
CITATION REPORT List of articles citing

DOI: 10.1111/j.1151-2916.2000.tb01182.x Journal of the American Ceramic Society, 2004, 83, 245-265.

Source: https://exaly.com/paper-pdf/36823691/citation-report.pdf

Version: 2024-04-09

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1093	Composite coatings of Si3N4-soda lime silica produced by the thermal spray process. 2000 , 9, 603-608		7
1092	Fatigue in Ceramic Matrix Composites. 2000 , 163-219		3
1091	Densification behaviour of Ca-Bialons. <i>Ceramics International</i> , 2001 , 27, 461-466	5.1	13
1090	Microstructure and properties of various fluorine-containing SiAlON ceramics synthesized by HIPing. <i>Journal of the European Ceramic Society</i> , 2001 , 21, 2811-2819	6	6
1089	MikroporBes Siliciumnitridimid: Steuerung der PorengrB und katalytische Eigenschaften. 2001 , 113, 4336-4339		5
1088	Pore-Size Engineering of Silicon Imido Nitride for Catalytic Applications. 2001 , 40, 4204-4207		56
1087	Enhanced crystallization and phase transformation of amorphous silicon nitride under high pressure. 2001 , 16, 67-75		3
1086	Relative stability of P63/m and P63 structures of BBi3N4. 2002, 65,		22
1085	Improvement of oxidation resistance of Si3N4 by heat treatment in a wet H2 atmosphere. 2002 , 17, 23	21-232	26
1084	Silicon Nitride Ceramics. 2002, 47-167		116
1083	First-principles electronic structure calculations of BaSi7N10 with both corner- and edge-sharing SiN4 tetrahedra. <i>Journal of Alloys and Compounds</i> , 2002 , 336, 1-4	5.7	12
1082	Fabrication of silicon nitride bilayer for roller bearing by plasma activated sintering. 2002 , 56, 1093-109	7	3
1081	Nitride-bonded silicon nitride from slip-cast Si + Si3N4 compacts. 2002 , 17, 386-395		4
1080	Binte Stickstoffverbindungen der Hauptgruppenelemente durch Hochdrucksynthesen. 2002 , 114, 81-8	5	6
1079	High-pressure syntheses of novel binary nitrogen compounds of main group elements. 2002 , 41, 77-82		22
1078	In situ Si3N4âBiCâBN composites: preparation, microstructures and properties. 2002 , 328, 201-205		25
1077	Microstructural characterization and microstructural effects on the thermal conductivity of AlN(Y2O3) ceramics. <i>Journal of the European Ceramic Society</i> , 2002 , 22, 247-252	6	49

1076	Grain growth in microwave sintered Si3N4 ceramics sintered from different starting powders. Journal of the European Ceramic Society, 2002 , 22, 2981-2988	6	22
1075	Creep behaviour of two sintered silicon nitride ceramics. <i>Journal of the European Ceramic Society</i> , 2002 , 22, 2495-2499	6	8
1074	Synthesis of amorphous silicon carbonitride films by pulsed laser deposition. 2002 , 402, 99-110		23
1073	Tribological behaviour of Si3N4âBN ceramic materials for dry sliding applications. 2002 , 253, 1070-1076	5	93
1072	Mechanical properties improvement related to the isothermal holding time in Si3N4 ceramics sintered with an alternative additive. 2003 , 21, 245-250		18
1071	Effect of nitrogen gas flow on amorphous Siâllâld films produced by PVD techniques. 2003 , 174-175, 324-330		13
1070	Erosion characteristics of silicon nitride ceramics. <i>Ceramics International</i> , 2003 , 29, 713-719	5.1	10
1069	Kinetic mechanism and microstructure during the formation of Si3N4 matrix in Si3N4âMoSi2 composites. 2003 , 355, 286-291		3
1068	Friction and wear behaviour of SiAlON ceramics under fretting contacts. 2003, 359, 228-236		31
1067	Substitution of pure Y2O3 by a mixed concentrate of rare earth oxides (CRE2O3) as sintering additive of Si3N4: a comparative study of the mechanical properties. 2003 , 142, 697-701		19
1066	Corrosion of HIPed 野i6â团AlzOzN8â团 (z =0, 1, 2, 3) ceramics by NaCl vapor. <i>Journal of the European Ceramic Society</i> , 2003 , 23, 1735-1741	6	4
1065	Roles of Hydrogen and Oxygen in the Direct Nitridation of Siliconâl <i>Industrial & Directing Chemistry Research</i> , 2003 , 42, 2434-2440	3.9	9
1064	Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations. 2003 , 93, 51	75-518	044
1063	A Spodumene Silicon Nitride Complex with Zero Thermal Expansion at Ambient Temperature. 2003 , 111, 430-432		1
1062	Fabrication and Mechanical Properties of Porous Silicon Nitride Ceramics from Low-Purity Powder. 2003 , 111, 758-761		9
1061	Ceramics, Mechanical Properties, and Behavior. 2003,		O
1060	Electronic structure and bonding in the Y-Si-O-N quaternary crystals. 2004 , 70,		32
1059	Amorphous silicon nitride films of different composition deposited at room temperature by pulsed glow discharge plasma immersion ion implantation and deposition. 2004 , 22, 2342-2346		19

