Pressure dependence of the lattice dynamics of ZnO: Ar

Physical Review B 69, DOI: 10.1103/physrevb.69.094306

Citation Report

#	Article	IF	CITATIONS
1	Effects of pressure on the phonon–phonon and electron–phonon interactions in semiconductors. Physica Status Solidi (B): Basic Research, 2004, 241, 3128-3137.	1.5	14
2	Pressure-Raman study of resonant TO(Γ)–two-phonon decay processes in ZnS: Comparison of three isotope compositions. Physica Status Solidi (B): Basic Research, 2004, 241, 3143-3148.	1.5	5
3	Electronic and Lattice Properties of Layered Hexagonal Compounds Under Anisotropic Compression: A First-Principles Study. Materials Transactions, 2005, 46, 1094-1099.	1.2	9
4	Raman scattering study of ZnO:Ti and ZnO:Mn bulk crystals. Superlattices and Microstructures, 2005, 38, 428-438.	3.1	19
5	A brief introduction to the ABINIT software package. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, .	0.8	1,101
6	Pressure-induced phase transformation in controlled shape ZnO nanorods. Solid State Communications, 2005, 135, 780-784.	1.9	32
7	Raman measurements on nanocolumnar ZnO crystals. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1602-1605.	1.8	10
8	Vibrational properties of delafossiteCuGaO2at ambient and high pressures. Physical Review B, 2005, 72,	3.2	74
9	Long-lived optical phonons in ZnO studied with impulsive stimulated Raman scattering. Physical Review B, 2005, 71, .	3.2	57
10	First-principle studies of the lattice dynamics of crystals, and related properties. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, .	0.8	72
11	Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 2005, 97, 053516.	2.5	340
12	Ab initioinvestigations of optical properties of the high-pressure phases of ZnO. Physical Review B, 2005, 71, .	3.2	363
13	Rietveld refinement study of the pressure dependence of the internal structural parameteruin the wurtzite phase of ZnO. Physical Review B, 2005, 71, .	3.2	71
14	Synthesis and characterization of ZnO thin film grown by electron beam evaporation. Journal of Applied Physics, 2006, 99, 123105.	2.5	118
15	Infrared optical properties of MgxZn1â^'xO thin films (0⩽x⩽1): Long-wavelength optical phonons and dielectric constants. Journal of Applied Physics, 2006, 99, 113504.	2.5	82
16	First-principles study of ground- and excited-state properties ofMgO,ZnO, andCdOpolymorphs. Physical Review B, 2006, 73, .	3.2	361
17	Theoretical study of the structural, electronic and dynamical properties of rocksalt ScN and GaN. Diamond and Related Materials, 2006, 15, 1175-1178.	3.9	22
18	Novel Phase Transformation in ZnO Nanowires under Tensile Loading. Physical Review Letters, 2006, 97, 105502.	7.8	171

#	Article	IF	CITATIONS
19	Analytic bond-order potential for atomistic simulations of zinc oxide. Journal of Physics Condensed Matter, 2006, 18, 6585-6605.	1.8	68
20	Theoretical study of ZnO phases using a screened hybrid density functional. Physical Review B, 2006, 74, .	3.2	83
21	Heat capacity of ZnO: Isotope effects. Physical Review B, 2006, 73, .	3.2	31
22	Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films. Applied Physics Letters, 2006, 88, 101905.	3.3	82
23	Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 976-979.	0.8	75
24	Photoluminescence of thermal-annealed nanocolumnar ZnO thin films grown by electrodeposition. Applied Surface Science, 2006, 252, 2826-2831.	6.1	43
25	A comparative first-principles study of ZnS and ZnO in zinc blende structure. Journal of Crystal Growth, 2006, 287, 185-188.	1.5	51
26	Structural and electronic properties of ZnO under high pressures. Solid State Communications, 2006, 137, 395-399.	1.9	72
27	Phonon modes, dielectric constants, and exciton mass parameters in ternary MgxZn1â^'xO. Materials Research Society Symposia Proceedings, 2006, 928, 1.	0.1	1
28	Study of the Temperature Dependence of E2 and A1(LO) Modes in ZnO. Materials Research Society Symposia Proceedings, 2006, 957, 1.	0.1	0
29	Raman Scattering Characterization of Implanted ZnO. Materials Research Society Symposia Proceedings, 2006, 957, 1.	0.1	0
30	Isotopic-mass dependence of the A, B, and C excitonic band gaps inZnOat low temperatures. Physical Review B, 2006, 74, .	3.2	59
31	Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires. Applied Physics Letters, 2007, 90, 153510.	3.3	126
32	First-principles study of polarization inZn1â^'xMgxO. Physical Review B, 2007, 75, .	3.2	87
33	Effect of temperature on isotopic mass dependence of excitonic band gaps in semiconductors: ZnO. Physical Review B, 2007, 75, .	3.2	28
34	Correlating the microstructural and photoluminescence properties of ZnO nanoparticles prepared by ball milling. , 2007, , .		3
35	Analysis of the vibrational properties of Zn _{1-x} Co _x O by Raman spectroscopy. Journal of Physics: Conference Series, 2007, 92, 012149.	0.4	13
36	Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method. Journal Physics D: Applied Physics, 2007, 40, 3654-3659.	2.8	78

#	Article	IF	CITATIONS
37	Optical characterization of hierarchical ZnO structures grown with a simplified vapour transport method. Nanotechnology, 2007, 18, 215705.	2.6	19
38	The stability and electronic structure of single-walled ZnO nanotubes by density functional theory. Nanotechnology, 2007, 18, 345706.	2.6	64
39	Structural Growth Sequences and Electronic Properties of Zinc Oxide Clusters (ZnO)n(n=2-18). Journal of Physical Chemistry C, 2007, 111, 4956-4963.	3.1	157
40	Temperature-dependent Raman scattering in N–In codoped p-type ZnO thin films. Journal Physics D: Applied Physics, 2007, 40, 7471-7474.	2.8	11
41	Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism. Journal of Physics Condensed Matter, 2007, 19, 026212.	1.8	78
42	Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. Journal of Applied Physics, 2007, 102, .	2.5	228
43	Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires. Journal of Solid State Chemistry, 2007, 180, 1188-1192.	2.9	51
44	Structural parameters and transition pressures of ZnO: ab-initio calculations. Physica Status Solidi (B): Basic Research, 2007, 244, 1063-1069.	1.5	62
45	Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound. Physica Status Solidi (B): Basic Research, 2007, 244, 3154-3167.	1.5	86
46	Structural properties of ZnO polymorphs. Physica Status Solidi (B): Basic Research, 2007, 244, 1538-1543.	1.5	19
47	The phonon dispersion of wurtzite-ZnO revisited. Physica Status Solidi (B): Basic Research, 2007, 244, 1478-1482.	1.5	17
48	Dependence of structural properties of ZnO on high pressure. Materials Chemistry and Physics, 2007, 106, 11-15.	4.0	28
49	Elastic parameters of single-crystal and polycrystalline wurtzite-like oxides BeO and ZnO: Ab initio calculations. Physics of the Solid State, 2007, 49, 1067-1073.	0.6	49
50	Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing. Physical Review B, 2007, 75, .	3.2	213
51	Electronic structure of wurtzite ZnO: Nonlocal pseudopotential and <i>ab initio</i> calculations. Journal of Applied Physics, 2007, 102, .	2.5	75
52	Temperature dependence of Raman scattering inZnO. Physical Review B, 2007, 75, .	3.2	1,220
53	Wire versus Tube:  Stability of Small One-Dimensional ZnO Nanostructures. Nano Letters, 2007, 7, 2267-2271.	9.1	80
54	Synthesis of two-dimensional ZnO nanopellets by pyrolysis of zinc oleate. Chemical Engineering Journal, 2008, 142, 337-343.	12.7	50

