 193-198.	1.6	2
218	Thermal degradation and optical properties of SiC-infused polystyrene nanocomposites. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1809-1819.	3.6	8
219	Synthesis of H 2 Ti 2 O 3 ·H 2 O nanotubes and their effects on the flame retardancy of bamboo fiber/high-density polyethylene composites. Composites Part A: Applied Science and Manufacturing, 2016, 90, 225-233.	7.6	21

	CITATION	n Report	
#	Article	IF	CITATIONS
220	Laser ablation of magnesium in water and investigation of optical nonlinearity by the Z-scan technique. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 864.	2.1	14
221	DEVELOPMENT AND INVESTIGATION OF THERMAL INSULATION FROM HEMP-POLYLACTIDE FIBRES. Engineering Structures and Technologies, 2016, 8, 23-30.	0.1	8
222	Flammability and thermal degradation behavior of flame retardant treated wood flour containing intumescent LDPE composites. European Journal of Wood and Wood Products, 2016, 74, 851-856.	2.9	12
223	Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process. Applied Surface Science, 2016, 382, 56-62.	6.1	55
224	Flame retardancy and mechanical properties of thermal plastic composite panels made from <scp>T</scp> etra <scp>P</scp> ak waste and highâ€density polyethylene. Polymer Composites, 2016, 37, 1797-1804.	4.6	8
225	Flammability, thermal and dynamic mechanical properties of bamboo–glass hybrid composites. Journal of Thermoplastic Composite Materials, 2016, 29, 1210-1228.	4.2	39
226	Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants. RSC Advances, 2016, 6, 13890-13897.	3.6	21
227	Effectiveness of pre-treated wood particles and halogen-free flame retardants used in wood-plastic composites. Polymer Degradation and Stability, 2016, 126, 81-92.	5.8	38
228	Effects of carbon fibers on the flammability and smoke emission characteristics of halogen-free thermoplastic polyurethane/ammonium polyphosphate. Journal of Materials Science, 2016, 51, 3762-3771.	3.7	34
229	Emerging trends in flame retardancy of biofibers, biopolymers, biocomposites, and bionanocomposites. Reviews in Chemical Engineering, 2016, 32, .	4.4	36
230	Hemp fabric/epoxy composites manufactured by infusion process: Improvement of fire properties promoted by ammonium polyphosphate. Composites Part B: Engineering, 2016, 89, 117-126.	12.0	70
231	A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Composites Part B: Engineering, 2016, 84, 155-174.	12.0	233
232	Optimization of flame retardant content with respect to mechanical properties of natural fiber polymer composites: Case study of polypropylene/flax/aluminum trihydroxide. Polymer Composites, 2016, 37, 3310-3325.	4.6	13
233	Thermal decomposition of fire-retarded wood flour/polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2016, 123, 309-318.	3.6	28
234	Reactive Modification of Thermoplastic and Thermoset Polymers using Flame Retardants: An Overview. Polymer-Plastics Technology and Engineering, 2016, 55, 71-91.	1.9	32
235	Effect of Ammonium Polyphosphate on Flame Retardancy, Thermal Stability, and Mechanical Properties of Unsaturated Polyester/Phenolic/Montmorillonite Nanocomposites. Advances in Polymer Technology, 2017, 36, 278-283.	1.7	14
236	Determination of the Rheological Properties of Polypropylene Filled with Colemanite. Polymers for Advanced Technologies, 2017, 28, 1179-1184.	3.2	2
237	Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon, 2017, 116, 77-83.	10.3	43

#	Article	IF	CITATIONS
238	Evaluation of commercial Mg(OH) ₂ , Al(OH) ₃ and TiO ₂ as antimicrobial additives in thermoplastic elastomers. Plastics, Rubber and Composites, 2017, 46, 223-230.	2.0	11
239	Impact fracture toughness and flow properties of polypropylene composites. Polymer Testing, 2017, 60, 381-387.	4.8	13
240	Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy. Polymer Testing, 2017, 61, 341-348.	4.8	41
241	Synergistic influence of halogenated flame retardants and nanoclay on flame performance of high density polyethylene and wood flour composites. RSC Advances, 2017, 7, 24895-24902.	3.6	12
242	Tensile and flexural properties of polypropylene composites filled with highly effective flame retardant magnesium hydroxide. Polymer Testing, 2017, 60, 110-116.	4.8	42
