Novel microbial nitrogen removal processes

Biotechnology Advances 22, 519-532

DOI: 10.1016/j.biotechadv.2004.04.003

Citation Report

#	Article	IF	CITATIONS
1	Biotechnology—a sustainable alternative for chemical industry. Biotechnology Advances, 2005, 23, 471-499.	6.0	541
2	Decomposition of high protein aquaculture feed under variable oxic conditions. Water Research, 2006, 40, 1341-1350.	5.3	17
3	Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures. Water Research, 2006, 40, 1607-1615.	5.3	114
4	Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification. Water Research, 2006, 40, 3029-3036.	5.3	159
5	Pilot study for the potential application of a shortcut nitrification and denitrification process in landfill leachate treatment with MBR. Water Science and Technology: Water Supply, 2006, 6, 147-154.	1.0	15
6	Anaerobic Processes as the Core Technology for Sustainable Domestic Wastewater Treatment: Consolidated Applications, New Trends, Perspectives, and Challenges. Reviews in Environmental Science and Biotechnology, 2006, 5, 3-19.	3.9	145
7	Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology, 2006, 73, 15-26.	1.7	465
8	Nitrate removal in a packed bed reactor using volatile fatty acids from anaerobic acidogenesis of food wastes. Biotechnology and Bioprocess Engineering, 2006, 11, 538-543.	1.4	35
9	Nitrogen Removal from Dairy Waste Using Deammonification Fueled by Fermented Dairy Manure. Proceedings of the Water Environment Federation, 2007, 2007, 8055-8073.	0.0	1
10	Denitrification with methane as external carbon source. Water Research, 2007, 41, 2726-2738.	5.3	225
11	Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox. Chemosphere, 2007, 69, 776-784.	4.2	109
12	Partial nitrification of ammonium-rich wastewater as pretreatment for anaerobic ammonium oxidation (Anammox) using membrane aeration bioreactor. Journal of Bioscience and Bioengineering, 2007, 104, 182-187.	1.1	50
13	Denitrification of high strength nitrate waste. Bioresource Technology, 2007, 98, 247-252.	4.8	77
14	Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors. Bioresource Technology, 2007, 98, 2201-2206.	4.8	47
15	Assessment of partial nitrification reactor performance through microbial population shift using quinone profile, FISH and SEM. Bioresource Technology, 2007, 98, 3602-3610.	4.8	53
16	Anaerobic ammonia removal in presence of organic matter: A novel route. Journal of Hazardous Materials, 2007, 149, 49-59.	6.5	75
17	Control factors of partial nitritation for landfill leachate treatment. Journal of Environmental Sciences, 2007, 19, 523-529.	3.2	53
18	Protective Effect of Immobilized Ammonia Oxidizers and Phenolâ€degrading Bacteria on Nitrification in Ammonia– and Phenolâ€containing Wastewater. Engineering in Life Sciences, 2007, 7, 587-592.	2.0	27

#	Article	IF	CITATIONS
19	Partial nitrificationâ€"operational parameters and microorganisms involved. Reviews in Environmental Science and Biotechnology, 2007, 6, 285-313.	3.9	148
20	Aerated membraneâ€attached biofilm reactor as an effective tool for partial nitrification in pretreatment of anaerobic ammonium oxidation (ANAMMOX) process. Journal of Chemical Technology and Biotechnology, 2008, 83, 6-11.	1.6	8
21	Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field. Journal of Biotechnology, 2008, 138, 96-102.	1.9	124
22	Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochemistry, 2008, 43, 154-160.	1.8	140
23	Landfill leachate treatment with a novel process: Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system. Journal of Hazardous Materials, 2008, 151, 202-212.	6.5	117
24	The integration of methanogenesis with shortcut nitrification and denitrification in a combined UASB with MBR. Bioresource Technology, 2008, 99, 3714-3720.	4.8	40
25	Nutrient removal from slaughterhouse wastewater in an intermittently aerated sequencing batch reactor. Bioresource Technology, 2008, 99, 7644-7650.	4.8	51
26	Biological Removal of Nitrogen from Wastewater. Reviews of Environmental Contamination and Toxicology, 2008, 192, 159-195.	0.7	230
28	Influence of dissolved oxygen concentration and aeration time on nitrite accumulation in partial nitrification process. International Journal of Environmental Science and Technology, 2008, 5, 527-534.	1.8	20
29	Effects of dissolved oxygen on biological nitrogen removal in integrated fixed film activated sludge (IFAS) wastewater treatment process. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 518-527.	0.9	31
30	Model Prediction of Completely Autotrophic Nitrogen Removal under Different Reactor Configurations. Proceedings of the Water Environment Federation, 2008, 2008, 3082-3100.	0.0	0
31	Evaluating the Impact of Nitrite Concentration on Anaerobic Ammonia Oxidation. Proceedings of the Water Environment Federation, 2008, 2008, 6349-6361.	0.0	0
32	Combined activated sludge with partial nitrification (AS/PN) and anammox processes for treatment of seafood processing wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 1198-1208.	0.9	14
33	Biological Denitrogen in Floating Media Deep Bed Filtration Process. , 2009, , .		0
34	Investigations of Nitrogen Removal Pathways in a Biological Packed Bed Reactor Using Elementary Mass Balances. Proceedings of the Water Environment Federation, 2009, 2009, 117-135.	0.0	2
35	Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL. Journal of Environmental Sciences, 2009, 21, 1336-1341.	3.2	92
36	N-removal performance and underlying bacterial taxa of upflow filter bioreactor system under different dissolved oxygen and internal recycle conditions. Bioprocess and Biosystems Engineering, 2009, 32, 809-818.	1.7	4
37	The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds. Journal of Hazardous Materials, 2009, 171, 1051-1057.	6.5	199