	Сітат	ion Report	
#	Article	IF	CITATIONS
55	A reactive force field (ReaxFF) for zinc oxide. Surface Science, 2008, 602, 1020-1031.	1.9	134
56	ZnO lasing in complex systems with tetrapods. Applied Physics B: Lasers and Optics, 2008, 93, 231-238.	2.2	24
57	Cathodic electrodeposition of ZnCoO thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3358-3360.	0.8	6
58	Zinc oxide: A case study in contemporary computational solid state chemistry. Journal of Computational Chemistry, 2008, 29, 2234-2249.	3.3	105
59	Relative stability of nanosized wurtzite and graphitic ZnO from density functional theory. Chemical Physics Letters, 2008, 466, 84-87.	2.6	23
60	Raman scattering investigation of hydrogen and nitrogen ion implanted ZnO thin films. Current Applied Physics, 2008, 8, 291-294.	2.4	66
61	The crystallization and physical properties of Al-doped ZnO nanoparticles. Applied Surface Science, 2008, 254, 5791-5795.	6.1	205
62	Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study. Physica B: Condensed Matter, 2008, 403, 2832-2837.	2.7	9
63	First-principles study of ground- and metastable-state properties of XO (X = Be, Mg, Ca, Sr, Ba, Zn and) Tj	ETQq0 0 0 <u>1.5</u> gBT /	Overlock 10
64	Bulk moduli of wurtzite, zinc-blende, and rocksalt phases of ZnO from chemical bond method and density functional theory. Applied Physics Letters, 2008, 92, .	3.3	28
65	First-principles study of high-pressure phonon dispersions of wurtzite, zinc-blende, and rocksalt AlN. Journal of Applied Physics, 2008, 103, .	2.5	52
66	Optical Properties of ZnO and Related Compounds. Springer Series in Materials Science, 2008, , 79-124.	0.6	34
67	Structural impact of Mn implantation on ZnO. New Journal of Physics, 2008, 10, 043004.	2.9	61
68	Stability of wurtzite, unbuckled wurtzite, and rocksalt phases of SiC, GaN, InN, ZnO, and CdSe under loading of different triaxialities. Physical Review B, 2008, 77, .	3.2	62
69	Lattice dynamics of antimony at high pressure: anab initiostudy. High Pressure Research, 2008, 28, 477-481.	1.2	3
70	Electronic properties and stability of ZnO from computational study. Physica B: Condensed Matter, 2008, 403, 3154-3158.	2.7	19
71	Structural, optical, and magnetic characterization of monodisperse Fe-doped ZnO nanocrystals. Journal of Applied Physics, 2008, 103, .	2.5	76
72	A first-principle analysis on the phase stabilities, chemical bonds and band gaps of wurtzite structure A _{<i>x</i>} Zn _{1â^'<i>x</i>} O alloys (A = Ca, Cd, Mg). Journal of Physics Condensed Matter, 2008, 20, 235221.	d 1.8	67

#	Article	IF	CITATIONS
73	Cage and tube structures of medium-sized zinc oxide clusters (ZnO)n (n=24, 28, 36, and 48). Journal of Chemical Physics, 2008, 128, 144710.	3.0	60
74	Pressure induced wurtzite-to-zinc blende phase transition in ZnO at finite temperature. Journal of Materials Research, 2008, 23, 3347-3352.	2.6	11
75	Thermal and ion induced annealing of nanocrystalline ZnO thin film deposited by atom beam sputtering. Journal Physics D: Applied Physics, 2008, 41, 045305.	2.8	34
76	<i>Ab initio</i> calculation of lattice dynamics in BeO. Journal of Physics Condensed Matter, 2008, 20, 395201.	1.8	11
77	Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type semiconductors. Physical Review B, 2008, 77, .	3.2	61
78	Crystallographically oriented Zn nanocrystals formed in ZnO by Mn+-implantation. Applied Physics Letters, 2008, 93, 131919.	3.3	10
80	Structural, vibrational and thermodynamics propertiesof Zn-based semiconductors. Solid State Sciences, 2009, 11, 1343-1349.	3.2	14
81	Ab-initio valence band spectra of Al, In doped ZnO. Thin Solid Films, 2009, 517, 2448-2451.	1.8	41
82	A study on the Raman spectra of Al-doped and Ga-doped ZnO ceramics. Current Applied Physics, 2009, 9, 651-657.	2.4	73
83	Lasing with guided modes in ZnO nanorods and nanowires. Applied Physics B: Lasers and Optics, 2009, 97, 817-823.	2.2	18
84	Analysis of Raman modes in Mnâ€doped ZnO nanocrystals. Physica Status Solidi (B): Basic Research, 2009, 246, 2329-2332.	1.5	78
85	Bound and free excitons in ZnO. Optical selection rules in the absence and presence of time reversal symmetry. Microelectronics Journal, 2009, 40, 289-292.	2.0	12
86	Effect of temperature on Raman scattering in hexagonal ZnMgO for optoelectronic applications. Solid State Communications, 2009, 149, 10-13.	1.9	16
87	Effect of annealing on Zn1â^'xCoxO thin films prepared by electrodeposition. Microelectronics Journal, 2009, 40, 268-271.	2.0	15
88	Nonlinear optical response of wurtzite ZnO from first principles. Physica B: Condensed Matter, 2009, 404, 2340-2344.	2.7	27
89	Structural, electronic and optical calculations of CaxZn1â^'xO alloys: A first principles study. Journal of Physics and Chemistry of Solids, 2009, 70, 874-880.	4.0	23
90	Raman and highly ultraviolet red-shifted near band-edge properties of LaCe-co-doped ZnO nanoparticles. Acta Materialia, 2009, 57, 4790-4796.	7.9	54
91	Surface effects in zinc oxide nanoparticles. Physical Review B, 2009, 79, .	3.2	35

#	Article	IF	CITATIONS
92	Ab initio study of structural, dielectric, and dynamical properties of zinc-blende ZnX (X=O, S, Se, Te). Journal of Alloys and Compounds, 2009, 471, 492-497.	5.5	67
93	Structural and electronic properties of ZnO under high pressure. Journal of Alloys and Compounds, 2009, 476, 306-310.	5.5	42
94	Structural stability and Raman scattering of ZnSe nanoribbons under high pressure. Journal of Alloys and Compounds, 2009, 480, 798-801.	5.5	26
95	Influence of substrate surface polarity on homoepitaxial growth of ZnO layers by chemical vapor deposition. Physical Review B, 2009, 79, .	3.2	47
96	A hierarchical lattice structure and formation mechanism of ZnO nano-tetrapods. Nanotechnology, 2009, 20, 325709.	2.6	11
97	Synthesis and Luminescence Properties of (N-Doped) ZnO Nanostructures from a Dimethylformamide Aqueous Solution. Journal of Physical Chemistry C, 2009, 113, 13643-13650.	3.1	50
98	Anharmonic phonon coupling in vapor-liquid-solid grown ZnO nanowires. Applied Physics Letters, 2009, 95, .	3.3	5
99	Phonons in bulk CdSe and CdSe nanowires. Nanotechnology, 2009, 20, 115707.	2.6	33
100	Optical and electrical resistivity studies of isovalent and aliovalent <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>d</mml:mi></mml:mrow></mml:math> transition metal ion doped ZnO. Physical Review B, 2009, 80, .	3.2	128
101	Theory of high field carrier transport and impact ionization in wurtzite GaN. Part I: A full band Monte Carlo model. Journal of Applied Physics, 2009, 106, .	2.5	98
102	ZnO particles of wurtzite structure as a component in ZnO/carbon nanotube composite. Journal of Physics Condensed Matter, 2009, 21, 445801.	1.8	11
103	First observation of E2coherent phonon modes in CdS using a noncollinear optical parametric amplifier. Journal of Physics: Conference Series, 2009, 193, 012052.	0.4	1
104	Ab initio lattice dynamics and piezoelectric properties of MgS and MgSe alkaline earth chalcogenides. European Physical Journal B, 2010, 73, 185-193.	1.5	55
105	Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sensors and Actuators B: Chemical, 2010, 144, 56-66.	7.8	418
106	Electron–phonon interaction and size effect study in catalyst based zinc oxide thin films. Journal of Molecular Structure, 2010, 984, 186-193.	3.6	27
107	Numerical Simulation of ZnO-Based Terahertz Quantum Cascade Lasers. Journal of Electronic Materials, 2010, 39, 1097-1103.	2.2	8
108	In Situ Confocal Raman Mapping Study of a Single Ti-Assisted ZnO Nanowire. Nanoscale Research Letters, 2010, 5, 581-586.	5.7	18
109	Stability and electronic properties of ZnxCd1â^'xO alloys. Materials Chemistry and Physics, 2010, 120, 98-103.	4.0	30

