Computer simulation for prediction of performance and high energy materials

Journal of Hazardous Materials 112, 17-33 DOI: 10.1016/j.jhazmat.2004.04.012

Citation Report

#	Article	IF	CITATIONS
2	Prediction of heat of formation and related parameters of high energy materials. Journal of Hazardous Materials, 2006, 133, 30-45.	6.5	67
3	Computer code for the optimization of performance parameters of mixed explosive formulations. Journal of Hazardous Materials, 2006, 136, 475-481.	6.5	20
4	Synthesis, characterization and thermolysis studies on new derivatives of 2,4,5-trinitroimidazoles: Potential insensitive high energy materials. Journal of Hazardous Materials, 2007, 143, 192-197.	6.5	75
5	Globally convergent computation of chemical equilibrium composition. Journal of Computational Chemistry, 2008, 29, 1032-1036.	1.5	0
6	Synthesis, characterization and thermolysis studies on 3,7-dinitro-1,3,5,7-tetraazabicyclo[3,3,1]nonane (DPT): A key precursor in the synthesis of most powerful benchmark energetic materials (RDX/HMX) of today. Journal of Hazardous Materials, 2008, 152, 1317-1324.	6.5	23
7	New Atom/Group Volume Additivity Method to Compensate for the Impact of Strong Hydrogen Bonding on Densities of Energetic Materials. Journal of Chemical & Engineering Data, 2008, 53, 520-524.	1.0	57
8	Modeling Growth, Surface Kinetics, and Morphology Evolution in PETN. Propellants, Explosives, Pyrotechnics, 2009, 34, 489-497.	1.0	22
9	Computer code to predict the heat of explosion of high energy materials. Journal of Hazardous Materials, 2009, 161, 714-717.	6.5	11
10	Synthesis and characterization of 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine (BTATz): Novel high-nitrogen content insensitive high energy material. Journal of Hazardous Materials, 2009, 170, 306-313.	6.5	53
11	Synthesis, characterization and evaluation of 1,2-bis(2,4,6-trinitrophenyl) hydrazine: A key precursor for the synthesis of high performance energetic materials. Journal of Hazardous Materials, 2009, 172, 276-279.	6.5	17
12	A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I. Journal of Hazardous Materials, 2009, 172, 1218-1228.	6.5	64
13	MATEO: A software package for the molecular design of energetic materials. Journal of Hazardous Materials, 2010, 176, 313-322.	6.5	15
14	Simple Pathway to Predict the Power of High Energy Materials. Propellants, Explosives, Pyrotechnics, 2011, 36, 424-429.	1.0	12
15	A transportable fast neutron and dual gamma-ray system for the detection of illicit materials. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 648, 275-284.	0.7	9
16	A new approach to predict the strength of high energy materials. Journal of Hazardous Materials, 2011, 186, 175-181.	6.5	9
17	Characterization and Properties of a Novel Energetic–Energetic Cocrystal Explosive Composed of HNIW and BTF. Crystal Growth and Design, 2012, 12, 5155-5158.	1.4	226
18	A Simple Way to Predict Heats of Detonation of Energetic Compounds only from Their Molecular Structures. Propellants, Explosives, Pyrotechnics, 2012, 37, 93-99.	1.0	14
19	Predicting Maximum Attainable Detonation Velocity of CHNOF and Aluminized Explosives. Propellants, Explosives, Pyrotechnics, 2012, 37, 489-497.	1.0	15

