Acute and long-term effects of MDMA on cerebral dopa

Psychopharmacology 173, 249-263 DOI: 10.1007/s00213-004-1788-8

Citation Report

#	Article	IF	CITATIONS
1	MDMA (3,4-Methylenedioxymethamphetamine) or Ecstasy: The Neuropsychobiological Implications of Taking It at Dances and Raves. Neuropsychobiology, 2004, 50, 329-335.	0.9	129
3	Ecstasy (MDMA) exposure and neuropsychological functioning: A polydrug perspective. Journal of the International Neuropsychological Society, 2005, 11, 753-65.	1.2	27
4	Pharmacological aspects of the combined use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and gamma-hydroxybutyric acid (GHB): a review of the literature. Drug and Alcohol Review, 2005, 24, 359-368.	1.1	28
5	Long-term effects of MDMA (Ecstasy) on the human central nervous system revealed by visual evoked potentials. Addiction Biology, 2005, 10, 187-195.	1.4	17
6	Studies on the effect of MDMA (â€~ecstasy') on the body temperature of rats housed at different ambient room temperatures. British Journal of Pharmacology, 2005, 146, 306-312.	2.7	62
7	Effect of 3,4-methylendioxymethamphetamine (MDMA, "ecstasyâ€) on dopamine transmission in the nucleus accumbens shell and core. Brain Research, 2005, 1055, 143-148.	1.1	44
8	Endocannabinoids and 3,4-methylenedioxymethamphetamine (MDMA) interaction. Pharmacology Biochemistry and Behavior, 2005, 81, 407-416.	1.3	28
9	Dopamine-Independent Locomotor Actions of Amphetamines in a Novel Acute Mouse Model of Parkinson Disease. PLoS Biology, 2005, 3, e271.	2.6	122
10	3,4-N-Methlenedioxymethamphetamine-Induced Hypophagia is Maintained in 5-HT1B Receptor Knockout Mice, but Suppressed by the 5-HT2C Receptor Antagonist RS102221. Neuropsychopharmacology, 2005, 30, 1056-1063.	2.8	44
11	Age-dependent (+)MDMA-mediated Neurotoxicity in Mice. NeuroToxicology, 2005, 26, 1031-1040.	1.4	20
12	Ecstasy: pharmacology and neurotoxicity. Current Opinion in Pharmacology, 2005, 5, 79-86.	1.7	116
13	Psychostimulants and monoamine transporters: upsetting the balance. Current Opinion in Pharmacology, 2005, 5, 94-100.	1.7	61
14	Synthesis and Cytotoxic Profile of 3,4-Methylenedioxymethamphetamine ("Ecstasyâ€) and Its Metabolites on Undifferentiated PC12 Cells:Â A Putative Structureâ^'Toxicity Relationship. Chemical Research in Toxicology, 2006, 19, 1294-1304.	1.7	56
15	3,4-Methylenedioxymethamphetamine in Adult Rats Produces Deficits in Path Integration and Spatial Reference Memory. Biological Psychiatry, 2006, 59, 1219-1226.	0.7	70
16	Analysis of transcriptional responses in the mouse dorsal striatum following acute 3,4-methylenedioxymethamphetamine (ecstasy): Identification of extracellular signal-regulated kinase-controlled genes. Neuroscience, 2006, 137, 473-482.	1.1	17
17	Apparent Transient Effects of Recent ???Ecstasy??? Use on Cognitive Performance and Extrapyramidal Signs in Human Subjects. Cognitive and Behavioral Neurology, 2006, 19, 157-164.	0.5	10
18	MDMA and fenfluramine reduce L-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation. European Journal of Neuroscience, 2006, 23, 2669-2676.	1.2	58
19	Persistent cerebrovascular effects of MDMA and acute responses to the drug. European Journal of Neuroscience, 2006, 24, 509-519.	1.2	19

#	Article	IF	Citations
20	MDMA (Ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology, 2006, 189, 489-503.	1.5	145
21	Initial deficit and recovery of function after MDMA preexposure in rats. Psychopharmacology, 2006, 184, 239-246.	1.5	21