1058	Sintering Behavior and Mechanical and Thermal Shock Properties of Silicon Nitride - Boron Nitride Composites. 2004 , 264-268, 1067-1070		1
1057	First-principles calculations of the stability and local structure of ´-sialon ceramics on the line Si3N4â[] Ca3N2:3AlN. 2004 , 16, 2931-2939		7
1056	High-Temperature Oxidation Behavior of High-Purity 日間 and Mixed Silicon Nitride Ceramics. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 385-392	3.8	28
1055	Synthesis and Properties of Porous Single-Phase & SiAlON Ceramics. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 1879-1881	3.8	34
1054	Densification of Si3N4 with LiYO2 Additive. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 546-549	3.8	42
1053	Preparation of Mesoporous Silicon Nitride via a Nonaqueous Solâ©el Route. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 1413-1417	3.8	46
1052	Improvement of Mechanical Properties and Corrosion Resistance of Porous BiAlON Ceramics by Low Y2O3 Additions. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 1714-1719	3.8	23
1051	Compressive creep behavior of hot-pressed Si3N4â©RE2O3â&l2O3 ceramics. 2004 , 39, 1279-1289		5
1050	Effect of substrate bias voltage on amorphous Siâllâld films produced by PVD techniques. 2004 , 447-448, 436-442		1
1049	Properties of hot-pressed, partially stabilized CRE-EsiAlONs as a function of the additive content. 2004 , 22, 79-85		7
1048	Features of SiAlON synthesis from kaolin. 2004 , 366, 325-331		20
1047	Characterisation of porous silicon nitride materials produced with starch. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 413-419	6	172
1046	Thermal stability and crystallization kinetics of sputtered amorphous Si3N4 films. 2004 , 450, 346-351		36
1045	Influence of additive content on the anisotropy in hot-pressed Si3N4 ceramics using grain orientation measurements. <i>Ceramics International</i> , 2004 , 30, 653-659	5.1	17
1044	Effect of composition on viscosities of rare earth oxynitride glasses. 2004 , 344, 1-7		68
1043	Electronic states of Ga(3)Si, GaSi(3), and their ions. 2005 , 62, 596-603		8
1042	Kinetics of SiO vapor ammonolysis for nano-sized silicon nitride powder synthesis. 2005 , 156, 73-82		5
1041	Low-temperature preparation of in situ toughened Yb & iAlON ceramics by spark plasma sintering (SPS) with addition of combustion synthesized seed crystals. 2005 , 402, 242-249		9

(2006-2005)

1040	Electronic Structure and Bonding of All Crystalline Phases in the Silicaâ¶ttriaâ¶ilicon Nitride Phase Equilibrium Diagram. <i>Journal of the American Ceramic Society</i> , 2005 , 87, 1996-2013	3.8	40
1039	New Strategies for Preparing NanoSized Silicon Nitride Ceramics. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 934-937	3.8	78
1038	Compressive creep behavior of hot-pressed Si3N4 ceramics using alumina and a rare earth solid solution as additives. 2005 , 23, 183-192		3
1037	Cost-effective fabrication of porous 岳iAlON bonded 邸iAlON ceramics. 2005 , 59, 2601-2604		8
1036	Design of Si3N4-based ceramic laminates by the residual stresses. 2005 , 40, 5443-5450		20
1035	Obten B in situ do compBito alfa-SiAlON-SiC. 2005 , 51, 413-419		
1034	Anisotropia no comportamento ^fluticia de certhicas ^base de Si3N4 prensadas ^quente. 2005 , 51, 96-101		1
1033	Oxidation Behavior of Hot-Pressed Si3 N4 Ceramics Using CRE2 O3 -AlN and CRE2 O3 -Al2 O3 as Sintering Additives. 2005 , 498-499, 569-574		2
1032	Creep Behavior of Multi-Cation & iAlON Partially Stabilized Produced with an Yttrium-Rare Earth Oxide Mixture (CRE2O3). 2005 , 498-499, 575-580		
1031	Fabrication of Silicon Nitride Nano-Ceramics by High-Energy Mechanical Milling and Spark Plasma Sintering. 2005 , 287, 166-170		5
1030	Erosion Behavior of Silicon Nitride with Graded Microstructure. 2005 , 287, 416-420		
1029	Simultaneous diffusion of Si and N in silicon nitride. 2006 , 74,		25
1028	Preparation of zirconium pyrophosphate bonded silicon nitride porous ceramics. 2006 , 22, 915-918		49
1027	A contribution of X ray diffraction analysis in the determination of creep of Si3N4 ceramics. 2006 , 9, 1-8		7
1026	Texture Development in Si3N4 Ceramics by Magnetic Field Alignment during Slip Casting. 2006 , 114, 979-987		31
1025	The Sophistication of Ceramic Science Through Silicon Nitride Studies. 2006 , 114, 873-879		29
1024	Highly Creep-Resistant Silicon Nitride/Silicon Carbide NanoâNano Composites. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 274-280	3.8	38
1023	Mechanochemical-Activation-Assisted Combustion Synthesis of Bi3N4. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 1099-1102	3.8	38

1022	Effect of Steam Velocity on the Hydrothermal Oxidation/Volatilization of Silicon Nitride. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 1380-1387	3.8	18
1021	Fabrication of Functionally Graded SiAlON Ceramics by Tape Casting. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 3255-3257	3.8	25
1020	Processing and Thermal Conductivity of Sintered Reaction-Bonded Silicon Nitride. I: Effect of Si Powder Characteristics. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 3331-3339	3.8	71
1019	Superplastic deformation of nano-sized silicon nitride ceramics. 2006 , 54, 255-262		73
1018	Effect of 版i3N4 seeds on densification and fracture toughness of silicon nitride. <i>Ceramics International</i> , 2006 , 32, 303-307	5.1	19
1017	The electronic structure and spectroscopic properties of 3C, 2H, 4H, 6H, 15R and 21R polymorphs of SiC. 2006 , 422, 147-156		48
1016	Variation of sintering parameters at an early stage of densification affecting 野i3N4-microstructure. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 201-208	6	12
1015	Optimization of microstructure and properties of in situ formed ∰-sialonâ∏iN composite. 2006 , 427, 195-202		17
1014	Chemical bonding investigation of amorphous hydrogenated SiâN alloys deposited by plasma immersion ion processing. 2006 , 494, 219-222		3
1013	Effects of processing method and additive composition on microstructure and thermal conductivity of Si3N4 ceramics. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 711-718	6	39
1012	Microstructure development and properties of novel Ba-doped phase Sialon ceramics. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 3919-3924	6	14
1011	Liquid phase sintering (LPS) and dielectric constant of Bilicon nitride ceramic. 2006 , 21, 98-100		6
1010	Ceramic Tool Concepts for the Semi-Solid Processing of Steel Alloys. 2006 , 37, 324-328		4
1009	Creep Behaviour of Si3N4 Ceramics Sintered with RE2O3. 2006, 514-516, 759-763		
1008	Preparation and Properties of Silicon Nitride Ceramics by Nitrided Pressureless Sintering (NPS) Process. 2006 , 317-318, 125-130		2
1007	Nitrogen diffusion in amorphous silicon nitride isotope multilayers probed by neutron reflectometry. 2006 , 96, 055901		45
1006	First-principles study of vibrational and dielectric properties of \$\Bi3N4\$. 2006, 74,		31
1005	Self-Diffusion in Covalent Amorphous Solids âlʿA Comparative Study Using Neutron Reflectometry and SIMS. 2007 , 263, 51-56		2