#	ARTICLE	IF	CITATIONS
38	A unified model of ammonium oxidation rate at various initial ammonium strength and active ammonium oxidizer concentrations. Bioresource Technology, 2009, 100, 2118-2123.	4.8	13
39	Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewater. Process Biochemistry, 2009, 44, 979-985.	1.8	86
40	High-strength nitrogenous wastewater treatment in biofilm and granule anammox processes. Water Science and Technology, 2009, 60, 2365-2371.	1.2	5
41	Immobilization of nitrifying bacterial consortia on wood particles for bioaugmenting nitrification in shrimp culture systems. Aquaculture, 2009, 294, 65-75.	1.7	38
42	An upflow fixed-bed anaerobic–aerobic reactor for removal of organic matter and nitrogen from L-lysine plant wastewaterA paper submitted to the Journal of Environmental Engineering and Science Canadian Journal of Civil Engineering, 2009, 36, 1085-1094.	0.7	11
43	Environmental Technologies to Treat Nitrogen Pollution. Water Intelligence Online, 2009, 8, .	0.3	23
44	Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Applied Microbiology and Biotechnology, 2010, 85, 425-440.	1.7	144
45	Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removalâ€"Strategies and issues. Journal of Hazardous Materials, 2010, 178, 1-9.	6.5	279
46	Composite denitrification reagent for high concentration ammonia removal by air stripping. Science Bulletin, 2010, 55, 2657-2661.	1.7	11
47	Removal of nitrogen in wastewater by polyvinyl alcohol (PVA)-immobilization of effective microorganisms. Korean Journal of Chemical Engineering, 2010, 27, 193-197.	1.2	30
48	Optimal strategies of fill and aeration in a sequencing batch reactor for biological nitrogen and carbon removal. Korean Journal of Chemical Engineering, 2010, 27, 925-929.	1.2	9
49	An autotrophic nitrogen removal process: Short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachate. Journal of Environmental Sciences, 2010, 22, 777-783.	3.2	38
50	Automatic biodetector of water toxicity (ABTOW) as a tool for examination of phenol and cyanide contaminated water. Chemosphere, 2010, 81, 767-772.	4.2	11
51	Development of microbial fuel cell with anoxic/oxic design for treatment of saline seafood wastewater and biological electricity generation. Journal of Chemical Technology and Biotechnology, 2010, 85, 1077-1083.	1.6	43
52	Effects of Free Ammonia on Partial Nitrification under Different Conditions. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	2
53	Short-term effect of ammonia concentration and salinity on activity of ammonia oxidizing bacteria. Water Science and Technology, 2010, 61, 3008-3016.	1.2	20
54	Partial nitrification of non-ammonium-rich wastewater within biofilm filters under ambient temperature. Water Science and Technology, 2010, 62, 1518-1525.	1.2	3
55	The effect of pH on N2O production under aerobic conditions in a partial nitritation system. Water Research, 2011, 45, 5934-5944.	5.3	152

#	Article	IF	CITATIONS
56	O processo ANAMMOX como alternativa para tratamento de águas residuárias, contendo alta concentração de nitrogênio. Revista Brasileira De Engenharia Agricola E Ambiental, 2011, 15, 1289-1297.	0.4	5
57	Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. Journal of Environmental Sciences, 2011, 23, 1761-1769.	3.2	112
58	Presence and detection of anaerobic ammonium-oxidizing (anammox) bacteria and appraisal of anammox process for high-strength nitrogenous wastewater treatment: a review. Clean Technologies and Environmental Policy, 2011, 13, 759-781.	2.1	64
59	Granulation of Simultaneous Partial Nitrification and Anammox Biomass in One Single SBR System. Applied Biochemistry and Biotechnology, 2011, 163, 1053-1065.	1.4	28
60	Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, Bacillus subtilis A1. Bioresource Technology, 2011, 102, 854-862.	4.8	232
61	High-rate partial nitrification treatment of reject water as a pretreatment for anaerobic ammonium oxidation (anammox). Bioresource Technology, 2011, 102, 3761-3767.	4.8	62
62	Regulation and control of the SBR process treating low strength domestic wastewater. , 2011, , .		0
63	Partial Nitrification to Nitrite with Real-Time Aeration Duration Control in an SBR Treating Domestic Wastewater. Advanced Materials Research, 2011, 356-360, 1046-1049.	0.3	1
64	Influence of Aeration on Nitrogen Removal in a Submerged Biological Aerated Filter for Residuals Removal. Proceedings of the Water Environment Federation, 2011, 2011, 767-780.	0.0	1
65	Biological treatment of nitrogen-rich refinery wastewater by partial nitritation (SHARON) process. Environmental Technology (United Kingdom), 2012, 33, 1477-1483.	1.2	24
66	Isolation and Characterization of Denitrifying Bacterium <i>Pseudomonas mendocina</i> aHD7 with Anaerobic Ammonium Oxidization. Applied Mechanics and Materials, 2012, 178-181, 699-703.	0.2	0
67	Extremum seeking control of the CANON process - existence of sub-optimal stationary solutions. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 19-26.	0.4	2
68	WRRF 10-06: Challenge Projects on Low Energy Treatment Schemes for Water Reuse. Proceedings of the Water Environment Federation, 2012, 2012, 5204-5213.	0.0	1
69	Study on the Application of Anammox Process Using Polyester Non-woven Biomass Carrier Reactor (PNBCR) for Latex Processing Wastewater Treatment. Journal of Water and Environment Technology, 2012, 10, 217-227.	0.3	4
70	Autotrophic Ammonia Removal Processes: Ecology to Technology. Critical Reviews in Environmental Science and Technology, 2012, 42, 1353-1418.	6.6	81
71	Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON–ANAMMOX process. Waste Management, 2012, 32, 2385-2400.	3.7	143
72	Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Management, 2012, 32, 448-455.	3.7	94
73	Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell. Bioresource Technology, 2012, 116, 271-277.	4.8	84