#	Article	IF	CITATIONS
110	Ground-state and lattice dynamical properties of BeS in the zinc-blende and nickel arsenide phases. Solid State Sciences, 2010, 12, 563-569.	3.2	21
111	Raman study of structural disorder in ZnO nanopowders. Journal of Raman Spectroscopy, 2010, 41, 914-921.	2.5	337
112	Disorderâ€induced Raman scattering effects in oneâ€dimensional ZnO nanostructures by incorporation and anisotropic distribution of Dy and Li codopants. Journal of Raman Spectroscopy, 2010, 41, 1221-1226.	2.5	36
113	The structure and thermodynamic properties of zinc oxide with wurtzite and rocksalt structure under high pressures. Physica B: Condensed Matter, 2010, 405, 606-612.	2.7	26
114	Raman spectroscopy and Fermi resonance in Mn-doped ZnO bulk single crystal. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4054-4056.	2.1	17
115	Electronic structure and optical properties in ZnO:M(Co, Cd). Thin Solid Films, 2010, 518, 4568-4571.	1.8	26
116	Temperature-induced structure and microstructure evolution of nanostructured Ni _{0.9} Zn _{0.1} O. Journal of Applied Crystallography, 2010, 43, 699-709.	4.5	27
117	Ultraviolet photoconductive sensor based on single ZnO nanowire. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1735-1740.	1.8	83
118	Role of phonons in the optical properties of magnetron sputtered ZnO studied by resonance Raman and photoluminescence. Journal of Applied Physics, 2010, 108, 053507.	2.5	9
119	Two types of excited electron dynamics in zinc oxide. Physical Review B, 2010, 82, .	3.2	20
120	Magnetic-field-enhanced forbidden modes in Co-doped ZnO thin films revealed by Raman scattering. Physical Review B, 2010, 82, .	3.2	9
121	Mn-doped ZnO nanocrystals embedded in Al ₂ O ₃ : structural and electrical properties. Nanotechnology, 2010, 21, 505705.	2.6	11
122	Ab initioapproach to the excited electron dynamics in rutile and anatase TiO2. Journal of Physics Condensed Matter, 2010, 22, 435802.	1.8	24
123	Anharmonic effects in ZnO optical phonons probed by Raman spectroscopy. Applied Physics Letters, 2010, 96, .	3.3	35
124	Effects of Hydrogen Plasma Treatment on the Electrical and Optical Properties of ZnO Films: Identification of Hydrogen Donors in ZnO. ACS Applied Materials & Interfaces, 2010, 2, 1780-1784.	8.0	91
125	Mechanically Stiffened and Thermally Softened Raman Modes of ZnO Crystal. Journal of Physical Chemistry B, 2010, 114, 1648-1651.	2.6	28
126	Intrinsic Linear Optical Properties Close to the Fundamental Absorption Edge. Springer Series in Materials Science, 2010, , 121-168.	0.6	1
127	Influence of External Fields. Springer Series in Materials Science, 2010, , 201-232.	0.6	2

#	Article	IF	CITATIONS
128	Phonon dispersion relations of zinc oxide: Inelastic neutron scattering and <i>ab initio</i> calculations. Physical Review B, 2010, 81, .	3.2	85
129	Femtosecond UV laser non-ablative surface structuring of ZnO crystal: impact on exciton photoluminescence. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 531.	2.1	16
130	Raman scattering of cadmium oxide epilayers grown by metal-organic vapor phase epitaxy. Journal of Applied Physics, 2010, 107, .	2.5	64
131	Crystal Structure, Chemical Binding, and Lattice Properties. Springer Series in Materials Science, 2010, , 7-37.	0.6	17
132	Phase Segregation and Transformations in Arsenic-Implanted ZnO Thin Films. Journal of Physical Chemistry C, 2011, 115, 8798-8807.	3.1	1
133	Theoretical investigation of growth, stability, and electronic properties of beaded ZnO nanoclusters. Journal of Materials Chemistry, 2011, 21, 16905.	6.7	34
134	Raman scattering study of anharmonic phonon decay in InN. Physical Review B, 2011, 83, .	3.2	38
135	Computational study of the structural phases of ZnO. Physical Review B, 2011, 84, .	3.2	40
136	Photoluminescence and Raman Scattering in Ag-doped ZnO Nanoparticles. Journal of Applied Physics, 2011, 109, .	2.5	254
137	High-pressure study of the infrared active modes in wurtzite and rocksalt ZnO. Physical Review B, 2011, 84, .	3.2	12
138	Softening of phonons by lattice defects and structural strain in heavy ion irradiated nanocrystalline zinc oxide films. Journal of Applied Physics, 2011, 110, .	2.5	59
139	Electronic and phononic properties of the chalcopyrite CuGaS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow>. Physical</mml:math 	3.2	19
140	ZnO: phonon dispersion curves, phonon wavenumbers. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2011, , 587-588.	0.0	0
141	Structural and Raman Scattering Properties of ZnO:Al Thin Films Sputter-Deposited at Room Temperature. Journal of the Electrochemical Society, 2011, 159, H96-H101.	2.9	9
142	Structural and optical analysis of ZnBeMgO powder and thin films. Journal of Alloys and Compounds, 2011, 509, 1222-1225.	5.5	18
143	Facile synthesis of highly oriented p-type aluminum co-doped zinc oxide film with aqua ammonia. Journal of Alloys and Compounds, 2011, 509, 2874-2878.	5.5	38
144	Transparent Conductive Zinc Oxide and Its Derivatives. , 2011, , 193-263.		21
145	Fabrication and characterization of an individual ZnO microwire-based UV photodetector. Solid State Sciences, 2011, 13, 1205-1210.	3.2	43