22	3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology, 2006, 189, 407-424.	1.5	214
23	High-dose MDMA does not result in long-term changes in impulsivity in the rat. Psychopharmacology, 2006, 188, 75-83.	1.5	9
24	Neonatal 3,4-methylenedioxymethamphetamine (MDMA) exposure alters neuronal protein kinase A activity, serotonin and dopamine content, and [35S]GTPγS binding in adult rats. Brain Research, 2006, 1077, 178-186.	1.1	21
25	Association of caffeine to MDMA does not increase antinociception but potentiates adverse effects of this recreational drug. Brain Research, 2006, 1111, 72-82.	1.1	30
26	Treatment Implications for Young Adult Users of MDMA. Journal of Addictions and Offender Counseling, 2006, 26, 84-98.	0.3	2
27	Ecstasy: Are animal data consistent between species and can they translate to humans?. Journal of Psychopharmacology, 2006, 20, 194-210.	2.0	113
28	The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice. Journal of Psychopharmacology, 2006, 20, 264-271.	2.0	13
29	Acute toxic effects of â€ ⁻ Ecstasy' (MDMA) and related compounds: overview of pathophysiology and clinical management. British Journal of Anaesthesia, 2006, 96, 678-685.	1.5	242
30	A review of acute effects of 3,4-methylenedioxymethamphetamine in healthy volunteers. Journal of Psychopharmacology, 2006, 20, 176-187.	2.0	130
31	Rewarding Effects and Reinstatement of MDMA-Induced CPP in Adolescent Mice. Neuropsychopharmacology, 2007, 32, 1750-1759.	2.8	73
32	Pathways between ecstasy initiation and other drug use. Addictive Behaviors, 2007, 32, 1511-1518.	1.7	22
33	The effects of concurrent administration of (±)3,4-Methylenedioxymethamphetamine and cocaine on conditioned place preference in the adult male rat. Pharmacology Biochemistry and Behavior, 2007, 88, 165-170.	1.3	19
34	Developmental effects of ±3,4-methylenedioxymethamphetamine on spatial versus path integration learning: Effects of dose distribution. Synapse, 2007, 61, 488-499.	0.6	23
35	Comparative potencies of 3,4â€methylenedioxymethamphetamine (MDMA) analogues as inhibitors of [³ H]noradrenaline and [³ H]5â€HT transport in mammalian cell lines. British Journal of Pharmacology, 2007, 152, 1121-1130.	2.7	24
36	Differential effects of intravenous R,S-(�)-3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) and its S(+)- and R(?)-enantiomers on dopamine transmission and extracellular signal regulated kinase phosphorylation (pERK) in the rat nucleus accumbens shell and core. Journal of Neurochemistry, 2007, 102, 121-132.	2.1	51
37	Rnd family genes are differentially regulated by 3,4-methylenedioxymethamphetamine and cocaine acute treatment in mice brain. Brain Research, 2007, 1134, 12-17.	1.1	29

ARTICLE IF CITATIONS # Interactions between ethanol and cocaine, amphetamine, or MDMA in the rat: thermoregulatory and 1.5 35 38 locomotor effects. Psychopharmacology, 2008, 197, 67-82. MDMA modifies active avoidance learning and recall in mice. Psychopharmacology, 2008, 197, 391-400. 1.5 Acute neuropsychological effects of MDMA and ethanol (co-)administration in healthy volunteers. 40 39 1.5 Psychopharmacology, 2008, 197, 465-474. Polydrug use, cannabis, and psychosisâ€like symptoms. Human Psychopharmacology, 2008, 23, 475-485. 24 A validated gas chromatographic–electron impact ionization mass spectrometric method for methamphetamine, methylenedioxymethamphetamine (MDMA), and metabolites in mouse plasma and 42 1.2 18 brain. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 876, 266-276. Characteristics of dual specificity phosphatases mRNA regulation by 3,4-methylenedioxymethamphetamine acute treatment in mice striatum. Brain Research, 2008, 1239, 1.1 42-48. Serotonin/dopamine interaction in learning. Progress in Brain Research, 2008, 172, 567-602. 44 0.9 35 Effects of the selective neurotensin antagonist SR 142948A on 3,4-methylenedioxymethamphetamine-induced behaviours in mice. Neuropharmacology, 2008, 54, 2.0 14 1107-1111. A comparison of the physiological, behavioral, neurochemical and microglial effects of methamphetamine and 3,4-methylenedioxymethamphetamine in the mouse. Neuroscience, 2008, 151, 46 1.1 91 533-543. Effect of adolescent exposure to MDMA and cocaine on acquisition and reinstatement of morphine-induce CPP. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32, 2.5 701-709. Assessment of Cognitive Brain Function in Ecstasy Users and Contributions of Other Drugs of Abuse: 49 48 2.8 Results from an fMRI Study. Neuropsychopharmacology, 2008, 33, 247-258. MDMA as a clinical tool: a note of caution. A response to Sessa and Nutt. Journal of 49 Psychopharmacology, 2008, 22, 929-931. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA. Journal 50 2.0 40 of Psychopharmacology, 2009, 23, 923-935. Acute behavioural and neurotoxic effects of MDMA plus cocaine in adolescent mice. Neurotoxicology 1.2 and Teratology, 2009, 31, 49-59. Differential changes in mesolimbic dopamine following contingent and non-contingent MDMA 52 19 1.5 self-administration in mice. Psychopharmacology, 2009, 205, 457-466. Cannabis Coadministration Potentiates the Effects of "Ecstasy―on Heart Rate and Temperature in Humans. Clinical Pharmacology and Therapeutics, 2009, 86, 160-166. Effects of chronic intracerebroventricular 3,4-methylenedioxy-N-methamphetamine (MDMA) or 54 fluoxetine on the active avoidance test in rats with or without exposure to mild chronic stress. 1.2 5 Behavioural Brain Research, 2009, 205, 259-264. 3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasyâ€)., 2009, , 827-833.

CITATION REPORT

#	ARTICLE	IF	CITATIONS
56	Neural and Cardiac Toxicities Associated With 3,4-Methylenedioxymethamphetamine (MDMA). International Review of Neurobiology, 2009, 88, 257-296.	0.9	41
57	Movement Disorders and MDMA Abuse. Journal of Psychoactive Drugs, 2009, 41, 203-204.	1.0	3
58	The effect of Ecstasy on memory is moderated by a functional polymorphism in the cathechol-O-methyltransferase (COMT) gene. European Neuropsychopharmacology, 2009, 19, 116-124.	0.3	13
59	Effects of repeated MDMA administration on the motivation for palatable food and extinction of operant responding in mice. Psychopharmacology, 2010, 208, 563-573.	1.5	5
60	Mice Lacking Multidrug Resistance Protein 1a Show Altered Dopaminergic Responses to Methylenedioxymethamphetamine (MDMA) in Striatum. Neurotoxicity Research, 2010, 18, 200-209.	1.3	6
61	Rash-impulsivity, reward-drive and motivations to use ecstasy. Personality and Individual Differences, 2010, 48, 670-675.	1.6	8
62	Dopamine transporter downâ€regulation following repeated cocaine: implications for 3,4â€methylenedioxymethamphetamineâ€induced acute effects and longâ€term neurotoxicity in mice. British Journal of Pharmacology, 2010, 159, 201-211.	2.7	18
63	Amphetamine toxicities. Annals of the New York Academy of Sciences, 2010, 1187, 101-121.	1.8	232