#	ARTICLE	IF	Citations
74	Impact of aeration conditions on the removal of low concentrations of nitrogen in a tertiary partially aerated biological filter. Ecological Engineering, 2012, 44, 44-52.	1.6	48
75	Isolation and Characterization of Heterotrophic Nitrifying Strain W1. Chinese Journal of Chemical Engineering, 2012, 20, 995-1002.	1.7	11
76	Screening and characterization of an aerobic nitrifying-denitrifying bacterium from activated sludge. Biotechnology and Bioprocess Engineering, 2012, 17, 353-360.	1.4	12
77	Modeling of partial nitrification and denitrification in an SBR for leachate treatment without carbon addition. Journal of Material Cycles and Waste Management, 2012, 14, 3-13.	1.6	3
78	The characteristics of a novel heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresource Technology, 2012, 108, 35-44.	4.8	328
79	Application of a molecular based approach for the early detection of short term 3-chloroaniline shock loads on activated sludge bacterial community and functionality. New Biotechnology, 2013, 30, 763-771.	2.4	5
81	Nitrogen Removal from Wastewater by Coupling Anammox and Methane-Dependent Denitrification in a Membrane Biofilm Reactor. Environmental Science & Environmental Science & 11577-11583.	4.6	214
82	Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions. Journal of Environmental Management, 2013, 120, 75-83.	3.8	127
83	Complex conversion of the redox pair Colll–NO2 to Coll–NO3: Synthesis, crystal structure and DNA-binding of trans,trans,trans-[Co(py)2(H2O)2(NO3)2]. Polyhedron, 2013, 53, 179-186.	1.0	8
84	Analysis of Electro-Oxidation Suitability for Landfill Leachate Treatment through an Experimental Study. Sustainability, 2013, 5, 3960-3975.	1.6	25
85	Partial nitrification in a membrane-aerated biofilm reactor with composite PEBA/PVDF hollow fibers. Desalination and Water Treatment, 2013, 51, 5275-5282.	1.0	7
86	An upflow fixed-bed anaerobic–aerobic reactor for removal of organic matter and nitrogen from L-lysine plant wastewater. Journal of Environmental Engineering and Science, 2013, 8, 303-312.	0.3	1
87	Southeast Asian Water Environment 5. Water Intelligence Online, 0, 12, .	0.3	1
88	Nitrogen Removal with Nitrification and Denitrification via Nitrite. Advanced Materials Research, 0, 908, 175-178.	0.3	3
89	Operational strategy for nitrogen removal from centrate in a two-stage partial nitrification–Anammox process. Environmental Technology (United Kingdom), 2014, 35, 1110-1120.	1.2	24
90	Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane. Journal of Environmental Health Science & Engineering, 2014, 12, 48.	1.4	19
91	Extremum seeking control of the CANON processâ€"Existence of multiple stationary solutions. Journal of Process Control, 2014, 24, 348-356.	1.7	10
92	Use of aerobic granules for treating synthetic high-strength ammonium wastewaters. Environmental Technology (United Kingdom), 2014, 35, 1785-1790.	1.2	16

