Polymeric Scaffolds for Bone Tissue Engineering

Annals of Biomedical Engineering 32, 477-486 DOI: 10.1023/b:abme.0000017544.36001.8e

Citation Report

#	Article	IF	CITATIONS
1	Scaffolds for tissue fabrication. Materials Today, 2004, 7, 30-40.	8.3	853
2	Tissue engineering. Current Opinion in Otolaryngology and Head and Neck Surgery, 2005, 13, 233-241.	0.8	26
3	Using Plasma Deposits to Promote Cell Population of the Porous Interior of Three-Dimensional Poly(D,L-Lactic Acid) Tissue-Engineering Scaffolds. Advanced Functional Materials, 2005, 15, 1134-1140.	7.8	109
4	A comparative study of porous scaffolds with cubic and spherical macropores. Polymer, 2005, 46, 4979-4985.	1.8	131
5	Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels. Journal of Materials Science: Materials in Medicine, 2005, 16, 515-519.	1.7	104
6	Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2005, 16, 1099-1104.	1.7	310
7	Design and fabrication of CAP scaffolds by indirect solid free form fabrication. Rapid Prototyping Journal, 2005, 11, 312-318.	1.6	33
8	Requirements for the Manufacturing of Scaffold Biomaterial With Features at Multiple Scales. , 2005, , 217.		Ο
9	Mediation of Biomaterial–Cell Interactions by Adsorbed Proteins: A Review. Tissue Engineering, 2005, 11, 1-18.	4.9	1,464
10	Biological Approaches to Bone Regeneration by Gene Therapy. Journal of Dental Research, 2005, 84, 1093-1103.	2.5	170
11	Bone Challenges for the Hand Surgeon: From Basic Bone Biology to Future Clinical Applications. Clinics in Plastic Surgery, 2005, 32, 537-547.	0.7	3
12	Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine and Growth Factor Reviews, 2005, 16, 329-345.	3.2	355
13	Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites. Nanotechnology, 2005, 16, S601-S608.	1.3	59
14	Inductive tissue engineering with protein and DNA-releasing scaffolds. Molecular BioSystems, 2006, 2, 36-48.	2.9	67
15	Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures. Journal of Materials Chemistry, 2006, 16, 3558.	6.7	74
16	Design and preparation of polymeric scaffolds for tissue engineering. Expert Review of Medical Devices, 2006, 3, 835-851.	1.4	200
17	Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications. Biomacromolecules, 2006, 7, 2249-2258.	2.6	335
18	Cell Population Dynamics Modulate the Rates of Tissue Growth Processes. Biophysical Journal, 2006, 90, 713-724.	0.2	92

#	Article	IF	CITATIONS
19	A perspective on nanophase materials for orthopedic implant applications. Journal of Materials Chemistry, 2006, 16, 3737.	6.7	118
20	Ammonium bicarbonate as porogen to make tetracycline-loaded porous bioresorbable membranes for dental guided tissue regeneration: failure due to tetracycline instability. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 1333-1346.	1.9	10
21	Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration. Biomacromolecules, 2006, 7, 2796-2805.	2.6	855
22	Tissue Engineering for the Hand Surgeon: A Clinical Perspective. Journal of Hand Surgery, 2006, 31, 349-358.	0.7	34
23	Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. Tissue Engineering, 2006, 12, 1197-1211.	4.9	2,019
26	Bioluminescent imaging: Emerging technology for non-invasive imaging of bone tissue engineering. Biomaterials, 2006, 27, 1851-1858.	5.7	43
27	In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 4894-4903.	5.7	260
28	Fabrication of three dimensional polymeric scaffolds with spherical pores. Journal of Materials Science, 2006, 41, 1725-1731.	1.7	42
29	Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges. Annals of Biomedical Engineering, 2006, 34, 1799-1819.	1.3	273
30	Bone morphogenic protein-2 (BMP-2) immobilized biodegradable scaffolds for bone tissue engineering. Macromolecular Research, 2006, 14, 565-572.	1.0	17
31	Porogen-induced surface modification of nano-fibrous poly(l-lactic acid) scaffolds for tissue engineering. Biomaterials, 2006, 27, 3980-3987.	5.7	137
32	Mineralization capacity of Runx2/Cbfa1-genetically engineered fibroblasts is scaffold dependent. Biomaterials, 2006, 27, 5535-5545.	5.7	43
33	Biocatalytic Synthesis of Poly(L-Lactide) by Native and Recombinant Forms of the Silicatein Enzymes. Angewandte Chemie - International Edition, 2006, 45, 613-616.	7.2	32
34	Morphological features of ovine embryonic lung fibroblasts cultured on different bioactive scaffolds. Journal of Biomedical Materials Research - Part A, 2006, 76A, 214-221.	2.1	11
35	Crosslinked poly(ε-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2006, 77A, 261-268.	2.1	34
36	Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. Journal of Biomedical Materials Research - Part A, 2006, 78A, 306-315.	2.1	214
38	Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyping Journal, 2006, 12, 229-237.	1.6	98
39	Development of aÂBiodegradable Composite Scaffold for Bone Tissue Engineering: Physicochemical, Topographical, Mechanical, Degradation, and Biological Properties. Advances in Polymer Science, 2006 209-231	0.4	78

_

#	Article	IF	CITATIONS
40	Physicochemical Characterization of Novel Chitosan-Soy Protein/ TEOS Porous Hybrids for Tissue Engineering Applications. Materials Science Forum, 2006, 514-516, 1000-1004.	0.3	24
41	In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2488-2493.	3.3	384
42	In Vitro Evaluation of Poly[Bis(Ethyl Alanato)Phosphazene] as a Scaffold for Bone Tissue Engineering. Tissue Engineering, 2006, 12, 811-819.	4.9	33
43	Chitosan tissue scaffolds by emulsion templating. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 1439-1450.	1.9	7
44	Biodegradable and bioactive polymer/ceramic composite scaffolds. , 2007, , 72-92.		11
45	Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology. Materials Science and Technology, 2007, 23, 379-391.	0.8	70
46	Polymeric biomaterials. , 2007, , 32-51.		1
47	Tissue Engineering the Mandibular Condyle. Tissue Engineering, 2007, 13, 1955-1971.	4.9	68
49	Bioinspired Nanocomposites for Orthopedic Applications. , 2007, , 1-51.		14
50	Green synthesis of a temperature sensitive hydrogel. Green Chemistry, 2007, 9, 75-79.	4.6	50
51	Preparation of a Functionally Flexible, Three-Dimensional, Biomimetic Poly(L-Lactic Acid) Scaffold with Improved Cell Adhesion. Tissue Engineering, 2007, 13, 1205-1217.	4.9	32
52	Bioactivity of polyurethane-based scaffolds coated with Bioglass®. Biomedical Materials (Bristol), 2007, 2, 93-101.	1.7	41
53	The effect of novel nitrogen-rich plasma polymer coatings on the phenotypic profile of notochordal cells. BioMedical Engineering OnLine, 2007, 6, 33.	1.3	11
54	Emulsion-templated porous polymers as scaffolds for three dimensional cell culture: effect of synthesis parameters on scaffold formation and homogeneity. Journal of Materials Chemistry, 2007, 17, 4088.	6.7	94
55	Cryogelation for preparation of novel biodegradable tissue-engineering scaffolds. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1165-1179.	1.9	56
56	Electrospun matrices made of poly(α-hydroxy acids) for medical use. Nanomedicine, 2007, 2, 441-457.	1.7	54
57	The effect of fabrication methods on the mechanical and thermal properties of poly(lactide-co-glycolide) scaffolds. Journal of Applied Polymer Science, 2007, 104, 944-949.	1.3	7
58	Poly(hexyl-substituted lactides): Novel injectable hydrophobic drug delivery systems. Journal of Biomedical Materials Research - Part A, 2007, 80A, 55-65.	2.1	52

#	Article	IF	CITATIONS
59	Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass® composite films in the absence of osteogenic supplements. Journal of Biomedical Materials Research - Part A, 2007, 80A, 837-851.	2.1	81
60	Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds. Journal of Biomedical Materials Research - Part A, 2007, 81A, 40-50.	2.1	34
61	Improved Mesenchymal Stem Cell Seeding on RGD-Modified Poly(L-lactic acid) Scaffolds using Flow Perfusion. Macromolecular Bioscience, 2007, 7, 579-588.	2.1	60
62	Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials, 2007, 28, 1152-1162.	5.7	335
63	Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials, 2007, 28, 2622-2630.	5.7	202
64	A multi-functional scaffold for tissue regeneration: The need to engineer a tissue analogue. Biomaterials, 2007, 28, 5093-5099.	5.7	232
65	In situ synthesis and characterization of porous polymer-ceramic composites as scaffolds for gene delivery. Materials Science and Engineering C, 2007, 27, 479-483.	3.8	9
66	Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 2007, 32, 698-725.	11.8	1,230
67	Biodegradable polymers applied in tissue engineering research: a review. Polymer International, 2007, 56, 145-157.	1.6	397
68	Tissue Engineering Solutions for Cleft Palates. Journal of Oral and Maxillofacial Surgery, 2007, 65, 2503-2511.	0.5	79
69	Design and Development of Three-Dimensional Scaffolds for Tissue Engineering. Chemical Engineering Research and Design, 2007, 85, 1051-1064.	2.7	385
70	Plasma-treated poly(lactic-co-glycolic acid) nanofibers for tissue engineering. Macromolecular Research, 2007, 15, 238-243.	1.0	106
71	Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications. Journal of Materials Science, 2007, 42, 8113-8119.	1.7	69
72	A novel in vitro three-dimensional skeletal muscle model. In Vitro Cellular and Developmental Biology - Animal, 2007, 43, 255-263.	0.7	18
73	Solid lipid templating of macroporous tissue engineering scaffolds. Biomaterials, 2007, 28, 3497-3507.	5.7	32
74	Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008, 29, 1989-2006.	5.7	2,792
75	Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials, 2008, 29, 4091-4099.	5.7	157
76	PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials, 2008, 29, 4800-4807.	5.7	131

#	Article	IF	CITATIONS
77	Fabrication of porous titanium scaffold materials by a fugitive filler method. Journal of Materials Science: Materials in Medicine, 2008, 19, 3489-3495.	1.7	29
78	Supercritical CO2 processing of polymers for the production of materials with applications in tissue engineering and drug delivery. Journal of Materials Science, 2008, 43, 1939-1947.	1.7	38
79	Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnology Letters, 2008, 30, 405-410.	1.1	133
80	Biomaterials for bone tissue engineering. Materials Today, 2008, 11, 18-25.	8.3	949
81	Biomimetic Synthesis of Collagen/Nano-Hydroxyapitate Scaffold for Tissue Engineering. Journal of Bionic Engineering, 2008, 5, 1-8.	2.7	22
82	Bulk collagen incorporation rates into knitted stiff fibre polymer in tissue-engineered scaffolds: the rate-limiting step. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 507-514.	1.3	3
83	Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 33-42.	1.3	38
84	Onâ€site alginate gelation for enhanced cell proliferation and uniform distribution in porous scaffolds. Journal of Biomedical Materials Research - Part A, 2008, 86A, 552-559.	2.1	38
85	Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 519-528.	1.6	94
86	Tailored functionalization of lowâ€density polyethylene surfaces. Journal of Applied Polymer Science, 2008, 108, 2940-2949.	1.3	34
87	Waterâ€soluble aldehydeâ€bearing polymers of 2â€deoxyâ€2â€methacrylamidoâ€ <scp>D</scp> â€glucose for b tissue engineering. Journal of Applied Polymer Science, 2008, 108, 2386-2397.	one 1.3	45
88	Highly Porous Crosslinkable PLAâ€₽NB Block Copolymer Scaffolds. Advanced Functional Materials, 2008, 18, 3638-3644.	7.8	29
89	Biomaterials in cardiac tissue engineering: Ten years of research survey. Materials Science and Engineering Reports, 2008, 59, 1-37.	14.8	315
90	A new supercritical fluid-based process to produce scaffolds for tissue replacement. Journal of Supercritical Fluids, 2008, 45, 365-373.	1.6	88
91	Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Materials Science and Engineering C, 2008, 28, 1356-1365.	3.8	39
92	Biomimetic materials for tissue engineering. Advanced Drug Delivery Reviews, 2008, 60, 184-198.	6.6	1,169
93	Bone Regeneration in a Rabbit Critical-Sized Skull Defect Using Autologous Adipose-Derived Cells. Tissue Engineering - Part A, 2008, 14, 483-490.	1.6	101
94	A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine, 2008, 40, 268-280.	1.5	659

#	Article	IF	CITATIONS
95	Fabrication and plasma treatment of 3D polycaprolactane tissue scaffolds for enhanced cellular function. Virtual and Physical Prototyping, 2008, 3, 199-207.	5.3	23
96	A Biomimetic Hierarchical Scaffold: Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals. Nano Letters, 2008, 8, 3803-3808.	4.5	124
97	Comparison of morphology and mechanical properties of PLGA bioscaffolds. Biomedical Materials (Bristol), 2008, 3, 025006.	1.7	52
98	Poly(lactic-co-glycolic acid) Bone Scaffolds with Inverted Colloidal Crystal Geometry. Tissue Engineering - Part A, 2008, 14, 1639-1649.	1.6	45
99	Three-Dimensional Ingrowth of Bone Cells Within Biodegradable Cryogel Scaffolds in Bioreactors at Different Regimes. Tissue Engineering - Part A, 2008, 14, 1743-1750.	1.6	80
100	Tissue engineering with nano-fibrous scaffolds. Soft Matter, 2008, 4, 2144.	1.2	145
101	A Parametric Study on the Processing and Physical Characterization of PLGA 50/50 Bioscaffolds. Journal of Cellular Plastics, 2008, 44, 189-202.	1.2	6
102	Preparation and Evaluation of Porous Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)— Hydroxyapatite Composite Scaffolds. Journal of Biomaterials Applications, 2008, 22, 293-307.	1.2	30
103	Scaffold design and fabrication. , 2008, , 403-454.		32
104	Design and manufacture of microporous polymeric materials with hierarchal complex structure for biomedical application. Materials Science and Technology, 2008, 24, 1111-1117.	0.8	51
105	The Materials Science of Bone: Lessons from Nature for Biomimetic Materials Synthesis. MRS Bulletin, 2008, 33, 49-55.	1.7	35
106	Electrohydrodynamic atomization: a versatile process for preparing materials for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 573-601.	1.9	84
107	Functions and Requirements of Synthetic Scaffolds in Tissue Engineering. , 2008, , 53-86.		5
108	Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance. Current Stem Cell Research and Therapy, 2008, 3, 254-264.	0.6	280
109	Nanofiber Applications for Burn Care. Journal of Burn Care and Research, 2008, 29, 695-703.	0.2	52
110	Biomineralization and Bone Regeneration. , 2008, , 744-755.		0
111	Encapsulation of Diclofenac Molecules into Poly(-Caprolactone) Electrospun Fibers for Delivery Protection. Journal of Nanomaterials, 2009, 2009, 1-8.	1.5	33
112	Proliferation and Differentiation of Human Osteoblasts within 3D printed Poly-Lactic-co-Glycolic Acid Scaffolds. Journal of Biomaterials Applications, 2009, 23, 533-547.	1.2	62

#	Article	IF	CITATIONS
113	Supercritical fluids in biomedical and tissue engineering applications: a review. International Materials Reviews, 2009, 54, 214-222.	9.4	99
114	Cryopreservation and the age of the allotransplant. Organogenesis, 2009, 5, 85-89.	0.4	1
115	Biomineralization of a Self-Assembled Extracellular Matrix for Bone Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 355-366.	1.6	23
116	Anisotropic Porous Biodegradable Scaffolds for Musculoskeletal Tissue Engineering. Materials, 2009, 2, 1674-1696.	1.3	40
117	Posterolateral Spinal Fusion in Rabbits Using a RP-based PLGA/ TCP/Col/BMSCs-OB Biomimetic Grafting Material. Journal of Bioactive and Compatible Polymers, 2009, 24, 457-472.	0.8	17
118	Electrospun Polyphosphazene Nanofibers for In Vitro Osteoblast Culture. , 0, , 169-184.		2
119	Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic―electroless coprecipitation route. Journal of Biomedical Materials Research - Part A, 2009, 88A, 470-480.	2.1	45
120	Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Journal of Biomedical Materials Research - Part A, 2009, 88A, 491-502.	2.1	158
121	Osteoblast response to continuous phase macroporous scaffolds under static and dynamic culture conditions. Journal of Biomedical Materials Research - Part A, 2009, 89A, 317-325.	2.1	17
122	Chemically modified light urable chitosans with enhanced potential for bone tissue repair. Journal of Biomedical Materials Research - Part A, 2009, 89A, 772-779.	2.1	22
123	<i>In vivo</i> performance of simvastatinâ€loaded electrospun spiralâ€wound polycaprolactone scaffolds in reconstruction of cranial bone defects in the rat model. Journal of Biomedical Materials Research - Part A, 2009, 90A, 1137-1151.	2.1	102
124	Biomimetic scaffolds fabricated from apatiteâ€coated polymer microspheres. Journal of Biomedical Materials Research - Part A, 2009, 90A, 1021-1031.	2.1	33
125	Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: An animal model. Journal of Biomedical Materials Research - Part A, 2009, 91A, 60-68.	2.1	38
126	Smooth muscle cell adhesion in surfaceâ€modified threeâ€dimensional copolymer scaffolds prepared from coâ€continuous blends. Journal of Biomedical Materials Research - Part A, 2009, 91A, 305-315.	2.1	8
127	Characterization and cytocompatibility of surface modified polyamide66. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 897-904.	1.6	18
128	An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 366-376.	1.6	48
129	From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. Journal of Pharmaceutical Sciences, 2009, 98, 1317-1375.	1.6	151
130	Porous Biodegradable Scaffold: Predetermined Porosity by Dissolution of Poly(esterâ€anhydride) Fibers from Polyester Matrix. Macromolecular Bioscience, 2009, 9, 654-660.	2.1	19

#	Article	IF	CITATIONS
131	Modulation of Osteogenic Differentiation of Human Mesenchymal Stem Cells by Poly[(<scp>L</scp> â€lactide)â€ <i>co</i> â€(<i>ε</i> â€caprolactone)]/Gelatin Nanofibers. Macromolecular Bioscience, 2009, 9, 795-804.	2.1	35
132	Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 2009, 25, 1539-1560.	1.3	607
133	Embroidered and Surface Modified Polycaprolactone-Co-Lactide Scaffolds as Bone Substitute: In Vitro Characterization. Annals of Biomedical Engineering, 2009, 37, 2118-2128.	1.3	50
134	Optimization of a natural collagen scaffold to aid cell–matrix penetration for urologic tissue engineering. Biomaterials, 2009, 30, 3865-3873.	5.7	107
135	Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials, 2009, 30, 4094-4103.	5.7	393
136	The use of reactive polymer coatings to facilitate gene delivery from poly (É›-caprolactone) scaffolds. Biomaterials, 2009, 30, 5785-5792.	5.7	38
138	Nanotechnology for bone materials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 336-351.	3.3	112
139	Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 226-236.	3.3	234
140	A parametric study on the processing parameters and properties of a porous poly(DLâ€lactideâ€ <i>co</i> â€glycolide) acid 85/15 bioscaffolds. Polymer Engineering and Science, 2009, 49, 2062-2069.	1.5	4
141	Supercritical fluids processing of polymers for pharmaceutical and medical applications. Journal of Supercritical Fluids, 2009, 47, 484-492.	1.6	176
142	Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. Journal of Supercritical Fluids, 2009, 49, 279-285.	1.6	76
143	Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Materials Science and Engineering C, 2009, 29, 2110-2115.	3.8	37
144	The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells. Biomaterials, 2009, 30, 2516-2522.	5.7	123
145	Gradient collagen/nanohydroxyapatite composite scaffold: Development and characterization. Acta Biomaterialia, 2009, 5, 661-669.	4.1	104
146	Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta Biomaterialia, 2009, 5, 2054-2062.	4.1	82
147	Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering. Acta Biomaterialia, 2009, 5, 2847-2859.	4.1	56
148	Imaging the Structure of Macroporous Hydrogels by Two-Photon Fluorescence Microscopy. Macromolecules, 2009, 42, 2749-2755.	2.2	17
149	Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Seminars in Cell and Developmental Biology, 2009, 20, 646-655.	2.3	247