243	Reactively extruded ecocomposites based on poly(lactic acid)/bisphenol A polycarbonate blends reinforced with regenerated cellulose microfibers. Composites Science and Technology, 2017, 139, 127-137.	7.8	31
244	Biochar to the rescue: Balancing the fire performance and mechanical properties of polypropylene composites. Polymer Degradation and Stability, 2017, 144, 485-496.	5.8	70
245	Functionalized allylamine polyphosphate as a novel multifunctional highly efficient fire retardant for polypropylene. Polymer Chemistry, 2017, 8, 6309-6318.	3.9	30
246	Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction and Building Materials, 2017, 152, 484-493.	7.2	38
247	Evaluating the mechanical and fire-resistance properties of modified fast-growing Chinese fir timber with boric-phenol-formaldehyde resin. Construction and Building Materials, 2017, 154, 956-962.	7.2	45
248	Influence of flame retardant magnesium hydroxide on the mechanical properties of high density polyethylene composites. Journal of Reinforced Plastics and Composites, 2017, 36, 1802-1816.	3.1	79
249	In situ inorganic flame retardant modified hemp and its polypropylene composites. RSC Advances, 2017, 7, 32236-32245.	3.6	19
250	Flame-retardant EPDM compounds containing phenanthrene to enhance radiation resistance. Radiation Physics and Chemistry, 2017, 130, 400-405.	2.8	12
251	Flammability of natural plant and animal fibers: a heat release survey. Fire and Materials, 2017, 41, 275-288.	2.0	19
252	Synergistic effect of melamine polyphosphate and aluminum hypophosphite on mechanical properties and flame retardancy of HDPE/wood flour composites. Wood Science and Technology, 2017, 51, 493-506.	3.2	19
253	Fabrication and mechanical characterization of hybrid metal foam/bio-composite samples. AIP Conference Proceedings, 2017, , .	0.4	0
255	Mechanical and Thermal Properties of Kenaf Fiber Reinforced Polypropylene/Magnesium Hydroxide Composites. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	1.0	22
256	Mechanical, flammability and thermal degradation characteristics of rice straw fiber-recycled polystyrene foam hard wood composites incorporating fire retardants. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1115-1124.	3.6	15

#	Article	IF	CITATIONS
257	Review of natural fiber composites. IOP Conference Series: Materials Science and Engineering, 2018, 314, 012020.	0.6	23
258	Synergetic effect of antimony trioxide on the flame retardant and mechanical properties of polymer composites for consumer electronics applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 4557-4563.	2.2	17
259	Crumpling and Unfolding of Montmorillonite Hybrid Nanocoatings as Stretchable Flameâ€Retardant Skin. Small, 2018, 14, e1800596.	10.0	36
260	Synthesis of a novel, multifunctional inorganic curing agent and its effect on the flameâ€retardant and mechanical properties of intrinsically flame retardant epoxy resin. Journal of Applied Polymer Science, 2018, 135, 46410.	2.6	31
261	A new strategy to produce low-density polyethylene (LDPE)-based composites simultaneously with high flame retardancy and high mechanical properties. Applied Surface Science, 2018, 437, 75-81.	6.1	22
262	Functionalized magnesium hydroxide fluids/acrylate-coated hybrid cotton fabric with enhanced mechanical, flame retardant and shape-memory properties. Cellulose, 2018, 25, 1425-1436.	4.9	22
263	Surface modification of magnesium hydroxide particles using silane coupling agent by dry process. Surface and Interface Analysis, 2018, 50, 277-283.	1.8	11
264	Towards selection chart of flame retardants for natural fibre reinforced polypropylene composites. Composites Part B: Engineering, 2018, 141, 1-8.	12.0	35
265	Study on the performance of flameâ€retardant esterified starchâ€modified cassava dregsâ€PBS composites. Journal of Applied Polymer Science, 2018, 135, 46210.	2.6	16
266	Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating. Journal of the Korean Physical Society, 2018, 72, 1052-1057.	0.7	10
267	Electron beam irradiation of zinc borate flame retardant containing acrylonite-butadiene-styrene (ABS) composites. Journal of Polymer Research, 2018, 25, 1.	2.4	10
268	Organoâ€Phosphorus Flame Retardants for Poly(vinyl chloride)/Wood Flour Composite. Polymer Composites, 2018, 39, 961-970.	4.6	18