#	ARTICLE	IF	CITATIONS
93	Ammonia loading rate: an effective variable to control partial nitrification and generate the anaerobic ammonium oxidation influent. Environmental Technology (United Kingdom), 2014, 35, 523-531.	1.2	12
94	Modeling of Simultaneous Anaerobic Methane and Ammonium Oxidation in a Membrane Biofilm Reactor. Environmental Science & Envir	4.6	80
95	Autotrophic nitrogen removal process in a potable water treatment biofilter that simultaneously removes Mn and NH 4 + -N. Bioresource Technology, 2014, 172, 226-231.	4.8	25
96	Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater. Environmental Technology (United Kingdom), 2014, 35, 154-162.	1.2	8
97	The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresource Technology, 2014, 171, 1-9.	4.8	236
98	Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems. Electrochimica Acta, 2014, 135, 345-350.	2.6	58
99	Ammonium removal by a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB from wastewater. Water Quality Research Journal of Canada, 2015, 50, 219-227.	1.2	4
100	Characteristics of Biological Nitrogen Removal in a Multiple Anoxic and Aerobic Biological Nutrient Removal Process. BioMed Research International, 2015, 2015, 1-8.	0.9	5
101	Composition of extracellular polymeric substances in a partial nitrification reactor treating high ammonia wastewater and nitrous oxide emission. Bioresource Technology, 2015, 190, 474-479.	4.8	37
102	Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater. Bioresource Technology, 2015, 193, 227-233.	4.8	121
103	Using immobilized cyanobacteria and culture medium contaminated with ammonium for H2 production in a hollow-fiber photobioreactor. International Journal of Hydrogen Energy, 2015, 40, 4752-4757.	3.8	11
104	Partial nitritation of nitrogen-rich refinery wastewater (sour water) with different C _i /N molar ratios. Desalination and Water Treatment, 2015, 55, 791-798.	1.0	4
105	Effect of Nitrogen Concentration on the Performance of Single-Chamber Microbial Fuel Cells. Energy Procedia, 2015, 79, 620-623.	1.8	2
106	Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresource Technology, 2015, 182, 18-25.	4.8	217
107	Heterotrophic nitrification and aerobic denitrification by a novel groundwater origin cold-adapted bacterium at low temperatures. RSC Advances, 2015, 5, 5149-5157.	1.7	44
108	Effects of constant pH and unsteady pH at different free ammonia concentrations on shortcut nitrification for landfill leachate treatment. Applied Microbiology and Biotechnology, 2015, 99, 3707-3713.	1.7	23
109	Study of the sludge reduction in an oxic–settling–anaerobic activated sludge process based on UNITANK. Water Science and Technology, 2015, 71, 111-116.	1,2	4
110	Efficient biological nitrogen removal by Johannesburg-Sulfur autotrophic denitrification from low COD/TN ratio municipal wastewater at low temperature. Environmental Earth Sciences, 2015, 73, 5027-5035.	1.3	19

#	ARTICLE	IF	CITATIONS
111	Modelling microbial population dynamics in multispecies biofilms including Anammox bacteria. Ecological Modelling, 2015, 304, 44-58.	1.2	26
112	Operation and dynamic modeling of a novel integrated anaerobic–aerobic–anoxic reactor for sewage treatment. Chemical Engineering Science, 2015, 138, 31-40.	1.9	6
113	A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: A model-based investigation of feasibility. Water Research, 2015, 85, 295-303.	5 . 3	68
114	Effect of temperature, salinity, heavy metals, ammonium concentration, pH and dissolved oxygen on ammonium removal by an aerobic nitrifier. RSC Advances, 2015, 5, 79988-79996.	1.7	32
115	Direct and indirect effects of oxygen limitation on nitrification process applied to reject water treatment. Desalination and Water Treatment, 2015, 56, 598-607.	1.0	6
116	Biological treatment of high NH4+-N wastewater using an ammonia-tolerant photosynthetic bacteria strain (ISASWR2014). Chinese Journal of Chemical Engineering, 2015, 23, 1712-1715.	1.7	20
117	Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritationâ€anammox process. Biotechnology and Bioengineering, 2015, 112, 272-279.	1.7	74
118	Perspectives on Biological Treatment of Tannery Effluent. Advances in Recycling & Waste Management, 2016, 01, .	0.4	5
119	Achieving complete nitrogen removal by coupling nitritationâ€anammox and methaneâ€dependent denitrification: A modelâ€based study. Biotechnology and Bioengineering, 2016, 113, 1035-1045.	1.7	34
120	Searching for indigenous anaerobic ammonium oxidizing (anammox) bacteria in South African habitats: Pretoria region. Biotechnology and Biotechnological Equipment, 2016, 30, 1097-1105.	0.5	0
121	Ammonium reduction kinetics in drinking water by newly isolatedAcinetobactersp. HITLi 7 at low temperatures. Desalination and Water Treatment, 2016, 57, 11275-11282.	1.0	12
122	Efficient nitrogen removal by simultaneous photoelectrocatalytic oxidation and electrochemically active biofilm denitrification. Electrochimica Acta, 2016, 198, 165-173.	2.6	13
123	Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1. Bioresource Technology, 2016, 220, 142-150.	4.8	141
124	Mathematical simulating the process of aerobic granular sludge treating high carbon and nitrogen concentration wastewater. Chemical Engineering Journal, 2016, 306, 676-684.	6.6	22
125	Advances in the Treatment of Pulp and Paper Mill Wastewater., 2016,, 47-72.		0
126	The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment. Bioresource Technology, 2016, 218, 1249-1252.	4.8	35
127	Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. International Biodeterioration and Biodegradation, 2016, 114, 116-121.	1.9	88
128	The application of multi-objective optimization method for activated sludge process: a review. Water Science and Technology, 2016, 73, 223-235.	1.2	33