#	Article	IF	CITATIONS
150	Cryogenic Designing of Biocompatible Blends of Polyvinyl alcohol and Starch with Macroporous Architecture. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 1060-1068.	1.2	22
151	Biomimetic Nanophase Materials to Promote New Tissue Formation for Tissue-Engineering Applications. , 2009, , 283-296.		1
152	Silk Fibroin Based Porous Materials. Materials, 2009, 2, 2276-2295.	1.3	88
153	Biomaterials for Tissue Engineering of Hard Tissues. , 2009, , 1-42.		4
154	Surface-modified 3D starch-based scaffold for improved endothelialization for bone tissue engineering. Journal of Materials Chemistry, 2009, 19, 4091.	6.7	35
155	Novel factor-loaded polyphosphazene matrices: Potential for driving angiogenesis. Journal of Microencapsulation, 2009, 26, 544-555.	1.2	22
156	Nanostructured PLLAâ~'Hydroxyapatite Scaffolds Produced by a Supercritical Assisted Technique. Industrial & Engineering Chemistry Research, 2009, 48, 5310-5316.	1.8	51
157	Hydroxyapatite-Coated Polycaprolacton Wide Mesh as a Model of Open Structure for Bone Regeneration. Tissue Engineering - Part A, 2009, 15, 155-163.	1.6	18
158	Biodegradable Polymeric Fiber Structures in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2009, 15, 17-27.	2.5	82
159	Fabrication of Ordered Arrays of Biodegradable Polymer Pincushions Using Selfâ€Organized Honeycombâ€Patterned Films. Macromolecular Symposia, 2009, 279, 175-182.	0.4	20
160	HYBRID BIOMATERIALS FOR ENGINEERING VASCULAR TISSUES. , 2010, , 373-387.		1
161	Phase separation two polymers in a blend and selective degradation as a method for porous structure formation. Polymer Science - Series A, 2010, 52, 150-159.	0.4	4
162	Development of bone substitute materials: from â€~biocompatible' to â€~instructive'. Journal of Materials Chemistry, 2010, 20, 8747.	6.7	116
163	The nanofibrous architecture of poly(l-lactic acid)-based functional copolymers. Biomaterials, 2010, 31, 259-269.	5.7	88
164	Supercritical phase inversion of starch-poly(ε-caprolactone) for tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2010, 21, 533-540.	1.7	11
165	Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results. Journal of Materials Science: Materials in Medicine, 2010, 21, 1005-1011.	1.7	28
166	Development of 3-D poly(trimethylenecarbonate-co-ε-caprolactone)-block-poly(p-dioxanone) scaffold for bone regeneration with high porosity using a wet electrospinning method. Biotechnology Letters, 2010, 32, 877-882.	1.1	27
167	Determining the protein drug release characteristics and cell adhesion to a PLLA or PLGA biodegradable polymer membrane. Journal of Biomedical Materials Research - Part A, 2010, 94A, 27-37.	2.1	16

#	Article	IF	CITATIONS
168	Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways. Journal of Biomedical Materials Research - Part A, 2010, 94A, 673-682.	2.1	78
169	Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cellâ€based bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 95A, 222-234.	2.1	112
170	Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: An <i>in vitro</i> study. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1244-1251.	2.1	27
171	Biodegradable poly(αâ€hydroxy acid) polymer scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 285-295.	1.6	25
172	Electrodeposition on Nanofibrous Polymer Scaffolds: Rapid Mineralization, Tunable Calcium Phosphate Composition and Topography. Advanced Functional Materials, 2010, 20, 3568-3576.	7.8	95
173	Controlling Stem Cell Fate with Material Design. Advanced Materials, 2010, 22, 175-189.	11.1	215
175	Biomimetic Collagen Nanofibrous Materials for Bone Tissue Engineering. Advanced Engineering Materials, 2010, 12, B451.	1.6	56
176	Development of Biomimetic Chitosanâ€Based Hydrogels Using an Elastinâ€Like Polymer. Advanced Engineering Materials, 2010, 12, B37.	1.6	26
177	Synthesis and characterization of chitosanâ€polycaprolactone blended with organoclay for control release of doxycycline. Journal of Applied Polymer Science, 2010, 118, 3167-3175.	1.3	47
178	Control of Osteogenic Differentiation and Mineralization of Human Mesenchymal Stem Cells on Composite Nanofibers Containing Poly[lacticâ€ <i>co</i> â€{glycolic acid)] and Hydroxyapatite. Macromolecular Bioscience, 2010, 10, 173-182.	2.1	101
179	Computational modeling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT. Journal of Biomechanics, 2010, 43, 1279-1286.	0.9	99
180	Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer, 2010, 51, 1320-1327.	1.8	161
181	Preparation in supercritical CO2 of porous poly(methyl methacrylate)–poly(l-lactic acid) (PMMA–PLA) scaffolds incorporating ibuprofen. Journal of Supercritical Fluids, 2010, 54, 335-341.	1.6	51
182	Novel 3D scaffolds of chitosan–PLLA blends for tissue engineering applications: Preparation and characterization. Journal of Supercritical Fluids, 2010, 54, 282-289.	1.6	72
183	Plasma-induced polymerization as a tool for surface functionalization of polymer scaffolds for bone tissue engineering: An in vitro study. Acta Biomaterialia, 2010, 6, 3704-3712.	4.1	51
184	A novel modular device for 3-D bone cell culture and non-destructive cell analysis. Acta Biomaterialia, 2010, 6, 3798-3807.	4.1	11
185	Chitosan–poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomaterialia, 2010, 6, 3457-3470.	4.1	141
186	Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials, 2010, 31, 5100-5109.	5.7	34

#	Article	IF	CITATIONS
187	A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31, 6121-6130.	5.7	1,874
188	A composite material model for improved bone formation. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 505-513.	1.3	25
189	Stem Cells Grown in Osteogenic Medium on PLGA, PLGA/HA, and Titanium Scaffolds for Surgical Applications. Bioinorganic Chemistry and Applications, 2010, 2010, 1-12.	1.8	29
190	Structural Characterization and Mechanical Performance of Calcium Phosphate Scaffolds and Natural Bones: A Comparative Study. Journal of Applied Biomaterials and Biomechanics, 2010, 8, 159-165.	0.4	2
191	Characterization of Poly(ε-caprolactone)/Polyfumarate Blends as Scaffolds for Bone Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1297-1312.	1.9	27
192	Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, 1389-1400.	1.0	38
193	Role of Nanofibrous Poly(Caprolactone) Scaffolds in Human Mesenchymal Stem Cell Attachment and Spreading for <i>In Vitro</i> Bone Tissue Engineering—Response to Osteogenic Regulators. Tissue Engineering - Part A, 2010, 16, 393-404.	1.6	125
194	Fundamental Biomechanics in Bone Tissue Engineering. Synthesis Lectures on Tissue Engineering, 2010, 2, 1-225.	0.3	48
195	Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1981-1997.	1.6	94
196	Nanoscaffold based stem cell regeneration therapy: recent advancement and future potential. Expert Opinion on Biological Therapy, 2010, 10, 1649-1661.	1.4	27
197	Bioactive Polymer/Hydroxyapatite (Nano)composites for Bone Tissue Regeneration. Advances in Polymer Science, 2010, , 97-207.	0.4	78
198	Designing biomimetic scaffolds for bone regeneration: why aim for a copy of mature tissue properties if nature uses a different approach?. Soft Matter, 2010, 6, 4976.	1.2	88
199	Effects of Morphogen and Scaffold Porogen on the Differentiation of Dental Pulp Stem Cells. Journal of Endodontics, 2010, 36, 1805-1811.	1.4	118
200	Enhanced Cell Colonization of Collagen Scaffold by Ultraviolet/Ozone Surface Processing. Tissue Engineering - Part C: Methods, 2010, 16, 1305-1314.	1.1	8
201	Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration. Journal of Materials Chemistry, 2010, 20, 8952.	6.7	79
202	Preparation of Membranes Using Supercritical Fluids. , 2010, , 199-216.		1
203	lcariin: A Potential Osteoinductive Compound for Bone Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 233-243.	1.6	94
204	Fibronectin-mimetic peptide-amphiphile nanofiber gels support increased cell adhesion and promote ECM production. Soft Matter, 2010, 6, 5064.	1.2	34

#	Article	IF	CITATIONS
205	Three-dimensional plotted PCL/Î ² -TCP scaffolds coated with a collagen layer: preparation, physical properties and in vitro evaluation for bone tissue regeneration. Journal of Materials Chemistry, 2011, 21, 6305.	6.7	55
206	Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. Journal of Materials Chemistry, 2011, 21, 17710.	6.7	57
207	Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications. Advances in Polymer Science, 2011, , 213-239.	0.4	52
209	Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal of Materials Chemistry, 2011, 21, 9419.	6.7	499
210	In vitro evaluation of osteoconductive starch based scaffolds under dynamic conditions. , 2011, , .		0
211	Materials for Bone Graft Substitutes and Osseous Tissue Regeneration. , 2011, , 343-362.		5
212	Osteogenic Differentiation of Embryonic Stem Cells in 2D and 3D Culture. Methods in Molecular Biology, 2011, 695, 281-308.	0.4	10
213	Multifunctional Polymer Based Structures for Human Tissues Reconstruction. , 2011, , 91-112.		1
214	Nanostructured Scaffolds for Bone Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 169-192.	0.7	6
215	Physiological Cartilage Tissue Engineering. International Review of Cell and Molecular Biology, 2011, 289, 37-87.	1.6	13
216	Biomimetic Scaffolds in Tissue Engineering. , 2011, , 31-39.		4
217	Injectable PolyHIPEs as High-Porosity Bone Grafts. Biomacromolecules, 2011, 12, 3621-3628.	2.6	128
218	Differences in Chemical Composition and Internal Structure Influence Systemic Host Response to Implants of Biomaterials. International Journal of Artificial Organs, 2011, 34, 422-431.	0.7	5
219	Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Materials, 2011, 10, 398-406.	13.3	363
220	Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Materials Science and Engineering C, 2011, 31, 1245-1256.	3.8	546
221	Preparation and mechanical behavior of PLGA/nano-BCP composite scaffolds during in-vitro degradation for bone tissue engineering. Polymer Degradation and Stability, 2011, 96, 1940-1946.	2.7	26
222	Surface wettability and chemistry of ozone perfusion processed porous collagen scaffold. Journal of Bionic Engineering, 2011, 8, 223-233.	2.7	11
223	Bone substitute biomedical material of multi-(amino acid) copolymer: in vitro degradation and biocompatibility. Journal of Materials Science: Materials in Medicine, 2011, 22, 2555-2563.	1.7	30

#	Article	IF	CITATIONS
224	Biomaterials to Prevascularize Engineered Tissues. Journal of Cardiovascular Translational Research, 2011, 4, 685-698.	1.1	59
225	Electrospun scaffolds for bone tissue engineering. Musculoskeletal Surgery, 2011, 95, 69-80.	0.7	62
226	Development and characterization of nanofibrous poly(lactic-co-glycolic acid)/biphasic calcium phosphate composite scaffolds for enhanced osteogenic differentiation. Macromolecular Research, 2011, 19, 172-179.	1.0	10
227	Nanocomposites and bone regeneration. Frontiers of Materials Science, 2011, 5, 342-357.	1.1	56
228	Enhanced Cellular Functions on Polycaprolactone Tissue Scaffolds by O ₂ Plasma Surface Modification. Plasma Processes and Polymers, 2011, 8, 256-267.	1.6	63
229	Targeted Cell–Cell Interactions by DNA Nanoscaffoldâ€Templated Multivalent Bispecific Aptamers. Small, 2011, 7, 1673-1682.	5.2	87
230	Enhanced osteoblastic differentiation of mesenchymal stem cells seeded in RGD-functionalized PLLA scaffolds and cultured in a flow perfusion bioreactor. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 464-475.	1.3	32
231	3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 770-779.	1.3	33
232	The Use of Poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€caprolactone) as a Scaffold for Adipose Stem Cells in Bone Tissue Engineering: Application in a Spinal Fusion Model. Macromolecular Bioscience, 2011, 11, 722-730.	2.1	43
233	Surface modification by glow discharge gasplasma treatment improves vascularization of allogenic bone implants. Journal of Orthopaedic Research, 2011, 29, 1237-1244.	1.2	14
234	Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagenâ€nanofibers for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 263-270.	1.6	82
235	Enhancement of ectopic osteoid formation following the dual release of bone morphogenetic protein 2 and Wnt1 inducible signaling pathway protein 1 from gelatin sponges. Biomaterials, 2011, 32, 5726-5732.	5.7	36
236	Fabrication and characterization of electrospun osteon mimicking scaffolds for bone tissue engineering. Materials Science and Engineering C, 2011, 31, 2-8.	3.8	24
237	Biomimetic material strategies for cardiac tissue engineering. Materials Science and Engineering C, 2011, 31, 503-513.	3.8	72
238	Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 50-59.	1.7	164
239	Nanostructured biomaterials for artificial tissues and organs. , 2011, , 236-269.		1
240	Designing Gelatin Based Blood Compatible Materials with Hydrophilic and Hydrophobic Macromolecular Chains. Journal of Dispersion Science and Technology, 2011, 32, 1032-1040.	1.3	2
241	Surface Modification of Polystyrene Beads by UV/Ozone Treatment. Advanced Materials Research, 0, 264-265, 1532-1537.	0.3	10

#	Article	IF	CITATIONS
242	Biomimetic Tailoring of the Surface Properties of Polymers at the Nanoscale: Medical Applications. Nanoscience and Technology, 2011, , 645-689.	1.5	2
243	Consequences of Neutralization on the Proliferation and Cytoskeletal Organization of Chondrocytes on Chitosan-Based Matrices. International Journal of Carbohydrate Chemistry, 2011, 2011, 1-13.	1.5	32
244	Bio-Decorated Polymer Membranes: A New Approach in Diagnostics and Therapeutics. Polymers, 2011, 3, 173-192.	2.0	28
245	Biomineralization and Bone Regeneration. , 2011, , 733-745.		5
246	Preparation and Characterization of a Porous Scaffold Based on Poly(D,L-Lactide) and N-Hydroxyapatite by Phase Separation. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1917-1929.	1.9	14
247	Bioactive glass containing composites for bone and musculoskeletal tissue engineering scaffolds. , 2011, , 162-188.		1
248	Biopolymers for Hard and Soft Engineered Tissues: Application in Odontoiatric and Plastic Surgery Field. Polymers, 2011, 3, 509-526.	2.0	43
249	Physical Properties and Biocompatibility of a Core-Sheath Structure Composite Scaffold for Bone Tissue Engineering In Vitro. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-9.	3.0	27
250	Preparation of Porous Biodegradable Polymer and Its Nanocomposites by Supercritical CO ₂ Foaming for Tissue Engineering. Journal of Nanomaterials, 2012, 2012, 1-12.	1.5	34
252	Bioactive core material for porous load-bearing implants. Advances in Materials Science, 2012, 12, .	0.4	2
253	Fabrication of Collagen–Elastin-Bound Peptide Microtubes for Mammalian Cell Attachment. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1843-1862.	1.9	4
254	Covalent RGD Modification of the Inner Pore Surface of Polycaprolactone Scaffolds. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 941-953.	1.9	17
255	Cell colonization of scaffolds for tissue engineering enhanced by means of plasma processes. Materials Research Society Symposia Proceedings, 2012, 1469, 110.	0.1	0
256	Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review. International Journal of Biomaterials, 2012, 2012, 1-10.	1.1	172
257	Preparation and Characterization of New Nano-Composite Scaffolds Loaded With Vascular Stents. International Journal of Molecular Sciences, 2012, 13, 3366-3381.	1.8	14
258	MTA-enriched nanocomposite TiO ₂ -polymeric powder coatings support human mesenchymal cell attachment and growth. Biomedical Materials (Bristol), 2012, 7, 055006.	1.7	18
259	Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. , 0, , .		92
260	Identification and Application of Polymers as Biomaterials for Tissue Engineering and Regenerative Medicine. , 2012, , 1-30.		3

CITATION REPORT ARTICLE IF CITATIONS Cryogenically direct-plotted alginate scaffolds consisting of micro/nano-architecture for bone 1.7 16 tissue regeneration. RSC Advances, 2012, 2, 7578. In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers. Applied Physics A: 1.1 44 Materials Science and Processing, 2012, 108, 751-759. Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceramics 2.3 36 International, 2012, 38, 6075-6090. Improvement of mechanical properties and blood compatibility of PLLA nanocomposites by 1.0 incorporation of polyhedral oligomeric silsesquioxane. Macromolecular Research, 2012, 20, 996-1001. Construction of Mesenchymal Stem Cell–Containing Collagen Gel with a Macrochanneled Polycaprolactone Scaffold and the Flow Perfusion Culturing for Bone Tissue Engineering. 2.6 38 BioResearch Open Access, 2012, 1, 124-136. Miniemulsion template polymerization to prepare a sub-micrometer porous polymeric monolith with an inter-connected structure and very high mechanical strength. Soft Matter, 2012, 8, 7547. 1.2 Supercritical fluids in 3-D tissue engineering. Journal of Supercritical Fluids, 2012, 69, 97-107. 1.6 71 Cytocompatibility of Porous Biphasic Calcium Phosphate Granules With Human Mesenchymal Cells by 1.0 a Multiparametrić Assay. Artificial Organs, 2012, 36, 535-542. Plasma polymerizationâ€modified bacterial polyhydroxybutyrate nanofibrillar scaffolds. Journal of 1.3 7 Applied Polymer Science, 2013, 128, 1904-1912. Developing scaffolds for tissue engineering using the Ca²⁺â€induced cold gelation by an experimental design approach. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 1.6 2012, 100B, 22<u>69-22</u>78. Bone repair cells for craniofacial regeneration. Advanced Drug Delivery Reviews, 2012, 64, 1310-1319. 6.6 80 Bone scaffold architecture modulates the development of mineralized bone matrix by human 5.7 88 embryonic stem cells. Biomaterials, 2012, 33, 8329-8342. Cytocompatibility of polymer-based periodontal bone substitutes in gingival fibroblast and MC3T3 1.6 15 osteoblast cell cultures. Dental Materials, 2012, 28, e239-e249. Odontogenic responses of human dental pulp cells to collagen/nanobioactive glass nanocomposites. Dental Materials, 2012, 28, 1271-1279. 1.6 Characterization, and antibacterial properties of novel silver releasing nanocomposite scaffolds fabricated by the gas foaming/salt-leaching technique. Journal of Genetic Engineering and 28 1.5 Biotechnology, 2012, 10, 229-238. Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone

279The effects of chemokine, adhesion and extracellular matrix molecules on binding of mesenchymal
stromal cells to poly(l-lactic acid). Cytotherapy, 2012, 14, 1080-1088.0.311280Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue
engineering application. Journal of Biomaterials Applications, 2012, 27, 255-266.1.2102

tissue engineering. Acta Biomaterialia, 2012, 8, 3765-3776.