269	Comparative mechanical, fireâ€retarding, and morphological properties of highâ€density polyethylene/(wood flour) composites with different flame retardants. Journal of Vinyl and Additive Technology, 2018, 24, 3-12.	3.4	7
270	Effect of halogen-free nanoparticles on the mechanical, structural, thermal and flame retardant properties of polymer matrix composite. Composite Structures, 2018, 183, 381-388.	5.8	50
271	Flame Retardancy of Natural Fibers Reinforced Composites. Springer Briefs in Molecular Science, 2018, , 73-98.	0.1	4
272	Towards Bio-based Flame Retardant Polymers. Springer Briefs in Molecular Science, 2018, , .	0.1	28
273	Progress in the research and applications of natural fiber-reinforced polymer matrix composites. Science and Engineering of Composite Materials, 2018, 25, 835-846.	1.4	42
274	A Review on Application of Natural fibre in Structural Reinforcement: Challenges of Properties Adaptation. Journal of Applied Sciences and Environmental Management, 2018, 22, 749.	0.1	4

#	Article	IF	CITATIONS
275	Influence of the Solvent on the Structure and Morphology of Nanoparticles Fabricated by Laser Ablation of Bulk Magnesium Targets. Russian Physics Journal, 2018, 61, 1047-1053.	0.4	5
277	Machinability and flammability properties of sisal fiber reinforced polymer composites. IOP Conference Series: Materials Science and Engineering, 2018, 402, 012035.	0.6	2
278	Synergistic effect of exfoliated graphene nanoplatelets and non-halogen flame retardants on flame retardants for flame retardancy and thermal properties of kenaf flour-PP nanocomposites. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1681-1703.	3.6	85
279	Phosphonated Lipids as Primary Plasticizers for PVC with Improved Flame Retardancy. European Journal of Lipid Science and Technology, 2018, 120, 1800062.	1.5	16
280	Influence of PA6 as a Charring Agent on Flame Retardancy, Thermal and Mechanical Properties of LGFR PP Composites. International Polymer Processing, 2018, 33, 535-542.	0.5	2
281	Correlation between microstructure and cathodoluminescence properties of Mg(OH) ₂ (brucite) nanoparticles: effect of synthesis method. CrystEngComm, 2018, 20, 5632-5640.	2.6	6
282	Fire retardancy of polypropylene composites reinforced with rice husks: From oxygen index measurements and cone calorimetry to largeâ€scale singleâ€burningâ€item tests. Journal of Applied Polymer Science, 2018, 135, 46654.	2.6	8
283	A multi-physics framework model towards coupled fire-structure interaction for Flax/PP composite beams. Composites Part B: Engineering, 2019, 157, 207-218.	12.0	8
284	Flame Retardant Polymer Nanocomposites and Interfaces. , 2019, , .		3
285	Testing the applicability of LDPE/HNT composites for cable core insulation. Polymer Testing, 2019, 78, 105993.	4.8	12
287	Effects of magnesium hydroxide on the properties of starch/plant fiber composites with foam structure. RSC Advances, 2019, 9, 17405-17413.	3.6	5
289	Wood - Polymer Composites as an Alternative to the Natural Environment. IOP Conference Series: Materials Science and Engineering, 2019, 603, 022009.	0.6	2
290	Novel nanocomposites based on epoxy resin and modified magnesium hydroxide: Focus on flame retardancy and mechanical properties. Polymers for Advanced Technologies, 2019, 30, 3026-3037.	3.2	18
291	Jute Based Bio and Hybrid Composites and Their Applications. Fibers, 2019, 7, 77.	4.0	52
292	The enhancement of the flame retardance of bamboo fibre/HDPE composites: Cerium doped H2Ti2O5·H2O nanotubes effects. Construction and Building Materials, 2019, 201, 728-735.	7.2	19
293	Novel Approach toward the Synthesis of a Phosphorus-Functionalized Polymer-Based Graphene Composite as an Efficient Flame Retardant. ACS Sustainable Chemistry and Engineering, 2019, 7, 11745-11753.	6.7	78
294	Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites. Journal of Polymer Research, 2019, 26, 1.	2.4	20
295	Restoration and conservation of old low-quality book paper using aqueous colloids of magnesium oxyhydroxide obtained by pulsed laser ablation. Journal of Cultural Heritage, 2019, 39, 42-48.	3.3	14

#	Article	IF	CITATIONS
296	Flame retardant and its influence on the performance of asphalt – A review. Construction and Building Materials, 2019, 212, 841-861.	7.2	58
297	Synthesizing Alkaline Earth Metal Hydroxides Nanoparticles through an Innovative, Single-Step and Eco-Friendly Method. Solid State Phenomena, 0, 286, 3-14.	0.3	13