#	Article	IF	CITATIONS
129	Rapid achievement of nitrification in CSTR and SBR treating reject water at high ammonia levels. Desalination and Water Treatment, 2016, 57, 15958-15969.	1.0	6
130	Influence of aeration rate on shortcut nitrification in an SBR treating anaerobic-digested piggery wastewater. Desalination and Water Treatment, 2016, 57, 17255-17261.	1.0	2
131	Nitrogen removal from old landfill leachate with SNAP technology using biofix as a biomass carrier. Journal of Bioscience and Bioengineering, 2016, 122, 188-195.	1.1	6
132	Isolation and characterization of three heterotrophic nitrifying-aerobic denitrifying bacteria from a sequencing batch reactor. Annals of Microbiology, 2016, 66, 737-747.	1.1	39
133	Biological nitrogen removal in a modified anoxic/oxic process for piggery wastewater treatment. Desalination and Water Treatment, 2016, 57, 11266-11274.	1.0	9
134	Simultaneous bisphenol F degradation, heterotrophic nitrification and aerobic denitrification by a bacterial consortium. Journal of Chemical Technology and Biotechnology, 2017, 92, 854-860.	1.6	22
135	Characterization of a microbial consortium capable of heterotrophic nitrifying under wide C/N range and its potential application in phenolic and coking wastewater. Biochemical Engineering Journal, 2017, 120, 33-40.	1.8	29
136	Enrichment culture of denitrifying phosphorus removal sludge and its microbial community analysis. Environmental Technology (United Kingdom), 2017, 38, 2800-2810.	1.2	14
137	Hollow fiber membrane bioreactor affects microbial community and morphology of the DAMO and Anammox co-culture system. Bioresource Technology, 2017, 232, 247-253.	4.8	48
138	Aerobic and heterotrophic nitrogen removal by Enterobacter cloacae CF-S27 with efficient utilization of hydroxylamine. Bioresource Technology, 2017, 232, 285-296.	4.8	70
139	Weak magnetic field: A powerful strategy to enhance partial nitrification. Water Research, 2017, 120, 190-198.	5.3	79
140	Mainstream Deammonification: Preliminary Experience Employing Granular AOB-Enriched Biomass at Low DO Values. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	5
141	Assessment of the endogenous respiration rate and the observed biomass yield for methanol-fed denitrifying bacteria under anoxic and aerobic conditions. Water Science and Technology, 2017, 75, 48-56.	1.2	5
142	Effects of phenol on physicochemical properties and treatment performances of partial nitrifying granules in sequencing batch reactors. Biotechnology Reports (Amsterdam, Netherlands), 2017, 13, 13-18.	2.1	15
143	Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification. Journal of Bioscience and Bioengineering, 2017, 124, 564-571.	1.1	122
144	Methods of ammonia removal in anaerobic digestion: a review. Water Science and Technology, 2017, 76, 1925-1938.	1.2	107
145	Pilot-scale investigation on the treatment of cellulosic ethanol biorefinery wastewater. Chemical Engineering Journal, 2017, 309, 409-416.	6.6	18
146	Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium Enterobacter cloacae HW-15. Ecological Engineering, 2017, 99, 199-208.	1.6	94

#	ARTICLE	IF	CITATIONS
147	Novel and Conventional Technologies for Landfill Leachates Treatment: A Review. Sustainability, 2017, 9, 9.	1.6	127
148	Heterotrophic Nitrification-Aerobic Denitrification Performance of Strain Y-12 under Low Temperature and High Concentration of Inorganic Nitrogen Conditions. Water (Switzerland), 2017, 9, 835.	1.2	29
149	Granulation of anammox microorganisms forÂautotrophic nitrogen removal from wastewater. Environmental Chemistry Letters, 2018, 16, 881-901.	8.3	43
150	Novel Eco-friendly Mitigation Strategies for Managing Oil Spills and Municipal Waste Dump Site Leachates. , 2018, , 1-36.		0
151	Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Applied Catalysis B: Environmental, 2018, 237, 1101-1109.	10.8	130
152	Comparison of denitrification performance by bacterium Achromobacter sp. A14 under different electron donor conditions. Chemical Engineering Journal, 2018, 333, 320-326.	6.6	59
153	Comprehensive assessment of free nitrous acid-based technology to establish partial nitrification. Environmental Science: Water Research and Technology, 2018, 4, 2113-2124.	1.2	12
154	Autotrophic nitrogen conversion process and microbial population distribution in biofilter that simultaneously removes Fe, Mn and ammonia from groundwater. International Biodeterioration and Biodegradation, 2018, 135, 53-61.	1.9	30
155	Evaluation of different structures of moving bed biofilm reactors (MBBR) for synthetic wastewater treatment. IOP Conference Series: Earth and Environmental Science, 2018, 167, 012009.	0.2	0
156	Anoxic ammonia removal using granulated nanoscale oxyhydroxides of Fe (GNOF) in a SBR. Journal of Environmental Chemical Engineering, 2018, 6, 4273-4281.	3.3	18
157	A review on the advances in nitrifying biofilm reactors and their removal rates in wastewater treatment. Journal of Chemical Technology and Biotechnology, 2018, 93, 3113-3124.	1.6	41
158	Shortcut Biological Nitrogen Removal (SBNR) in an MFC Anode Chamber Under Microaerobic Conditions: The Effect of C/N Ratio and Kinetic Study. Sustainability, 2018, 10, 1062.	1.6	7
159	Application of different magnetic intensities for the treatment of landfill leachate in Egypt. Cogent Engineering, 2018, 5, 1436114.	1.1	9
160	Simultaneous effect of organic carbon and ammonium on two-step nitrification within sequential batch reactor (SBR). International Journal of Environmental Science and Technology, 2019, 16, 2239-2248.	1.8	3
161	Impact of Mn and ammonia on nitrogen conversion in biofilter coupling nitrification and ANAMMOX that simultaneously removes Fe, Mn and ammonia. Science of the Total Environment, 2019, 648, 955-961.	3.9	27
162	Effects of ultrasonic treatment on the ammonia-oxidizing bacterial (AOB) growth kinetics. Science of the Total Environment, 2019, 690, 629-635.	3.9	30
163	Cooperation between two strains of Enterobacter and Klebsiella in the simultaneous nitrogen removal and phosphate accumulation processes. Bioresource Technology, 2019, 291, 121854.	4.8	49
164	Long-term operation and autotrophic nitrogen conversion process analysis in a biofilter that simultaneously removes Fe, Mn and ammonia from low-temperature groundwater. Chemosphere, 2019, 222, 407-414.	4.2	15