1004	Structural relaxation and self-diffusion in covalent amorphous solids: Silicon nitride as a model system. 2007 , 102, 043516	10
1003	Corrosion Behavior of Si3N4 Ceramics under High-Temperature and High-Pressure Water Condition. 2007 , 26-28, 259-262	2
1002	Oxynitride Glasses: Preparation, Properties and Implications for Mechanical Behaviour of Silicon Nitride. 2007 , 554, 11-16	0
1001	Mechanical Properties of Si3N4 Ceramics Prepared by Nitrided Pressureless Sintered (NPS) Process. 2007 , 124-126, 1461-1464	
1000	Microwave Dielectric Property of Porous Silicon Nitride Ceramics. 2007, 336-338, 307-309	1
999	Low-Pressure Preheating Combustion Synthesis of Silicon Nitride. 2007 , 26-28, 441-444	
998	Spark Plasma Sintering of Bi3N4 Ceramics with MgO-Al2O3 as Sintering Additives. 2007, 351, 176-179	9
997	Influence of Sintering Aids on the Nitridation of Reaction Bonded Si3N4/BN Ceramics. 2007 , 353-358, 1497-1500	
996	On the Progress of Combustion Synthesis of Si3N4 Ceramic: From Laboratory Research to Industrial Production. 2007 , 336-338, 911-915	2
995	Carbothermal Reduction and Nitridation of anakkale Origin Kaolin for SiAlON Powder Production. 2007 , 554, 169-174	1
994	Effect of Cation Extraction on the Oxidation Resistance of Si3N4. 2007 , 280-283, 1263-1266	
993	Elastic Properties of Several Silicon Nitride Films. 2007 , 989, 1	7
992	CNTs/Si3N4 Composites Fabricated by Reaction Bonded Processing. 2007, 336-338, 1277-1279	1
991	Liquid Phase Sintering of 岳i3N4 by Spark Plasma Sintering. 2007 , 336-338, 1062-1064	1
990	Expansion of Silicon Nitride-Boron Nitride Composite by Reaction Bonding. 2007, 115, 147-150	
989	Fabrication of Thick Silicon Nitride by Reaction Bonding and Post-Sintering. 2007, 115, 285-289	8
988	Effect of Green Machining on Strength of Silicon Nitride with As-Sintered Surface. <i>Journal of the Ceramic Society of Japan</i> , 2007 , 115, 504-506	2
987	Rapid and Deep Nitridation of Silica MCM-41 without Loss of Hexagonal Pore Structure. 2007 , 36, 1416-1417	12

986	Oxidation of PECVD SiNx thin films. Journal of Alloys and Compounds, 2007, 437, 332-338	5.7	9
985	Low-Temperature Crystallization of Eu-Doped Red-Emitting CaAlSiN3 from Alloy-Derived Ammonometallates. 2007 , 19, 3592-3594		99
984	Enhancement of direct nitridation of silicon by common metals in silicon nitride processing. <i>Ceramics International</i> , 2007 , 33, 675-680	5.1	23
983	Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy. <i>Ceramics International</i> , 2007 , 33, 1033-1039	5.1	123
982	Microstructure and kinetics of formation of Si2N2O and Si3N4 into Si porous preforms by chemical vapor infiltration (CVI). <i>Ceramics International</i> , 2007 , 33, 1349-1356	5.1	8
981	Processing and properties of sintered reaction-bonded silicon nitride with Y2O3âMgSiN2: Effects of Si powder and Li2O addition. 2007 , 55, 5581-5591		31
980	Highly dense Si3N4 crucibles used for Al casting: An investigation of the aluminumâderamic interface at high temperatures. 2007 , 184, 108-114		8
979	⊞iAlONâBiC composites obtained by gas-pressure sintering and hot-pressing. 2007 , 189, 138-142		18
978	Theoretical study of electronic structures and spectroscopic properties of Ga3Sn, GaSn3, and their ions. 2007 , 66, 153-62		6
977	Jahn-Teller distortion geometries and electronic structures of Ga3Ge, GaGe3, and their ions. 2007 , 66, 512-20		8
976	Synthesis, Physical, and Mechanical Properties of Bulk Zr3Al3C5 Ceramic. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 1164-1170	3.8	56
975	Fabrication of a Nano-Si3N4/Nano-C Composite by High-Energy Ball Milling and Spark Plasma Sintering. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 1058-1062	3.8	18
974	Translucent Mg-Bialon Ceramics Prepared by Spark Plasma Sintering. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 1647-1649	3.8	35
973	Ceramics for Prosthetic Hip and Knee Joint Replacement. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 1965-1988	3.8	264
972	Pressureless Sintering of ⊞i3N4 Porous Ceramics Using a H3PO4 Pore-Forming Agent. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 2379-2383	3.8	57
971	Carbothermal Reaction of Silicaâ P henol Resin Hybrid Gels to Produce Silicon Nitride/Silicon Carbide Nanocomposite Powders. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 070918221104002-???	3.8	3
970	Synthesis of &i3N4 using low-phase Si3N4 diluent by the seeding technique. 2007 , 56, 401-404		22
969	Microstructure characterization of in situ synthesized porous Si3N4âBi2N2O composites using feldspar additive. 2007 , 42, 4701-4706		7