261

263

264

265

267

268

269

270

271

273

274

#	ARTICLE	IF	CITATIONS
281	Radially and Axially Graded Multizonal Bone Graft Substitutes Targeting Critical-Sized Bone Defects from Polycaprolactone/Hydroxyapatite/Tricalcium Phosphate. Tissue Engineering - Part A, 2012, 18, 2426-2436.	1.6	28
282	Bisphosphonate-Based Strategies for Bone Tissue Engineering and Orthopedic Implants. Tissue Engineering - Part B: Reviews, 2012, 18, 323-340.	2.5	75
283	Vascularization of Biomaterials for Bone Tissue Engineering: Current Approaches and Major Challenges. Current Angiogenesis, 2012, 1, 180-191.	0.1	15
284	Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. Journal of Materials Science: Materials in Medicine, 2012, 23, 2783-2792.	1.7	48
285	Functionalized Synthetic Biodegradable Polymer Scaffolds for Tissue Engineering. Macromolecular Bioscience, 2012, 12, 911-919.	2.1	246
286	Release Profiles of Tricalcium Phosphate Nanoparticles from Poly(<scp>L</scp> â€lactic acid) Electrospun Scaffolds with Single Component, Core–Sheath, or Porous Fiber Morphologies: Effects on hASC Viability and Osteogenic Differentiation. Macromolecular Bioscience, 2012, 12, 893-900.	2.1	37
287	Preparation of chitosanâ€nanohydroxyapatite composite scaffolds by a supercritical CO ₂ assisted process. Polymer Composites, 2012, 33, 1215-1223.	2.3	19
288	Characterization of the viscoelastic properties of poly(ε aprolactone)–hydroxyapatite microcomposite and nanocomposite scaffolds. Polymer Engineering and Science, 2012, 52, 1649-1660.	1.5	3
289	Osteoblasts responses to threeâ€dimensional nanofibrous gelatin scaffolds. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3029-3041.	2.1	21
290	Mussel-inspired surface modification of poly(l-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2012, 91, 189-197.	2.5	179
291	PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. Journal of Supercritical Fluids, 2012, 65, 32-38.	1.6	66
292	Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science, 2012, 37, 237-280.	11.8	1,103
293	Polyoxymethyleneâ€homopolymer/hydroxyapatite nanocomposites for biomedical applications. Journal of Applied Polymer Science, 2012, 123, 2234-2243.	1.3	22
294	In vivo lamellar bone formation in fibre coated MgCHA–PCL-composite scaffolds. Journal of Materials Science: Materials in Medicine, 2012, 23, 117-128.	1.7	17
295	Microarchitectural and mechanical characterization of chitosan/hydroxyapatite/demineralized bone matrix composite scaffold. Journal of Porous Materials, 2012, 19, 251-259.	1.3	7
296	Bioscaffolds: Fabrication and Performance. , 2013, , 161-188.		9
297	Characterization of a hybrid bone substitute composed of polylactic acid tetrapod chips and hydroxyapatite powder. Tissue Engineering and Regenerative Medicine, 2013, 10, 71-76.	1.6	6
298	Current approaches to electrospun nanofibers for tissue engineering. Biomedical Materials (Bristol), 2013, 8, 014102.	1.7	216

#	Article	IF	CITATIONS
299	Surface Chemoselective Phototransformation of C–H Bonds on Organic Polymeric Materials and Related High-Tech Applications. Chemical Reviews, 2013, 113, 5547-5594.	23.0	100
301	Physicochemical Properties and Applications of Poly(lactic-co-glycolic acid) for Use in Bone Regeneration. Tissue Engineering - Part B: Reviews, 2013, 19, 380-390.	2.5	147
302	Fabrication and in vitro evaluations with osteoblast-like MG-63 cells of porous hyaluronic acid-gelatin blend scaffold for bone tissue engineering applications. Journal of Materials Science, 2013, 48, 4233-4242.	1.7	19
303	Porous Copolymers of ε-Caprolactone as Scaffolds for Tissue Engineering. Macromolecules, 2013, 46, 8136-8143.	2.2	35
304	Osteoblastic cellular responses on ionically crosslinked chitosanâ€ŧripolyphosphate fibrous 3â€Ð mesh scaffolds. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2526-2537.	2.1	20
305	Multifactor, Sequentially Releasing Scaffolds for Tissue Engineering:Fabrication Using Solvent/Nonsolvent Sintering Technology. Israel Journal of Chemistry, 2013, 53, 821-828.	1.0	0
306	Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. Acta Biomaterialia, 2013, 9, 8365-8373.	4.1	143
307	Biomimetic Collagen–Hydroxyapatite Composite Fabricated via a Novel Perfusion-Flow Mineralization Technique. Tissue Engineering - Part C: Methods, 2013, 19, 487-496.	1.1	66
309	Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells. Journal of Materials Chemistry B, 2013, 1, 4764.	2.9	86
310	Synthesis and characterization of novel biodegradable tetra-amino-terminated PLGA telechelic copolymer. Journal of Materials Science, 2013, 48, 659-664.	1.7	10
311	Macroporous Silk Fibroin Cryogels. Biomacromolecules, 2013, 14, 719-727.	2.6	129
312	Biocomposites of pHEMA with HA/β-TCP (60/40) for bone tissue engineering: Swelling, hydrolytic degradation, and inÂvitro behavior. Polymer, 2013, 54, 1197-1207.	1.8	28
313	Combinatorial design of hydrolytically degradable, bone-like biocomposites based on PHEMA and hydroxyapatite. Polymer, 2013, 54, 909-919.	1.8	26
314	Biomaterials and stem cells for tissue engineering. Expert Opinion on Biological Therapy, 2013, 13, 527-540.	1.4	46
315	Biomimetic Engineering of Nanofibrous Gelatin Scaffolds with Noncollagenous Proteins for Enhanced Bone Regeneration. Tissue Engineering - Part A, 2013, 19, 1754-1763.	1.6	43
316	Fabrication of Tissue Engineering Scaffolds. , 2013, , 427-446.		23
317	Toward Strong and Tough Glass and Ceramic Scaffolds for Bone Repair. Advanced Functional Materials, 2013, 23, 5461-5476.	7.8	183
318	Carbon Nanotube–Poly(lactide-co-glycolide) Composite Scaffolds for Bone Tissue Engineering Applications. Annals of Biomedical Engineering, 2013, 41, 904-916.	1.3	91

#	Article	IF	CITATIONS
319	Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 2013, 38, 1720-1747.	11.8	527
320	Hydrogels for Twoâ€Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix. Advanced Functional Materials, 2013, 23, 4542-4554.	7.8	191
321	Self-Organization and the Self-Assembling Process in Tissue Engineering. Annual Review of Biomedical Engineering, 2013, 15, 115-136.	5.7	182
322	Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnology and Applied Biochemistry, 2013, 60, 573-579.	1.4	40
323	Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 2013, 59, 255-263.	3.6	165
324	Melt Spinning of Poly(lactic acid) and Hydroxyapatite Composite Fibers: Influence of the Filler Content on the Fiber Properties. ACS Applied Materials & Interfaces, 2013, 5, 6864-6872.	4.0	77
325	Geometry–Force Control of Stem Cell Fate. BioNanoScience, 2013, 3, 43-51.	1.5	23
326	Cell-Laden Poly(É›-caprolactone)/Alginate Hybrid Scaffolds Fabricated by an Aerosol Cross-Linking Process for Obtaining Homogeneous Cell Distribution: Fabrication, Seeding Efficiency, and Cell Proliferation and Distribution. Tissue Engineering - Part C: Methods, 2013, 19, 784-793.	1.1	42
327	Properties and modification of porous 3-D collagen/hydroxyapatite composites. International Journal of Biological Macromolecules, 2013, 52, 250-259.	3.6	125
328	Ceramic ultra-thin coatings using atomic layer deposition. , 2013, , 257-283.		2
329	Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. Journal of Materials Chemistry B, 2013, 1, 4916.	2.9	83
330	Two-Stage Desorption-Controlled Release of Fluorescent Dye and Vitamin from Solution-Blown and Electrospun Nanofiber Mats Containing Porogens. Molecular Pharmaceutics, 2013, 10, 4509-4526.	2.3	57
331	Nanocomposites of bio-based hyperbranched polyurethane/funtionalized MWCNT as non-immunogenic, osteoconductive, biodegradable and biocompatible scaffolds in bone tissue engineering. Journal of Materials Chemistry B, 2013, 1, 4115.	2.9	41
332	Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opinion on Drug Delivery, 2013, 10, 1353-1365.	2.4	91
333	Apatite oated threeâ€dimensional fibrous scaffolds and their osteoblast response. Journal of Biomedical Materials Research - Part A, 2013, 101A, 674-683.	2.1	5
334	Preparation and characterization of collagenâ€nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1080-1094.	2.1	113
335	3D Tissue-Engineered Construct Analysis via Conventional High-Resolution Microcomputed Tomography Without X-Ray Contrast. Tissue Engineering - Part C: Methods, 2013, 19, 327-335.	1.1	17
336	Dual Delivery of BMP-2 and bFGF from a New Nano-Composite Scaffold, Loaded with Vascular Stents for Large-Size Mandibular Defect Regeneration. International Journal of Molecular Sciences, 2013, 14, 12714-12728.	1.8	71

ARTICLE IF CITATIONS A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug 337 1.5 480 Delivery Applications. Journal of Nanomaterials, 2013, 2013, 1-22. Restoration of Critical-Sized Defects in the Rabbit Mandible Using Autologous Bone Marrow Stromal Cells Hybridized with Nano- $\langle i \rangle \hat{l}^2 \langle i \rangle$ -tricalcium Phosphate/Collagen Scaffolds. Journal of 1.5 Nanomaterials, 2013, 2013, 1-8. Nanomaterials and synergistic lowâ€intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. Wiley Interdisciplinary Reviews: Nanomedicine and 339 3.3 21 Nanobiotechnology, 2013, 5, 191-204. Mastoid Obliteration Using Threeâ€Dimensional Composite Scaffolds Consisting of Polycaprolactone/βâ€Tricalcium Phosphate/Collagen Nanofibers: An In Vitro and In Vivo Study. 340 Macromolecular Bioscience, 2013, 13, 660-668. Mesenchymal stem cells from patients to assay bone graft substitutes. Journal of Cellular Physiology, 341 2.0 33 2013, 228, 1229-1237. Hydroxyapatite-Packed Chitosan-PMMA Nanocomposite: A Promising Material for Construction of Synthetic Bone. Advances in Polymer Science, 2013, , 135-167. 0.4 Clinical and experimental approaches to knee cartilage lesion repair and mesenchymal stem cell 343 1.5 15 chondrocyte differentiation. Biological Research, 2013, 46, 441-451. Injectable Biocomposites for Bone Healing in Rabbit Femoral Condyle Defects. PLoS ONE, 2013, 8, e75668. 1.1 344 Recent Developments of Functional Scaffolds for Craniomaxillofacial Bone Tissue Engineering 345 0.8 76 Applications. Scientific World Journal, The, 2013, 2013, 1-21. Structure/Property Relationships of Poly(L-lactic Acid)/Mesoporous Silica Nanocomposites. Journal 346 of Polymers, 2013, 2013, 1-10 Stem Cells in Tissue Engineering., 2013, , . 347 4 Polymer/ceramic composite scaffolds for tissue regeneration., 0,, 203-214. 348 A Glance at Methods for Cleft Palate Repair. Iranian Red Crescent Medical Journal, 2014, 16, e15393. 349 0.5 21 Poly (lactide -co- glycolide) Fiber: An Overview. Journal of Engineered Fibers and Fabrics, 2014, 9, 14 155892501400900. Stainless and Titanium Fibers as Non-degradable Three-dimensional Scaffolds for Bone 351 0.2 5 Reconstruction. Journal of Hard Tissue Biology, 2014, 23, 407-414. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering. 34 Biofabrication, 2014, 6, 025002. Automated quality characterization of 3D printed bone scaffolds. Journal of Computational Design 353 1.512 and Engineering, 2014, 1, 194-201. Fabrication of thermoplastic polyurethane tissue engineering scaffold by combining microcellular 354 1.2 injection molding and particle leaching. Journal of Materials Research, 2014, 29, 911-922.

#	Article	IF	CITATIONS
355	An Overview of Inverted Colloidal Crystal Systems for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2014, 20, 437-454.	2.5	25
356	A Combination of Biphasic Calcium Phosphate Scaffold with Hyaluronic Acid-Gelatin Hydrogel as a New Tool for Bone Regeneration. Tissue Engineering - Part A, 2014, 20, 1993-2004.	1.6	83
357	Magnesium-Containing Nanostructured Hybrid Scaffolds for Enhanced Dentin Regeneration. Tissue Engineering - Part A, 2014, 20, 2422-2433.	1.6	71
358	Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. Colloids and Surfaces B: Biointerfaces, 2014, 121, 409-416.	2.5	69
359	Improved cell infiltration of highly porous 3D nanofibrous scaffolds formed by combined fiber–fiber charge repulsions and ultra-sonication. Journal of Materials Chemistry B, 2014, 2, 8116-8122.	2.9	36
360	Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds. Tissue Engineering - Part C: Methods, 2014, 20, 714-723.	1.1	43
361	Novel Polymeric Materials with Double Porosity: Synthesis and Characterization. Macromolecular Symposia, 2014, 340, 18-27.	0.4	7
362	Synergistic Effect of Dualâ€Functionalized Fibrous Scaffold with BCP and RGD Containing Peptide for Improved Osteogenic Differentiation. Macromolecular Bioscience, 2014, 14, 1190-1198.	2.1	27
363	Production of porous polylactic acid monoliths via nonsolvent induced phase separation. Polymer, 2014, 55, 6743-6753.	1.8	77
364	An Appraisal of the Efficacy and Effectiveness of Nanoscaffolds Developed by Different Techniques for Bone Tissue Engineering Applications: Electrospinning A Paradigm Shift. Advances in Polymer Technology, 2014, 33, .	0.8	3
365	Biodegradable biomedical foam scaffolds. , 2014, , 163-187.		17
366	Fabrication of recombinant human bone morphogenetic protein-2 coated porous biphasic calcium phosphate-sodium carboxymethylcellulose-gelatin scaffold and its In vitro evaluation. Macromolecular Research, 2014, 22, 1297-1305.	1.0	7
367	Tailoring properties of polymeric biomedical foams. , 2014, , 129-162.		7
368	Design, fabrication and <i>in vitro</i> evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 131-142.	1.3	48
369	A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 242-247.	1.3	14
370	Cell-matrix and cell-cell interactions of human gingival fibroblasts on three-dimensional nanofibrous gelatin scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 862-873.	1.3	26
371	Magnesium calcium phosphate/ <i>l²</i> -tricalcium phosphate incorporation into gelatin scaffold: an <i>in vitro</i> comparative study. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 919-924.	1.3	4
372	Osteoconductive bio-based meshes based on Poly(hydroxybutyrate-co-hydroxyvalerate) and poly(butylene adipate-co-terephthalate) blends. Materials Science and Engineering C, 2014, 38, 315-324.	3.8	14

#	Article	IF	CITATIONS
373	A novel technique for scaffold fabrication: SLUP (salt leaching using powder). Current Applied Physics, 2014, 14, 371-377.	1.1	36
374	Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells. Cell and Tissue Research, 2014, 356, 97-107.	1.5	46
375	Reduced liver cell death using an alginate scaffold bandage: A novel approach for liver reconstruction after extended partial hepatectomy. Acta Biomaterialia, 2014, 10, 3209-3216.	4.1	28
376	Ion-Exchange Polymer Nanofibers for Enhanced Osteogenic Differentiation of Stem Cells and Ectopic Bone Formation. ACS Applied Materials & Interfaces, 2014, 6, 72-82.	4.0	30
377	Bone Regeneration. , 2014, , 1201-1221.		13
378	Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1304-1315.	1.6	154
379	Biodegradable poly(ester amide)s – A remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications. Progress in Polymer Science, 2014, 39, 1291-1311.	11.8	182
380	Engineering articular cartilageâ€like grafts by selfâ€assembly of infrapatellar fat padâ€derived stem cells. Biotechnology and Bioengineering, 2014, 111, 1686-1698.	1.7	14
381	Engineering functional doubly porous PHEMA-based materials. Polymer, 2014, 55, 373-379.	1.8	24
382	Design and synthesis of biodegradable copolyester poly(lµâ€caprolactoneâ€ <i>co</i> â€ <scp>d</scp> , <scp>l</scp> ″actide) with four pendent functional groups. Polymer Engineering and Science, 2014, 54, 2170-2176.	1.5	7
383	<i>In vitro</i> and <i>in vivo</i> evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 150-167.	1.9	45
384	Multifunctional scaffolds for bone regeneration. , 2014, , 95-117.		6
385	Urine-derived stem cells for potential use in bladder repair. Stem Cell Research and Therapy, 2014, 5, 69.	2.4	77
386	Polymeric biomaterials for tissue engineering. , 2014, , 35-66.		4
387	A novel scaffold geometry for chondral applications: Theoretical model and in vivo validation. Biotechnology and Bioengineering, 2014, 111, 2107-2119.	1.7	16
388	Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering. Materials Science and Engineering C, 2014, 44, 246-253.	3.8	63
389	<i>In vivo</i> study of 2D PHA matrices of different chemical compositions: tissue reactions and biodegradations. Materials Science and Technology, 2014, 30, 549-557.	0.8	17
390	Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6, 9477-9493.	2.8	305