#	Article	IF	CITATIONS
146	A Raman spectroscopic study of structural evolution of electrochemically deposited ZnO films with deposition time. Materials Chemistry and Physics, 2011, 126, 568-572.	4.0	35
147	Effects of geometric structure, orientation and size on structural stability and thermal behavior of zinc oxide nanowires. Materials Research Bulletin, 2011, 46, 1686-1691.	5.2	3
148	Zinc oxide hexagram microrods. , 2011, , .		0
149	Preparation and properties of Zn0.9Ni0.1O diluted magnetic semiconductor nanoparticles. Journal of Nanoparticle Research, 2011, 13, 817-837.	1.9	37
150	Photoconductivity and photoluminescence of ZnO nanoparticles synthesized via co-precipitation method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1605-1612.	3.9	101
151	Lattice dynamical investigations on Zn diffusion in zinc oxide. Bulletin of Materials Science, 2011, 34, 371-375.	1.7	2
152	Raman and Photoluminescence Spectroscopic Detection of Surface-Bound Li+O2â^' Defect Sites in Li-Doped ZnO Nanocrystals Derived from Molecular Precursors. ChemPhysChem, 2011, 12, 1189-1195.	2.1	19
153	Effect of In, Sb and Ga doping on the structure and vibrational modes of hydrothermally grown ZnO nanostructures. Current Applied Physics, 2011, 11, 525-531.	2.4	31
154	Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanoparticles in phenol degradation. Applied Catalysis A: General, 2011, 394, 269-275.	4.3	131
155	Structural and spectroscopic modifications of nanocrystalline zinc oxide films induced by swift heavy ions. Vacuum, 2011, 86, 87-90.	3.5	16
156	Effects of Au layer thickness and number of bilayers on the properties of Au/ZnO multilayers. Journal of Applied Physics, 2011, 109, 094308.	2.5	13
157	Sublattice-specific ordering of ZnO layers during the heteroepitaxial growth at different temperatures. Journal of Applied Physics, 2011, 110, 113516.	2.5	9
158	Structural and photoluminescence properties of Gd implanted ZnO single crystals. Journal of Applied Physics, 2011, 110, .	2.5	76
159	CORRELATION BETWEEN THE ELASTIC AND THE VIBRONIC BEHAVIOR OF NANOSTRUCTURED TITANIA AND THEIR PRESSURE, SIZE, AND TEMPERATURE DEPENDENCE. Journal of Advanced Dielectrics, 2011, 01, 407-416.	2.4	0
160	Strain engineering of the elasticity and the Raman shift of nanostructured TiO2. Journal of Applied Physics, 2011, 110, 044322.	2.5	27
161	Prediction of the Thermal Conductivity of ZnO Nanostructures. Journal of Heat Transfer, 2012, 134, .	2.1	8
162	ZnO Meso-Mechano-Thermo Physical Chemistry. Chemical Reviews, 2012, 112, 2833-2852.	47.7	77
163	On the origin of an additional Raman mode at 275 cmâ^'1 in N-doped ZnO thin films. Journal of Applied Physics, 2012, 111, .	2.5	26

#	Article	IF	CITATIONS
164	First-principles study of doping effect on the phase transition of zinc oxide with transition metal doped. Journal of Alloys and Compounds, 2012, 541, 250-255.	5.5	32
165	Ab initio calculations of phonon transport in ZnO and ZnS. European Physical Journal B, 2012, 85, 1.	1.5	17
166	An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production. Green Chemistry, 2012, 14, 2790.	9.0	145
167	Structural, optical, electrical and thermal properties of zinc oxide thin films by chemical spray pyrolysis. Journal of Molecular Structure, 2012, 1021, 123-129.	3.6	23
168	Synthesis and Raman spectra of hammer-shaped ZnO nanostructures via thermal evaporation growth. Materials Science in Semiconductor Processing, 2012, 15, 258-263.	4.0	3
169	Optical phonons in the bulk and on the surface of ZnO and ZnTe/ZnO nanowires in Raman spectra. Physics of the Solid State, 2012, 54, 2083-2090.	0.6	19
170	First-principles study of ring to cage structural crossover in small ZnO Clusters. Journal of Physics Condensed Matter, 2012, 24, 505502.	1.8	7
171	Size dependent electron–phonon coupling in N, Li, In, Ga, F and Ag doped ZnO thin films. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 98, 453-456.	3.9	17
172	A COMPREHENSIVE DFT STUDY OF ZINC OXIDE IN DIFFERENT PHASES. International Journal of Modern Physics C, 2012, 23, 1250043.	1.7	29
173	Role of point defects on the enhancement of room temperature ferromagnetism in ZnO nanorods. CrystEngComm, 2012, 14, 4713.	2.6	49
174	Diameter―and densityâ€controlled synthesis of wellâ€eligned ZnO nanowire arrays and their properties using a thermal evaporation technique. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1498-1510.	1.8	15
175	Investigation of Vibrational Modes and Phonon Density of States in ZnO Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 6893-6901.	3.1	37
176	Raman tensor elements of wurtzite ZnO. Physical Review B, 2012, 85, .	3.2	55
177	Blue green and UV emitting ZnO nanoparticles synthesized through a non-aqueous route. Optical Materials, 2012, 34, 1241-1245.	3.6	32
178	From the ZnO Hollow Cage Clusters to ZnO Nanoporous Phases: A First-Principles Bottom-Up Prediction. Journal of Physical Chemistry C, 2013, 117, 17633-17643.	3.1	45
179	Electronic structure and band gap engineering of ZnO-based semiconductor alloy films. Molecular Simulation, 2013, 39, 1007-1012.	2.0	3
180	ZnO: phonon frequencies, mode-Grüneisen parameters. , 2013, , 145-153.		1
181	Ab initio prediction of the first and second pressure derivatives of isothermal bulk modulus for the high-pressure rocksalt phase of ZnO. Chemical Physics Letters, 2013, 559, 46-49.	2.6	3

#	Article	IF	CITATIONS
182	High mobility formation of p-type Al doped ZnO:N films annealed under NH3 ambient. Journal of Physics and Chemistry of Solids, 2013, 74, 504-508.	4.0	21
183	Ion-irradiation-induced ferromagnetism in undoped ZnO thin films. Acta Materialia, 2013, 61, 2763-2768.	7.9	28
184	Thermodynamic properties of rock-salt ZnO. Thermochimica Acta, 2013, 572, 1-5.	2.7	8
185	First-principles study of negative thermal expansion in zinc oxide. Journal of Applied Physics, 2013, 114, .	2.5	38
186	High-pressure lattice dynamics in wurtzite and rocksalt indium nitride investigated by means of Raman spectroscopy. Physical Review B, 2013, 88, .	3.2	17
187	Cathodoluminescence of Self-assembled Nanosystems. , 2013, , 557-601.		2
188	Sintering and annealing effects on ZnO microstructure and thermoelectric properties. Acta Materialia, 2013, 61, 3314-3323.	7.9	41
189	Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties. Journal of Alloys and Compounds, 2013, 551, 306-311.	5.5	19
190	High-pressure Raman spectroscopy study of LiGaO2. Solid State Communications, 2013, 164, 6-10.	1.9	15
191	A ZnO/ZnO:Cr isostructural nanojunction electrode for photoelectrochemical water splitting. Nano Energy, 2013, 2, 958-965. Anharmonic resonant Raman modes in Mg <mml:math< td=""><td>16.0</td><td>27</td></mml:math<>	16.0	27
192	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>0.2</mml:mn></mml:mrow></mml:mrow </mml:msub> Zn <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:math /><mml:mrow><mml:mn>0.8</mml:mn></mml:mrow></mml:math </mml:msub>O. Physical Review B.</mml:math 	3.2	7
193	Fabrication and characterization of a diluted magnetic semiconducting TM co-doped Al:ZnO (TM=Co,) Tj ETQq1 Biomolecular Spectroscopy, 2013, 106, 118-123.	l 0.78431 3.9	4 rgBT /Over 15
194	Defects in Zn1â^'xâ^'yCoxMgyO nanoparticles: Probed by XRD, RAMAN and PAS techniques. Materials Science in Semiconductor Processing, 2013, 16, 659-666.	4.0	3
195	A Comparative <i>Ab Initio</i> Thermodynamic Study of Oxygen Vacancies in ZnO and SrTiO ₃ : Emphasis on Phonon Contribution. Journal of Physical Chemistry C, 2013, 117, 13776-13784.	3.1	72
196	Structural and optical characterization of hydroxy-propyl methyl cellulose-capped ZnO nanorods. Journal of Materials Science, 2013, 48, 5536-5542.	3.7	17
197	Growth of large-area non-polar ZnO film without constraint to substrate using oblique-angle sputtering deposition. Journal of the European Ceramic Society, 2013, 33, 1809-1814.	5.7	12
198	Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD. Journal of Luminescence, 2013, 136, 265-269.	3.1	12
199	Studies on intrinsic defects related to Zn vacancy in ZnO nanoparticles. Materials Research Bulletin, 2013, 48, 682-686.	5.2	35