968	Preparation and properties of Si3N4/PS composites used for electronic packaging. 2007, 67, 2493-2499)	120
967	Development and cytotoxicity evaluation of SiAlONs ceramics. 2007, 27, 148-153		20
966	Synthesis of porous biomorphic 细Si3N4 composite from sea sponge. 2008 , 15, 419-425		20
965	The effect of nano-sized sintering aids on toughening behavior of silicon nitride. 2008 , 43, 2799-2805		2
964	Testing of silicon nitride ceramic bearings for total hip arthroplasty. 2008 , 87, 447-54		53
963	Superelastic and Spring Properties of Si3N4 Microcoils. 2008 , 20, 1738-1743		50
962	Fabrication and basic characterization of silicon nitride ceramics as an inert matrix. 2008 , 50, 621-624		7
961	Depth-profiling of vertical sidewall nanolayers on structured wafers by grazing incidence X-ray flourescence. 2008 , 63, 1359-1364		10
960	PTFE, an effective additive on the combustion synthesis of silicon nitride. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 289-293	6	28
959	The influence of temperature and time on the AlN powder hydrolysis reaction products. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 1003-1008	6	36
958	Properties of silicon nitride for aluminum melts prepared by nitrided pressureless sintering. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 1057-1063	6	22
957	Some new perspectives on oxidation kinetics of SiAlON materials. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 1243-1249	6	30
956	Oxynitride glasses. Journal of the European Ceramic Society, 2008, 28, 1475-1483	6	54
955	Glass-forming region in the CaâBiâDâN system using CaH2 as Ca source. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 2659-2664	6	27
954	How to measure atomic diffusion processes in the sub-nanometer range. 2008 , 56, 464-470		36
953	The influence of mechanochemical activation on combustion synthesis of Si3N4. <i>Ceramics International</i> , 2008 , 34, 1267-1271	5.1	14
952	Cutting forces and wear analysis of Si3N4 diamond coated tools in high speed machining. 2008, 82, 141	5-142	0 26
951	Transmission electron microscopy study on silicon nitride/stainless steel bonded interfaces. 2008 , 517, 779-781		3

950	Microstructure and properties of translucent MgâBialon ceramics prepared by spark plasma sintering. 2008 , 488, 475-481		17
949	Effect of nano-Al2O3 and Y2O3 on the properties and microstructure of Si3N4. 2008, 491, 177-181		7
948	Reactive wetting and spreading of AlâBiâMg alloys on Si3N4/Si substrates. 2008 , 491, 461-469		11
947	Sintering behavior in zirconium phosphate bonded silicon nitride porous ceramics. 2008 , 497, 495-500		8
946	Microstructure and Creep Behavior of Silicon Nitride and SiAlONs. <i>International Journal of Applied Ceramic Technology</i> , 2008 , 5, 138-154	2	15
945	Oxynitride Glasses. International Journal of Applied Ceramic Technology, 2008, 5, 155-163	2	53
944	Crack-healing behaviour and resultant high-temperature fatigue strength of machined Si3N4/SiC composite ceramic. 2008 , 31, 2-11		9
943	Spark plasma sintering of ⊞i3N4 ceramics with MgOâAlPO4 as sintering additives. 2008 , 107, 67-71		15
942	Reaction mechanism in combustion synthesis of ⊞i3N4 powder using NaN3. 2008 , 23, 2720-2726		12
941	A new measurement and treatment for kinetics of isothermal oxidation of Si3N4. <i>Journal of Alloys and Compounds</i> , 2008 , 459, 123-129	5.7	35
940	High-Temperature Dielectric Response and Multiscale Mechanism of SiO 2 /Si 3 N 4 Nanocomposites. 2008 , 25, 2249-2252		14
939	Nitride & Oxy-Nitride Ceramics for High Temperature and Engineering Applications. 2008 , 395, 193-208		3
938	In Situ Synthesis and Mechanical Properties of TiN-Si2N2O-Si3N4 Composites. 2008, 403, 227-230		
937	A novel method for synthesis of ⊞iN nanowires by sol-gel route. 2008 , 9, 015002		23
936	Preparation of Si3N4 Ceramics by Aligning ⊞i3N4 Whiskers. 2008 , 368-372, 881-884		
935	Textured silicon nitride: processing and anisotropic properties. 2008 , 9, 033001		113
934	2.45 GHz microwave sintered Si3N4-ZrO2 composites. <i>Journal of the Ceramic Society of Japan</i> , 2008 , 116, 700-705	1	6
933	SiAlON glasses: Effects of nitrogen on structure and properties. <i>Journal of the Ceramic Society of Japan</i> , 2008 , 116, 755-761	1	27

932	Combustion Synthesis and Sintering of 虧ialon Ceramics (z = 2). 2008 , 57, 1248-1252	4
931	Crack-Healing Behavior of Si3N4/SiC Composite under Low Oxygen Partial Pressure. 2008 , 57, 1132-1137	7
930	Silicon and Related Materials. 2008 , 1-23	1
929	Fiber laser assisted machining of silicon nitride. 2009,	2
928	Toughness scale from first principles. 2009 , 106, 113534	28
927	Photoluminescent and Thermal Stable Properties of Tb[sup 3+]-Doped Ca-EsiAlON under VUV Excitation. 2009 , 156, J189	19
926	Nanostructure and bimodal structure of Si3N4 ceramics developed by spark plasma sintering method. 2009 , 108, 358-362	7
925	Ni-based superalloy as a potential tool material for thixoforming of steels. 2009 , 36, 555-560	22
924	Effect of bulk die temperature on die cavity surface strains in thixoforming of steels. 2009, 36, 397-400	16
923	Study on Mechanical Properties and Size Effect of Si3N4 Using Discrete Element Method. 2009 , 76-78, 719-724	2
922	Fabrication and testing of silicon nitride bearings in total hip arthroplasty: winner of the 2007 "HAP" PAUL Award. 2009 , 24, 110-6	79
921	Cytocompatibility of high strength non-oxide ceramics. 2010 , 93, 67-76	17
920	Atomic force microscopy study of the role of LPS O-antigen on adhesion of E. coli. 2009, 22, 347-55	62
919	Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites. 2009 , 112, 1695-1703	75
918	Dense and near-net-shape fabrication of Si3N4 ceramics. 2009 , 500, 130-149	84
917	Microstructure and property enhancement of silicon nitride-barium aluminum silicate composites with	15
916	Combustion synthesis of silicon nitride using ultrafine silicon powders. 2009 , 48, 375-380	9
915	MicrostructureâMechanical PropertiesâWear Resistance Relationship of SiAlON Ceramics. 2009 , 40, 2319-23	32 ₂₄