#	Article	IF	CITATIONS
391	Advanced Biomatrix Designs for Regenerative Therapy of Periodontal Tissues. Journal of Dental Research, 2014, 93, 1203-1211.	2.5	47
392	Silk scaffolds for dental tissue engineering. , 2014, , 403-428.		7
393	Injectable foams for regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 136-154.	3.3	14
394	Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding. Biofabrication, 2014, 6, 024107.	3.7	15
395	Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2. Biomaterials, 2014, 35, 10033-10045.	5.7	87
396	Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of Materials Science: Materials in Medicine, 2014, 25, 2445-2461.	1.7	791
397	The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. Journal of Controlled Release, 2014, 186, 54-87.	4.8	207
398	Characterization of bovine-derived porous hydroxyapatite scaffold and its potential to support osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Ceramics International, 2014, 40, 771-777.	2.3	38
399	In vivo comparative model of oxygen plasma and nanocomposite particles on PLGA membranes for guided bone regeneration processes to be applied in pre-prosthetic surgery: A pilot study. Journal of Dentistry, 2014, 42, 1446-1457.	1.7	14
400	Efficacy of tissue engineered bone grafts containing mesenchymal stromal cells for cleft alveolar osteoplasty in a rat model. Journal of Cranio-Maxillo-Facial Surgery, 2014, 42, 1277-1285.	0.7	21
401	Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomaterialia, 2014, 10, 4058-4070.	4.1	215
402	A biomimetic collagen–apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2014, 2, 1998.	2.9	74
403	Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Materials Science and Engineering C, 2014, 42, 362-367.	3.8	81
404	Chitosan as a Biomaterial. , 2014, , 91-113.		61
405	Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects. Artificial Cells, Nanomedicine and Biotechnology, 2014, 42, 70-77.	1.9	27
406	Fabrication and Characterization of Three Dimensional Electrospun Cortical Bone Scaffolds. Nanomaterials and the Environment, 2014, 2, .	0.3	1
407	Functions and Requirements of Synthetic Scaffolds in Tissue Engineering. , 2014, , 63-102.		1
408	Effects of parameters on the fabrication of poly(caprolactone) electrospun membrane using electrospinning technique. , 2014, , .		1

#	Article	IF	CITATIONS
409	Indirect Additive Manufacturing Processing of Poly-Lactide-co-Glycolide. Applied Mechanics and Materials, 0, 754-755, 985-989.	0.2	0
410	Shear-Induced Reactive Gelation. Langmuir, 2015, 31, 12727-12735.	1.6	13
411	Biohybrid hematopoietic niche for expansion of hematopoietic stem/progenitor cells by using geometrically controlled fibrous layers. RSC Advances, 2015, 5, 80357-80364.	1.7	17
413	Ultraviolet-Crosslinkable and Injectable Chitosan/Hydroxyapatite Hybrid Hydrogel for Critical Size Calvarial Defect Repair In Vivo. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, .	0.8	4
415	Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering. Regenerative Engineering and Translational Medicine, 2015, 1, 32-41.	1.6	12
416	Biocatalyzed approach for the surface functionalization of poly(Lâ€lactic acid) films using hydrolytic enzymes. Biotechnology Journal, 2015, 10, 1739-1749.	1.8	55
417	Optimization of the time efficient calcium phosphate coating on electrospun poly(<scp>d</scp> , <scp>l</scp> â€lactide). Journal of Biomedical Materials Research - Part A, 2015, 103, 2720-2730.	2.1	7
418	Fabrication of polylactide nanocomposite scaffolds for bone tissue engineering applications. AIP Conference Proceedings, 2015, , .	0.3	1
419	Effect of bioactive glass particles on osteogenic differentiation of adiposeâ€derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 3815-3824.	2.1	18
420	Silicaâ€based mesoporous nanobiomaterials as promoter of bone regeneration process. Journal of Biomedical Materials Research - Part A, 2015, 103, 3703-3716.	2.1	38
421	Hierarchical Nanofibrous Microspheres with Controlled Growth Factor Delivery for Bone Regeneration. Advanced Healthcare Materials, 2015, 4, 2699-2708.	3.9	57
422	Assessment of cell proliferation in knitting scaffolds with respect to poreâ€size heterogeneity, surface wettability, and surface roughness. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
423	Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1182-1192.	1.3	33
424	POLYHYDROXYALKANOATES (PHAs) FOR TISSUE ENGINEERING APPLICATIONS: BIOTRANSFORMATION OF PALM OIL MILL EFFLUENT (POME) TO VALUE-ADDED POLYMERS. Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.78	34 ∂. ₽4 rgB⊺	Г k Overlock
425	Current Challenges in Bone Biology. Advanced Techniques in Biology & Medicine, 2015, 03, .	0.1	0
426	Biomaterial Scaffolds for Tendon Tissue Engineering. , 2015, , 349-380.		2
427	Novel Development of Biocompatible Coatings for Bone Implants. Coatings, 2015, 5, 737-757.	1.2	26
428	Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials, 2015, 8, 5744-5794	1.3	544

#	Article	IF	CITATIONS
429	Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation. Materials, 2015, 8, 2953-2993.	1.3	141
430	A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration. BioMed Research International, 2015, 2015, 1-15.	0.9	9
431	Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine. Scientific World Journal, The, 2015, 2015, 1-12.	0.8	23
432	The Effects of Surface Properties of Nanostructured Bone Repair Materials on Their Performances. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	13
433	Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering. Stem Cells International, 2015, 2015, 1-12.	1.2	177
434	Polymorphic solidification of Linezolid confined in electrospun PCL fibers for controlled release in topical applications. International Journal of Pharmaceutics, 2015, 490, 32-38.	2.6	24
435	Characterization of Material–Process–Structure Interactions in the 3D Bioplotting of Polycaprolactone. 3D Printing and Additive Manufacturing, 2015, 2, 20-31.	1.4	18
436	Importance of Poly(lactic-co-glycolic acid) in Scaffolds for Guided Bone Regeneration: A Focused Review. Journal of Oral Implantology, 2015, 41, e152-e157.	0.4	23
437	Nanotexturing of PC/n-HA nanocomposites by innovative and advanced spray system. RSC Advances, 2015, 5, 13653-13659.	1.7	13
438	PEG-penetrated chitosan–alginate co-polysaccharide-based partially and fully cross-linked hydrogels as ECM mimic for tissue engineering applications. Progress in Biomaterials, 2015, 4, 101-112.	1.8	38
439	Bone-tissue engineering: complex tunable structural and biological responses to injury, drug delivery, and cell-based therapies. Drug Metabolism Reviews, 2015, 47, 431-454.	1.5	28
440	Biomaterials mediated microRNA delivery for bone tissue engineering. International Journal of Biological Macromolecules, 2015, 74, 404-412.	3.6	56
441	PCL/Alginate Composite Scaffolds for Hard Tissue Engineering: Fabrication, Characterization, and Cellular Activities. ACS Combinatorial Science, 2015, 17, 87-99.	3.8	73
442	Development of Polymer/Nanodiamond Composite Coatings to Control Cell Adhesion, Growth, and Functions. Behavior Research Methods, 2015, 21, 1-26.	2.3	3
443	Translating textiles to tissue engineering: Creation and evaluation of microporous, biocompatible, degradable scaffolds using industry relevant manufacturing approaches and human adipose derived stem cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1050-1058.	1.6	8
444	Lithiumâ€endâ€capped polylactide thin films influence osteoblast progenitor cell differentiation and mineralization. Journal of Biomedical Materials Research - Part A, 2015, 103, 500-510.	2.1	4
445	Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1580-1593.	1.6	45
446	Preparation and characterization of composite hydrogels based on crosslinked hyaluronic acid and sodium alginate. Journal of Applied Polymer Science, 2015, 132, .	1.3	10

#	Article	IF	CITATIONS
447	Functionalized scaffolds to enhance tissue regeneration. International Journal of Energy Production and Management, 2015, 2, 47-57.	1.9	115
448	Spinal fusion using adipose stem cells seeded on a radiolucent cage filler: a feasibility study of a single surgical procedure in goats. European Spine Journal, 2015, 24, 1031-1042.	1.0	23
449	Hydrogels—Promising Candidates for Tissue Engineering. , 2015, , 77-94.		14
450	Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine, 2015, 10, 2423-2450.	1.7	150
451	Designing and modeling doubly porous polymeric materials. European Physical Journal: Special Topics, 2015, 224, 1689-1706.	1.2	24
452	Fabrication of PLLA scaffold with gradient macro/micro/nano structure by electrophoretic deposition of carbon nanotube. Materials Letters, 2015, 159, 185-188.	1.3	7
453	Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Biomedical Materials (Bristol), 2015, 10, 035011.	1.7	29
454	Development of tantalum scaffold for orthopedic applications produced by space-holder method. Materials and Design, 2015, 83, 112-119.	3.3	25
455	Collagen immobilization of multi-layered BCP-ZrO 2 bone substitutes to enhance bone formation. Applied Surface Science, 2015, 345, 238-248.	3.1	10
456	Rapid maxillary expansion in alveolar cleft repaired with a tissue-engineered bone in a canine model. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 48, 86-99.	1.5	17
457	Evaluation of the growth and osteogenic differentiation of ASCs cultured with PL and seeded on PLGA scaffolds. Journal of Materials Science: Materials in Medicine, 2015, 26, 84.	1.7	5
458	Deposition of calcium hydroxyapatite on negatively charged polyphosphazene surfaces. Journal of Applied Polymer Science, 2015, 132, .	1.3	1
459	Targeted delivery as key for the success of small osteoinductive molecules. Advanced Drug Delivery Reviews, 2015, 94, 13-27.	6.6	65
460	Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connective Tissue Research, 2015, 56, 175-194.	1.1	78
461	Facile fabrication of doubly porous polymeric materials with controlled nano- and macro-porosity. Polymer, 2015, 78, 13-21.	1.8	31
462	Core–shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering. Acta Biomaterialia, 2015, 28, 183-192.	4.1	29
463	Cell-Laden 3D Printed Scaffolds for Bone Tissue Engineering. Clinical Reviews in Bone and Mineral Metabolism, 2015, 13, 245-255.	1.3	24
464	Bioactive Glass-Biopolymer Composites. , 2015, , 1-26.		0

ARTICLE IF CITATIONS # Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids and Surfaces B: 465 2.5 364 Biointerfaces, 2015, 136, 46-55. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core–Shell 4.0 Nanofibrous Membranes. ACS Applied Materials & amp; Interfaces, 2015, 7, 21170-21181. Hydrogels that allow and facilitate bone repair, remodeling, and regeneration. Journal of Materials 467 2.9 69 Chemistry B, 2015, 3, 7818-7830. A review of: Application of synthetic scaffold in tissue engineering heart valves. Materials Science 468 and Engineering C, 2015, 48, 556-565. Shedding Light on Living Cells. Advanced Materials, 2015, 27, 7662-7669. 469 11.1 40 An application of field-effect sensors for in-situ monitoring of degradation of biopolymers. Sensors 4.0 and Actuators B: Chemical, 2015, 207, 954-959. Fabrication of porous synthetic polymer scaffolds for tissue engineering. Journal of Cellular 471 1.2 52 Plastics, 2015, 51, 165-196. Bone mechanobiology, gravity and tissue engineering: effects and insights. Journal of Tissue 1.3 24 Engineering and Regenerative Medicine, 2015, 9, 1339-1351. 473 Molecular Strategies in the Study and Repair of Palatal Defects., 2015, , 485-498. 0 Combining Collagen and Bioactive Glasses for Bone Tissue Engineering: A Review. Advanced Healthcare 474 Materials, 2015, 4, 176-194. Synthesis and cytocompatibility of collagen/hydroxyapatite nanocomposite scaffold for bone tissue 475 2.3 34 engineering. Polymer Composites, 2016, 37, 81-90. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin. International Journal of Nanomedicine, 2016, Volume 11, 3.3 6181-6194. Rapid Prototyping Assisted Scaffold Fabrication for Bone Tissue Regeneration. Journal of Materials 477 0.1 2 Science Research, 2016, 5, 79. Oxygen-generating nanobiomaterials for the treatment of diabetes., 2016, 331-353. Nanohydroxyapatite Effect on the Degradation, Osteoconduction and Mechanical Properties of 479 0.1 25 Polymeric Bone Tissue Engineered Scaffolds. The Open Orthopaedics Journal, 2016, 10, 900-919. Myocardial tissue engineering using electrospun nanofiber composites. BMB Reports, 2016, 49, 26-36. 480 1.1 RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring 481 1.512 Cell Behaviors. Journal of Nanomaterials, 2016, 2016, 1-12. Poly(ε-caprolactone) Scaffolds Fabricated by Melt Electrospinning for Bone Tissue Engineering. 1.3 Materials, 2016, 9, 232.

#	Article	IF	CITATIONS
483	Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites. Materials, 2016, 9, 991.	1.3	132
484	Engineering Porous Poly(lactic acid) Scaffolds with High Mechanical Performance via a Solid State Extrusion/Porogen Leaching Approach. Polymers, 2016, 8, 213.	2.0	49
485	Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application. PLoS ONE, 2016, 11, e0163902.	1.1	115
486	Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation. PLoS ONE, 2016, 11, e0147507.	1.1	13
487	Bioactive TGF-β1/HA Alginate-Based Scaffolds for Osteochondral Tissue Repair: Design, Realization and Multilevel Characterization. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 42-52.	0.7	20
488	Magnetite nanoparticles for diagnostics and laser repair of cartilage. , 2016, , 443-472.		3
489	Threeâ€Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery. Journal of Prosthodontics, 2016, 25, 310-318.	1.7	51
490	Optimal bovine collagen concentration to achieve tracheal epithelial coverage of collagen sponges. Laryngoscope, 2016, 126, E396-E403.	1.1	9
491	Expandable Scaffold Improves Integration of Tissue-Engineered Cartilage: An <i>In Vivo</i> Study in a Rabbit Model. Tissue Engineering - Part A, 2016, 22, 873-884.	1.6	21
492	Influence of internal pore architecture on biological and mechanical properties of threeâ€dimensional fiber deposited scaffolds for bone regeneration. Journal of Biomedical Materials Research - Part A, 2016, 104, 991-1001.	2.1	46
493	Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomaterialia, 2016, 42, 341-350.	4.1	321
494	Fiber-hydrogel composites for skin tissue engineering. , 2016, , .		0
495	Stem Cells Commitment on Graphene-Based Scaffolds. Carbon Nanostructures, 2016, , 103-133.	0.1	0
496	Graphene: An Emerging Carbon Nanomaterial for Bone Tissue Engineering. Carbon Nanostructures, 2016, , 135-158.	0.1	3
497	Stem Cells in Bone and Articular Cartilage Tissue Regeneration. Stem Cells in Clinical Applications, 2016, , 177-204.	0.4	1
498	A composited PEG-silk hydrogel combining with polymeric particles delivering rhBMP-2 for bone regeneration. Materials Science and Engineering C, 2016, 65, 221-231.	3.8	35
499	Novel gamma irradiated agarose-gelatin-hydroxyapatite nanocomposite scaffolds for skin tissue regeneration. Ceramics International, 2016, 42, 11045-11054.	2.3	32
500	Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced Drug Delivery Reviews, 2016, 107, 247-276.	6.6	342

#	Article	IF	CITATIONS
501	Computation of permeability with Fast Fourier Transform from 3-D digital images of porous microstructures. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1328-1345.	1.6	13
502	Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Materials Science and Engineering C, 2016, 67, 792-806.	3.8	80
503	Studies on poly-3-hydroxyoctanoate biosynthesis by a consortium of microorganisms. Analele UniversitÄfÈ›ii Ovidius ConstanÈ›a: Seria Chimie, 2016, 27, 44-47.	0.2	3
504	Functionalization of Tungsten Disulfide Nanotubes with a Conformal Humin‣ike Shell. Advanced Materials Interfaces, 2016, 3, 1600307.	1.9	6
505	Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Materials, 2016, 1, 56-64.	8.6	199
507	Production and characterization of polycaprolactone- hyaluronic acid/chitosan- zein electrospun bilayer nanofibrous membrane for tissue regeneration. International Journal of Biological Macromolecules, 2016, 93, 1100-1110.	3.6	127
508	Poly(butylene adipate-co-terephthalate) scaffolds: processing, structural characteristics and cellular responses. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1841-1859.	1.9	21
509	Preparation and characterization of chitosanâ€ <i>graft</i> â€poly(Lâ€lactic acid) microparticles. Polymer Engineering and Science, 2016, 56, 1432-1436.	1.5	7
510	Open pore, elastomeric scaffolds through frustrated particle collapse. Journal of Materials Science, 2016, 51, 10761-10774.	1.7	2
511	Development of functionalized multi-walled carbon nanotube-based polysaccharide–hydroxyapatite scaffolds for bone tissue engineering. RSC Advances, 2016, 6, 82385-82393.	1.7	27
512	Developing keratin sponges with tunable morphologies and controlled antioxidant properties induced by doping with polydopamine (PDA) nanoparticles. Materials and Design, 2016, 110, 475-484.	3.3	27
513	Biporous Crosslinked Polymers With Controlled Pore Size and Connectivity. Macromolecular Symposia, 2016, 365, 49-58.	0.4	1
514	Functionalized Doubly Porous Networks: From Synthesis to Application in Heterogeneous Catalysis. Macromolecular Symposia, 2016, 365, 40-48.	0.4	2
515	Quenching Phase Separation by Vapor Deposition Polymerization. Macromolecular Materials and Engineering, 2016, 301, 99-109.	1.7	10
516	The effective role of akermanite on the apatite-forming ability of gelatin scaffold as a bone graft substitute. Ceramics International, 2016, 42, 17781-17791.	2.3	43
517	Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn2SiO4 bioceramic nanoparticles. Differentiation, 2016, 92, 148-158.	1.0	58
518	Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers. Biofabrication, 2016, 8, 035013.	3.7	64
519	Biodegradable and temperatureâ€responsive thermoset polyesters with renewable monomers. Journal of Applied Polymer Science, 2016, 133, .	1.3	12

#	Article	IF	CITATIONS
520	Alginate Bead Based Hexagonal Close Packed 3D Implant for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 32132-32145.	4.0	37
521	Biomimetic, Osteoconductive Non-mulberry Silk Fiber Reinforced Tricomposite Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 30797-30810.	4.0	122
522	Nanobiomaterials in hard tissue engineering. , 2016, , 1-31.		2
523	Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation. Applied Surface Science, 2016, 385, 400-409.	3.1	47
524	Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering. , 2016, , 325-356.		7
525	Fabrication and characterization of modified nanofibrous poly(L-lactic acid) scaffolds by thermally induced phase separation technique and aminolysis for promoting cyctocompatibility. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1058-1068.	1.9	9
526	Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. Journal of Applied Polymer Science, 2016, 133, .	1.3	126
527	Ectopic osteogenic tissue formation by MC3T3-E1 cell-laden chitosan/hydroxyapatite composite scaffold. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1440-1447.	1.9	16
528	Cross-Linked Hydrogels Formed through Diels–Alder Coupling of Furan- and Maleimide-Modified Poly(methyl vinyl ether- <i>alt</i> -maleic acid). Langmuir, 2016, 32, 1863-1870.	1.6	34
529	Functionally graded materials for orthopedic applications – an update on design and manufacturing. Biotechnology Advances, 2016, 34, 504-531.	6.0	223
530	Stabilization of porous chitosan improves the performance of its association with platelet-rich plasma as a composite scaffold. Materials Science and Engineering C, 2016, 60, 538-546.	3.8	23
531	Feature Article: Biomaterials. , 2016, , .		6
532	Biodegradation, biocompatibility, and osteoconduction evaluation of collagenâ€nanohydroxyapatite cryogels for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2016, 104, 57-70.	2.1	60
533	Solvent Assisted Rinsing: Stability/Instability of Ultrathin Polymer Residual Layer. Macromolecules, 2016, 49, 1807-1815.	2.2	35
534	â€~Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes'. Journal of Dentistry, 2016, 47, 71-79.	1.7	12
535	Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for <i>In Vitro</i> Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 265-283.	2.5	19
536	Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes and Diseases, 2016, 3, 56-71.	1.5	93
537	Regenerated cellulose scaffolds: Preparation, characterization and toxicological evaluation. Carbohydrate Polymers, 2016, 136, 892-898.	5.1	29