#	Article	IF	CITATIONS
200	Ab initio study of structural parameters and optical properties of ZnTe1â^'xOx. Superlattices and Microstructures, 2013, 53, 155-162.	3.1	26
201	Coherent phonon scattering in ZnO and ZnS at sulfite and oxygen impurities. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 125-130.	1.8	4
202	Structural and optical properties of ZnO and ZnO:Fe nanoparticles under dense electronic excitations. Journal of Applied Physics, 2013, 114, .	2.5	18
203	Tuned synthesis of novel 3D mesoscopic ZnO crystals using buffer layer assisted grown catalysts. AIP Advances, 2013, 3, .	1.3	2
204	Morphological manipulation of the nonlinear optical response of ZnO thin films grown by thermal evaporation. Materials Research Express, 2014, 1, 046201.	1.6	37
205	Phase Field Modeling of the Zn _{1-x} Cd _{_x} O Solid Solutions. Acta Physica Polonica A, 2014, 126, 1079-1082.	0.5	1
206	Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires. AIP Advances, 2014, 4, .	1.3	8
207	Theoretical investigation of band gap and optical properties of ZnO $1\hat{a}$ x Te x alloys (x = 0, 0.25, 0.5, 0.75) Tj E	TQg <u>1</u> 10.2	784314 rgB⊤ 25
208	Elastic properties and lattice vibration modes in ZnTe1â^'xOx. Computational Materials Science, 2014, 83, 22-26.	3.0	4
209	Synthesis as well as Raman and optical properties of Cu-doped ZnO nanorods prepared at low temperature. Ceramics International, 2014, 40, 2091-2095.	4.8	23
210	First-principles study on piezoelectric and electro-optical properties of ZnX (X=O, S, Se, Te). Computational Materials Science, 2014, 87, 248-252.	3.0	4
211	The optical properties of NiAs phase ZnO under pressure calculated by GGA+U method. Optics Communications, 2014, 312, 185-191.	2.1	23
212	A hybrid functional study of the electronic and optical properties of tetragonal PbO-type phase of ZnO under pressure. Journal of Alloys and Compounds, 2014, 586, 611-615.	5.5	9
213	Phonon dynamics and anharmonicity in phase segregated structural domains of MgZnO film. Applied Physics Letters, 2014, 104, .	3.3	6
214	Nanograins: I. Elasticity and Compressibility. Springer Series in Chemical Physics, 2014, , 535-569.	0.2	0
215	New Ab Initio Based Pair Potential for Accurate Simulation of Phase Transitions in ZnO. Journal of Physical Chemistry C, 2014, 118, 11050-11061.	3.1	45
216	Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. Journal of Applied Physics, 2014, 115, .	2.5	198
217	First-principles study of structural, electronic and optical properties of Zn1â^'xMgxO ternary alloys using modified Becke–Johnson potential. Materials Science in Semiconductor Processing, 2014, 18, 114-121.	4.0	12

#	Article	IF	CITATIONS
218	Structural, optical and magnetic properties of sol–gel derived ZnO:Co diluted magnetic semiconductor nanocrystals: an EXAFS study. Journal of Materials Chemistry C, 2014, 2, 481-495.	5.5	116
219	Investigations on structural and optical properties of ZnO and ZnO:Co nanoparticles under dense electronic excitations. RSC Advances, 2014, 4, 62123-62131.	3.6	75
220	A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light. RSC Advances, 2014, 4, 60626-60635.	3.6	64
221	A computational study of anion photoelectron spectroscopy of zinc oxide nanoclusters. Computational and Theoretical Chemistry, 2014, 1050, 23-30.	2.5	3
222	Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. RSC Advances, 2014, 4, 35735-35743.	3.6	176
223	First-principles investigation of negative thermal expansion in II-VI semiconductors. Materials Chemistry and Physics, 2014, 148, 214-222.	4.0	23
224	Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Advances, 2014, 4, 41099-41110.	3.6	189
225	Studies on the complex behavior of optical phonon modes in wurtzite (ZnO)1â^'x (Cr2O3) x. Applied Physics A: Materials Science and Processing, 2014, 117, 1275-1282.	2.3	11
226	Photo-physical studies of pyridine capped ZnO nanostructures. Russian Journal of Physical Chemistry A, 2014, 88, 1166-1171.	0.6	2
227	First-principles prediction of electronic structure and magnetic ordering of rare-earth metals doped ZnO. Journal of Alloys and Compounds, 2014, 617, 828-833.	5.5	55
228	Dependence on pressure of the refractive indices of wurtzite ZnO, GaN, and AlN. Physical Review B, 2014, 90, .	3.2	13
229	2 MeV PROTON IRRADIATION EFFECTS ON ZnO SINGLE CRYSTAL. Surface Review and Letters, 2014, 21, 1450012.	1.1	15
230	Interplay between interstitial and substitutional hydrogen donors in ZnO. Physical Review B, 2014, 89, .	3.2	16
231	Effects of substitution, pressure, and temperature on the phonon mode in layered-rocksalt-type Li(1â^'x)/2Ga(1â^'x)/2ZnxO (x = 0.036–0.515) alloys. Journal of Applied Physics, 2015, 118, 185903.	2.5	5
232	Raman study of insulating and conductive ZnO:(Al, Mn) thin films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2345-2354.	1.8	16
233	Nitrogenâ€doped ZnO obtained by nitrogen plasma treatment. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 846-850.	1.8	10
234	Phonon signature of the highâ€pressure rocksalt phase of InN. Physica Status Solidi (B): Basic Research, 2015, 252, 2104-2110.	1.5	0
235	Role of Al doping in structural, microstructural, electrical and optical characteristics of as-deposited and annealed ZnO thin films. RSC Advances, 2015, 5, 24178-24187.	3.6	23

#	Article	IF	CITATIONS
236	Effect of Zn–Cd interdiffusion on the band structure and spontaneous emission of ZnO/Zn1â^'Cd O/ZnO quantum wells. Superlattices and Microstructures, 2015, 85, 438-444.	3.1	7
237	Fe-doping induced tailoring in the microstructure and optical properties of ZnO nanoparticles synthesized via sol–gel route. Journal of Materials Science: Materials in Electronics, 2015, 26, 6113-6118.	2.2	5
238	Capped ZnO (3, 0) nanotubes as building blocks of bare and H passivated wurtzite ZnO nanocrystals. Superlattices and Microstructures, 2015, 85, 813-819.	3.1	20
239	Shape tunable synthesis of Eu- and Sm-doped ZnO microstructures: a morphological evaluation. Bulletin of Materials Science, 2015, 38, 1519-1525.	1.7	32
240	Pressure-induced phase transition in hydrothermally grown ZnO nanoflowers investigated by Raman and photoluminescence spectroscopy. Journal of Physics Condensed Matter, 2015, 27, 385401.	1.8	5
241	Experiments on ZnO:Ni thin films with under 1% nickel content. Optics and Laser Technology, 2015, 69, 113-121.	4.6	32
242	Dynamics of the incorporation of Co into the wurtzite ZnO matrix and its magnetic properties. Journal of Alloys and Compounds, 2015, 637, 407-417.	5.5	16
243	Defects generated by MF magnetron sputtering and their influences on the electrical and optical properties of Al doped ZnO thin films. Applied Surface Science, 2015, 351, 392-400.	6.1	13
244	Density functional perturbation theory calculations of vibrational and thermodynamic properties of Zn1â^'Be O alloys. Materials Science in Semiconductor Processing, 2015, 40, 209-217.	4.0	4
245	Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method. RSC Advances, 2015, 5, 60365-60372.	3.6	58
246	Elastic-plastic and phase transition of zinc oxide single crystal under shock compression. Journal of Applied Physics, 2015, 117, .	2.5	5
247	Ab initio study on physical properties of wurtzite, zincblende, and rocksalt structures of zinc oxide using revised functionals. Materials Science in Semiconductor Processing, 2015, 31, 700-708.	4.0	12
248	Insight into the origin of ferromagnetism in Fe-doped ZnO diluted magnetic semiconductor nanocrystals: an EXFAS study of local structure. RSC Advances, 2015, 5, 94658-94669.	3.6	51
249	Phonon dynamics and Urbach energy studies of MgZnO alloys. Journal of Applied Physics, 2015, 117, .	2.5	35
250	Theoretical investigation of elastic and phononic properties of Zn1â^'xBexO alloys. Modern Physics Letters B, 2015, 29, 1550140.	1.9	5
251	Piezoelectric properties of template-free electrochemically grown ZnO nanorod arrays. Applied Surface Science, 2015, 356, 1214-1220.	6.1	54
252	The role of Co atoms in spin dependent electronic properties of graphite-like ZnO structures. Journal of Magnetism and Magnetic Materials, 2015, 373, 96-102.	2.3	6
253	Cu-implanted ZnO nanorods array film: An aqueous synthetic approach. Journal of Alloys and Compounds, 2015, 618, 421-427.	5.5	6