914	Combustion Synthesis of Si3N4 by Selective Reaction of Silicon with Nitrogen in Air. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 636-640	3.8	5
913	A New Synthesis Method of Bilicon Nitride Powder-Reductive Combustion Synthesis from Silicon and Silicon Dioxide. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 3095-3097	3.8	11
912	Microstructure and Mechanical Properties of Lu2O3-Doped Porous Silicon Nitride Ceramics Using Phenolic Resin as Pore-Forming Agent. <i>International Journal of Applied Ceramic Technology</i> , 2009 , 7, 39	1-398	44
911	Mixture Design and Response Surface Analysis of Densification of Silicon Carbide Ceramics with (SiO2âDy2O3âAl2O3) Additives. <i>International Journal of Applied Ceramic Technology</i> , 2009 , 7, 493	2	1
910	Properties of Porous Si3N4/BN Composites Fabricated by RBSN Technique. <i>International Journal of Applied Ceramic Technology</i> , 2009 , 7, 536	2	2
909	Crystallographic characterization of silicon nitride ceramics sintered with Y2O3âAl2O3 or E2O3âAl2O3 additions. <i>Ceramics International</i> , 2009 , 35, 289-293	5.1	6
908	Wear of aligned silicon nitride under dry sliding conditions. 2009 , 266, 6-12		22
907	Wear behaviour of ∃and 無 iAlON ceramics stabilized with Nd2O3 and Y2O3. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 155-162	6	18
906	Quantitative interpretation of the parabolic and nonparabolic oxidation behavior of nitride ceramic. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 517-523	6	34
905	Characterization of porous silicon nitride ceramics by pressureless sintering using fly ash cenosphere as a pore-forming agent. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 1529-1534	6	39
904	Mechanical properties of 2.45GHz microwave sintered Si3N4âਊ2O3â∰gOâਊrO2 system. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 2037-2043	6	18
903	Improvement of the high temperature properties of the LiYO2âBi3N4 system by removing residual Li. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 3293-3297	6	3
902	Comparison in microstructure and mechanical properties of porous Si3N4 ceramics with SiC and Si3N4 coatings. 2009 , 527, 103-109		24
901	Crystallization of supercooled silicon droplets initiated through small silicon nitride particles. 2009 , 311, 1250-1255		9
900	Thermal conductivity of combustion synthesized 最ialons. <i>Ceramics International</i> , 2009 , 35, 1391-1395	5.1	8
899	Dielectric and mechanical properties of porous Si3N4 ceramics prepared via low temperature sintering. <i>Ceramics International</i> , 2009 , 35, 1699-1703	5.1	66
898	Processing of micro-components made of sintered reaction-bonded silicon nitride (SRBSN). Part 1: Factors influencing the reaction-bonding process. <i>Ceramics International</i> , 2009 , 35, 2577-2585	5.1	27
897	Surface strength of silicon nitride in relation to rolling contact performance. <i>Ceramics International</i> , 2009 , 35, 3339-3346	5.1	12

(2010-2009)

896	Continuous in situ functionally graded silicon nitride materials. 2009 , 57, 2607-2612	42
895	A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. 2009 , 40, 830-836	222
894	Properties of high nitrogen content mixed alkali earth oxynitride glasses (AExCa1â☑)1.2(1)SiO1.9(1)N0.86(6), AE=Mg, Sr, Ba. 2009 , 355, 1259-1263	15
893	Mechanical Properties of Nanocomposite Materials. 2009 , 127-172	4
892	Synthesis and applications of nanocrystalline nitride materials. 2009 , 19, 4673	77
891	Joining of engineering ceramics. 2009 , 54, 283-331	175
890	Preparation of pore gradient silicon nitride ceramics by a high-velocity oxy-fuel spraying technique. Journal of the Ceramic Society of Japan, 2009, 117, 445-448	1
889	Influence of different x values on dielectric properties of \$\overline{100}\$6\overline{100}\$AlxOxN8\overline{100}\$\overline{100}\$ ceramics. 2010 , 14, 423-425	
888	Nitrides. 2010 , 59-89	
887	Crack-healing behavior of Si3N4/SiC composite under stress and low oxygen pressure. 2010 , 527, 3343-3348	18
886	The mechanical properties of co-continuous Si3N4/Al composites manufactured by squeeze casting. 2010 , 527, 6289-6299	39
885	Thermal fatigue testing of CuCrZr alloy for high temperature tooling applications. 2010 , 45, 4501-4506	11
884	Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers. 2010 , 53, 515-523	52
883	Characterization of porous silicon nitride/silicon oxynitride composite ceramics produced by sol infiltration. 2010 , 124, 97-101	26
882	Effect of Pore Structure on the Nitridation of Mesoporous Silica with Ammonia. 2010 , 2010, 2235-2243	16
881	Influence of oxidation on the wetting behavior of liquid silicon on Si3N4-coated substrates. 2010 , 312, 2404-2410	34
880	Spark plasma sintering: A powerful tool to develop new silicon nitride-based materials. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 2937-2946	97
879	Fast bonding BiAlON ceramics by spark plasma sintering. <i>Journal of the European Ceramic Society</i> , 2010 , 30, 2683-2689	34