298	Effect of Bamboo Flour (BF) Content on the Dynamic Rheological Characteristics of BF-filled High-density Polyethylene (HDPE). Journal of Macromolecular Science - Physics, 2019, 58, 341-354.	1.0	7
299	Preparation and properties of benzoxazine blends with intumescent flame retardancy. Polymer Degradation and Stability, 2019, 163, 15-24.	5.8	31
300	Melt shear flow behavior of flame-retardant polypropylene composites filled with microencapsulated red phosphorus. Journal of Thermoplastic Composite Materials, 2019, 32, 1361-1377.	4.2	4
301	Preparation and characterization of ethylene–vinyl acetate copolymer (EVA)–magnesium hydroxide (MH)–hexaphenoxycyclotriphosphazene (HPCTP) composite flame-retardant materials. Polymer Bulletin, 2019, 76, 2399-2410.	3.3	24
302	Effect of inorganic additive flame retardant on fire hazard of polyurethane exterior insulation material. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2857-2868.	3.6	26
303	Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of Epoxy Resin. Journal of Hazardous Materials, 2019, 366, 78-87.	12.4	230
304	Flammability performance ofÂbiocomposites. , 2019, , 43-58.		23
305	Influence of fiber length and its distribution in three phase poly(propylene) composites. Composites Part B: Engineering, 2019, 168, 218-225.	12.0	24
306	Fire retardancy improvement of highâ€density polyethylene composites based on thermomechanical pulp treated with ammonium polyphosphate. Polymer Composites, 2019, 40, 2410-2423.	4.6	10
307	Routes to halogenâ€free flameâ€retardant polypropylene wood plastic composites. Polymers for Advanced Technologies, 2019, 30, 187-202.	3.2	33
308	Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber. Applied Surface Science, 2019, 465, 740-746.	6.1	41
309	The flammability of biocomposites. , 2019, , 335-365.		8
310	Flame-retardant wood polymer composites (WPCs) as potential fire safe bio-based materials for building products: Preparation, flammability and mechanical properties. Fire Safety Journal, 2019, 107, 210-216.	3.1	59
311	The effects causing the burning of plastic coatings of fire-resistant cables and its consequences. Journal of Thermal Analysis and Calorimetry, 2020, 139, 775-787.	3.6	11
312	Highly efficient and selective removal of low-concentration antibiotics from aqueous solution by regenerable Mg(OH)2. Journal of Environmental Sciences, 2020, 87, 228-237.	6.1	17

#	Article	IF	CITATIONS
314	Preparation and Synergistic Effect of Chitosan/Sodium Phytate/MgO Nanoparticle Fire-Retardant Coatings on Wood Substrate through Layer-By-Layer Self-Assembly. Coatings, 2020, 10, 848.	2.6	18
315	Influence of Flame Retardants on LLDPEâ€Date Pit Fiber Composites: Thermal Degradation and Tensile Properties. ChemistrySelect, 2020, 5, 9170-9179.	1.5	2
316	Mechanical Properties of Recycled Polypropylene Filled with Aluminium Hydroxide. Materials Science Forum, 0, 1010, 130-135.	0.3	2
317	New Production Route of Magnesium Hydroxide and Related Environmental Impact. Sustainability, 2020, 12, 8822.	3.2	8
318	Characterization and radiation modification of low density polyethylene/polystyrene/maleic anhydride/magnesium hydroxide blend nanocomposite. Materials Chemistry and Physics, 2020, 252, 123204.	4.0	7
319	Thermo-oxidative stability and flammability properties of bamboo/kenaf/nanoclay/epoxy hybrid nanocomposites. RSC Advances, 2020, 10, 21686-21697.	3.6	35
320	Emerging advancements in flame retardancy of polypropylene nanocomposites. Journal of Thermoplastic Composite Materials, 2022, 35, 2665-2704.	4.2	44
321	Revolutionizing Aircraft Materials and Processes. , 2020, , .		35
322	Imparting flame resistance to citric acid–modified cotton fabrics using DNA. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502092221.	1.0	12
323	Graphene-based intumescent flame retardant on cotton fabric. Journal of Materials Science, 2020, 55, 14197-14210.	3.7	36
324	Mechanical strength of CFRP and GFRP composites filled with APP fire retardant powder exposed to elevated temperature. Fire Safety Journal, 2020, 115, 103178.	3.1	16
325	Emerging investigator series: synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures. Environmental Science: Nano, 2020, 7, 1225-1239.	4.3	21
326	An investigation on the flammability and dynamic mechanical behavior of coir fibers reinforced polymer composites. Journal of Industrial Textiles, 2022, 51, 1616-1640.	2.4	10