#	Article	IF	CITATIONS
254	First principles study on the spin dependent electronic behavior of Co doped ZnO structures joining the Al electrodes. Journal of Alloys and Compounds, 2015, 619, 91-97.	5.5	10
255	Large Scale Synthesis of ZnO Nanostructures of Different Morphologies through Solvent-free Mechanochemical Synthesis and their Application in Photocatalytic Dye Degradation. American Journal of Engineering and Applied Sciences, 2016, 9, 41-52.	0.6	10
256	Electronic Structure Properties of Doped and Imperfect ZnO Sheets. IEEE Nanotechnology Magazine, 2016, 15, 775-781.	2.0	2
257	Effect of barium doping on structural and optical properties of zinc oxide nanoparticles synthesized by microwave hydrothermal method. Physica Status Solidi (B): Basic Research, 2016, 253, 260-266.	1.5	19
258	Understanding the optical properties of ZnO1â^' <i>x</i> S <i>x</i> and ZnO1â^' <i>x</i> Se <i>x</i> alloys. Journal of Applied Physics, 2016, 119, .	2.5	25
259	Peculiarities of the temperature dependence of electron spin resonance and Raman studies of Zn1â^' <i>x</i> Ni <i>x</i> O/NiO two-phase nanocomposites. Journal of Applied Physics, 2016, 119, .	2.5	16
260	Growth of transparent Zn1â^'Sr O (0.0 ≤≤0.08) films by facile wet chemical method: Effect of Sr doping on the structural, optical and sensing properties. Applied Surface Science, 2016, 379, 23-32.	6.1	23
261	Influence of strain relaxation on the relative orientation of ZnO and ZnMnO wurtzite lattice with respect to sapphire substrates. Materials Research Express, 2016, 3, 095902.	1.6	3
262	Effect of oxygen substitution on the optoelectronic properties of the ternary ZnSe1-xOx alloys. Optik, 2016, 127, 11020-11028.	2.9	3
263	Anharmonicity effects in Cu-doped ZnO nanocombs by temperature-dependent Raman scattering. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	5
264	Structural and optical properties of sol–gel derived Cr-doped ZnO diluted magnetic semiconductor nanocrystals: an EXAFS study to relate the local structure. RSC Advances, 2016, 6, 107816-107828.	3.6	33
265	Preparation of intrinsic and Al-doped ZnO thin layers by Spray pyrolysis. , 2016, , .		3
266	Effect of hydrogen in controlling the structural orientation of ZnO:Ga:H as transparent conducting oxide films suitable for applications in stacked layer devices. Physical Chemistry Chemical Physics, 2016, 18, 20450-20458.	2.8	22
267	H ₂ and N ₂ Remote Plasma Processing of Wurtziteâ€Like Oxides: Implications for Energy Applications. Plasma Processes and Polymers, 2016, 13, 147-160.	3.0	3
268	Amorphous ZnO-Based Compounds as Thermoelectrics. Journal of Physical Chemistry C, 2016, 120, 2529-2535.	3.1	19
269	Low temperature grown ZnO:Ga films with predominant c-axis orientation in wurtzite structure demonstrating high conductance, transmittance and photoluminescence. RSC Advances, 2016, 6, 6144-6153.	3.6	53
270	Ab initio study of electronic structure and lattice properties of ZnSe1â^'O. Optik, 2016, 127, 1889-1892.	2.9	3
271	Photoluminescence from porous textured ZnO films grown by chemical bath deposition. Journal of Luminescence, 2016, 170, 168-173.	3.1	18

ARTICLE IF CITATIONS # Stabilization of the high-temperature and high-pressure cubic phase of ZnO by temperature-controlled 272 3.7 8 milling. Journal of Materials Science, 2016, 51, 126-137. Thermal neutron scattering cross sections of beryllium and magnesium oxides. Annals of Nuclear 273 1.8 9 Energy, 2016, 87, 242-251 Structural, optical, electrical properties, and strain/stress of electrochemically deposited highly doped ZnO layers and nanostructured ZnO antireflective coatings for cost-effective photovoltaic 274 1.8 16 device technology. Thin Solid Films, 2016, 605, 215-231. Optical and magnetic properties of Co-doped ZnO nanoparticles and the onset of ferromagnetic 24 order. Journal of Applied Physics, 2017, 121, . Phase discrimination in CdSe structures by means of Raman scattering. Physica Status Solidi - Rapid 276 2.4 9 Research Letters, 2017, 11, 1700006. Green synthesis of ZnO and Mg doped ZnO nanoparticles, and its optical properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 7677-7685. 2.2 Enhanced ferromagnetism in ZnGdO nanoparticles induced by Al co-doping. Journal of Alloys and 278 5.5 20 Compounds, 2017, 705, 51-57. The growth of ZnO:Ga:Cu as new TCO film of advanced electrical, optical and structural quality. 279 2.7 Physica E: Low-Dimensional Systems and Nanostructures, 2017, 91, 1-7. Theoretical investigation on thermodynamic properties of ZnO1â^{-^}xTexalloys. Materials Research 280 1.6 5 Express, 2017, 4, 055901. Robust water repellent ZnO nanorod array by Swift Heavy Ion Irradiation: Effect of Electronic 3.3 Excitation Induced Local Chemical State Modification. Scientific Reports, 2017, 7, 3251. An extremely high power factor in Seebeck effects based on a new n-type copper-based organic/inorganic hybrid C₆H₄NH₂CuBr₂l film with 282 10.3 27 metal-like conductivity. Journal of Materials Chemistry A, 2017, 5, 13834-13841. First-Principles Study of Pressure-Induced Phase Transition in CuGaO2. Brazilian Journal of Physics, 1.4 2017, 47, 42-45. Enhanced Bioactivity of Ag/ZnO Nanorods-A Comparative Antibacterial Study (Sbds). Journal of 284 1.1 14 Nanomedicine & Nanotechnology, 2017, 04, . Ab initio study of lattice instabilities of zinc chalcogenides ZnX (X=O, S, Se, Te) induced by ultrafast intense laser irradiation. AIP Advances, 2017, 7, 095021. 1.3 Spectroscopic study of binding of chlorogenic acid with the surface of ZnO nanoparticles. Russian 286 0.6 3 Journal of Physical Chemistry A, 2017, 91, 1781-1790. Characterization of the structural and optical properties of ZnO thin films doped with Ga, Al and (Al+Ga). Journal of Alloys and Compounds, 2017, 725, 1238-1243. Molecular dynamics simulation of ZnO wurtzite phase under high and low pressures and 288 1.6 1 temperatures. Materials Research Express, 2017, 4, 115016. Structured zinc oxide powder materials: Synthesis and further investigations of their thermal 289 4.2 morphological stability. Powder Technology, 2017, 319, 204-209.