#	Article	IF	CITATIONS
538	Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology, 2016, 68, 355-369.	0.7	522
539	Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, <i>in vitro</i> and <i>in vivo</i> biocompatibility. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 20-33.	1.3	60
540	Porous nanoplate-like hydroxyapatite–sodium alginate nanocomposite scaffolds for potential bone tissue engineering. Materials Technology, 2017, 32, 78-84.	1.5	17
541	Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and <i>in vitro </i> tests. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 321-329.	1.9	38
542	DPSC colonization of functionalized 3D textiles. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 785-794.	1.6	8
543	Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials. Nano Convergence, 2017, 4, 2.	6.3	61
544	Small animal models to understand pathogenesis of osteoarthritis and use of stem cell in cartilage regeneration. Cell Biochemistry and Function, 2017, 35, 3-11.	1.4	4
545	Chitosan as a vehicle for growth factor delivery: Various preparations and their applications in bone tissue regeneration. International Journal of Biological Macromolecules, 2017, 104, 1383-1397.	3.6	71
546	Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments. Biofabrication, 2017, 9, 015023.	3.7	51
547	Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 2017, , 281-311.		27
548	Effect of freezing temperature in thermally induced phase separation method in hydroxyapatite/chitosan-based bone scaffold biomaterial. AIP Conference Proceedings, 2017, , .	0.3	3
549	Surface Modification of Bacterial Cellulose Film. Materials Science Forum, 2017, 889, 71-74.	0.3	1
550	3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications. Methods in Molecular Biology, 2017, 1577, 209-226.	0.4	33
551	Controlled Ion Release from Novel Polyester/Ceramic Composites Enhances Osteoinductivity. AAPS Journal, 2017, 19, 1029-1044.	2.2	9
552	Bone morphogenetic proteinâ€2 immobilization on porous PCLâ€BCP ol composite scaffolds for bone tissue engineering. Journal of Applied Polymer Science, 2017, 134, 45186.	1.3	18
553	Evaluation of electrospun biomimetic substrate surface-decorated with nanohydroxyapatite precipitation for osteoblasts behavior. Materials Science and Engineering C, 2017, 79, 687-696.	3.8	21
554	Fabrication and investigation of a biocompatible microfilament with high mechanical performance based on regenerated bacterial cellulose and bacterial cellulose. Materials Science and Engineering C, 2017, 79, 516-524.	3.8	20
555	Sequential IGF-1 and BMP-6 releasing chitosan/alginate/PLGA hybrid scaffolds for periodontal regeneration. International Journal of Biological Macromolecules, 2017, 104, 232-241.	3.6	42

#	Article	IF	CITATIONS
556	Electrospun PHEA-PLA/PCL Scaffold for Vascular Regeneration: A Preliminary inÂVivo Evaluation. Transplantation Proceedings, 2017, 49, 716-721.	0.3	18
557	The effect of riboflavin/UVA crossâ€linking on antiâ€degeneration and promoting angiogenic capability of decellularized liver matrix. Journal of Biomedical Materials Research - Part A, 2017, 105, 2662-2669.	2.1	13
558	κ-Carrageenan Enhances the Biomineralization and Osteogenic Differentiation of Electrospun Polyhydroxybutyrate and Polyhydroxybutyrate Valerate Fibers. Biomacromolecules, 2017, 18, 1563-1573.	2.6	68
559	Short bursts of cyclic mechanical compression modulate tissue formation in a 3D hybrid scaffold. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 165-174.	1.5	16
560	A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro. Drug Delivery and Translational Research, 2017, 7, 132-146.	3.0	24
561	Formation of Nanofibrous Matrices, Three-Dimensional Scaffolds, and Microspheres: From Theory to Practice. Tissue Engineering - Part C: Methods, 2017, 23, 50-59.	1.1	16
562	Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/l²-Glycerophosphate scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2017, 97, 365-372.	3.6	97
563	Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Materials Science and Engineering Reports, 2017, 111, 1-26.	14.8	176
564	Engineered Paperâ€Based Cell Culture Platforms. Advanced Healthcare Materials, 2017, 6, 1700619.	3.9	44
565	Polydopamine-Laced Biomimetic Material Stimulation of Bone Marrow Derived Mesenchymal Stem Cells to Promote Osteogenic Effects. Scientific Reports, 2017, 7, 12984.	1.6	27
566	A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid–gelatin hydrogel for bone regeneration. Journal of Biomaterials Applications, 2017, 32, 433-445.	1.2	39
567	Surface Modifications of the PMMA Optic of a Keratoprosthesis to Improve Biointegration. Cornea, 2017, 36, S15-S25.	0.9	24
568	Three-dimensional macroporous materials for tissue engineering of craniofacial bone. British Journal of Oral and Maxillofacial Surgery, 2017, 55, 875-891.	0.4	26
569	The role played by modified bioinspired surfaces in interfacial properties of biomaterials. Biophysical Reviews, 2017, 9, 683-698.	1.5	38
570	Recent advances in 3D printing of porous ceramics: A review. Current Opinion in Solid State and Materials Science, 2017, 21, 323-347.	5.6	228
571	Cryogelation within cryogels: Silk fibroin scaffolds with single-, double- and triple-network structures. Polymer, 2017, 128, 47-56.	1.8	36
573	Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. European Polymer Journal, 2017, 94, 208-221.	2.6	19
574	Comparative bone regeneration study of hardystonite and hydroxyapatite as filler in critical-sized defect of rat calvaria. RSC Advances, 2017, 7, 37522-37533.	1.7	12

#	Article	IF	CITATIONS
575	3D Printing Polymers with Supramolecular Functionality for Biological Applications. Biomacromolecules, 2017, 18, 2669-2687.	2.6	90
576	Roughness and Hydrophilicity as Osteogenic Biomimetic Surface Properties. Tissue Engineering - Part A, 2017, 23, 1479-1489.	1.6	107
577	Preparation and characterization of nanoparticle reinforced alginate fibers with high porosity for potential wound dressing application. RSC Advances, 2017, 7, 39349-39358.	1.7	27
578	Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system. Biomedical Materials (Bristol), 2017, 12, 055003.	1.7	22
579	<i>In vitro</i> and <i>in vivo</i> studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Advances, 2017, 7, 54100-54110.	1.7	75
580	An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces. Acta Biomaterialia, 2017, 58, 365-375.	4.1	70
581	In vitro study of novel microparticle based silk fibroin scaffold with osteoblast-like cells for load-bearing osteo-regenerative applications. RSC Advances, 2017, 7, 26551-26558.	1.7	19
582	Inverse Opal Scaffolds and Their Biomedical Applications. Advanced Materials, 2017, 29, 1701115.	11.1	127
583	Nanomedicine and epigenome. Possible health risks. Food and Chemical Toxicology, 2017, 109, 780-796.	1.8	54
584	Evaluation of Osteogenesis and Angiogenesis of Icariin in Local Controlled Release and Systemic Delivery for Calvarial Defect in Ovariectomized Rats. Scientific Reports, 2017, 7, 5077.	1.6	66
585	Endochondral Ossification in Critical-Sized Bone Defects via Readily Implantable Scaffold-Free Stem Cell Constructs. Stem Cells Translational Medicine, 2017, 6, 1644-1659.	1.6	53
586	Porous magnesium-based scaffolds for tissue engineering. Materials Science and Engineering C, 2017, 71, 1253-1266.	3.8	212
587	Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2017, 23, 128-141.	2.5	33
588	Injectable hydrogels as a delivery system for bone regeneration. , 2017, , 241-271.		4
589	The fabrication of wellâ€interconnected polycaprolactone/hydroxyapatite composite scaffolds, enhancing the exposure of hydroxyapatite using the wireâ€network molding technique. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2315-2325.	1.6	23
590	Novel class of collector in electrospinning device for the fabrication of 3D nanofibrous structure for large defect loadâ€bearing tissue engineering application. Journal of Biomedical Materials Research - Part A, 2017, 105, 1535-1548.	2.1	34
591	A comprehensive study on the fabrication and properties of biocomposites of poly(lactic) Tj ETQq0 0 0 rgBT /Ov	erlock 10 T 3.8	f 50 102 Td (120

592	Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by <i>in vivo</i> investigation. Biomedizinische Technik, 2017, 62, 295-306.	0.9	14
-----	--	-----	----

# 593	ARTICLE Co-existence effect of tricalcium phosphate and bioactive glass on biological and biodegradation characteristic of Poly L-Lactic Acid (PLLA) in trinary compositeAscaffold form. Bio-Medical Materials and Engineering, 2017, 28, 655-669.	IF 0.4	CITATIONS 3
594	Versatile functionalization platform of biporous poly(2-hydroxyethyl methacrylate)-based materials: Application in heterogeneous supported catalysis. Reactive and Functional Polymers, 2017, 121, 91-100.	2.0	7
595	Polymers for oral and dental tissue engineering. , 2017, , 25-46.		13
596	Collagen/chitosan composite scaffolds for bone and cartilage tissue engineering. , 2017, , 163-198.		10
597	Alginate in Bone Tissue Engineering. , 2017, , 349-368.		2
598	Polymer scaffolds for bone regeneration. , 2017, , 441-475.		3
599	Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel. Nanomaterials, 2017, 7, 389.	1.9	18
600	In Vitro and in Vivo Study of Poly(Lactic–co–Glycolic) (PLGA) Membranes Treated with Oxygen Plasma and Coated with Nanostructured Hydroxyapatite Ultrathin Films for Guided Bone Regeneration Processes. Polymers, 2017, 9, 410.	2.0	7
601	Open Source Multi-Head 3D Printer for Polymer-Metal Composite Component Manufacturing. Technologies, 2017, 5, 36.	3.0	13
602	Hydrogels in craniofacial tissue engineering. , 2017, , 47-64.		7
603	Hybrid ceramic/polymer composites for bone tissue regeneration. , 2017, , 125-155.		9
604	Tissue Engineering Scaffolds. , 2017, , .		0
605	An ECM-Mimicking, Mesenchymal Stem Cell-Embedded Hybrid Scaffold for Bone Regeneration. BioMed Research International, 2017, 2017, 1-12.	0.9	26
606	Engineering Niches for Bone Tissue Regeneration. , 2017, , 499-516.		1
607	â€~Reliability of new poly (lactic-co-glycolic acid) membranes treated with oxygen plasma plus silicon dioxide layers for pre-prosthetic guided bone regeneration processes'. Medicina Oral, Patologia Oral Y Cirugia Bucal, 2017, 22, 0-0.	0.7	4
608	Electrospun materials for bone and tendon/ligament tissue engineering. , 2017, , 233-260.		3
609	Biological Properties of Low-Toxic PLGA and PLGA/PHB Fibrous Nanocomposite Scaffolds for Osseous Tissue Regeneration. Evaluation of Potential Bioactivity. Molecules, 2017, 22, 1852.	1.7	10
610	Tissue Engineering of Skeletal Tissues. , 2018, , .		2

#	Article	IF	CITATIONS
611	In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2018, 165, 207-218.	2.5	59
612	In vitro evaluation of a bone morphogenetic proteinâ€2 nanometer hydroxyapatite collagen scaffold for bone regeneration. Molecular Medicine Reports, 2018, 17, 5830-5836.	1.1	16
613	Progress of Regenerative Therapy in Orthopedics. Current Osteoporosis Reports, 2018, 16, 169-181.	1.5	23
614	Acrylic Acid Plasma Coated 3D Scaffolds for Cartilage tissue engineering applications. Scientific Reports, 2018, 8, 3830.	1.6	44
615	Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials, 2018, 171, 118-132.	5.7	77
616	Nanocomposite Porous Microcarriers Based on Strontium-Substituted HA- <i>g</i> -Poly(γ-benzyl- <scp>l</scp> -glutamate) for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2018, 10, 16270-16281.	4.0	49
617	Modular Tissue Engineering: An Artificial Extracellular Matrix to Address and Stimulate Regeneration/Differentiation. Pancreatic Islet Biology, 2018, , 191-210.	0.1	0
618	Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. Journal of Controlled Release, 2018, 274, 35-55.	4.8	68
619	Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 716-729.	1.9	12
620	Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design. Materials Science and Engineering C, 2018, 86, 109-120.	3.8	14
621	A 3D bioprinted <i>in situ</i> conjugatedâ€ <i>co</i> â€fabricated scaffold for potential bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 1311-1321.	2.1	36
622	Alginate-polymethacrylate hybrid hydrogels for potential osteochondral tissue regeneration. Carbohydrate Polymers, 2018, 185, 56-62.	5.1	50
623	Osteocytogenesis: Roles of Physicochemical Factors, Collagen Cleavage, and Exogenous Molecules. Tissue Engineering - Part B: Reviews, 2018, 24, 215-225.	2.5	27
624	Polymer-mineral scaffold augments in vivo equine multipotent stromal cell osteogenesis. Stem Cell Research and Therapy, 2018, 9, 60.	2.4	21
625	Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity. Materials Science and Engineering C, 2018, 90, 280-288.	3.8	54
626	Parallel fabrication of macroporous scaffolds. Biotechnology and Bioengineering, 2018, 115, 1729-1742.	1.7	11
627	Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering. Carbohydrate Polymers, 2018, 190, 281-294.	5.1	71
628	Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMPâ€2 peptide conjugated TiO ₂ nanoparticle for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 991-1001.	1.3	27

#	Article	IF	CITATIONS
629	Preparation and characterization of gelatin/ $\hat{l}\pm$ -TCP/SF biocomposite scaffold for bone tissue regeneration. International Journal of Biological Macromolecules, 2018, 110, 488-496.	3.6	38
630	The role of nanomaterials in cell delivery systems. Medical Molecular Morphology, 2018, 51, 1-12.	0.4	29
631	Reactive compatibilization of poly(lactic acid)/polystyrene blends and its application to preparation of hierarchically porous poly(lactic acid). Polymer, 2018, 134, 104-116.	1.8	34
632	3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 2018, 3, 278-314.	8.6	866
633	Alginate Utilization in Tissue Engineering and Cell Therapy. Springer Series in Biomaterials Science and Engineering, 2018, , 121-155.	0.7	13
634	Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior. International Journal of Biological Macromolecules, 2018, 106, 433-446.	3.6	69
635	Molecular layers in thin supported films exhibit the same scaling as the bulk between slow relaxation and vibrational dynamics. Soft Matter, 2018, 14, 8814-8820.	1.2	20
636	Synthetic hydrogels formed by thiol–ene crosslinking of vinyl sulfone-functional poly(methyl vinyl) Tj ETQq1 1	0.784314 1.2	rg <u>BT</u> /Overlo
637	Porous nanofibrous scaffold incorporated with S1P loaded mesoporous silica nanoparticles and BMP-2 encapsulated PLGA microspheres for enhancing angiogenesis and osteogenesis. Journal of Materials Chemistry B, 2018, 6, 6731-6743.	2.9	35
638	Bulk Modification of Poly(lactide) (PLA) via Copolymerization with Poly(propylene glycol) Diglycidylether (PPGDGE). Polymers, 2018, 10, 1184.	2.0	14
639	Bone Regeneration: Experiences in Dentistry. Fundamental Biomedical Technologies, 2018, , 123-137.	0.2	0
640	Influence of Biomimetic Materials on Cell Migration. Advances in Experimental Medicine and Biology, 2018, 1064, 93-107.	0.8	2
641	Role of HA and BC in engineering poly(ε aprolactone) porous scaffolds for accelerating cranial bone regeneration. Journal of Biomedical Materials Research - Part A, 2018, 107, 654-662.	2.1	15
642	Osteogenic differentiation of Wharton's jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, S1032-S1042.	1.9	11
643	Formation of composite material based on proteins, chitosan and nanotubes by nanosecond laser pulses. Journal of Physics: Conference Series, 2018, 1134, 012052.	0.3	1
644	Study of Physical and Degradation Properties of 3D-Printed Biodegradable, Photocurable Copolymers, PGSA-co-PEGDA and PGSA-co-PCLDA. Polymers, 2018, 10, 1263.	2.0	45
645	SÃntese e caracterização de scaffolds de fibroÃna. Revista Materia, 2018, 23, .	0.1	1
646	Synthesis and Characterization of Poly(Vinyl Alcohol)-Chitosan-Hydroxyapatite Scaffolds: A Promising Alternative for Bone Tissue Regeneration. Molecules, 2018, 23, 2414.	1.7	30

ARTICLE IF CITATIONS Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous 4.1 150 647 scaffolds by mediating vascularization. Acta Biomaterialia, 2018, 82, 1-11. Cellâ€"Surface Interactions. Learning Materials in Biosciences, 2018, , 107-128. 648 0.2 Synthesis of Wollastonite Powders by Combustion Method: Role of Amount of Fuel. International 649 1.4 9 Journal of Chemical Engineering, 2018, 2018, 1-8. Present and future of tissue engineering scaffolds for dentinâ€pulp complex regeneration. Journal of 650 1.3 Tissue Engineering and Regenerative Medicine, 2019, 13, 58-75. Processing of Polymer Blends, Emphasizing: Melt Compounding; Influence of Nanoparticles on Blend Morphology and Rheology; Reactive Processing in Ternary Systems; Morphologyâ€"Property 651 0.4 8 Relationships; Performance and Application Challenges; and Opportunities and Future Trends. Springer Series in Materials Science, 2018, , 167-197 Effect of Recycling on the Cellular Structure of Polylactide in a Batch Process. Frontiers in Forests and Global Change, 2018, 37, 69-79. Tailoring the Interface of Biomaterials to Design Effective Scaffolds. Journal of Functional 653 1.8 43 Biomaterials, 2018, 9, 50. Nanofibers Regulate Single Bone Marrow Stem Cell Osteogenesis via FAK/RhoA/YAP1 Pathway. ACS 654 4.0 Applied Materials & amp; Interfaces, 2018, 10, 33022-33031. 655 Biomimetic delivery of signals for bone tissue engineering. Bone Research, 2018, 6, 25. 5.4 178 Biological Compatibility of a Polylactic Acid Composite Reinforced with Natural Chitosan Obtained 1.3 from Shrimp Waste. Materials, 2018, 11, 1465. In Vivo Investigation into Effectiveness of Fe3O4/PLLA Nanofibers for Bone Tissue Engineering 657 2.0 26 Applications. Polymers, 2018, 10, 804. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound 658 3.6 healing applications. International Journal of Biological Macromolecules, 2018, 116, 774-785. A novel Lipidoid-MicroRNA formulation promotes calvarial bone regeneration. Biomaterials, 2018, 177, 659 5.7 46 88-97. Structure \hat{e}° property relation of porous poly (l-lactic acid) scaffolds fabricated using organic solvent mixtures and controlled cooling rates and its bio-compatibility with human adipose stem cells. Journal of Bioactive and Compatible Polymers, 2018, 33, 397-415. 0.8 Osteoblastic differentiation on hydrogels fabricated from Ca2+-responsive self-assembling peptides 661 1.4 15 functionalized with bioactive peptides. Bioorganic and Medicinal Chemistry, 2018, 26, 3126-3132. Why we need to look beyond the glass transition temperature to characterize the dynamics of thin supported polymer films. Proceedings of the National Academy of Sciences of the United States of 50 America, 2018, 115, 5641-5646. Loading BMP-2 on nanostructured hydroxyapatite microspheres for rapid bone regeneration. 663 3.3 45 International Journal of Nanomedicine, 2018, Volume 13, 4083-4092. Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Materials 664 3.3 68 and Design, 2018, 157, 159-169.