CITATION REPORT

#	Article	IF	CITATIONS
20	PtII6 nanoscopic cages with an organometallic backbone as sensors for picric acid. Dalton Transactions, 2013, 42, 16784.	1.6	62
21	Preparation and Performance of a HNIW/TNT Cocrystal Explosive. Propellants, Explosives, Pyrotechnics, 2013, 38, 495-501.	1.0	90
22	Multiple fast neutron and gamma-ray beam systems for the detection of illicit materials. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 973-977.	0.7	2
23	A New Computer Code for Assessment of Energetic Materials with Crystal density, Condensed Phase Enthalpy of Formation, and Activation Energy of Thermolysis. Propellants, Explosives, Pyrotechnics, 2013, 38, 95-102.	1.0	33
24	Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive. Journal of Organic Chemistry, 2013, 78, 1306-1310.	1.7	240
25	"lCT-not-quenching―near infrared ratiometric fluorescent detection of picric acid in aqueous media. Chemical Communications, 2013, 49, 4764.	2.2	178
26	The Pyrenoâ€Triazinyl Radical – Magnetic and Sensor Properties. Israel Journal of Chemistry, 2014, 54, 774-778.	1.0	50
27	Cocrystal explosive hydrate of a powerful explosive, HNIW, with enhanced safety. RSC Advances, 2014, 4, 65121-65126.	1.7	40
28	Preparation and Performance of a BTF/DNB Cocrystal Explosive. Propellants, Explosives, Pyrotechnics, 2014, 39, 9-13.	1.0	49
29	A Novel Cocrystal Explosive of HNIW with Good Comprehensive Properties. Propellants, Explosives, Pyrotechnics, 2014, 39, 590-596.	1.0	120
30	Crystal Packing of Low-Sensitivity and High-Energy Explosives. Crystal Growth and Design, 2014, 14, 4703-4713.	1.4	276
31	Evident Hydrogen Bonded Chains Building CL-20-Based Cocrystals. Crystal Growth and Design, 2014, 14, 3923-3928.	1.4	54
32	Complexâ€Formationâ€Enhanced Fluorescence Quenching Effect for Efficient Detection of Picric Acid. Chemistry - A European Journal, 2014, 20, 12215-12222.	1.7	78
33	Rhodamine based selective turn-on sensing of picric acid. RSC Advances, 2014, 4, 30828-30831.	1.7	150
34	Prediction of Sensitivity of Energetic Compounds with a New Computer Code. Propellants, Explosives, Pyrotechnics, 2014, 39, 95-101.	1.0	22
35	A Fluorescent 1,3â€Diaminonaphthalimide Conjugate of Calix[4]arene for Sensitive and Selective Detection of Trinitrophenol: Spectroscopy, Microscopy, and Computational Studies, and Its Applicability using Cellulose Strips. Chemistry - A European Journal, 2015, 21, 13364-13374.	1.7	44
36	Study on the Azidoâ€Tetrazolo Tautomerizations of 3,6â€Bis(azido)â€1,2,4,5â€tetrazine. Propellants, Explosives, Pyrotechnics, 2015, 40, 627-631.	1.0	8
37	Assessment of the Strength of Energetic Compounds Through the Trauzl Lead Block Expansions Using Their Molecular Structures. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2446-2451.	0.6	7

#	Article	IF	CITATIONS
38	Identifying high energy molecules and predicting their detonation potency using chemometric modelling approaches. Combustion Theory and Modelling, 2015, 19, 451-464.	1.0	4
39	Cubane: 50 Years Later. Chemical Reviews, 2015, 115, 6719-6745.	23.0	145
40	A suitable computer code for prediction of sublimation energy and deflagration temperature of energetic materials. Journal of Thermal Analysis and Calorimetry, 2015, 121, 675-681.	2.0	13
41	Prediction of heats of sublimation of energetic compounds using their molecular structures. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1941-1951.	2.0	37
42	Electron-Rich Triphenylamine-Based Sensors for Picric Acid Detection. Journal of Organic Chemistry, 2015, 80, 4064-4075.	1.7	145
43	1,8-Naphthyridine-based fluorescent receptors for picric acid detection in aqueous media. Analytical Methods, 2015, 7, 10272-10279.	1.3	31
44	Aggregates of a hydrazono-sulfonamide adduct as picric acid sensors. RSC Advances, 2015, 5, 92473-92479.	1.7	20
45	Electron-rich ï€-extended phthalocyanine–thiophene–phthalocyanine triad for the sensitive and selective detection of picric acid. RSC Advances, 2015, 5, 73989-73992.	1.7	11
46	A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Advances, 2015, 5, 95764-95770.	1.7	72
47	Concentration dependent ratiometric turn-on selective fluorescence detection of picric acid in aqueous and non-aqueous media. RSC Advances, 2015, 5, 3903-3907.	1.7	10
48	A New Computer Code for Prediction of Enthalpy of Fusion and Melting Point of Energetic Materials. Propellants, Explosives, Pyrotechnics, 2015, 40, 150-155.	1.0	18
49	A novel heteroacene 2-(perfluorophenyl)-1H-imidazo[4,5-b]phenazine for selective sensing of picric acid. RSC Advances, 2016, 6, 37929-37932.	1.7	17
50	Recent Developments for Prediction of Power of Aromatic and Nonâ€Aromatic Energetic Materials along with a Novel Computer Code for Prediction of Their Power. Propellants, Explosives, Pyrotechnics, 2016, 41, 942-948.	1.0	3
51	Fluorescence tuning of Zn(<scp>ii</scp>)-based metallo-supramolecular coordination polymers and their application for picric acid detection. Inorganic Chemistry Frontiers, 2016, 3, 1363-1375.	3.0	25
52	Comparative study of melting points of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF)/1,3,3-trinitroazetidine (TNAZ) eutectic compositions using molecular dynamic simulations. RSC Advances, 2016, 6, 59141-59149.	1.7	23
53	Chargeâ€Transferâ€Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid. Chemistry - A European Journal, 2016, 22, 2012-2019.	1.7	106
54	Highly sensitive fluorescent imidazolium-based sensors for nanomolar detection of explosive picric acid in aqueous medium. Sensors and Actuators B: Chemical, 2016, 229, 599-608.	4.0	70
55	Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range. Journal of Fluorescence, 2016, 26, 395-401.	1.3	25