327	The influence of double-layered distribution of fire retardants on the fire retardancy and mechanical properties of wood fiber polypropylene composites. Construction and Building Materials, 2020, 242, 118047.	7.2	23
328	Advancement in flame retardancy of natural fibre reinforced composites with macro to nanoscale particulates additives. , 2020, , 311-342.		5
329	The synergistic effect of intumescent coating containing titanium dioxide and antimony trioxide onto spruce and alder wood species. Journal of Building Engineering, 2020, 31, 101407.	3.4	10
330	Integration of <scp>TRIZ</scp> , morphological chart and <scp>ANP</scp> method for development of <scp>FRP</scp> composite portable fire extinguisher. Polymer Composites, 2020, 41, 2917-2932.	4.6	78
331	Design and preparation of new polypropylene/magnesium oxide micro particles composites reinforced with hydroxyapatite nanoparticles: A study of thermal stability, flame retardancy and mechanical properties. Materials Chemistry and Physics, 2021, 258, 123917.	4.0	7

ARTICLE IF CITATIONS Effect of Layered Double Hydroxide on Rheological and Flame-Retardant Properties of 332 2.9 13 Styrene-Butadiene-Styrene–Modified Asphalt. Journal of Materials in Civil Engineering, 2021, 33, . Moisture and Flammability Behaviour of flax Fibre and Natural Fillers-Based Hybrid Epoxy Composites. 0.4 Lecture Notes in Mechanical Engineering, 2021, , 385-392. Green Composites Based on Polypropylene and Recycled Coffee Gunny: Morphology, Thermal and 334 2.1 0 Mechanical Properties. Fibers and Polymers, 2021, 22, 498-508. Usage of antimony trioxide, aluminum hydroxide and zinc borate in GRP composite production as fire-retardant addítives: An experimental research. Uluslararası Muhendislik Arastirma Ve Gelistirme 0.2 Dergisi, 2021, 13, 265-277. Multicomponent Polymer Systems Based on Agro-Industrial Waste., 2021, , 467-513. 336 1 Thermal behavior and kinetic study of plasticized cellulose acetate magnesium hydroxide 1.8 Polypropylene materials. Materials Today: Proceedings, 2021, 42, 2410-2421. Natural fibre composites with furanic thermoset resins. Comparison between polyfurfuryl alcohol 338 3.2 8 and humins from sugar conversion. Composites Part C: Open Access, 2021, 4, 100109. Effects of Ammonium Polyphosphate on the Flame Retarding, Tensile, Dynamic Mechanical, and Thermal Properties of Kenaf Fiber/Poly(lactic acid) Biocomposites Fabricated by Compression Molding. Fibers 2.1 and Polymers, 2021, 22, 1388-1396. Thermal and flammability properties of polyethylene composites with fibers to replace natural wood. 340 3.14 Journal of Reinforced Plastics and Composites, 2021, 40, 726-740. Preparation and Absorption Carbon Monoxide Properties of a Novel Flame Retardants Based 341 2.4 Fire-Fighting Foam. Frontiers in Materials, 2021, 8, . Two-component room temperature vulcanized silicone-rubber (RTV2) properties modification: effect 342 of aluminum three hydrate and nanosilica additions on the microstructure, electrical, and 2.2 7 mechanical properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 8903-8915. Effect of Euphorbia Coagulum Content on Fire Retardant and Mechanical Properties of Polyester 2.1 Bamboo Fiber Composite. Fibers and Polymers, 2021, 22, 786-792. Mechanical and microstructural changes in reactive magnesium oxide cement-based concrete mixes 344 10.7 31 subjected to high temperatures. Cement and Concrete Composites, 2021, 118, 103955. Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustainable 345 3.3 Chemistry and Pharmacy, 2021, 19, 100368. Synergistic effects of strontium carbonate on a novel intumescent <scp>flameâ€retardant</scp> 346 3.2 9 polypropylene system. Polymers for Advanced Technologies, 2021, 32, 3018-3027. Flammability, morphological and mechanical properties of sugar palm fiber/polyester yarn-reinforced 347 epoxy hybrid biocomposites with magnesium hydroxide flame retardant filler. Textile Reseach Journal, 2.2 33 2021, 91, 2600-2611 Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and 348 4.542 Flammability Properties. Polymers, 2021, 13, 1532. A Comprehensive Review on Process and Technological Aspects of Wood-Plastic Composites. Jurnal 349 Sylva Lestari, 2021, 9, 329.