# 665	ARTICLE The quest for mechanically and biologically functional soft biomaterials via soft network composites. Advanced Drug Delivery Reviews, 2018, 132, 214-234.	IF 6.6	CITATIONS
666	Mechanical and biological properties of scaffold materials. , 2018, , 1-21.		16
667	Phase-separation technologies for 3D scaffold engineering. , 2018, , 101-126.		4
668	3D bioprinting bone. , 2018, , 245-275.		16
669	Elastin-like materials for tissue regeneration and repair. , 2018, , 309-327.		8
670	Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 2018, 85, 83-127.	11.8	418
671	A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomaterialia, 2018, 74, 90-111.	4.1	168
672	Research of nonlinear characteristics of albumin and collagen dispersions with single-walled carbon nanotubes. , 2018, , .		3
673	Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications. Biomacromolecules, 2018, 19, 1783-1803.	2.6	149
674	Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. International Journal of Biological Macromolecules, 2018, 119, 1228-1239.	3.6	203
675	Nanostructured polymer scaffolds for tissue engineering technology. , 2018, , 451-483.		4
676	Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass. Biomedical Materials (Bristol), 2018, 13, 065006.	1.7	26
677	Note on the use of different approaches to determine the pore sizes of tissue engineering scaffolds: what do we measure?. BioMedical Engineering OnLine, 2018, 17, 110.	1.3	46
678	Materials for Tissue Engineering. , 2018, , 357-370.		1
679	Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials, 2019, 203, 96-110.	5.7	234
680	Design Principles in Biomaterials and Scaffolds. , 2019, , 505-522.		6
681	Biomineralization and Bone Regeneration. , 2019, , 853-866.		4
682	3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration. Journal of Industrial and Engineering Chemistry, 2019, 79, 163-171.	2.9	40

#	Article	IF	CITATIONS
683	Scaffolds with a High Surface Area-to-Volume Ratio and Cultured Under Fast Flow Perfusion Result in Optimal O2 Delivery to the Cells in Artificial Bone Tissues. Applied Sciences (Switzerland), 2019, 9, 2381.	1.3	15
684	In vitro and in vivo proves of concept for the use of a chemically cross-linked poly(ester-urethane-urea) scaffold as an easy handling elastomeric biomaterial for bone regeneration. International Journal of Energy Production and Management, 2019, 6, 311-323.	1.9	3
685	Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Advanced Functional Materials, 2019, 29, 1903279.	7.8	176
686	Nanostructured Green Biopolymer Composites for Orthopedic Application. Materials Horizons, 2019, , 159-190.	0.3	4
687	Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech, 2019, 20, 256.	1.5	31
688	Functionalized polymers for diagnostic engineering. , 2019, , 301-322.		3
689	3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. Journal of Drug Delivery Science and Technology, 2019, 53, 101131.	1.4	87
690	Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. European Polymer Journal, 2019, 119, 155-168.	2.6	68
691	Preparation and spectroscopic investigations of hydroxyapatite-curcumin nanoparticles-loaded polylactic acid for biomedical application. Egyptian Journal of Basic and Applied Sciences, 2019, 6, 1-9.	0.2	12
692	Assessment of osteogenesis for 3D-printed polycaprolactone/hydroxyapatite composite scaffold with enhanced exposure of hydroxyapatite using rat calvarial defect model. Composites Science and Technology, 2019, 184, 107844.	3.8	45
693	Electrospun nanofibers for the fabrication of engineered vascular grafts. Journal of Biological Engineering, 2019, 13, 83.	2.0	35
694	Fabrication and characterization of PLA/PP/ABS ternary blend. Polymer Engineering and Science, 2019, 59, 2273-2278.	1.5	7
695	Magnesium Silicate Bioceramics for Bone Regeneration: A Review. Journal of the Indian Institute of Science, 2019, 99, 261-288.	0.9	20
696	Egg-White-/Eggshell-Based Biomimetic Hybrid Hydrogels for Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 5384-5391.	2.6	39
697	Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Materials Science and Engineering C, 2019, 105, 110138.	3.8	51
698	Production of hydroxyapatite–bacterial cellulose composite scaffolds with enhanced pore diameters for bone tissue engineering applications. Cellulose, 2019, 26, 9803-9817.	2.4	34
699	Advanced cell culture platforms: a growing quest for emulating natural tissues. Materials Horizons, 2019, 6, 45-71.	6.4	114
700	Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. Journal of Materials Science and Technology, 2019, 35, 1284-1297.	5.6	149

#	Article	IF	CITATIONS
	Characterization and in vitro and in vivo assessment of poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 747	Td (adipat	e-co-terepht
701	Journal of Polymer Research, 2019, 26, 1.	1.2	27
702	Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 9415-9424.	4.0	51
703	Remaining Hurdles for Tissue-Engineering the Temporomandibular Joint Disc. Trends in Molecular Medicine, 2019, 25, 241-256.	3.5	22
704	<p>Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide</p> . International Journal of Nanomedicine, 2019, Volume 14, 733-751.	3.3	83
705	Scaffolds for regeneration of meniscus lesions. , 2019, , 329-344.		1
706	Scaffolds for gingival tissues. , 2019, , 521-543.		0
707	Scaffolds for blood vessel tissue engineering. , 2019, , 659-684.		0
708	Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Biomedical Materials (Bristol), 2019, 14, 045018.	1.7	78
709	Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells. Carbohydrate Polymers, 2019, 219, 210-218.	5.1	59
710	Polydopamine-Assisted Anchor of Chitosan onto Porous Composite Scaffolds for Accelerating Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 2998-3006.	2.6	32
711	The cross-linked polyvinyl alcohol/hydroxyapatite nanocomposite foam. Journal of Materials Research and Technology, 2019, 8, 3149-3157.	2.6	12
712	From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds. Materials Science and Engineering C, 2019, 103, 109760.	3.8	10
713	Local administration of aspirin with β-tricalcium phosphate/poly-lactic-co-glycolic acid (β-TCP/PLGA) could enhance osteoporotic bone regeneration. Journal of Bone and Mineral Metabolism, 2019, 37, 1026-1035.	1.3	35
714	Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 133, 592-602.	3.6	153
715	Integration of Technologies for Bone Tissue Engineering. , 2019, , .		3
716	Polymeric Materials for 3D Bioprinting. , 2019, , 63-81.		8
717	Resorbable biomaterials: role of chitosan as a graft in bone tissue engineering. , 2019, , 23-44.		3
718	New insights into nanohydroxyapatite/chitosan nanocomposites for bone tissue regeneration. , 2019, , 331-371.		2

~		~
	ON	REDUBL
CII/(I)		

#	Article	IF	CITATIONS
719	Collagenâ€alginateâ€nanoâ€silica microspheres improved the osteogenic potential of human osteoblastâ€like MGâ€63 cells. Journal of Cellular Biochemistry, 2019, 120, 15069-15082.	1.2	36
720	Polylactic acid: synthesis and biomedical applications. Journal of Applied Microbiology, 2019, 127, 1612-1626.	1.4	485
721	Synergistic effect of stem cells from human exfoliated deciduous teeth and rhBMP-2 delivered by injectable nanofibrous microspheres with different surface modifications on vascularized bone regeneration. Chemical Engineering Journal, 2019, 370, 573-586.	6.6	19
723	Bone defect healing is induced by collagen sponge/polyglycolic acid. Journal of Materials Science: Materials in Medicine, 2019, 30, 33.	1.7	49
724	Physical Properties and In Vitro Biocompatible Evaluation of Silicone-Modified Polyurethane Nanofibers and Films. Nanomaterials, 2019, 9, 367.	1.9	8
725	Melt spinning of nano-hydroxyapatite and polycaprolactone composite fibers for bone scaffold application. Journal of Materials Science, 2019, 54, 8602-8612.	1.7	23
726	Advances in additive manufacturing for bone tissue engineering scaffolds. Materials Science and Engineering C, 2019, 100, 631-644.	3.8	213
727	Influence of the geometry of nanostructured hydroxyapatite and alginate composites in the initial phase of bone repair. Acta Cirurgica Brasileira, 2019, 34, e201900203.	0.3	4
728	Biomimetic characterization reveals enhancement of hydroxyapatite formation by fluid flow in gellan gum and bioactive glass composite scaffolds. Polymer Testing, 2019, 76, 464-472.	2.3	9
729	Purification of alginate improves its biocompatibility and eliminates cytotoxicity in matrix for bone tissue engineering. Algal Research, 2019, 40, 101499.	2.4	25
730	Cold atmospheric plasma (CAP)-modified and bioactive protein-loaded core–shell nanofibers for bone tissue engineering applications. Biomaterials Science, 2019, 7, 2430-2439.	2.6	28
731	The influence of laser processing parameters on the densification and surface morphology of pure Fe and Fe-35Mn scaffolds produced by selective laser melting. Journal of Manufacturing Processes, 2019, 40, 113-121.	2.8	40
732	3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Biofabrication, 2019, 11, 035014.	3.7	47
733	Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1275-1293.	1.3	128
734	Tungsten disulfide-based nanocomposites for photothermal therapy. Beilstein Journal of Nanotechnology, 2019, 10, 811-822.	1.5	17
735	Hierarchical microchannel architecture in chitosan/bioactive glass scaffolds via electrophoretic deposition positiveâ€replica. Journal of Biomedical Materials Research - Part A, 2019, 107, 1455-1465.	2.1	12
736	Assessments of polycaprolactone/hydroxyapatite composite scaffold with enhanced biomimetic mineralization by exposure to hydroxyapatite via a 3D-printing system and alkaline erosion. European Polymer Journal, 2019, 113, 340-348.	2.6	46
737	Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials, 2019, 12, 568.	1.3	388

#	Article	IF	CITATIONS
738	Prechondrogenic ATDC5 cell response to graphene/multi-walled carbon nanotube-containing porous polycaprolactone biocomposite scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 1154-1166.	1.8	10
739	Bone Grafts and Bone Replacements. , 2019, , 1314-1326.		1
740	Characteristic of Synthetic Coral Scaffold for Cell Environment. Key Engineering Materials, 2019, 829, 188-193.	0.4	2
741	Fabrication of Bioscaffolds Using Bubbling Technique for Bone Tissue Engineering. Materials Science Forum, 2019, 962, 125-128.	0.3	2
742	Adhesion, proliferation and differentiation of human mesenchymal stem cell on chitosan/collagen composite scaffold. Journal of Materials Science: Materials in Medicine, 2019, 30, 131.	1.7	30
743	Induction of Osteogenesis in Rat Bone Tissue Using Cryogenically Structured Porous 3D Materials Containing a Bioregulator. Bulletin of Experimental Biology and Medicine, 2019, 168, 99-103.	0.3	9
744	Translational Research Symposium—collaborative efforts as driving forces of healthcare innovation. Journal of Materials Science: Materials in Medicine, 2019, 30, 133.	1.7	1
745	Tuning of ion-release capability from bio-ceramic-polymer composites for enhancing cellular activity. Royal Society Open Science, 2019, 6, 190612.	1.1	9
746	Hard tissue engineering applications. , 2019, , 119-158.		4
747	Emerging Development of Microfluidics-Based Approaches to Improve Studies of Muscle Cell Migration. Tissue Engineering - Part B: Reviews, 2019, 25, 30-45.	2.5	7
748	Evaluation of Strontium-Containing PCL-PDIPF Scaffolds for Bone Tissue Engineering: In Vitro and In Vivo Studies. Annals of Biomedical Engineering, 2019, 47, 902-912.	1.3	17
749	Composite scaffold obtained by electro-hydrodynamic technique for infection prevention and treatment in bone repair. International Journal of Pharmaceutics, 2019, 557, 162-169.	2.6	30
750	Poly (3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix. Journal of Cellular Physiology, 2019, 234, 11537-11544.	2.0	25
751	Nano-hydroxyapatite/polyamide66 composite scaffold conducting osteogenesis to repair mandible defect. Journal of Bioactive and Compatible Polymers, 2019, 34, 72-82.	0.8	4
752	Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Materials Science and Engineering C, 2019, 96, 153-165.	3.8	111
753	Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia, 2019, 84, 16-33.	4.1	547
754	Plasma Modified Polymeric Materials for Scaffolding of Bone Tissue Engineering. , 2019, , 439-458.		12
755	Effect of Poly(sophorolipid) Functionalization on Human Mesenchymal Stem Cell Osteogenesis and Immunomodulation. ACS Applied Bio Materials, 2019, 2, 118-126.	2.3	9

#	Article	IF	Citations
756	Covalent Attachment of Fibronectin onto Emulsionâ€Templated Porous Polymer Scaffolds Enhances Human Endometrial Stromal Cell Adhesion, Infiltration, and Function. Macromolecular Bioscience, 2019, 19, e1800351.	2.1	26
757	A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioactive Materials, 2019, 4, 22-36.	8.6	208
758	Fabrication and characterization of the 3Dâ€printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1937-1944.	1.6	23
759	Osteogenic differentiation of preconditioned bone marrow mesenchymal stem cells with lipopolysaccharide on modified polyâ€ <scp>l</scp> â€lacticâ€acid nanofibers. Journal of Cellular Physiology, 2019, 234, 5343-5353.	2.0	19
760	The potential use of gentamicin sulfate-loaded poly(l-lactic acid)-sericin hybrid scaffolds for bone tissue engineering. Polymer Bulletin, 2019, 76, 2867-2885.	1.7	6
761	Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Materials Science and Engineering C, 2019, 94, 713-728.	3.8	56
762	Effects of high temperature and ultraviolet radiation on polymer composites. , 2019, , 407-426.		26
763	Effect of Electron Beam Sterilization on Three-Dimensional-Printed Polycaprolactone/Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering. Tissue Engineering - Part A, 2019, 25, 248-256.	1.6	28
764	Zinc silicate mineral-coated scaffold improved in vitro osteogenic differentiation of equine adipose-derived mesenchymal stem cells. Research in Veterinary Science, 2019, 124, 444-451.	0.9	17
765	Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Materials Science and Engineering C, 2019, 95, 397-408.	3.8	67
766	Polymeric microgels for bone tissue engineering applications – a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 381-397.	1.8	31
767	Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 32-43.	1.8	33
768	Influence of processing parameters on mechanical properties of a 3Dâ€printed trabecular bone microstructure. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 38-47.	1.6	16
769	Synthesis, Characterization, and 3D Printing of an Isosorbide-Based, Light-Curable, Degradable Polymer for Potential Application in Maxillofacial Reconstruction. ACS Biomaterials Science and Engineering, 2020, 6, 2578-2587.	2.6	15
770	Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Materials Science and Engineering C, 2020, 107, 110267.	3.8	130
771	Frontiers in research for bone biomaterials. , 2020, , 307-332.		2
772	Composite Nano-fiber Mats Consisting of Biphasic Calcium Phosphate Loaded Polyvinyl Alcohol—Gelatin for Bone Tissue Engineering. IFMBE Proceedings, 2020, , 301-305.	0.2	0
773	Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/plateletâ€rich plasma composite nanofibers. Journal of Cellular Physiology, 2020, 235, 1155-1164.	2.0	38

	CITATION	Report	
# 774	ARTICLE Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103517.	IF 1.5	Citations
775	Effect of TiO2 doping on degradation rate, microstructure and strength of borate bioactive glass scaffolds. Materials Science and Engineering C, 2020, 107, 110351.	3.8	11
776	Engineered chitosan for improved 3D tissue growth through Paxillin-FAK-ERK activation. International Journal of Energy Production and Management, 2020, 7, 141-151.	1.9	17
777	ECM-mimicking nanofibrous matrix coaxes macrophages toward an anti-inflammatory phenotype: Cellular behaviors and transcriptome analysis. Applied Materials Today, 2020, 18, 100508.	2.3	16
778	Nanostructured biomaterials for regenerative medicine: Clinical perspectives. , 2020, , 47-80.		0
779	Hierarchical porosity inherited by natural sources affects the mechanical and biological behaviour of bone scaffolds. Journal of the European Ceramic Society, 2020, 40, 1717-1727.	2.8	15
780	Recent Developments in Nanofiber Fabrication and Modification for Bone Tissue Engineering. International Journal of Molecular Sciences, 2020, 21, 99.	1.8	69
781	Enhanced osteogenesis using poly (l-lactide-co-d, l-lactide)/poly (acrylic acid) nanofibrous scaffolds in presence of dexamethasone-loaded molecularly imprinted polymer nanoparticles. International Journal of Biological Macromolecules, 2020, 165, 2363-2377.	3.6	23
782	Complex-shaped magnetic 3D cell-based structures for tissue engineering. Acta Biomaterialia, 2020, 118, 18-31.	4.1	8
783	Influence of clay percentage on the technical properties of montmorillonite/polylactic acid nanocomposites. Applied Clay Science, 2020, 198, 105818.	2.6	10
784	An in vitro evaluation of zinc silicate fortified chitosan scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2020, 164, 4252-4262.	3.6	21
785	Additively manufactured biodegradable porous metals. Acta Biomaterialia, 2020, 115, 29-50.	4.1	113
786	Dynamic phase transitions in freestanding polymer thin films. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25407-25413.	3.3	7
787	3D printing in tissue engineering: a state of the art review of technologies and biomaterials. Rapid Prototyping Journal, 2020, 26, 1313-1334.	1.6	67
788	Comparing the regeneration potential between PLLA/Aragonite and PLLA/Vaterite pearl composite scaffolds in rabbit radius segmental bone defects. Bioactive Materials, 2020, 5, 980-989.	8.6	23
789	Advanced Biomaterials and Techniques for Oral Tissue Engineering and Regeneration—A Review. Materials, 2020, 13, 5303.	1.3	55
790	Nanofibers for soft-tissue engineering. , 2020, , 437-469.		1
791	Fabrication of Graphene Oxide and Nanohydroxyapatite Reinforced Gelatin–Alginate Nanocomposite Scaffold for Bone Tissue Regeneration. Frontiers in Materials, 2020, 7, .	1.2	36