878	Photoluminescence properties of rare earth doped 🗟 i3N4. 2010 , 130, 1147-1153		39
877	Parallel and high sensitive photonic crystal cavity assisted read-out for DNA-chips. 2010 , 87, 747-749		5
876	Thermal fatigue testing of Inconel 617 and Stellite 6 alloys as potential tooling materials for thixoforming of steels. 2010 , 527, 1938-1945		54
875	Influence of various rare-earth oxide additives on microstructure and mechanical properties of silicon nitride based nanocomposites. 2010 , 527, 4771-4778		29
874	Microwave sintering of Si3N4 with LiYO2 and ZrO2 as sintering additives. 2010 , 31, 1559-1562		27
873	Thermal fatigue testing of Stellite 6-coated hot work tool steel. 2010 , 527, 6091-6097		37
872	Surface strength of silicon nitride in relation to rolling contact performance measured on ball-on-rod and modified four-ball tests. 2010 , 43, 423-432		6
871	Wear resistance of hot-pressed Si3N4/SiC micro/nanocomposites sintered with rare-earth oxide additives. 2010 , 269, 867-874		38
870	Properties of Si3N4âIIiN composites fabricated by spark plasma sintering by using a mixture of Si3N4 and Ti powders. <i>Ceramics International</i> , 2010 , 36, 491-496	5.1	43
869	Electronic properties of pseudocubic IVâl compounds with 3:4 stoichiometry: Chemical trends. 2010 , 501, 47-53		13
868	Fast and Almost Complete Nitridation of Mesoporous Silica MCM-41 with Ammonia in a Plug-Flow Reactor. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 104-110	3.8	29
867	Synthesis of Silicon Nitride Fibers by the Carbothermal Reduction and Nitridation of Rice Husk Ash. Journal of the American Ceramic Society, 2010 , 93, 973-979	3.8	45
866	Gas Pressure Sintering of Arbitrary Porous Silicon Nitride Ceramics with High Mechanical Strength. Journal of the American Ceramic Society, 2010 , 93, 1565	3.8	26
865	Fabrication of Silicon Nitride Nanoceramics and their Tribological Properties. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1461	3.8	28
864	Effect of Aging Time on the Stability of Aqueous Y-EsiAlON Precursor Powder Suspensions. Journal of the American Ceramic Society, 2010 , 93, 1608	3.8	
863	Controlled Crystallisation of Grain Boundary-Type Y-SiAlON Glass Typical of Those Found in Silicon Nitride Ceramics. 2010 , 279-284		
862	ELECTROMAGNETIC OPTIMAL DESIGN AND PREPARATION OF BROADBAND CERAMIC RADOME MATERIAL WITH GRADED POROUS STRUCTURE. 2010 , 105, 445-461		54
861	Cutting Performance of Diamond Coated Si3N4 Tool During Turning. 2010 , 660-661, 106-111		

(2010-2010)

Defects Analysis of Large Size Silicon Nitride Balls Sintered by Gas Pressure Sintering. **2010**, 434-435, 61-63

859	Mechanosynthesis of Silicon Nitride Nanowires. 2010 , 148-149, 1347-1350	2
858	Hetero-Modulus Nanoparticles Reinforced Corundum Matrix CMC with Extreme Wear and Thermal Shock Resistances. 2010 , 659, 165-170	3
857	Effects of Sintering Additives on the Microstructure and Mechanical Properties of Silicon Nitride Ceramics by GPS. 2010 , 105-106, 27-30	2
856	Tribology Study of Silicon Nitride-Based Nanocomposites with Carbon Additions. 2010 , 659, 235-238	12
855	Almost Complete Nitridation of Mesoporous Silica to Mesoporous Silicon (Oxy)Nitride with Ammonia. 2010 , 68, 159-164	1
854	Dielectric Properties of Porous Si3N4 Ceramics Prepared by In Situ Cordierite Bonding. 2010 , 434-435, 701-704	
853	Si3N4/BN Composite Ceramics with Nd2O3-Al2O3-Y2O3 Ternary Additives by Pressureless Sintering. 2010 , 434-435, 106-108	
852	Synthesis of Single-Crystalline Silicon Nitride (岳i3N4) Nanowires with Controlled Diameters by Nitriding Cryomilled Nanocrystalline Silicon Powder. 2010 , 1279, 1	1
851	Effect of Hexagonal BN on the Microstructure and Mechanical Properties of Pressureless Sintered Porous Si3N4 Ceramics. 2010 , 434-435, 697-700	1
850	Effects of sintering aids on mechanical and dielectric properties of Si3N4 ceramics. 2010 , 14, 338-341	8
849	Fiber-Reinforced Ceramic Matrix Composites Processed by a Hybrid Process Based on Chemical Vapor Infiltration, Slurry Impregnation and Spark Plasma Sintering. 2010 , 45-58	
848	Production Environment Laser Assisted Machining of Silicon Nitride. 2010 , 183-193	2
847	Dielectric properties in GHz range of porous Si3N4âBNâBiO2 ceramics with considerable flexural strength prepared by low temperature sintering in air. 2010 , 26, 996-1000	3
846	Multiplexed parallel single transport recordings on nanopore arrays. 2010 , 10, 5080-7	57
845	The z value dependence of photoluminescence in Eu2+-doped ₨iAlON (Si6âឱAlzOzN8âឱ) with 1âØâ¶. <i>Journal of Alloys and Compounds</i> , 2010 , 489, 157-161	:.7 46
844	Inconel 617 and Stellite 6 alloys for tooling in thixoforming of steels. 2010 , 20, 1656-1662	14
843	AlTiN and AlTiON-coated hot work tool steels for tooling in steel thixoforming. 2010 , 20, s1022-s1028	8