#	Article	IF	Citations
290	Investigation of additional Raman modes in ZnO and Eu0.01Zn0.99O nanoparticles synthesized by the solution combustion method. Journal of Alloys and Compounds, 2017, 691, 416-421.	5.5	12
291	Facile synthesis of highly efficient ZnO/ZnFe2O4 photocatalyst using earth-abundant sphalerite and its visible light photocatalytic activity. Applied Catalysis B: Environmental, 2018, 226, 324-336.	20.2	103
292	Temperature dependent optical properties of ZnO thin film using ellipsometry and photoluminescence. Superlattices and Microstructures, 2018, 117, 457-468.	3.1	15
293	Effect of <i>in situ</i> Al doping on structure and optical properties of ZnO nanowires grown by MOCVD. Materials Research Express, 2018, 5, 015003.	1.6	8
294	Oxygen vibrational modes in ZnS1â^'xOx alloys. Journal of Applied Physics, 2018, 123, .	2.5	4
295	Anomalous pressure effect on the thermal conductivity of ZnO, GaN, and AlN from first-principles calculations. Physical Review B, 2018, 98, .	3.2	42
296	Comparative study of the pressure dependence of optical-phonon transverse-effective charges and linewidths in wurtzite InN. Physical Review B, 2018, 98, .	3.2	12
297	Joint improvement of conductivity and Seebeck coefficient in the ZnO:Al thermoelectric films by tuning the diffusion of Au layer. Materials and Design, 2018, 154, 41-50.	7.0	23
298	Structural, optical and gas sensing properties of vertically well-aligned ZnO nanowires grown on graphene/Si substrate by thermal evaporation method. Materials Characterization, 2018, 141, 296-317.	4.4	31
299	Effect of 120 MeV Au ⁹⁺ ion irradiation on the structure and surface morphology of ZnO/NiO heterojunction. Surface and Interface Analysis, 2018, 50, 954-961.	1.8	2
300	A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sensors and Actuators B: Chemical, 2018, 274, 1-9.	7.8	114
301	Effect of Passivation on Stability and Electronic Structure of Bulk-like ZnO Clusters. ACS Omega, 2018, 3, 7692-7702.	3.5	1
302	Nonlinear optical response of bulk ZnO crystals with different content of intrinsic defects. Optical Materials, 2018, 84, 738-747.	3.6	46
303	100ÂkeV H ⁺ ion irradiation of asâ€deposited Alâ€doped ZnO thin films: An interest in tailoring surface morphology for sensor applications. Surface and Interface Analysis, 2018, 50, 705-712.	1.8	3
304	Nonreversible Transition from the Hexagonal to Wurtzite Phase of Boron Nitride under High Pressure: Optical Properties of the Wurtzite Phase. Journal of Physical Chemistry C, 2019, 123, 20167-20173.	3.1	12
305	Oxygen vacancy induced anomalous Raman mode in intrinsic ZnO film. Vibrational Spectroscopy, 2019, 103, 102939.	2.2	12
306	Influence of annealing on luminescence and energy transfer in ZnO multilayer structure co-doped with Tb and Eu. Thin Solid Films, 2019, 692, 137634.	1.8	5
307	Computational and experimental identification of hydrogen defect vibrational modes in zinc sulfide. Journal of Applied Physics, 2019, 126, 173101.	2.5	Ο

#	Article	IF	CITATIONS
308	Anomalous multiphonon features of hyper-Raman in ZnO NPs. IOP Conference Series: Materials Science and Engineering, 2019, 561, 012031.	0.6	0
309	Raman Spectra and Microstructure of Zinc Oxide irradiated with Swift Heavy Ion. Crystals, 2019, 9, 395.	2.2	81
310	Multifield-resolved phonon spectrometrics: structured crystals and liquids. Progress in Solid State Chemistry, 2019, 55, 20-66.	7.2	23
311	Synthesis and characterization of Zn100â^'xLixO and Zn100â^'xâ^'yLixCuyO thin films for electronic and optoelectronic applications. International Journal of Modern Physics B, 2019, 33, 1950257.	2.0	2
312	Redistribution of native defects and photoconductivity in ZnO under pressure. RSC Advances, 2019, 9, 4303-4313.	3.6	15
313	Electronic active defects and local order in doped ZnO ceramics inferred from EPR and 27Al NMR investigations. Journal of the European Ceramic Society, 2019, 39, 3070-3076.	5.7	20
314	Enhanced room temperature ferromagnetism and green photoluminescence in Cu doped ZnO thin film synthesised by neutral beam sputtering. Scientific Reports, 2019, 9, 6675.	3.3	86
315	Influence of Substrate-Target Distance on Structural and Optical Properties of Ga and (Al + Ga)-doped ZnO Thin Films Deposited by Radio Frequency Sputtering. Analytical Letters, 2019, 52, 2227-2238.	1.8	9
316	Electrochemical synthesis and characterization of dark nanoporous zinc oxide films. Electrochimica Acta, 2019, 305, 349-359.	5.2	39
317	Effects of atmosphere and Cu doping on the magnetic properties of ZnO powders. Physica B: Condensed Matter, 2019, 564, 22-27.	2.7	6
318	Microstructure property study of ZnO single crystal irradiated with 200 MeV 86Kr17+ ions. Materials Research Express, 2019, 6, 026203.	1.6	1
319	Investigations on preferentially oriented Al-doped ZnO films developed using rf magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2019, 30, 537-548.	2.2	15
320	Propose for Raman mode position for Mn-doped ZnO nanoparticles. Physica B: Condensed Matter, 2019, 555, 1-8.	2.7	19
321	Observation of Ferromagnetism in Heavy Ion Bi-doped Nanocrystalline Zinc Oxide Prepared by Co-precipitation. Journal of Superconductivity and Novel Magnetism, 2020, 33, 445-453.	1.8	9
322	Controllable microstructure tailoring for regulating conductivity in Al-doped ZnO ceramics. Journal of the European Ceramic Society, 2020, 40, 349-354.	5.7	19
323	Pressure dependence of the interlayer and intralayer E2g Raman-active modes of hexagonal BN up to the wurtzite phase transition. Physical Review B, 2020, 102, .	3.2	12
324	Anharmonic Molecular Vibrational Probes of Dynamical Organic–Inorganic Interactions in Two-Dimensional Hybrid Lead Iodide Perovskites. Journal of Physical Chemistry C, 2020, 124, 13942-13955.	3.1	8
325	Defects and microstructure of highly conducting Al-doped ZnO ceramics obtained via spark plasma sintering. Journal of the European Ceramic Society, 2020, 40, 5529-5534.	5.7	14