64	Acute psychomotor effects of MDMA and ethanol (co-) administration over time in healthy volunteers. Journal of Psychopharmacology, 2010, 24, 155-164.	2.0	28
65	Ethanol co-administration moderates 3,4-methylenedioxymethamphetamine effects on human physiology. Journal of Psychopharmacology, 2010, 24, 165-174.	2.0	23
66	Neurovascular Unit. , 2010, , 877-877.		0
67	Effect of adolescent exposure to WIN 55212-2 on the acquisition and reinstatement of MDMA-induced conditioned place preference. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 166-171.	2.5	29
68	Differential effects of MDMA and scopolamine on working versus reference memory in the radial arm maze task. Neurobiology of Learning and Memory, 2010, 93, 151-156.	1.0	34
69	Adolescent pre-exposure to ethanol or MDMA prolongs the conditioned rewarding effects of MDMA. Physiology and Behavior, 2011, 103, 585-593.	1.0	26
70	Pharmacodynamic interactions between MDMA and concomitants in MDMA tablets on extracellular dopamine and serotonin in the rat brain. European Journal of Pharmacology, 2011, 660, 318-325.	1.7	13
71	Acute effects of MDMA (3,4-methylenedioxymethamphetamine) on EEG oscillations: alone and in combination with ethanol or THC (delta-9-tetrahydrocannabinol). Psychopharmacology, 2011, 213, 745-756.	1.5	14
72	The intriguing effects of ecstasy (MDMA) on cognitive function in mice subjected to a minimal traumatic brain injury (mTBI). Psychopharmacology, 2011, 214, 877-889.	1.5	36
73	Genetic Deletion of Trace Amine 1 Receptors Reveals Their Role in Auto-Inhibiting the Actions of Ecstasy (MDMA). Journal of Neuroscience, 2011, 31, 16928-16940.	1.7	80

#	Article	IF	CITATIONS
74	Acute psychomotor, memory and subjective effects of MDMA and THC co-administration over time in healthy volunteers. Journal of Psychopharmacology, 2011, 25, 478-489.	2.0	29
75	Persistent Nigrostriatal Dopaminergic Abnormalities in Ex-Users of MDMA (â€~Ecstasy'): An 18F-Dopa PET Study. Neuropsychopharmacology, 2011, 36, 735-743.	2.8	25
76	The nucleus accumbens 5-HTR4-CART pathway ties anorexia to hyperactivity. Translational Psychiatry, 2012, 2, e203-e203.	2.4	58
77	3,4-Methylenedioxymethamphetamine (Ecstasy) increases the sensitivity of the contractile apparatus to calcium ions in both malignant hyperthermia-susceptible and normal skeletal muscle fibres. European Journal of Anaesthesiology, 2012, 29, 42-49.	0.7	1
78	Acutely applied MDMA enhances long-term potentiation in rat hippocampus involving D1/D5 and 5-HT2 receptors through a polysynaptic mechanism. European Neuropsychopharmacology, 2012, 22, 584-595.	0.3	24
79	Exploring the impact of ecstasy on retinal physiology: A pioneer study. , 2012, , .		0
80	Lost in translation: preclinical studies on 3,4â€methylenedioxymethamphetamine provide information on mechanisms of action, but do not allow accurate prediction of adverse events in humans. British Journal of Pharmacology, 2012, 166, 1523-1536.	2.7	51
81	Polydrug Use in Adolescence. , 0, , .		5
82	Effects of exposure to amphetamine derivatives on passive avoidance performance and the central levels of monoamines and their metabolites in mice: Correlations between behavior and neurochemistry. Psychopharmacology, 2012, 220, 495-508.	1.5	39
83	Adolescent preâ€exposure to ethanol and 3,4â€methylenedioxymethylamphetamine (MDMA) increases conditioned rewarding effects of MDMA and drugâ€induced reinstatement. Addiction Biology, 2012, 17, 588-600.	1.4	22