842	Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. 2010 , 114, 6825-9	321
841	Ultra-long Sialon nanobelts: large-scale synthesis via a pressure enhanced CVD process and photoluminescence characteristics. 2011 , 21, 5985	24
840	Carbon nanotubes functionalization process for developing ceramic matrix nanocomposites. 2011 , 21, 6063	13
839	Porous 郡iAlON Ceramic with Closed Packed Macropore. 2011 , 26, 1229-1232	4
838	. 2011,	
837	Effect of BN whiskers on dielectric and mechanical properties of BNw/Si3N4 composites. 2011 , 15, 226-228	2
836	Explicitly correlated treatment of H2NSi and H2SiN radicals: electronic structure calculations and rovibrational spectra. 2011 , 135, 074301	9
835	Highly Stable Red Oxynitride 虧iAlON:Pr3+ Phosphor for Light-Emitting Diodes. 2011 , 23, 3698-3705	155
834	Ceramic Matrix Composites: Reaction Bonded. 2011 , 1	2
833	Effects of Phase Composition on Microstructure and Mechanical Properties of Lu2O3-doped Porous Silicon Nitride Ceramics. <i>Journal of Materials Science and Technology</i> , 2011 , 27, 529-533	6
832	Toughening in graphene ceramic composites. 2011 , 5, 3182-90	494
831	Optical, mechanical and tribological properties of Y2O3, Er2O3and Nd2O3doped polycrystalline silicon nitride ceramics. 2011 , 18, 082020	2
830	Nucleation properties of undercooled silicon at various substrates. 2011 , 109, 084916	13
829	Hetero-modulus alumina matrix nanoceramics and CMCs with extreme dynamic strength. 2011 , 18, 082001	10
828	Overview: Structural Ceramics. 2011 , 111-141	
827	Tribological Properties of Si3N4/SiC NanoâNano Composite Ceramics. <i>Journal of the American Geramic Society</i> , 2011 , 94, 3683-3685	20
826	Rapid Crystallization Process of Amorphous Silicon Nitride. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 4169-4173	14
825	Ammonia synthesis over rhenium supported on mesoporous silica MCM-41. 2011 , 146, 184-189	9

(2011-2011)

824	Towards atomic scale engineering of rare-earth-doped SiAlON ceramics through aberration-corrected scanning transmission electron microscopy. 2011 , 65, 656-659		14	
823	Pore structure control of starch processed silicon nitride porous ceramics with near-zero shrinkage. 2011 , 65, 1410-1412		17	
822	Carbon nanotubes growth on silicon nitride substrates. 2011 , 65, 1479-1481		7	
821	Carbon nanofillers for machining insulating ceramics. 2011 , 14, 496-501		57	
820	Porous Si3N4 ceramics prepared via slip casting of Si and reaction bonded silicon nitride. <i>Ceramics International</i> , 2011 , 37, 3071-3076	5.1	24	
819	Ordered mesoporous non-oxide materials. 2011 , 40, 3854-78		296	
818	SHS of Bi3N4 from fine Si powders in the presence of blowing agents. 2011 , 20, 156-160		10	
817	Vacuum heat-treatment of MgO-densified silicon nitride ceramics and their compatibility with molten aluminium and copper. <i>Ceramics International</i> , 2011 , 37, 985-988	5.1	3	
816	Multi-scale electrical response of silicon nitride/multi-walled carbon nanotubes composites. 2011 , 71, 60-66		29	
815	Thermal Fatigue Testing of Plasma Transfer Arc Stellite Coatings on Hot Work Tool Steels under Steel Thixoforming Conditions. 2011 , 42, 3277-3283		4	
814	High-Temperature Sliding Wear Testing of Cathodic Arc Physical Vapor Deposition AlTiN- and AlTiON-Coated Hot Work Tool Steels. 2011 , 42, 3316-3322		3	
813	A tough silicon nitride ceramic with high thermal conductivity. 2011 , 23, 4563-7		135	
812	Preparation and properties of thermally conductive photosensitive polyimide/boron nitride nanocomposites. 2011 , 121, 916-922		53	
811	Enhanced particle rearrangement during liquid phase spark plasma sintering of silicon nitride-based ceramics. <i>Ceramics International</i> , 2011 , 37, 159-166	5.1	32	
810	High temperature bending creep behavior of a multi-cation doped 在 SiAlON composite. <i>Ceramics International</i> , 2011 , 37, 921-926	5.1	10	
809	The effect of precursor composition and sintering additives on the formation of 郡ialon from Al, Si and Al2O3 powders. <i>Ceramics International</i> , 2011 , 37, 1667-1673	5.1	11	
808	Influence of 野i3N4 particle size and heat treatment on microstructural evolution of 野iAlON ceramics. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 629-635	6	27	
807	Novel electrically conductive 部iAlON/TiCN composites. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 903-911	6	14	

806	The course of the hydrolysis and the reaction kinetics of AlN powder in diluted aqueous suspensions. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 815-823	35
805	Effect of silicon nitride nanoparticles on the crystallization behavior of polypropylene. 2011 , 30, 527-533	15
804	Thermal and dielectric properties of the AlN particles reinforced linear low-density polyethylene composites. 2011 , 512, 183-188	96
803	New ceramics and composites for joint replacement surgery. 2011 , 185-206	2
802	Modeling and quantitative nanocalorimetric analysis to assess interdiffusion in a Ni/Al bilayer. 2011 , 110, 123521	20
801	Microscopic modeling of the dielectric properties of silicon nitride. 2011 , 84,	13
800	Fabrication, Microstructure and Properties of Nitrides Bonded Alumina Castables by In Situ Nitridation Reaction. 2011 , 284-286, 69-72	2
799	Luminescence Properties of Eu2+ Doped 邸iAlON Phosphor. 2011 , 492, 320-323	
798	Oxidation Behavior of 町iAlON in H2O-Containing Atmosphere. 2011 , 696, 395-399	4
797	Microstructure, Fracture and Damage Mechanisms in Rare-Earth Doped Silicon Nitride Ceramics. 2011 , 465, 93-96	1
796	Silicon Nitride Grain Boundary Glasses: Chemistry, Structure and Properties. 2011, 484, 46-51	1
795	Measurements of residual stresses in Al film/silicon nitride substrate microcantilever beam systems. 2011 , 26, 1279-1284	5
794	Fabrication of Silicon Nitride-Based Nano/Nano-Composite. 2011 , 484, 65-69	
793	Porous Silicon Nitride Ceramics Fabricated by Carbothermal Reduction-Reaction Bonding. 2011 , 26, 855-861	20
792	Novel technique for synthesis of silicon nitride nanowires. 2011 , 110, 211-214	6
791	Effect of the Addition of	4
790	Kinetics Analysis of Direct Nitridation of Silicon Powders at Atmospheric Pressure. 2012 , 562-564, 167-170	2
7 89	Study on Microstructure and Mechanical Properties of Porous Si3N4 Ceramics. 2012 , 724, 241-244	1