#	Article	IF	CITATIONS
326	Al-Doping of ZnO Thin Films Deposited by Spray Pyrolysis. Russian Journal of Inorganic Chemistry, 2020, 65, 932-939.	1.3	3
327	Lattice dynamics of twisted ZnO nanowires under generalized Born–von Karman boundary conditions. New Journal of Physics, 2020, 22, 023004.	2.9	3
328	ZnO modified by urea–hydrogen peroxide adduct as photocatalyst for 2-propanol photooxidation in the gas phase under different irradiations. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129, 1103-1113.	1.7	4
329	Investigations of novel polymorphs of ZnO for optoelectronic applications. Optik, 2020, 206, 164285.	2.9	31
330	Seed layer mediated wettability and wettability transition of ZnO nano/micro-rod arrays. Journal of Alloys and Compounds, 2021, 857, 157617.	5.5	9
331	Ion beam-induced modifications in ZnO nanostructures and potential applications. , 2021, , 117-155.		3
332	Electronic mobility limited by optical phonons in symmetric MgxZn1-xO/ZnO quantum wells with mixed phases. Superlattices and Microstructures, 2021, 150, 106782.	3.1	15
333	Optoelectronic and solar cell applications of ZnO nanostructures. Results in Surfaces and Interfaces, 2021, 2, 100003.	2.4	15
334	Metal-organic framework-derived Ni/ZnO nano-sponges with delicate surface vacancies as anode materials for high-performance supercapacitors. Nano Research, 2021, 14, 4063-4072.	10.4	38
335	Raman measurement of the effect of lattice defects on the twoâ€phonon density of states in ZnO. Journal of Raman Spectroscopy, 2021, 52, 1758-1763.	2.5	6
336	The role of Ga and Bi doping on the local structure of transparent zinc oxide thin films. Journal of Alloys and Compounds, 2021, 870, 159489.	5.5	6
337	Facile one-step deposition of ZnO-graphene nanosheets hybrid photoanodes for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds, 2021, 870, 159430.	5.5	17
338	Growth dynamics of mist-CVD grown ZnO nanoplatelets. Physica B: Condensed Matter, 2021, 614, 413028.	2.7	5
339	ZnO:Au nanocomposites with high photocatalytic activity prepared by liquid-phase pulsed laser ablation. Optics and Laser Technology, 2021, 133, 106533.	4.6	15
340	Spray Pyrolysis Synthesized and ZnO–NiO Nanostructured Thin Films Analysis with Their Nanocomposites for Waveguiding Applications. Semiconductors, 2021, 55, 37-43.	0.5	14
341	ZnO: dielectric constants. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2011, , 593-593.	0.0	2
342	ZnO: lattice parameters. , 2013, , 115-128.		1
343	Morphology control and optical properties of ZnO nanostructures grown by ultrasonic synthesis. Advances in Nano Research, 2013, 1, 59-70.	0.9	13

#	Article	IF	CITATIONS
344	Ferromagnetism in Co-doped ZnO films grown by molecular beam epitaxy: magnetic, electrical and microstructural studies. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2011, 14, 31-40.	1.0	4
345	ZnO: crystal structures, structural phases, transition pressures. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2011, , 565-565.	0.0	0
346	ZnO: Grüneisen parameter. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2011, , 589-589.	0.0	0
347	ZnO: dielectric constant, effective charge. , 2013, , 171-175.		0
348	ZnO: phase transition. , 2013, , 102-108.		0
349	ZnO: phonon dispersion curves, phonon density of states. , 2013, , 131-136.		0
350	ZnS: dielectric constants, effective charge. , 2013, , 208-209.		0
351	ZnO: bulk modulus, compressibility. , 2013, , 159-169.		0
352	Binary Oxides of Transition Metals. Nanoscience and Technology, 2015, , 429-543.	1.5	0
353	CATALYST–FREE GROWTH OF WELL–ALIGNED ZnO NANOWIRES ON GRAPHENE/Si SUBSTRATEBY THERMAL EVAPORATION. Science and Technology, 2018, 55, 174.	0.2	0
354	Binary Oxides of Transition Metals: ZnO, TiO\$\$_2\$\$, ZrO\$\$_2\$\$, HfO\$\$_2\$\$. Nanoscience and Technology, 2020, , 255-451.	1.5	0
355	Sized Crystals. , 2020, , 447-468.		0
356	Fabrication and Characterization of Undoped and Fe Doped ZnO Thin Films by Spray Deposition. Lecture Notes in Networks and Systems, 2022, , 800-806.	0.7	0
357	Optical phonon limited electron mobility in ZnO nanowires wrapped by MgZnO shells. Journal of Applied Physics, 2022, 131, .	2.5	2
358	Modulating the growth of chemically deposited ZnO nanowires and the formation of nitrogen- and hydrogen-related defects using pH adjustment. Nanoscale Advances, 2022, 4, 1793-1807.	4.6	11
359	The role of pH on the vibrational, optical and electronic properties of the Zn Fe O compound synthesized via sol gel method. Solid State Sciences, 2022, 128, 106880.	3.2	18
360	Influence of annealing process on structural, optical and electronic properties of nano-structured ZnO films synthesized by hydrothermal technique: Supported by DFT study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 282, 115793.	3.5	7
361	Optical and Structural Characteristics of Rare Earth-Doped ZnO Nanocrystals Prepared in Colloidal Solution. Photochem, 2022, 2, 515-527.	2.2	8

#	Article	IF	CITATIONS
362	Structural transition, mechanical properties and electronic structure of the ZnO under high pressure via first-principles investigations. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	1
363	Vibrational, Electronic and Structural Study of Sprayed ZnO Thin Film Based on the IR-Raman Spectra and DFT Calculations. Crystal Structure Theory and Applications, 2022, 11, 23-38.	0.1	1
364	DFT calculations of thermo-mechanical properties of Be-chalcogenides. AIP Conference Proceedings, 2022, , .	0.4	0
365	Enhanced antibacterial property of zinc oxide nanoparticles by incorporation of graphene oxide. Journal of Sol-Gel Science and Technology, 2022, 104, 246-257.	2.4	4
366	Role of defects and oxygen vacancy on structural, optical and electronic structure properties in Sm-substituted ZnO nanomaterials. Journal of Materials Science: Materials in Electronics, 2022, 33, 21546-21568.	2.2	12
367	Preferential grain growth and impact of aluminum and tin doping on the physical properties of ZnO microrods. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	0
368	HSBM-Produced Zinc Oxide Nanoparticles: Physical Properties and Evaluation of Their Antimicrobial Activity against Human Pathogens. Scientifica, 2022, 2022, 1-15.	1.7	1
369	A first-principles investigation into the electronic characteristics of phase changes in ZnO at high pressures. , 2022, 18, 797-804.		1
370	Theoretical study of structural and optical properties of ZnO in wurtzite phase. Digest Journal of Nanomaterials and Biostructures, 2023, 18, 11-19.	0.8	1
371	Structural, optical and dielectric properties of chemical vapor transport based synthesis of rice-like nanostructured cadmium zinc oxide films. Thin Solid Films, 2023, 768, 139700.	1.8	4
372	In Situ Pressure Controlled Growth of ZnO Nanoparticles: Tailoring Sizes, Defects, and Optical Properties. Inorganic Chemistry, 2023, 62, 7868-7876.	4.0	2
373	Boosting the piezoelectric coefficients of flexible dynamic strain sensors made of chemically-deposited ZnO nanowires using compensatory Sb doping. Nano Energy, 2023, 114, 108599.	16.0	5
374	Correlation of defects and crystallite size of ZnO nanoparticles synthesized by mechanical milling. Indian Journal of Physics, 0, , .	1.8	1
375	Photocatalytic Reduction Effects of Sphalerite and Sulfur. , 2023, , 119-144.		0
376	Fitting the charged-optimized many-body potential for the Al-O-Se-Zn system. Computational Materials Science, 2023, 228, 112371.	3.0	0
377	Ab-Initio Study of Structural, Electronic and Optical Properties of ZnX (X = Te, S and O): Application to Photovoltaic Solar Cells. East European Journal of Physics, 2023, , 413-423.	0.8	0
378	Glass photonics meets photovoltaics: general principles and a case study. European Physical Journal Plus, 2023, 138, .	2.6	0
379		3.0	0

#	Article	IF	CITATIONS
380	Low operating temperature N-ZnO/PANI chemiresistive acetone gas sensor. Journal of Materials Science: Materials in Electronics, 2024, 35, .	2.2	0
381	Exploring the synergistic effects of aluminum and hydrogen impurities on high-electron-mobility sputtered-ZnO thin films. Optical Materials, 2024, 148, 114868.	3.6	0
382	Origin of microscopically coupled ferromagnetic Cu-ions in a distorted system of Cu-doped ZnO and their synchrotron-based electronic structures. AIP Advances, 2024, 14, .	1.3	0