84	Modulatory effects of low-dose MDMA on cocaine-induced locomotor activity and place conditioning in rats. Pharmacology Biochemistry and Behavior, 2012, 100, 377-381.	1.3	3
85	Differential effects of modafinil, methamphetamine, and MDMA on agonistic behavior in male mice. Pharmacology Biochemistry and Behavior, 2012, 102, 215-223.	1.3	18
86	Effects of repeated treatment with MDMA on working memory and behavioural flexibility in mice. Addiction Biology, 2013, 18, 263-273.	1.4	31
87	Cocaine potentiates MDMA-induced oxidative stress but not dopaminergic neurotoxicity in mice: implications for the pathogenesis of free radical-induced neurodegenerative disorders. Psychopharmacology, 2013, 230, 125-135.	1.5	14
88	Effects of a short-course MDMA binge on dopamine transporter binding and on levels of dopamine and its metabolites in adult male rats. European Journal of Pharmacology, 2013, 701, 176-180.	1.7	11
89	5-Iodo-2-aminoindan (5-IAI): Chemistry, pharmacology, and toxicology of a research chemical producing MDMA-like effects. Toxicology Letters, 2013, 218, 24-29.	0.4	12
90	3,4-Methylenedioxymethamphetamine induces a hyperthermic and hypermetabolic crisis in pigs with and without a genetic disposition for malignant hyperthermia. European Journal of Anaesthesiology, 2013, 30, 29-37.	0.7	8
91	3,4-methylenedioxymethamphetamine (MDMA): current perspectives. Substance Abuse and Rehabilitation, 2013, 4, 83.	1.6	65

#	Article	IF	CITATIONS
92	Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sciences, 2014, 97, 31-36.	2.0	37
93	Age differences in (±) 3,4â€methylenedioxymethamphetamine (MDMA)â€induced conditioned taste aversions and monoaminergic levels. Developmental Psychobiology, 2014, 56, 635-646.	0.9	12
94	3,4-Methylenedioxymethamphetamine Induces Gene Expression Changes in Rats Related to Serotonergic and Dopaminergic Systems, But Not to Neurotoxicity. Neurotoxicity Research, 2014, 25, 161-169.	1.3	13
95	D1 but not D4 Dopamine Receptors are Critical for MDMA-Induced Neurotoxicity in Mice. Neurotoxicity Research, 2014, 25, 100-109.	1.3	12
96	The heat is on: Molecular mechanisms of drug-induced hyperthermia. Temperature, 2014, 1, 183-191.	1.7	18
97	Investigation of the mechanisms mediating MDMA "Ecstasy―induced increases in cerebro-cortical perfusion determined by btASL MRI. Psychopharmacology, 2015, 232, 1501-1513.	1.5	4
98	Neurochemical substrates of the rewarding effects of MDMA. Behavioural Pharmacology, 2016, 27, 116-132.	0.8	7
99	Influence of caffeine on 3,4â€methylenedioxymethamphetamineâ€induced dopaminergic neuron degeneration and neuroinflammation is ageâ€dependent. Journal of Neurochemistry, 2016, 136, 148-162.	2.1	31
100	Opioid gene expression changes and post-translational histone modifications at promoter regions in the rat nucleus accumbens after acute and repeated 3,4-methylenedioxy-methamphetamine (MDMA) exposure. Pharmacological Research, 2016, 114, 209-218.	3.1	19
101	Widespread reduction of dopamine cell bodies and terminals in adult rats exposed to a low dose regimen of MDMA during adolescence. Neuropharmacology, 2017, 123, 385-394.	2.0	17
102	Progression and Persistence of Neurotoxicity Induced by MDMA in Dopaminergic Regions of the Mouse Brain and Association with Noradrenergic, GABAergic, and Serotonergic Damage. Neurotoxicity Research, 2017, 32, 563-574.	1.3	24