CITATION REPORT

#	Article	IF	CITATIONS
56	Theoretical insights into the effects of molar ratios on stabilities, mechanical properties, and detonation performance of CL-20/HMX cocrystal explosives by molecular dynamics simulation. Journal of Molecular Modeling, 2017, 23, 30.	0.8	16
57	Structurally modified RDX - A DFT study. Defence Technology, 2017, 13, 385-391.	2.1	12
58	A Highly Selective Fluorescent Chemosensor for the Detection of Picrate Anion Based on 1,8-Naphthalimide Derivatives. Journal of Applied Spectroscopy, 2017, 84, 25-30.	0.3	16
59	Theoretical insights into effects of molar ratios on stabilities, mechanical properties and detonation performance of CL-20/RDX cocrystal explosives by molecular dynamics simulation. Journal of Molecular Structure, 2017, 1141, 577-583.	1.8	29
60	A nonconjugated macromolecular luminogen for speedy, selective and sensitive detection of picric acid in water. Polymer Chemistry, 2017, 8, 7180-7187.	1.9	58
61	Ultrasensitive detection of explosives via hydrophobic condensation effect on biomimetic SERS platforms. Journal of Materials Chemistry C, 2017, 5, 12384-12392.	2.7	41
62	Molecular dynamics calculation on structures, stabilities, mechanical properties, and energy density of CL-20/FOX-7 cocrystal explosives. Journal of Molecular Modeling, 2017, 23, 362.	0.8	8
63	Metalâ€Free <i>γ,δ</i> â€Unsaturated <i>β</i> â€Ketothiolester: Solvatochromism, AIEE and Detection of Picric Acid. ChemistrySelect, 2018, 3, 4075-4081.	0.7	8
64	Synthesis, Crystal Structure, and Thermal Behavior of a Novel Insensitive Energetic Cocrystal Composed of 3,3â€2â€Bis(1,2,4â€oxadiazole)â€5,5â€2â€dione and 4â€Aminoâ€1,2,4â€triazole. Zeitschrift Fur A Und Allgemeine Chemie, 2018, 644, 466-471.	An o rganiso	chø
	8		
65	5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO). , 2018, , 163-211.		3
65 66	5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO). , 2018, , 163-211. Novel 2â€Arylbenzothiazoles: Selective Chromogenic and Fluorescent Probes for the Detection of Picric Acid. ChemistrySelect, 2018, 3, 4598-4608.	0.7	3 15
65 66 67	5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO). , 2018, , 163-211. Novel 2â€Arylbenzothiazoles: Selective Chromogenic and Fluorescent Probes for the Detection of Picric Acid. ChemistrySelect, 2018, 3, 4598-4608. Investigation on sensing mechanism of a fluorescent probe for TNP detection in aqueous solution. Tetrahedron, 2018, 74, 2684-2691.	0.7	3 15 21
65666768	5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO)., 2018, 163-211. Novel 2â€Arylbenzothiazoles: Selective Chromogenic and Fluorescent Probes for the Detection of Picric Acid. ChemistrySelect, 2018, 3, 4598-4608. Investigation on sensing mechanism of a fluorescent probe for TNP detection in aqueous solution. Tetrahedron, 2018, 74, 2684-2691. Fluorescent nanoaggregates of quinoxaline derivatives for highly efficient and selective sensing of trace picric acid. Dyes and Pigments, 2018, 155, 107-113.	0.7 1.0 2.0	3 15 21 41
 65 66 67 68 76 	5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO)., 2018, 163-211. Novel 2â€Arylbenzothiazoles: Selective Chromogenic and Fluorescent Probes for the Detection of Picric Acid. ChemistrySelect, 2018, 3, 4598-4608. Investigation on sensing mechanism of a fluorescent probe for TNP detection in aqueous solution. Tetrahedron, 2018, 74, 2684-2691. Fluorescent nanoaggregates of quinoxaline derivatives for highly efficient and selective sensing of trace picric acid. Dyes and Pigments, 2018, 155, 107-113. Assessment of density prediction methods based on molecular surface electrostatic potential. Journal of Molecular Modeling, 2018, 24, 166.	0.7 1.0 2.0 0.8	3 15 21 41 10