#	Article	IF	CITATIONS
350	Microencapsulated di-ammonium hydrogen phosphate (DAHP) with a polyurethane shell: characterization and its properties in wood. European Journal of Wood and Wood Products, 2021, 79, 1405-1417.	2.9	9
351	Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants. Polymers, 2021, 13, 1701.	4.5	101
352	Flame-retardant ethylene vinyl acetate composite materials by combining additions of aluminum hydroxide and melamine cyanurate: Preparation and characteristic evaluations. Journal of Colloid and Interface Science, 2021, 589, 525-531.	9.4	72
353	Experimental evaluation of fire resistance performance of cement mortar with PCM/Mg(OH)2-based composite fine aggregate. Construction and Building Materials, 2021, 287, 123018.	7.2	8
354	Flame retardant treatments for polypropylene: Strategies and recent advances. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106382.	7.6	76
355	Controllable crystal growth of Mg(OH)2 hexagonal flakes and their surface modification using graft polymerization. Advanced Powder Technology, 2021, 32, 2634-2644.	4.1	12
356	On a contribution to study some mechanical properties of <scp>WEEE</scp> recycled polymer blends. Journal of Applied Polymer Science, 2021, 138, 51250.	2.6	4
357	Silica-rich regenerated cellulose fibers enabled by delayed dissolution of silica nanoparticles in strong alkali using zinc oxide. Carbohydrate Polymers, 2021, 264, 118032.	10.2	7
358	Influence of cotton waste and flame-retardant additives on the mechanical, thermal, and flammability properties of phenolic novolac epoxy composites. Cellulose, 2021, 28, 7765-7780.	4.9	17
359	Properties of magnesium potassium phosphate cement-expanded perlite composites applied as fire resistance coating. Construction and Building Materials, 2021, 293, 123513.	7.2	12
360	New Composites from Waste Polypropylene/Eggshell Characterized by High Flame Retardant and Mechanical Properties. Fibers and Polymers, 0, , 1.	2.1	5
361	Utilization of magnesium resources in salt lake brine and catalytic degradation of dye wastewater by doping cobalt and nickel. Separation and Purification Technology, 2021, 270, 118808.	7.9	8
362	Additives used in natural fibre reinforced polymer composites-a review. Materials Today: Proceedings, 2022, 50, 1417-1424.	1.8	8
363	Flame retardant effect of boron compounds in polymeric materials. Composites Part B: Engineering, 2021, 222, 109088.	12.0	100
364	Reinforcing Condensed Phase Flame Retardancy through Surface Migration of Brucite@Zinc Borate-Incorporated Systems. ACS Omega, 2020, 5, 28186-28195.	3.5	7
365	Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites. Advances in Mechanical Engineering, 2012, 4, 418031.	1.6	18
366	Developments in Flame-Retardant Bio-composite Material Production. Advances in Civil Engineering Materials, 2019, 8, 20180025.	0.6	4
367	Evaluation of potassium humate material in wood-plastic composite production. Journal of Forestry Faculty of Kastamonu University, 0, , 189-202.	0.4	1

#	Article	IF	CITATIONS
368	Burning of Cotton Fabric Impregnated by Ammonium Chloride as a Flame-Retardant. Journal of Applied Fire Science, 2005, 13, 329-337.	0.0	7
369	Fire-retardant and fire-barrier poly(vinyl acetate) composites for sealant application. EXPRESS Polymer Letters, 2010, 4, 79-93.	2.1	38
370	Study of Flame Retardant and Mechanical Properties of Coconut Shell Particles Filled Composite. Research & Reviews Journal of Material Sciences, 2016, 04, .	0.1	4
371	Plasma Surface Functionalization of Biaxially Oriented Polypropylene Films with Trimethyl Borate. Advances in Materials Physics and Chemistry, 2011, 01, 50-55.	0.7	2
372	Characterization of Poly(methyl methacrylate)-tin (IV) Chloride Blend by TG-DTG-DTA, IR and Pyrolysis-GC-MS Techniques. Bulletin of the Korean Chemical Society, 2011, 32, 3295-3305.	1.9	5
373	Long-term durability and ecotoxicity of biocomposites in marine environments: a review. RSC Advances, 2021, 11, 32917-32941.	3.6	20
374	Thermo-rheological probe of microstructural evolution and degradation pathway in the flame-retarded PP/EVA/NOR/clay nanocomposites. Rheologica Acta, 0, , 1.	2.4	6
375	Effect of a synthesized chitosan flame retardant on the flammability, thermal properties, and mechanical properties of vinyl ester/bamboo nonwoven fiber composites. Cellulose, 2021, 28, 11625-11643.	4.9	14