103	Differential effects of MDMA and cocaine on inhibitory avoidance and object recognition tests in rodents. Neurobiology of Learning and Memory, 2017, 146, 1-11.	1.0	14
104	Are ecstasy induced serotonergic alterations overestimated for the majority of users?. Journal of Psychopharmacology, 2018, 32, 741-748.	2.0	14
105	Effects of MDMA on neuroplasticity, amyloid burden and phospho-tau expression in APPswe/PS1dE9 mice. Journal of Psychopharmacology, 2019, 33, 1170-1182.	2.0	7
106	Lack of Rhes Increases MDMA-Induced Neuroinflammation and Dopamine Neuron Degeneration: Role of Gender and Age. International Journal of Molecular Sciences, 2019, 20, 1556.	1.8	19
107	Of mice and men on MDMA: A translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine (â€~Ecstasy'). Brain Research, 2020, 1727, 146556.	1.1	8
108	The acute toxic and neurotoxic effects of 3,4-methylenedioxymethamphetamine are more pronounced in adolescent than adult mice. Behavioural Brain Research, 2020, 380, 112413.	1.2	9
109	The role of dopamine D1 receptors in MDMA-induced memory impairments. Neurobiology of Learning and Memory, 2020, 176, 107322.	1.0	3

#	Article	IF	CITATIONS
110	Mephedrone and MDMA: A comparative review. Brain Research, 2020, 1735, 146740.	1.1	22
111	Potential Role of Serum S-100β Protein as a Predictor of Cardiotoxicity and Clinical Poor Outcome in Acute Amphetamine Intoxication. Cardiovascular Toxicology, 2021, 21, 375-386.	1.1	3
112	Breathing new life into neurotoxic-based monkey models of Parkinson's disease to study the complex biological interplay between serotonin and dopamine. Progress in Brain Research, 2021, 261, 265-285.	0.9	3
113	Methylenedioxymethamphetamine (MDMA): Serotonergic and dopaminergic mechanisms related to its use and misuse. Journal of Neurochemistry, 2021, 157, 1714-1724.	2.1	18
114	Ecstasy (3,4-methylenedioxymethamphetamine): Cardiovascular effects and mechanisms. European Journal of Pharmacology, 2021, 903, 174156.	1.7	7
115	Activation of Antioxidant and Proteolytic Pathways in the Nigrostriatal Dopaminergic System After 3,4-Methylenedioxymethamphetamine Administration: Sex-Related Differences. Frontiers in Pharmacology, 2021, 12, 713486.	1.6	5
117	Role of the Dopaminergic System in the Acquisition, Expression and Reinstatement of MDMA-Induced Conditioned Place Preference in Adolescent Mice. PLoS ONE, 2012, 7, e43107.	1.1	37
118	Electroencephalographic and Convulsive Effects of Binge Doses of (+)- Methamphetamine, 5-methoxydiisopropyltryptamine, and (±)-3,4- Methylenedioxymethamphetamine in Rats. The Open Neuropsychopharmacology Journal, 2012, 5, 1-8.	0.3	2
119	Is the 5-iodo-2-aminoindan (5-IAI) the New MDMA?. Journal of Addiction Research & Therapy, 2012, 03, .	0.2	2
121	Disorders relating to the use of ecstasy and other â€~party drugs'. , 2012, , 494-502.		1
122	Agmatine attenuates methamphetamine-induced passive avoidance learning and memory and CaMKII-α gene expression deteriorations in hippocampus of rat. Physiology and Behavior, 2018, 194, 491-496.	1.0	4
123	MDMA related neuro-inflammation and adenosine receptors. Neurochemistry International, 2022, 153, 105275.	1.9	2
124	The Biology of Nitric Oxide Signaling and MDMA. , 2022, , 1-29.		0
128	MDMA for the Treatment of Negative Symptoms in Schizophrenia. Journal of Clinical Medicine, 2022, 11, 3255.	1.0	18
129	The Biology of Nitric Oxide Signaling and MDMA. , 2022, , 2337-2364.		0
130	Midbrain (VTA) circuits. , 2023, , 45-72.		0