 65 66 67 68 76 77 	 5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO). , 2018, , 163-211. Novel 2â€Arylbenzothiazoles: Selective Chromogenic and Fluorescent Probes for the Detection of Picric Acid. ChemistrySelect, 2018, 3, 4598-4608. Investigation on sensing mechanism of a fluorescent probe for TNP detection in aqueous solution. Tetrahedron, 2018, 74, 2684-2691. Fluorescent nanoaggregates of quinoxaline derivatives for highly efficient and selective sensing of trace picric acid. Dyes and Pigments, 2018, 155, 107-113. Asseessment of density prediction methods based on molecular surface electrostatic potential. Journal of Molecular Modeling, 2018, 24, 166. Theoretical investigations on stabilities, sensitivity, energetic performance and mechanical properties of CL-20/NTO cocrystal explosives by molecular dynamics simulation. Theoretical Chemistry Accounts, 2018, 137, 1. 	0.7 1.0 2.0 0.8	3 15 21 41 10 17
 65 66 67 68 76 77 78 	 5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO). , 2018, , 163-211. Novel 2â€Arylbenzothiazoles: Selective Chromogenic and Fluorescent Probes for the Detection of Picric Acid. ChemistrySelect, 2018, 3, 4598-4608. Investigation on sensing mechanism of a fluorescent probe for TNP detection in aqueous solution. Tetrahedron, 2018, 74, 2684-2691. Fluorescent nanoaggregates of quinoxaline derivatives for highly efficient and selective sensing of trace picric acid. Dyes and Pigments, 2018, 155, 107-113. Assessment of density prediction methods based on molecular surface electrostatic potential. Journal of Molecular Modeling, 2018, 24, 166. Theoretical investigations on stabilities, sensitivity, energetic performance and mechanical properties of CL-20[NTO cocrystal explosives by molecular dynamics simulation. Theoretical Chemistry Accounts, 2018, 137, 1. Shock response of condensed-phase RDX: molecular dynamics simulations in conjunction with the MSST method. RSC Advances, 2018, 8, 17312-17320. 	0.7 1.0 2.0 0.8 0.5	3 15 21 41 10 17
 65 66 67 68 76 77 78 79 	 5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO)., 2018, , 163-211. Novel 2â€Arylbenzothiazoles: Selective Chromogenic and Fluorescent Probes for the Detection of Picric Acid. ChemistrySelect, 2018, 3, 4598-4608. Investigation on sensing mechanism of a fluorescent probe for TNP detection in aqueous solution. Tetrahedron, 2018, 74, 2684-2691. Fluorescent nanoaggregates of quinoxaline derivatives for highly efficient and selective sensing of trace picric acid. Dyes and Pigments, 2018, 155, 107-113. Assessment of density prediction methods based on molecular surface electrostatic potential. Journal of Molecular Modeling, 2018, 24, 166. Theoretical investigations on stabilities, sensitivity, energetic performance and mechanical properties of CL-20/NTO cocrystal explosives by molecular dynamics simulation. Theoretical Chemistry Accounts, 2018, 137, 1. Shock response of condensed-phase RDX: molecular dynamics simulations in conjunction with the MSST method. RSC Advances, 2018, 8, 17312-17320. Synthesis, spectral, and computational studies of some energetic picrates. Journal of Molecular Structure, 2019, 1195, 378-386. 	0.7 1.0 2.0 0.8 0.5 1.7	 3 15 21 41 10 17 12 3