376	The thermoanalytical, infrared and pyrolysis-gas chromatography-mass spectrometric sifting of poly (methyl methacrylate) in the presence of phosphorus tribromide. Natural Science, 2010, 02, 307-319.	0.4	1
377	Flame Retardant Effects of Nano-Clinoptilolite on AcrylonitrileButadiene-Styrene (ABS) Nano-Composite. International Journal on Advanced Science, Engineering and Information Technology, 2012, 2, 306.	0.4	0
379	Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers. Journal of Forestry Faculty of Kastamonu University, 0, , .	0.4	0
380	Effect of sepiolit mineral on thermal properties and thermal conductivity of wood plastic composite materials. Turkish Journal of Forestry Türkiye Ormancılık Dergisi, 0, , 205-209.	0.5	0
381	Sisal Fibre Reinforced Polypropylene Bio-Composites for Inherent Applications. SSRN Electronic Journal, O, , .	0.4	1
382	Ultraviyole (UV) Işıma ile Kürlenebilen Poliüretan Akrilat Kaplama Filmlerin Alev Geciktirici Özelliğinin Alümina Trihidrat Dolgu Malzemesi Kullanılarak İyileştirilmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 0, , 11-20.	0.1	1
383	Biopolymers and Biocomposites. , 2020, , 231-275.		1
384	Study of effect of wood-flour content on mechanical, thermal, rheological properties and thermoformability of wood-polypropylene composites. Journal of Polymer Engineering, 2022, 42, 1-8.	1.4	3
385	Synthesis, mechanical, and flammability properties of metal hydroxide reinforced polymer composites: A review. Polymer Engineering and Science, 2022, 62, 44-65.	3.1	20
386	Advanced Flameâ€Retardant Methods for Polymeric Materials. Advanced Materials, 2022, 34, e2107905.	21.0	209

#	Article	IF	CITATIONS
387	Flame retardancy of EPDM/Kevlar fibre composites with zinc borate, magnesium hydroxide and ammonium polyphosphate. Journal of Thermal Analysis and Calorimetry, 2022, 147, 8189-8198.	3.6	7
388	Recent Advances in the Development of Fire-Resistant Biocomposites—A Review. Polymers, 2022, 14, 362.	4.5	47
389	Characteristics of the Waste Wood Biomass and Its Effect on the Properties of Wood Sanding Dust/Recycled PP Composite. Polymers, 2022, 14, 468.	4.5	6
391	A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects. Polymers, 2022, 14, 589.	4.5	52
392	Preparation and Application of Class A1 Flame Retardant Composite Material with Waterproof Properties. Composite Interfaces, 2022, 29, 929-945.	2.3	0
393	Green fabrication of an ionic liquid-activated lignocellulose flame-retardant composite. Industrial Crops and Products, 2022, 178, 114602.	5.2	17
394	Flame retardancy of silicone rubber foam containing modified hydrotalcite. Journal of Applied Polymer Science, 2022, 139, .	2.6	13
395	Valorizing "non-vegan―bio-fillers: Synergists for phosphorus flame retardants in epoxy resins. Polymer Degradation and Stability, 2022, 198, 109875.	5.8	24
396	A layer-by-layer approach based on APTES/Cloisite to produce novel and sustainable high performances materials based on hemp fiberboards. Polymer Degradation and Stability, 2022, 198, 109892.	5.8	4
397	Pyrolysis and combustion characterisation of HDPE/APP composites via molecular dynamics and CFD simulations. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105499.	5.5	9
399	A Critical Review on Materials and Fabrications of Thermally Stable Separators for Lithiumâ€lon Batteries. Advanced Materials Technologies, 2022, 7, .	5.8	26
401	The Flame-Retardant Mechanisms and Preparation of Polymer Composites and Their Potential Application in Construction Engineering. Polymers, 2022, 14, 82.	4.5	41
402	Mechanical, viscoelastic, and flammability properties of polymer composites reinforced with novel Sirisha bark filler. Journal of Industrial Textiles, 2022, 51, 5887S-5909S.	2.4	3
403	The Potential of Feâ€Based Magnetic Nanomaterials for the Agriculture Sector. ChemistrySelect, 2022, 7,	1.5	9
404	A study on various fire retardant additives used for fire reinforced polymeric composites. AIP Conference Proceedings, 2022, , .	0.4	39
405	Minerals as Flame-Retardant Fillers in Polyurethanes. ACS Symposium Series, 0, , 87-104.	0.5	0
406	Influence of ammonium polyphosphateâ€modified polypropylene on flammability characteristics of polypropylene keratin and chitosan sustainable composites. Fire and Materials, 0, , .	2.0	0
407	Electrochemical deposition of n-type semiconducting nickel hydroxide thin films. Semiconductor Science and Technology, 2022, 37, 085015.	2.0	1

#	Article	IF	CITATIONS
408	A review on thermo-mechanical properties of natural fibre reinforced polymer composites incorporated with fire retardants. Materials Today: Proceedings, 2022, 69, 641-644.	1.8	4