#	Article	IF	CITATIONS
165	Identification and Characterization of Janthinobacterium svalbardensis F19, a Novel Low-C/N-Tolerant Denitrifying Bacterium. Applied Sciences (Switzerland), 2019, 9, 1937.	1.3	12
166	The value of floc and biofilm bacteria for anammox stability when treating ammonia-rich digester sludge thickening lagoon supernatant. Chemosphere, 2019, 233, 472-481.	4.2	36
167	Sunlight-driven recycling to increase nutrient use-efficiency in agriculture. Algal Research, 2019, 41, 101554.	2.4	12
168	Achieving mainstream nitrogen and phosphorus removal through Simultaneous partial Nitrification, Anammox, Denitrification, and Denitrifying Phosphorus Removal (SNADPR) process in a single-tank integrative reactor. Bioresource Technology, 2019, 284, 80-89.	4.8	52
169	New insight into the nitrogen metabolism of simultaneous heterotrophic nitrification-aerobic denitrification bacterium in mRNA expression. Journal of Hazardous Materials, 2019, 371, 295-303.	6.5	95
170	Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control. Bioresource Technology, 2019, 281, 392-400.	4.8	44
171	Algal-Bacterial System: A Novel Low-Cost Biotechnological Initiative in Wastewater Treatment. , 2019, , 115-127.		0
172	Nitrogen removal by a metalâ€resistant bacterium, <i>Pseudomonas putida ⟨i> ZN1, capable of heterotrophic nitrification–aerobic denitrification. Journal of Chemical Technology and Biotechnology, 2019, 94, 1165-1175.</i>	1.6	58
173	The Role of Microalgae in Wastewater Treatment. , 2019, , .		6
174	The roles of free ammonia (FA) in biological wastewater treatment processes: A review. Environment International, 2019, 123, 10-19.	4.8	294
175	Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresource Technology, 2020, 301, 122749.	4.8	202
176	Sludge alkaline fermentation enhanced anaerobic-multistage anaerobic/oxic (A-MAO) process to treat low C/N municipal wastewater: Nutrients removal and microbial metabolic characteristics. Bioresource Technology, 2020, 302, 122583.	4.8	19
177	Understanding of signaling molecule controlled anammox through regulating C/N ratio. Bioresource Technology, 2020, 315, 123863.	4.8	13
178	Zeolite-intermittent cycle moving bed air-lift bioreactor (Zeo-ICMBABR) for composting leachate treatment; simultaneous COD, nitrogen and phosphorous compounds removal. Journal of Environmental Health Science & Engineering, 2020, 18, 933-945.	1.4	3
179	Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review. Sustainability, 2020, 12, 5801.	1.6	38
180	Identification, interactions, nitrogen removal pathways and performances of culturable heterotrophic nitrification-aerobic denitrification bacteria from mariculture water by using cell culture and metagenomics. Science of the Total Environment, 2020, 732, 139268.	3.9	54
181	Catalytic Ozonation of Dairy Farming Wastewater Using a Mn–Fe–Ce/γ-Al ₂ O ₃ Ternary Catalyst: Performance, Generation, and Quenching of Hydroxyl Radicals. Journal of Physical Chemistry C, 2020, 124, 13215-13224.	1.5	12
182	Ammonium Removal by a Newly Isolated Heterotrophic Nitrification–Aerobic Denitrification Bacteria Pseudomonas Stutzeri SDU10 and Its Potential in Treatment of Piggery Wastewater. Current Microbiology, 2020, 77, 2792-2801.	1.0	12