#	Article	IF	CITATIONS
792	Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds. Advanced Healthcare Materials, 2020, 9, e2000724.	3.9	78
793	Aspiration-assisted bioprinting of the osteochondral interface. Scientific Reports, 2020, 10, 13148.	1.6	45
794	Single-Step Fabrication of Core–Shell Microgels for the Controlled Release of rhBMP-2 and Simvastatin to Induce Osteogenesis. ACS Applied Polymer Materials, 2020, 2, 4902-4913.	2.0	6
795	Structural and Biomedical Properties of Common Additively Manufactured Biomaterials: A Concise Review. Metals, 2020, 10, 1677.	1.0	24
796	Challenges and Opportunities in the Selective Laser Melting of Biodegradable Metals for Load-Bearing Bone Scaffold Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3311-3334.	1.1	35
797	Evaluation of Autologously Derived Biomaterials and Stem Cells for Bone Tissue Engineering. Tissue Engineering - Part A, 2020, 26, 1052-1063.	1.6	5
798	Osteogenic differentiation of an osteoblast precursor cell line using composite PCL-gelatin-nHAp electrospun nanofiber mesh. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1281-1295.	1.8	6
799	Improved efficacy of bioâ€mineralization of human mesenchymal stem cells on modified PLLA nanofibers coated with bioactive materials via enhanced expression of integrin α2β1. Polymers for Advanced Technologies, 2020, 31, 2325.	1.6	2
800	Cryogel biocomposite containing chitosan-gelatin/cerium–zinc doped hydroxyapatite for bone tissue engineering. Saudi Journal of Biological Sciences, 2020, 27, 2638-2644.	1.8	25
801	Natural Polymeric Scaffolds in Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 474.	2.0	198
802	Direct incorporation of mesenchymal stem cells into a Nanofiber scaffold – in vitro and in vivo analysis. Scientific Reports, 2020, 10, 9557.	1.6	9
803	3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering. International Journal of Biological Macromolecules, 2020, 162, 523-532.	3.6	62
804	3D Nonwoven Fabrics for Biomedical Applications. , 2020, , .		1
805	Polyâ€L â€lactide scaffolds with super pores obtained by freezeâ€extraction method. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3162-3173.	1.6	5
806	Scaffolds in Bone Tissue Engineering: Research Progress and Current Applications. , 2020, , 204-215.		8
807	Controlling the Pore Structure of Collagen Sponge by Adjusting the Cross-Linking Degree for Construction of Heterogeneous Double-Layer Bone Barrier Membranes. ACS Applied Bio Materials, 2020, 3, 2058-2067.	2.3	14
808	Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene, 2020, 740, 144534.	1.0	24
809	Is It Time to Start Transitioning From 2D to 3D Cell Culture?. Frontiers in Molecular Biosciences, 2020, 7, 33.	1.6	821

#	Article	IF	CITATIONS
810	A Bibliometric Review of Artificial Extracellular Matrices Based on Tissue Engineering Technology Literature: 1990 through 2019. Materials, 2020, 13, 2891.	1.3	12
811	Skeletal Stem Cells—Phenotype and Function. , 2020, , 9-20.		0
812	Nano-porous anodic alumina: fundamentals and applications in tissue engineering. Journal of Materials Science: Materials in Medicine, 2020, 31, 60.	1.7	31
813	Nanocomposite hydrogels for tissue engineering applications. Nanoscale, 2020, 12, 14976-14995.	2.8	168
814	A novel pathway to produce biodegradable and bioactive PLGA/TiO ₂ nanocomposite scaffolds for tissue engineering: Air–liquid foaming. Journal of Biomedical Materials Research - Part A, 2020, 108, 1390-1407.	2.1	11
815	Arabinoxylan-co-AA/HAp/TiO2 nanocomposite scaffold a potential material for bone tissue engineering: An in vitro study. International Journal of Biological Macromolecules, 2020, 151, 584-594.	3.6	51
816	Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by <i>In Vitro</i> Generated Extracellular Matrix Decoration. ACS Applied Materials & Interfaces, 2020, 12, 12510-12524.	4.0	63
817	Recent advances in periodontal regeneration: A biomaterial perspective. Bioactive Materials, 2020, 5, 297-308.	8.6	144
818	Layer-by-layer decorated herbal cell compatible scaffolds for bone tissue engineering: A synergistic effect of graphene oxide and <i>Cissus quadrangularis</i> . Journal of Bioactive and Compatible Polymers, 2020, 35, 57-73.	0.8	13
819	Humanâ€lymphocyte cell friendly starch–hydroxyapatite biodegradable composites: Hydrophilic mechanism, mechanical, and structural impact. Journal of Applied Polymer Science, 2020, 137, 48913.	1.3	13
820	Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. Journal of Saudi Chemical Society, 2020, 24, 186-215.	2.4	111
821	Polymer scaffold fabrication. , 2020, , 295-315.		2
822	Simultaneous enhancement of anti-corrosion, biocompatibility, and antimicrobial activities by hierarchically-structured brushite/Ag3PO4-coated Mg-based scaffolds. Materials Science and Engineering C, 2020, 111, 110779.	3.8	19
823	>Development and Study of Biocompatible Polyurethane-Based Polymer-Metallic Nanocomposites. Nanotechnology, Science and Applications, 2020, Volume 13, 11-22.	4.6	7
824	Effect of sodium chloride as a porogen agent in mechanical properties of PLGA/HA nanocomposite scaffolds. Biomedical Physics and Engineering Express, 2021, 7, 035009.	0.6	3
825	Comparative study of photoinitiators for the synthesis and 3D printing of a light-curable, degradable polymer for custom-fit hard tissue implants. Biomedical Materials (Bristol), 2021, 16, 015007.	1.7	7
826	In-vitro and in-vivo studies of PLA / PCL / gelatin composite scaffold containing ascorbic acid for bone regeneration. Journal of Drug Delivery Science and Technology, 2021, 61, 102077.	1.4	34
827	A novel Î ³ -PGA composite gellan membrane containing glycerol for guided bone regeneration. Materials Science and Engineering C, 2021, 118, 111404.	3.8	14

#	Article	IF	CITATIONS
828	Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111420.	2.5	49
829	Biomimetic mineralization of chitosan/gelatin cryogels and in vivo biocompatibility assessments for bone tissue engineering. Journal of Applied Polymer Science, 2021, 138, 50337.	1.3	17
830	A simple hydrogel scaffold with injectability, adhesivity and osteogenic activity for bone regeneration. Biomaterials Science, 2021, 9, 960-972.	2.6	27
831	Centella asiatica Extract Potentiates Anticancer Activity in an Improved 3-D PHBV-Composite-CMC A549 Lung Cancer Microenvironment Scaffold. Arabian Journal for Science and Engineering, 2021, 46, 5313-5325.	1.7	6
832	An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. Engineered Regeneration, 2021, 2, 1-18.	3.0	102
833	Mineralized Hydrogels Induce Bone Regeneration in Critical Size Cranial Defects. Advanced Healthcare Materials, 2021, 10, e2001101.	3.9	44
834	Cell Alignment Modulated by Surface Nano-Topography–ÂRoles of Cell-Matrix and Cell-Cell Interactions. SSRN Electronic Journal, 0, , .	0.4	0
835	Alginate-based nanocomposite hydrogels. , 2021, , 395-421.		0
836	Biopolymers and biocomposites: Nature's tools for wound healing and tissue engineering. , 2021, , 573-630.		5
837	PCL-based bionanocomposites in tissue engineering and regenerative medicine. , 2021, , 465-480.		0
838	Biomaterials for Hard Tissue Engineering: Concepts, Methods, and Applications. , 2021, , 347-380.		0
839	Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Advances, 2021, 11, 17809-17827.	1.7	22
840	Collagen Type I Biomaterials as Scaffolds for Bone Tissue Engineering. Polymers, 2021, 13, 599.	2.0	107
841	Gradient 3D Printed PLA Scaffolds on Biomedical Titanium: Mechanical Evaluation and Biocompatibility. Polymers, 2021, 13, 682.	2.0	12
842	Bone regeneration in critical-size calvarial defect using functional biocompatible osteoinductive herbal scaffolds and human umbilical cord Wharton's Jelly-derived mesenchymal stem cells. Materials Today Communications, 2021, 26, 102049.	0.9	5
843	Recent Developments in Polyurethane-Based Materials for Bone Tissue Engineering. Polymers, 2021, 13, 946.	2.0	37
844	Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art. Journal of Materials Research, 2021, 36, 3725-3745.	1.2	23
845	Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry. Journal of Composites Science, 2021, 5, 78.	1.4	24

0.7

0

#	Article	IF	CITATIONS
846	Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules, 2021, 26, 1643.	1.7	22
847	Additively Manufactured Absorbable Porous Metal Implants – Processing, Alloying and Corrosion Behavior. Frontiers in Materials, 2021, 8, .	1.2	7
848	Changes in Rat Bone Tissue at the Site of the Defect In Vivo under the Effect of a Cryogenically Structured Albumin Sponge Containing a Bioregulator. Bulletin of Experimental Biology and Medicine, 2021, 170, 805-808.	0.3	3
849	Fabrication of Polycaprolactone/Nano Hydroxyapatite (PCL/nHA) 3D Scaffold with Enhanced In Vitro Cell Response via Design for Additive Manufacturing (DfAM). Polymers, 2021, 13, 1394.	2.0	20
850	Dynamics and Structure Formation of Confined Polymer Thin Films Supported on Solid Substrates. Polymers, 2021, 13, 1621.	2.0	3
851	Hard Dental Tissues Regeneration—Approaches and Challenges. Materials, 2021, 14, 2558.	1.3	19
852	An Overview of Bone Replacement Materials – Biological Mechanisms and Translational Research. Serbian Journal of Experimental and Clinical Research, 2021, .	0.2	0
853	Polydioxanone-Based Membranes for Bone Regeneration. Polymers, 2021, 13, 1685.	2.0	15
854	Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous) Tj ETQq0 0 0 rgBT /O	verlock 10) Tf 50 422
855	On the Effectiveness of Oxygen Plasma and Alkali Surface Treatments to Modify the Properties of Polylactic Acid Scaffolds. Polymers, 2021, 13, 1643.	2.0	9
856	Electrospun scaffold for bone regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 842-857.	1.8	12
857	Dewetting temperatures of prefrozen and grafted layers in solid ultrathin films viewed as melt-memory effects. Physica B: Condensed Matter, 2021, 611, 412796.	1.3	9
858	Porosity parameters in biomaterial science: Definition, impact, and challenges in tissue engineering. Frontiers of Materials Science, 2021, 15, 352-373.	1.1	23
859	Collagen–Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers, 2021, 13, 1852.	2.0	43

862	Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2021, 32, 111.	1.7	22
863	The preparation and study on properties of calcium sulfate bone cement combined tuning silk fibroin nanofibers and vancomycinâ€oaded silk fibroin microspheres. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 564-572.	1.6	6

Development of carboxymethylcellulose based composites for bone tissue engineering. Bioinspired, Biomimetic and Nanobiomaterials, 2021, 10, 61-69.

Simple and efficient volume merging method for triply periodic minimal structures. Computer Physics Communications, 2021, 264, 107956.

860

#	Article	IF	CITATIONS
864	Investigating the physical characteristics and cellular interplay on 3D-printed scaffolds depending on the incorporated silica size for hard tissue regeneration. Materials and Design, 2021, 207, 109866.	3.3	9
865	In vitro and in vivo properties study of a novel 3D-printed absorbable pancreaticojejunostomy device made by melting blended poly(p-dioxanone)/poly(lactic acid). Materials and Design, 2021, 210, 110088.	3.3	7
866	Enhanced three-dimensional printing scaffold for osteogenesis using a mussel-inspired graphene oxide coating. Materials and Design, 2021, 209, 109941.	3.3	11
867	Thermoresponsive properties of star-shaped amphiphilic block copolymers with a cholic acid core and functional amine groups. Materials Today Communications, 2021, 29, 102816.	0.9	2
868	Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regenerative Therapy, 2021, 18, 102-111.	1.4	46
869	Bioresorbable biocomposites. , 2021, , 113-133.		0
870	Chitin-based nanomaterials. , 2021, , 249-275.		0
873	Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. Journal of Applied Polymer Science, 2017, 134, 45271.	1.3	47
874	Specialized Fabrication Processes: Rapid Prototyping. , 2009, , 493-523.		2
875	Degradable and Bioactive Synthetic Composite Scaffolds for Bone Tissue Engineering. , 2012, , 111-137.		3
876	Engineering Functional Bone Grafts. , 2011, , 221-235.		3
877	Biofabrication in Tissue Engineering. , 2020, , 289-312.		7
878	Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization. , 2020, , 647-676.		9
879	Additive Manufacturing and 3D Printing. , 2021, , 621-652.		6
880	Synthesis and Structure–Property Relationships of Cryogels. Advances in Polymer Science, 2014, , 103-157.	0.4	89
881	Cementum and Periodontal Ligament Regeneration. Advances in Experimental Medicine and Biology, 2015, 881, 207-236.	0.8	27
882	Scaffold Structure and Fabrication. , 2009, , 539-549.		3
883	Scaffolds for Tissue Engineering. SpringerBriefs in Applied Sciences and Technology, 2013, , 1-17.	0.2	3

#	Article	IF	CITATIONS
884	Introduction to Ideal Characteristics and Advanced Biomedical Applications of Biomaterials. , 2019, , 171-204.		4
885	Biomaterials and Fabrication Methods of Scaffolds for Tissue Engineering Applications. Materials Horizons, 2020, , 167-186.	0.3	6
886	Computation of macroscopic permeability of doubly porous media with FFT based numerical homogenization method. European Journal of Mechanics, B/Fluids, 2020, 83, 141-155.	1.2	12
887	BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Biomedical Materials (Bristol), 2021, 16, 015019.	1.7	30
888	Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering. Biofabrication, 2021, 13, 015013.	3.7	34
889	Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. Tissue Engineering, 2006, .	4.9	12
890	Tissue Engineering the Mandibular Condyle. Tissue Engineering, 2007, .	4.9	1
893	MICRO-CT IN TISSUE ENGINEERING SCAFFOLDS DESIGNED FOR BONE REGENERATION: PRINCIPLES AND APPLICATION. Ceramics - Silikaty, 2018, , 194-199.	0.2	8
894	Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-Polymers, 2020, 20, 571-599.	1.3	78
895	Strategies toward Engineering Vascularized Bone Graft Substitutes. , 0, , 299-332.		1
896	Novel Approaches to Bone Grafting: Porosity, Bone Morphogenetic Proteins, Stem Cells, and the Periosteum. Journal of Long-Term Effects of Medical Implants, 2010, 20, 303-315.	0.2	21
897	3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. International Journal of Bioprinting, 2017, 3, 54.	1.7	102
898	Scaffolds for Bone Regeneration: State of the Art. Current Pharmaceutical Design, 2016, 22, 2726-2736.	0.9	17
899	Sulfated Polysaccharides from Macroalgae for Bone Tissue Regeneration. Current Pharmaceutical Design, 2019, 25, 1200-1209.	0.9	21
900	Carbon Nanostructures in Bone Tissue Engineering. The Open Orthopaedics Journal, 2016, 10, 877-899.	0.1	24
901	Modulation of anabolic and catabolic responses via a porous polymer scaffold manufactured using thermally induced phase separation. , 2013, 25, 190-203.		20
902	Chitosan Applications Used in Medical Therapy of Tissue Regeneration. European Journal of Interdisciplinary Studies, 2016, 2, 271.	0.1	1
903	Biomaterial scaffolds for tissue engineering. Frontiers in Bioscience - Elite, 2013, 5, 341-360.	0.9	51

#	Article	IF	CITATIONS
904	Compact pulsed thulium-doped fiber laser for topographical patterning of hydrogels. Opto-Electronic Advances, 2020, 3, 190039-190039.	6.4	8
905	Novel poly(butylene succinate) nanocomposites containing strontium hydroxyapatite nanorods with enhanced osteoconductivity for tissue engineering applications. EXPRESS Polymer Letters, 2015, 9, 773-789.	1.1	35
906	Study on Nano-hydroxyapatite/Chitosan-Carboxymethyl Cellulose Composite Scaffold. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2008, 23, 135-140.	0.6	6
907	SUPERMOLECULAR STRUCTURE AND PROPERTIES OF CELLULOSE/GELATIN COMPOSITE FILMS. Acta Polymerica Sinica, 2011, 011, 1098-1104.	0.0	2
908	Reconstruction of mandibular defects using synthetic octacalcium phosphate combined with bone matrix gelatin in rat model. Dental Research Journal, 2020, 17, 10.	0.2	4
909	Biomimetic approaches to complex craniofacial defects. Annals of Maxillofacial Surgery, 2015, 5, 4.	0.2	28
910	How Nanotechnology can Really Improve the Future of Orthopedic Implants and Scaffolds for Bone and Cartilage Defects. Journal of Nanomedicine & Biotherapeutic Discovery, 2013, 03, .	0.6	5
911	Biomateriais com aplicação na regeneração óssea – método de análise e perspectivas futuras. Revista De Ciências Médicas E Biológicas, 2010, 9, 37.	0.0	11
912	Fabrication of Nano-Scaffolding Materials Using Different Techniques and Their Biomedical Applications. , 2021, , 29-45.		0
913	Composites Composed of Hydrophilic and Hydrophobic Polymers, and Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Study of Their Biocompatible Properties. Journal of Functional Biomaterials, 2021, 12, 55.	1.8	3
914	Influence of Degradation Product Thickness on the Elastic Stiffness of Porous Absorbable Scaffolds Made from an Bioabsorbable Zn–Mg Alloy. Materials, 2021, 14, 6027.	1.3	2
915	Application of amino acids in the modification of polylactic acid nanofiber scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 101-107.	1.8	1
916	Highly controlled robotic customized gel functionalization on 3D printed PCL framework for bone tissue engineering. Bioprinting, 2021, 24, e00175.	2.9	5
917	RECONSTRUCTION OF THE MANDIBLE BASED ON TISSUE ENGINEERING. Japanese Journal of Head and Neck Cancer, 2006, 32, 276-280.	0.0	1
918	Gene Therapy Approaches for Musculoskeletal Tissue Regeneration. , 2008, , 569-591.		0
919	Three-Dimensional Ingrowth of Bone Cells within Biodegradable Cryogel Scaffolds in Bioreactors at Different Regimes. Tissue Engineering - Part A, O, , 110306231138043.	1.6	1
920	Macroporous Polymeric Materials. , 2009, , 237-263.		0
921	Preparation and Applications of Modulated Surface Energy Biomaterials. , 2013, , 495-538.		О

		CITATION REPOR	т
#	Article	IF	CITATIONS
923	Scaffold Fabrication Protocols. SpringerBriefs in Materials, 2015, , 13-24.	1.0	. 8
924	Bioactive Glass–Biopolymer Composites for Applications in Tissue Engineering. , 201	5, , 1-26.	0
925	Bioactive Glass-Biopolymer Composites. , 2015, , 1-26.		0
926	PRODUÇÃO DE MICRO-ESFERAS DE PARAFINA POR SUSPENSÃO USANDO PVP COI , 0, , .	MO AGENTE ESTABILIZANTE.	0
928	Modulated Surface Energy Biomaterials: Preparation and Applications. , 0, , 4815-4846.		0
929	Carbon Nanotube Coating on 3-D Nanofibrous PLLA Tissue Engineering Scaffolds by Ele Deposition. , 2016, , .	ctrophoretic	0
930	Neural Tissue Engineering: Polymers for. , 0, , 5693-5709.		0
931	Synergy between Rhbmp-2 and IKK-Inhibitor PS-1145 Delivered via a Porous Biodegrada Implant. Journal of Tissue Science & Engineering, 2016, 07, .	ble Polymer 0.2	2 2
932	Synthetic Biopolymers. , 2016, , 307-335.		0
933	Role of Coral, Demineralized Calf Fetal Growth Plate, and a Combination of the Two in H Bone Defects in Rabbits. Trauma Monthly, 2016, 22, .	lealing of 0.2	0
934	Biomaterial-Based Tissue Engineering for Tooth-Supportive Complex Regeneration. Kore Dental Materials, 2016, 43, 207-214.	an Journal of 0.2	2 0
935	Human Mesenchymal Cell Attachment, Growth and Biomineralization on Calcium-enricl Titania-polyester Coatings. AIMS Cell and Tissue Engineering, 2017, 1, 64-83.	ned 0.4	1
936	The Importance of Cell Signalling - Integrins and Growth Factors - in Bone Tissue Engine Applications for the Treatment of Osteosarcoma. Advances in Tissue Engineering & Reg Medicine Open Access, 2017, 2, .	ering: enerative 0.1	. 1
937	Neural Tissue Engineering: Polymers for. , 2017, , 1255-1271.		0
938	Biomimetic Materials. , 2017, , 189-213.		0
939	Simulating Cell-Cell Interactions Using a Multicellular Three-Dimensional Computationa Tissue Growth. Lecture Notes in Computer Science, 2018, , 215-228.	Model of 1.0	1
940	Effect of Leaching Agent Composition on Morphology, Thermal and Mechanical Propert Bioglass® Reinforced Polyurethane Scaffold. International Journal of Current Research Engineering & Technology, 2018, 1, 19.	ies of in Science 0.1	2
941	Nanotechnology-Based Stem Cell Tissue Engineering with a Focus on Regeneration of C Systems. , 2019, , 1-67.	ardiovascular	1