CITATION REPORT

#	Article	IF	CITATIONS
81	Effect of external growth environment on cocrystal habits of HNIW/DNB: a molecular dynamics simulation. Canadian Journal of Chemistry, 2020, 98, 746-754.	0.6	0
82	Intermolecular interactions, vibrational spectra, and detonation performance of <scp>CL</scp> â€20/ <scp>TNT</scp> cocrystal. Journal of the Chinese Chemical Society, 2020, 67, 1742-1752.	0.8	9
83	Machine-Learning Assisted Screening of Energetic Materials. Journal of Physical Chemistry A, 2020, 124, 5341-5351.	1.1	37
84	Design of new energetic materials based on derivatives of 1,3,5-trinitrobenzenes: A theoretical and computational prediction of detonation properties, blast impulse and combustion parameters. Heliyon, 2020, 6, e03163.	1.4	7
85	High-efficiency fluorescent probe constructed by triazine polycarboxylic acid for detecting nitro compounds. Inorganica Chimica Acta, 2020, 507, 119591.	1.2	12
86	Different Stoichiometric Ratios Realized in Energetic–Energetic Cocrystals Based on CL-20 and 4,5-MDNI: A Smart Strategy to Tune Performance. Crystal Growth and Design, 2020, 20, 3826-3833.	1.4	28
87	Density Prediction Models for Energetic Compounds Merely Using Molecular Topology. Journal of Chemical Information and Modeling, 2021, 61, 2582-2593.	2.5	25
88	Magic of Numbers: A Guide for Preliminary Estimation of the Detonation Performance of C–H–N–O Explosives Based on Empirical Formulas. Industrial & Engineering Chemistry Research, 2021, 60, 1952-1961.	1.8	13
89	ON THE EXPLICIT DETERMINATION OF THE CHAPMAN-JOUGUET PARAMETERS FOR AN EXPLOSIVE COMPOUND. International Journal of Energetic Materials and Chemical Propulsion, 2015, 14, 125-145.	0.2	1
90	Efficient detection of Picric acid by pyranone based Schiff base as a chemosensor. Journal of Molecular Structure, 2022, 1249, 131619.	1.8	19
91	Multi-Level Structural Design Strategy toward Low-Sensitivity Energetic Materials: From Planar Molecule to Layered Packing Crystal. Crystal Growth and Design, 2022, 22, 1882-1891.	1.4	4
92	Simple Model for Predicting the Detonation Velocity of Organic, Inorganic, and Mixed Explosives. Combustion, Explosion and Shock Waves, 2021, 57, 726-735.	0.3	1
93	Silver(I)–Carbene Bond-Directed Rigidification-Induced Emissive Metallacage for Picric Acid Detection. Inorganic Chemistry, 2022, 61, 713-722.	1.9	26
94	Theoretical Calculation of Cocrystal Components for Explosives: A Similarity Function of Energetic Supramolecules. Crystal Growth and Design, 2022, 22, 293-303.	1.4	2
95	Solubility Determination, Computational Methodologies, and Preferential Solvation of 3-Nitro-1,2,4-triazol-5-one in Several Solvent Blends. Journal of Chemical & Engineering Data, 0, , .	1.0	1
96	Computational Evaluation of Polycyclic Bis-Oxadiazolo-Pyrazine Backbone in Designing Potential Energetic Materials. Polycyclic Aromatic Compounds, 2023, 43, 6717-6729.	1.4	Ο
97	The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule. Journal of Natural and Applied Sciences, 2022, 26, 366-371.	0.1	0
98	Triazole-based pyrene-sugar analogues for selective detection of picric acid in water medium and paper strips. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 440, 114647.	2.0	6

#	Article	IF	CITATIONS
99	Methods for Detecting Picric Acid—A Review of Recent Progress. Applied Sciences (Switzerland), 2023, 13, 3991.	1.3	6