#	Article	IF	CITATIONS
183	Culturable heterotrophic nitrification-aerobic denitrification bacterial consortia with cooperative interactions for removing ammonia and nitrite nitrogen in mariculture effluents. Aquaculture, 2020, 523, 735211.	1.7	34
184	Screening and Characterization of Nitrite-Degrading Bacterial Isolates Using a Novel Culture Medium. Journal of Ocean University of China, 2020, 19, 241-248.	0.6	5
185	Preparation of the Mn-Fe-Ce \hat{I}^3 -Al2O3 ternary catalyst and its catalytic performance in ozone treatment of dairy farming wastewater. Arabian Journal of Chemistry, 2020, 13, 3724-3734.	2.3	21
186	Application of biotechnology in chemical industry. , 2020, , 57-193.		1
187	Identification of the role of Cu site in Ni-Cu hydroxide for robust and high selective electrochemical ammonia oxidation to nitrite. Electrochimica Acta, 2020, 345, 136157.	2.6	51
188	Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects. Renewable and Sustainable Energy Reviews, 2021, 135, 110126.	8.2	89
189	Mechanism of nutrient removal enhancement in low carbon/nitrogen wastewater by a novel high-frequency micro-aeration/anoxic (HMOA) mode. Chemosphere, 2021, 263, 128003.	4.2	12
190	Simultaneous removal characteristics of ammonium and phenol by Alcaligenes faecalis strain WY-01 with the addition of acetate. Bioprocess and Biosystems Engineering, 2021, 44, 27-38.	1.7	6
191	Recent progress in ammonia fuel cells and their potential applications. Journal of Materials Chemistry A, 2021, 9, 727-752.	5.2	177
192	Potential Application of a Pseudomonas geniculata ATCC 19374 and Bacillus cereus EC3 Mixture in Livestock Wastewater Treatment. Waste and Biomass Valorization, 2021, 12, 3927-3938.	1.8	6
193	Heterotrophic nitrification-aerobic denitrification characteristics and antibiotic resistance of two bacterial consortia from Marinomonas and Halomonas with effective nitrogen removal in mariculture wastewater. Journal of Environmental Management, 2021, 279, 111786.	3.8	20
194	Nitrogen removal performance and bacterial communities in zeolite trickling filter under different influent C/N ratios. Environmental Science and Pollution Research, 2021, 28, 15909-15922.	2.7	16
195	Microbial Interactions as Drivers of a Nitrification Process in a Chemostat. Bioengineering, 2021, 8, 31.	1.6	2
196	Nitrogen removal performance, quantitative detection and potential application of a novel aerobic denitrifying strain, Pseudomonas sp. GZWN4 isolated from aquaculture water. Bioprocess and Biosystems Engineering, 2021, 44, 1237-1251.	1.7	11
197	Fe(III)-mediated anaerobic ammonium oxidation: A novel microbial nitrogen cycle pathway and potential applications. Critical Reviews in Environmental Science and Technology, 2022, 52, 2962-2994.	6.6	32
198	A review of wastewater bacterial bio oxidation: mechanisms, reactions, and behaviors. Journal of Chemical Engineering and Industrial Biotechnology, 2021, 7, 1-9.	0.1	0
199	Simultaneous removal of nitrate/nitrite and ammonia in a circular microbial electrolysis cell at low C/N ratios. Journal of Water Process Engineering, 2021, 40, 101938.	2.6	13
200	Heterotrophic nitrification and related functional gene expression characteristics of Alcaligenes faecalis SDU20 with the potential use in swine wastewater treatment. Bioprocess and Biosystems Engineering, 2021, 44, 2035-2050.	1.7	10

#	Article	IF	CITATIONS
201	Aerobic denitrification using Bacillus pumilus, Arthrobacter sp., and Streptomyces lusitanus: Novel aerobic denitrifying bacteria. Bioresource Technology Reports, 2021, 14, 100663.	1.5	11
202	A review on metal oxide (FeOx/MnOx) mediated nitrogen removal processes and its application in wastewater treatment. Reviews in Environmental Science and Biotechnology, 2021, 20, 697-728.	3.9	25
203	Electrode-dependent ammonium oxidation with different low C/N ratios in single-chambered microbial electrolysis cells. Bioelectrochemistry, 2021, 142, 107889.	2.4	10
204	Microalgae Applications in Wastewater Treatment. Green Energy and Technology, 2016, , 249-268.	0.4	26
205	Characteristics of Alcaligenes sp. LS2T Heterotrophic and Aerobic Ammonium Removal for Potential Livestock's Wastewater Treatment. , 2017, , 337-344.		1
206	Methane Potential of Waste Activated Sludge and Fatty Residues: Impact of Codigestion and Alkaline Pretreatments. The Open Environmental Engineering Journal, 2010, 3, 71-76.	1.2	12
207	Anammox Process. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 264-289.	0.3	3
208	A family of models to study the growth of Haloferax mediterranei in different conditions. WIT Transactions on Ecology and the Environment, 2007, , .	0.0	0
209	GHG reduction potential in the seafood industry. , 2010, , 175-179.		0
210	Effect of Tertiary Treatment on Chemically Complex Secondary Wastewater. Journal of Environmental Systems, 0, 33, 121-131.	1.0	0
211	10.2478/s11814-009-0330-4., 2011, 27, 193.		0
212	REMOÇÃO DE NITROGÊNIO AMONIACAL EM UM REATOR BIOLÓGICO OPERADO COM BAIXAS CONCENTRAÇÕES DE OXIGÊNIO DISSOLVIDO. Periódico Eletrônico Fórum Ambiental Da Alta Paulista, 2012, 7, .	0.0	0
213	Evaluation of Low-Cost Bio-technology for Community-Based Domestic Wastewater Treatment. , 2013, , 227-234.		2
214	Immobilized Nitrifying Bacterial Consortium for Improving Water Quality, Survival and Growth of Penaeus monodon Fabricius 1798 Postlarvae in Hatchery System. Asian Fisheries Science, 2013, 26, .	0.1	0
215	Isolation and Nitrogen Removal Characteristics of Heterotrophic Nitrification-Aerobic Denitrifying Bacteria, Stenotrophomonas sp. CW-4Y. KSBB Journal, 2014, 29, 72-80.	0.1	3
216	Faster autotrophic growth of anaerobic ammonium-oxidizing microorganisms in presence of nitrite, using inocula from Colombia. Revista Colombiana De BiotecnologÃa, 2014, 16, 146.	0.5	2
217	Reagent purification of the processing industry enterprises effluents. Har \ddot{A} eva Nauka \ddot{A} \neg Tehnolog \ddot{A} $\neg \ddot{A}$ ¢, 2018, 12, .	0.2	5
218	Novel Eco-friendly Mitigation Strategies for Managing Oil Spills and Municipal Waste Dump Site Leachates., 2019,, 513-547.		1