		CITATION REPORT		
#	Article	IF	CITATIONS	
942	Bone Tissue Engineering Challenges in Craniofacial Reconstructive Surgeries. , 2019, , 283-292.		0	
943	Using a 3-Steps Supercritical Fluids Assisted Process for the Generation of Nanostructured Biopolymeric Scaffolds. Recent Innovations in Chemical Engineering, 2019, 12, 7-14.	0.2	0	

944 ГЕÐЕÐÐЦІÐ⁻ ПÐОЦЕСІÐ' СÐМООÐГÐÐІÐ—ÐЦІÐ‡ ТЕСÐМĐžÐ—Ð'ОÐКÐ⁻ Ð' БÐ**†**ОÐ\ŽÐ\Č@†Ð§ÐІ†

945	Synthesis of PLA/SBA-15 Composite Scaffolds for Bone Tissue Engineering. Materials Research, 2020, 23,	0.6	6
946	Three-dimensional printed polylactic acid scaffold integrated with BMP-2 laden hydrogel for precise bone regeneration. Biomaterials Research, 2021, 25, 35.	3.2	14
947	Advances of Textiles in Tissue Engineering Scaffolds. Textile Science and Clothing Technology, 2020, , 169-194.	0.4	1
948	Bioprinting technology for musculoskeletal regeneration. , 2020, , 137-157.		0
949	A Review on Next-Generation Nano-Antimicrobials in Orthopedics: Prospects and Concerns. Nanotechnology in the Life Sciences, 2020, , 33-62.	0.4	3
950	Valuation of angiogenesis in bovine xenografts implanted in intracorporal sites of rabbits as models of in-vivo bioreactors. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2021, 73, 1067-1075.	0.1	0
951	Engineered Magnetic Nanocomposites to Modulate Cellular Function. Small, 2022, 18, e2104079.	5.2	16
952	Bone tissue engineering using <scp>3â€Ð</scp> polycaprolactone/gelatin nanofibrous scaffold containing berberine: In vivo and in vitro study. Polymers for Advanced Technologies, 2022, 33, 672-681.	1.6	5
953	Regenerative Engineering: Fulfilling the Tissue Engineering Promise to Bone Regeneration. , 0, , 333-365.		0
954	Synthetic Biomimetic Porous Polymer Scaffolds for Bone Regeneration. , 0, , 195-217.		0
957	Current Concepts in Scaffolding for Bone Tissue Engineering. Archives of Bone and Joint Surgery, 2018, 6, 90-99.	0.1	131
958	Histomorphometric Analysis of Newly-formed Bone Using Octacalcium Phosphate and Bone Matrix Gelatin in Rat Tibial Defects. Archives of Bone and Joint Surgery, 2019, 7, 182-190.	0.1	1
959	Reconstruction of mandibular defects using synthetic octacalcium phosphate combined with bone matrix gelatin in rat model. Dental Research Journal, 2020, 17, 10-18.	0.2	2
960	Applicability of Hyaluronic Acid-Alginate Hydrogel and Ovarian Cells for In Vitro Development of Mouse Preantral Follicles. Cell Journal, 2020, 22, 49-60.	0.2	6
961	Biological macromolecules in tissue engineering. , 2022, , 381-392.		3

#	Article	IF	CITATIONS
962	Synthetic polymeric biomaterials for tissue engineering. , 2022, , 41-74.		3
963	Overview of scaffolds processing technologies. , 2022, , 215-262.		Ο
964	The design of polycaprolactone-polyurethane/chitosan composite for bone tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127895.	2.3	14
965	A review on mechanical and In-vitro studies of polymer reinforced bioactive glass-scaffolds and their fabrication techniques. Ceramics International, 2022, 48, 5908-5921.	2.3	14
966	Polyhydroxybutyrate-Based Nanocomposites for Bone Tissue Engineering. Pharmaceuticals, 2021, 14, 1163.	1.7	32
967	Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications. , 2021, , .		0
968	Amine Plasma-Polymerization of 3D Polycaprolactone/β-Tricalcium Phosphate Scaffold to Improving Osteogenic Differentiation In Vitro. Materials, 2022, 15, 366.	1.3	6
969	Attapulgite-doped electrospun PCL scaffolds for enhanced bone regeneration in rat cranium defects. Materials Science and Engineering C, 2022, 133, 112656.	3.8	12
970	(Bio)manufactured Solutions for Treatment of Bone Defects with an Emphasis on USâ€FDA Regulatory Science Perspective. Advanced NanoBiomed Research, 2022, 2, .	1.7	12
971	In Vitro Study of the Recruitment and Expansion of Mesenchymal Stem Cells at the Interface of a Cu-Doped PCL-Bioglass Scaffold. Biomimetics, 2022, 7, 19.	1.5	7
972	Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. Journal of Nanobiotechnology, 2022, 20, 26.	4.2	10
973	Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration. Materials Science and Engineering C, 2022, 134, 112690.	3.8	13
974	Fabrication of oxidized sodium alginate-collagen heterogeneous bilayer barrier membrane with osteogenesis-promoting ability. International Journal of Biological Macromolecules, 2022, 202, 55-67.	3.6	15
975	Foaming of PCL-Based Composites Using scCO2: Structure and Physical Properties. Materials, 2022, 15, 1169.	1.3	7
976	Medical applications of polymer/functionalized nanoparticle composite systems, renewable polymers, and polymer–metal oxide composites. , 2022, , 129-164.		0
977	Metallic Foams in Bone Tissue Engineering. , 2022, , 181-205.		1
979	3D-Printed Biomaterials in Biomedical Application. , 2022, , 319-339.		8
980	Novel polyurethane foams with titanium powder and collagen for medical uses. Polymers and Polymer Composites, 2022, 30, 096739112210823.	1.0	0

#	Article	IF	CITATIONS
981	Advanced Optical Methods and Materials for Fabricating 3D Tissue Scaffolds. Light Advanced Manufacturing, 2022, 3, 1.	2.2	1
982	Nanoscale Topographical Effects on the Adsorption Behavior of Bone Morphogenetic Protein-2 on Graphite. International Journal of Molecular Sciences, 2022, 23, 2432.	1.8	7
983	Cellulosic-Based Conductive Hydrogels for Electro-Active Tissues: A Review Summary. Gels, 2022, 8, 140.	2.1	17
984	Silk Fibroin Microparticle Scaffold for Use in Bone Void Filling: Safety and Efficacy Studies. ACS Biomaterials Science and Engineering, 2022, 8, 1226-1238.	2.6	7
985	Curcumin-loaded Fe-MOF/PDMS porous scaffold: Fabrication, characterization, and biocompatibility assessment. Journal of Industrial and Engineering Chemistry, 2022, 110, 188-197.	2.9	18
986	An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications. Biomass Conversion and Biorefinery, 2024, 14, 3057-3076.	2.9	11
987	Simple Fabrication and Enhanced Bioactivity of Bioglassâ€Poly(lacticâ€coâ€glycolic acid) Composite Scaffolds with Matrix Microporosity. Macromolecular Materials and Engineering, 2022, 307, .	1.7	4
988	Strategies to Control In Vitro Degradation of Mg Scaffolds Processed by Powder Metallurgy. Metals, 2022, 12, 566.	1.0	0
989	Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. Journal of Advanced Research, 2022, 40, 69-94.	4.4	32
990	Magnetism in Dentistry: Review and Future Perspectives. Applied Sciences (Switzerland), 2022, 12, 95.	1.3	5
991	3D-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells. ACS Omega, 2021, 6, 35284-35296.	1.6	27
992	Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook. Journal of Functional Biomaterials, 2022, 13, 1.	1.8	39
999	Dispensgeplottete Scaffolds aus Hydrogel/Keramik-Composites für die Anwendung als Knochenersatzmaterial. , 0, , 663-668.		0
1000	Amorphous silica fiber matrix biomaterials: An analysis of material synthesis and characterization for tissue engineering. Bioactive Materials, 2023, 19, 155-166.	8.6	8
1002	Bone regeneration in rat using polycaprolactone/gelatin/epinephrine scaffold. Drug Development and Industrial Pharmacy, 2021, 47, 1915-1923.	0.9	3
1003	Modeling of the PHEMA-gelatin scaffold enriched with graphene oxide utilizing finite element method for bone tissue engineering. Computer Methods in Biomechanics and Biomedical Engineering, 2023, 26, 499-507.	0.9	2
1004	Cross-Linking Agents for Electrospinning-Based Bone Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 5444.	1.8	14
1005	Poly(butylene succinate) matrices obtained by thermally-induced phase separation: Pore shape and orientation affect drug release. Polymer, 2022, 252, 124916.	1.8	5

		CITATION REPORT		
#	Article		IF	Citations
1006	Additive Manufacturing and Characterisation of Biomedical Materials. SSRN Electronic	Journal, O, , .	0.4	0
1007	Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers, 2022, 14	, 2123.	2.0	6
1008	Conductive Hydrogel Conduits with Growth Factor Gradients for Peripheral Nerve Repawith Nonâ \in Suture Tape. Advanced Healthcare Materials, 2022, 11, .	ir in Diabetics	3.9	19
1009	Alginate in Usage Biomedical Areas. Marine and Life Sciences:, 0, , .		0.2	0
1010	Laser Sintering Approaches for Bone Tissue Engineering. Polymers, 2022, 14, 2336.		2.0	7
1011	Understanding the interactions between bone mineral crystals and their binding peptic from filamentous phage. Materials Today Advances, 2022, 15, 100263.	es derived	2.5	3
1012	Current status and prospects of metal–organic frameworks for bone therapy and bo of Materials Chemistry B, 2022, 10, 5105-5128.	ne repair. Journal	2.9	111
1014	2022 ABME Paper Awards. Annals of Biomedical Engineering, 0, , .		1.3	0
1015	Recent advances in silicate-based crystalline bioceramics for orthopedic applications: a Journal of Materials Science, 2022, 57, 13109-13151.	review.	1.7	13
1016	Enhanced bone regeneration <i>via</i> PHA scaffolds coated with polydopamine-captu Journal of Materials Chemistry B, 2022, 10, 6214-6227.	red BMP2.	2.9	9
1017	In-Vitro Degradation Behaviors of Composite Scaffolds Based on Poly(Lactide-co-Glycolide-co-Îμ-Caprolactone), 1,4-Butanediamine Modified Poly(Lactide and Bioceramics. Journal of Macromolecular Science - Physics, 2022, 61, 776-787.	e-co-Glycolide)	0.4	1
1018	Geometry-Based Computational Fluid Dynamic Model for Predicting the Biological Beha Tissue Engineering Scaffolds. Journal of Functional Biomaterials, 2022, 13, 104.	avior of Bone	1.8	9
1019	Bone tissue engineering via application of a PCL/Gelatin/Nanoclay/Hesperetin 3D nanoc scaffold. Journal of Drug Delivery Science and Technology, 2022, 76, 103704.	composite	1.4	3
1020	Biodegradable interbody cages for lumbar spine fusion: Current concepts and future di Biomaterials, 2022, 288, 121699.	rections.	5.7	18
1021	Bioprinting for Bone Tissue Engineering. , 2022, , 1-9.			0
1022	Fundamental Biomechanics in Bone Tissue Engineering. Synthesis Lectures on Tissue E , .	ngineering, 2010,	0.3	14
1024	Effect of grafted Mesoporous silica [SBA-15-g-OLLA] additives on the hydrolytic degrac (L-lactic acid) [PLLA]. Journal of Polymer Research, 2022, 29, .	ation of poly	1.2	0
1025	Delivering Multifunctional Peptide-Conjugated Gene Carrier/miRNA-218 Complexes fro Microspheres for Bone Regeneration. ACS Applied Materials & Interfaces, 2022, 14	m Monodisperse 1, 42904-42914.	4.0	3

#	Article	IF	CITATIONS
1026	A Review on the Effect of Zein in Scaffold for Bone Tissue Engineering. Pertanika Journal of Science and Technology, 2022, 30, 2805-2829.	0.3	2
1027	Inorganic nanoparticle empowered biomaterial hybrids: Engineered payload release. Frontiers in Nanotechnology, 0, 4, .	2.4	1
1028	Biomaterials for Periodontal Regeneration. Dental Clinics of North America, 2022, 66, 659-672.	0.8	10
1029	Evolution of Electrospinning in Liver Tissue Engineering. Biomimetics, 2022, 7, 149.	1.5	10
1030	Aloe-vera-based biopolymeric composite scaffolds for bone tissue engineering: A review. Materials Today: Proceedings, 2022, , .	0.9	0
1031	Scaffold-based bone tissue engineering in microgravity: potential, concerns and implications. Npj Microgravity, 2022, 8, .	1.9	5
1032	Fabrication of initial trabecular bone-inspired three-dimensional structure with cell membrane nano fragments. International Journal of Energy Production and Management, 2023, 10, .	1.9	2
1033	Structure and Properties of Scaffolds for Bone Tissue Regeneration. Synthesis Lectures on Tissue Engineering, 2010, , 125-145.	0.3	0
1034	Functionalized multidimensional biomaterials for bone microenvironment engineering applications: Focus on osteoimmunomodulation. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
1035	FeS2-incorporated 3D PCL scaffold improves new bone formation and neovascularization in a rat calvarial defect model. International Journal of Bioprinting, 2022, 9, 636.	1.7	2
1036	A review on biomaterials-based scaffold: An emerging tool for bone tissue engineering. Materials Today Communications, 2023, 34, 105124.	0.9	4
1037	Could we use metallic wood for bone tissue engineering applications?. Results in Engineering, 2023, 17, 100845.	2.2	7
1038	Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Frontiers in Chemistry, 0, 10, .	1.8	3
1039	The Effect of Argon Plasma Surface Treatment on Poly(lactic-co-glycolic acid)/Collagen-Based Biomaterials for Bone Tissue Engineering. Biomimetics, 2022, 7, 218.	1.5	5
1040	3D scaffolds of caprolactone/chitosan/polyvinyl alcohol/hydroxyapatite stabilized by physical bonds seeded with swine dental pulp stem cell for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2022, 33, .	1.7	4
1041	Additive Manufactured Magnesium-Based Scaffolds for Tissue Engineering. Materials, 2022, 15, 8693.	1.3	15
1042	Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. International Journal of Molecular Sciences, 2022, 23, 15492.	1.8	3
1043	lcariin: A Promising Natural Product in Biomedicine and Tissue Engineering. Journal of Functional Biomaterials, 2023, 14, 44.	1.8	17

	CITATION	LEPUKI	
#	Article	IF	CITATIONS
1044	Recent Developments in 3D Bio-Printing and Its Biomedical Applications. Pharmaceutics, 2023, 15, 255.	2.0	11
1045	SAXS imaging reveals optimized osseointegration properties of bioengineered oriented 3D-PLGA/aCaP scaffolds in a critical size bone defect model. Biomaterials, 2023, 294, 121989.	5.7	5
1046	Effects of PLGA coating on biological and mechanical behaviors of tissue engineering scaffolds. Progress in Organic Coatings, 2023, 176, 107406.	1.9	3
1047	Carbon nanoparticles-based hydrogel nanocomposite induces bone repair in vivo. Bioprocess and Biosystems Engineering, 2023, 46, 577-588.	1.7	1
1048	Recent trends in polymeric composites and blends for three-dimensional printing and bioprinting. , 2023, , 131-157.		1
1049	Bioengineering and Clinical Translation of Human Lung and its Components. Advanced Biology, 0, , 2200267.	1.4	4
1050	In-Vitro Degradation and Biological Properties of Poly(Lactide-co-Glycolide-co-Îμ-Caprolactone)/Ethanediamine Modified Poly(Lactide-co-Glycolide) Blend Scaffolds. Journal of Macromolecular Science - Physics, 0, , 1-12.	0.4	0
1051	Full factorial design of experiment-based and response surface methodology approach for evaluating variation in uniaxial compressive mechanical properties, and biocompatibility of photocurable PEGDMA-based scaffolds. Biomedical Materials (Bristol), 0, , .	1.7	0
1052	Application of Artificial Intelligence to In Vitro Tumor Modeling and Characterization of the Tumor Microenvironment. Advanced Healthcare Materials, 2023, 12, .	3.9	3
1053	Surgical cotton microfibers loaded with proteins and apatite: A potential platform for bone tissue engineering. International Journal of Biological Macromolecules, 2023, 236, 123812.	3.6	1
1054	Preparation of nanofibrous poly (L-lactic acid) scaffolds using the thermally induced phase separation technique in dioxane/polyethylene glycol solution. Designed Monomers and Polymers, 2023, 26, 77-89.	0.7	1
1055	<scp>3Dâ€Printed</scp> conductive polymeric scaffolds with direct current electrical stimulation for enhanced bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 1351-1364.	1.6	2
1056	Recent advancements in polymer matrix nanocomposites for bone tissue engineering applications. Journal of Drug Delivery Science and Technology, 2023, 82, 104313.	1.4	31
1057	Effects of Polarity of Polymers on Conformation and Lubricating Film Formation of Adsorbed Films. Macromolecules, 2023, 56, 1954-1964.	2.2	4
1058	Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 600-619.	1.8	2
1059	<i>In vitro</i> angiogenesis in response to biomaterial properties for bone tissue engineering: a review of the state of the art. Regenerative Biomaterials, 2023, 10, .	2.4	3
1060	Advances in tissue engineering of cancer microenvironment-from three-dimensional culture to three-dimensional printing. SLAS Technology, 2023, , .	1.0	1
1061	Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. Journal of Functional Biomaterials, 2023, 14, 212.	1.8	11

#	Article	IF	CITATIONS
1062	Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend. In Vitro Models, 2023, 2, 125-151.	1.0	3
1063	A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Engineering: In Vitro Assessment and In Vivo Animal Studies. International Journal of Molecular Sciences, 2023, 24, 7611.	1.8	4
1067	The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering. ACS Applied Bio Materials, 2023, 6, 2515-2545.	2.3	1
1076	Functional Bone Regeneration in Oral and Maxillofacial Surgery: History, Definition, and Indications. , 2023, , 119-141.		0
1086	Hydrogels for dental applications. , 2024, , 725-748.		0