409	Microwave-assisted synthesis of magnesium oxide nanoflakes via green chemistry approach using Ficus Racemosa leaf extract: characterization and antibacterial activity. Journal of the Korean Ceramic Society, 2023, 60, 62-74.	2.3	2
410	Effect of ammonium polyphosphate as synergist with nano silica dioxide on flammability of boron compound pretreated bamboo flour-HDPE composite. Fire Safety Journal, 2022, 133, 103647.	3.1	7
411	Sustainable Fiberâ€Reinforced Composites: A Review. Advanced Sustainable Systems, 2022, 6, .	5.3	61
412	Toughed interface of Mg(OH)2/polymer composites with improved mechanical performance via intramolecular "bridge― Applied Surface Science, 2023, 607, 155100.	6.1	10
413	Mechanical Properties of Polypropylene-Based Flame Retardant Composites by Surface Modification of Flame Retardants. Polymers, 2022, 14, 3524.	4.5	10
414	The effect of silicon dioxide and zinc borate on the flame retardancy, thermal and mechanical properties of jute/epoxy hybrid composite. Journal of Natural Fibers, 2023, 20, .	3.1	4
416	Flame retardant polypropylene with a single molecule intumescent flame retardant based on chitosan. Materials Today Communications, 2022, 33, 104689.	1.9	7
417	The MR imaging features and the analyses of quantitative parameters in cases with surgically repaired tetralogy of Fallot. Turkish Journal of Medical Sciences, 0, , .	0.9	1
418	Effect of nanoclay on combustion, mechanical and morphological properties of recycled high density polyethylene/marula seed cake/organo-modified montmorillonite nanocomposites. Polymer Bulletin, 2023, 80, 1031-1058.	3.3	2
419	Fire retardant polyethylene terephthalate containing 4,4′-(hexafluoroisopropylidene)diphenol-substituted cyclotriphosphazene microspheres. High Performance Polymers, 0, , 095400832211458.	1.8	0
420	High-Density Polyethylene Post-consumer Waste in Natural Fiber-Reinforced Compounds. , 2022, , 1-15.		0
421	Use of Banana Peel in the Development of a Less Flammable Polyester Composite. Tekstilec, 2023, 65, 278-297.	0.6	2
422	Unlocking the potential of lignocellulosic biomass in road construction: A brief review of OPF. Materials Today: Proceedings, 2023, , .	1.8	5
423	A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends. Molecules, 2023, 28, 1023.	3.8	3
424	Green Synthesis of Magnesium Oxide Nanoparticles and Nanocomposites for Photocatalytic Antimicrobial, Antibiofilm and Antifungal Applications. Catalysts, 2023, 13, 642.	3.5	41
426	Influence of boron bearing fillers on flame retardancy properties of huntite hydromagnesite filled ductile PLA biocomposites. Journal of Boron, 0, , .	0.0	0
427	Application of ammonium polyphosphate as intumescent flame retardant on Varanasi brocade pineapple fabric. Biomass Conversion and Biorefinery, 0, , .	4.6	1

#	Article	IF	CITATIONS
428	Recent Progress in Flame-Retardant Polymer Electrolytes for Solid-State Lithium Metal Batteries. Batteries, 2023, 9, 439.	4.5	3
429	Experimental Investigations of Flammability, Mechanical and Moisture Absorption Properties of Natural Flax/NanoSiO2 Based Hybrid Polypropylene Composites. Silicon, 2023, 15, 7621-7637.	3.3	15
430	Polyolefin nanocomposites with polyelectrolyte coated redispersible nanoparticles produced continuously and massively via reactive flash nanoprecipitation. Polymer, 2023, 283, 126285.	3.8	0
431	Biobased composites for advanced applications: Possibilities and difficulties on the path to circularity. , 2023, , .		0
432	Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci ve Maliyet Etkin Kompozitlerin Geliştirilmesi ve Mekanik Karakterizasyonu. International Journal of Advances in Engineering and Pure Sciences, 2023, 35, 494-503.	0.8	0
433	Effect of Compounded Aluminum Hydroxide Flame Retardants on the Flammability and Smoke Suppression Performance of Asphalt Binders. ACS Omega, 2024, 9, 2803-2814.	3.5	0
434	Mechanical Properties of Epoxy Compounds Based on Unmodified Epoxy Resin Modified with Boric Acid as an Antiseptic. Materials, 2024, 17, 259.	2.9	0
435	Effect of Interfacial Bonding Characteristics on Fire Performance of Flax Fiber Reinforced Composites. Composites Science and Technology, 2024, , 231-258.	0.6	0
436	Eco-Friendly Synthesis of MgO Nanoparticles for Biomedical Applications: Advances, Challenges, and Future Prospects. Nanotechnology in the Life Sciences, 2024, , 201-226.	0.6	0