#	Article	IF	CITATIONS
219	Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review. RSC Advances, 2021, 11, 35525-35535.	1.7	10
220	Characteristics and mechanism of heterotrophic nitrification/aerobic denitrification in a novel <i>Halomonas piezotolerans</i> strain. Journal of Basic Microbiology, 2022, 62, 124-134.	1.8	8
221	The biological nutrient removal (BNR) process in Aerobic granular sludge systems treating real landfill leachate of a West Metropolis in Iran. International Journal of Environmental Science and Technology, 2022, 19, 7715-7726.	1.8	5
222	Transcriptomics and proteomics revealed the psychrotolerant and antibiotic-resistant mechanisms of strain Pseudomonas psychrophila RNC-1 capable of assimilatory nitrate reduction and aerobic denitrification. Science of the Total Environment, 2022, 820, 153169.	3.9	13
223	Fate and inhibition of Bis (2-Ethylhexyl) phthalate in biophysical reactors for treating real landfill leachate. Chemical Engineering Research and Design, 2022, 160, 450-464.	2.7	6
224	Heterotrophic nitrification – An eternal mystery in the nitrogen cycle. Soil Biology and Biochemistry, 2022, 168, 108611.	4.2	60
227	Ammonium removal characteristics of Delftia tsuruhatensis SDU2 with potential application in ammoniumâ€ʻrich wastewater treatment. International Journal of Environmental Science and Technology, 2023, 20, 3911-3926.	1.8	5
228	A multi-step nitrifying microbial enrichment to remove ammonia and nitrite in brackish aquaculture systems. Biodegradation, 0, , .	1.5	0
229	Characterization of Isolated Aerobic Denitrifying Bacteria and Their Potential Use in the Treatment of Nitrogen-Polluted Aquaculture Water. Current Microbiology, 2022, 79, .	1.0	4
231	Nitrogen Removal Characteristics of the Highly Efficient Heterotrophic Nitrification-Aerobic Denitrification Bacterium Hy-1 and Practical Application in Biological Deodorization. SSRN Electronic Journal, O, , .	0.4	0
232	Up-concentration of nitrogen from domestic wastewater: A sustainable strategy from removal to recovery. Chemical Engineering Journal, 2023, 451, 138789.	6.6	21
233	Short-Term Effects of Operating Parameters and Wastewater Constituents on the Performance of Free-cell Candidatus Brocadia and Candidatus Scalindua Anammox Enrichment. International Journal of Environmental Research, 2022, 16, .	1.1	2
234	Nitrogen removal characteristics of efficient heterotrophic nitrification-aerobic denitrification bacterium and application in biological deodorization. Bioresource Technology, 2022, 363, 128007.	4.8	11
235	The Direct Electrocatalytic Oxidation of Ammonia by the Copper-Deposited Nickel Foam Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
236	Anaerobic Ammonia Oxidation Enrichment to Enhance Landfill Leachate Treatment. Radionuclides and Heavy Metals in Environment, 2022, , 189-217.	0.5	0
237	Nitrogen Pollution Originating from Wastewater and Agriculture: Advances in Treatment and Management. Reviews of Environmental Contamination and Toxicology, 2022, 260, .	0.7	1
238	Influence of COD in Toxic Industrial Wastewater from a Chemical Concern on Nitrification Efficiency. International Journal of Environmental Research and Public Health, 2022, 19, 14124.	1.2	3
239	Six complex microbial inoculants for removing ammonia nitrogen from waters. Water Environment Research, 2022, 94, .	1.3	2

#	Article	IF	CITATIONS
240	Enhanced heterotrophic nitrification and aerobic denitrification performance of Glutamicibacter arilaitensis EM-H8 with different carbon sources. Chemosphere, 2023, 323, 138266.	4.2	6
241	Reactive and microbial inhibitory mechanisms depicting the panoramic view of pH stress effect on common biological nitrification. Water Research, 2023, 231, 119660.	5.3	3
242	Coupling of Anammox Activity and PAH Biodegradation: Current Insights and Future Directions. Processes, 2023, 11, 458.	1.3	0
243	A heterotrophic nitrification - Aerobic denitrification bacterium. , 2018, 88, 833-840.		0
244	The direct electrocatalytic oxidation of ammonia by copper-deposited nickel foam catalysts. Electrochimica Acta, 2023, 446, 142130.	2.6	4
245	Recent advances in simultaneous nitrification and denitrification for nitrogen and micropollutant removal: a review. Biodegradation, 2023, 34, 103-123.	1.5	10
246	Nitrate-Polluted Waterbodies Remediation: Global Insights into Treatments for Compliance. Applied Sciences (Switzerland), 2023, 13, 4154.	1.3	3
247	Research advances of ammonia oxidation microorganisms in wastewater: metabolic characteristics, microbial community, influencing factors and process applications. Bioprocess and Biosystems Engineering, 2023, 46, 621-633.	1.7	18
248	Roles of microbes and composite materials in the remediation of industrial wastewater. , 2023, , $375-402$.		0
252	Microbial Nitrogen Transformation and Recovery in Wastewater: Current Strategies and Applications. , 2023, , 158-173.		0
253	Quantitative Methodologies for Determining the Amount and Structure of AOB at the Transcriptional Level in Wastewater Treatment Plants. , 2023, , 198-214.		0
256	Photochemical conversion of nitrate to ammonium ions by a newly developed photo-reductive titanium dioxide catalyst: implications on nitrogen recovery. Environmental Science: Water Research and Technology, 2023, 9, 3318-3324.	1.2	0