788	Microstructural and Mechanical Properties Changes of Silicon Nitride Based Ceramic Using Post-Sintering Heat Treatment. 2012 , 727-728, 1085-1091		
787	Thermal Conductivity Design and Evaluation of Zirconium Phosphate Bonded Silicon Nitride Porous Ceramics. 2012 , 508, 21-26		1
786	Properties of Si3N4 Based Nanocomposites Prepared by Pressureless Sintering Method. 2012 , 532-533, 53-56		
785	Preparation and ESR Properties of Silicon Nitride Nanowires. 2012 , 164, 69-72		
7 ⁸ 4	Structural and Mechanical Properties of Milled Si3N4/CNTs Composites by Spark Plasma Sintering Method. 2012 , 729, 31-36		2
783	The effect of pressureless densification on mechanical and tribological properties of fine-grained silicon nitride ceramics. 2012 , 35, 012019		3
782	LOW COST PROCESSING OPTIONS FOR CA-BIALONS. 2012 , 06, 31-36		
781	Tunable morphology and photoluminescence of uniform -Si3N4 microribbons. 2012 , 7, 637		5
780	The influence of processing parameters on the fabrication of Si3N4 wires. 2012 , 64, 245-250		1
779	Generic principles of crack-healing ceramics. <i>Journal of Advanced Ceramics</i> , 2012 , 1, 249-267	10.7	60
779 778	Generic principles of crack-healing ceramics. <i>Journal of Advanced Ceramics</i> , 2012 , 1, 249-267 Preparation and Properties of Si3N4 Based Composites for Broad Band Radomes. 2012 , 532-533, 57-60	10.7	60
	Preparation and Properties of Si3N4 Based Composites for Broad Band Radomes. 2012 , 532-533, 57-60 Synthesis of pure rod-like Bi3N4 powder with in situ C/SBA-15 composite. <i>Ceramics International</i> ,	10.7 5.1	60 7
778	Preparation and Properties of Si3N4 Based Composites for Broad Band Radomes. 2012 , 532-533, 57-60 Synthesis of pure rod-like &i3N4 powder with in situ C/SBA-15 composite. <i>Ceramics International</i> , 2012 , 38, 6059-6062	,	
77 ⁸	Preparation and Properties of Si3N4 Based Composites for Broad Band Radomes. 2012 , 532-533, 57-60 Synthesis of pure rod-like &i3N4 powder with in situ C/SBA-15 composite. <i>Ceramics International</i> , 2012 , 38, 6059-6062	5.1	7
77 ⁸ 777 776	Preparation and Properties of Si3N4 Based Composites for Broad Band Radomes. 2012, 532-533, 57-60 Synthesis of pure rod-like &i3N4 powder with in situ C/SBA-15 composite. Ceramics International, 2012, 38, 6059-6062 A comparative study of SiAlON ceramics. Ceramics International, 2012, 38, 5757-5767 Improvement in short circuit current of p-i-n solar cell with silicon quantum dot superlattice	5.1	7 27
77 ⁸ 777 776	Preparation and Properties of Si3N4 Based Composites for Broad Band Radomes. 2012, 532-533, 57-60 Synthesis of pure rod-like Ei3N4 powder with in situ C/SBA-15 composite. <i>Ceramics International</i> , 2012, 38, 6059-6062 A comparative study of SiAlON ceramics. <i>Ceramics International</i> , 2012, 38, 5757-5767 Improvement in short circuit current of p-i-n solar cell with silicon quantum dot superlattice structure by optimizing SiNx thickness. 2012, Analysis of the series resistance and interface states of Au/Si3N4/n-Si (metalâſhsulatorâßemiconductor) Schottky diodes usinglâſVcharacteristics in a wide temperature	5.1	7 27 1
778 777 776 775 774	Preparation and Properties of Si3N4 Based Composites for Broad Band Radomes. 2012, 532-533, 57-60 Synthesis of pure rod-like Esi3N4 powder with in situ C/SBA-15 composite. <i>Ceramics International</i> , 2012, 38, 6059-6062 A comparative study of SiAlON ceramics. <i>Ceramics International</i> , 2012, 38, 5757-5767 Improvement in short circuit current of p-i-n solar cell with silicon quantum dot superlattice structure by optimizing SiNx thickness. 2012, Analysis of the series resistance and interface states of Au/Si3N4/n-Si (metalâlhsulatorâlemiconductor) Schottky diodes usinglâl/characteristics in a wide temperature range. 2012, 86, 035802	5.1	7 27 1 31

770	Orthopedic applications of silicon nitride ceramics. 2012 , 8, 2889-98		183
769	Theoretical study of charge trapping levels in silicon nitride using the LDA-1/2 self-energy correction scheme for excited states. 2012 , 177, 1497-1500		6
768	Effects of pelletization of reactants and diluents on the combustion synthesis of Si3N4 powder. Journal of Alloys and Compounds, 2012 , 511, 81-84	5.7	8
767	Gel-cast-foam-assisted combustion synthesis of elongated 虧i3N4 crystals and their effects on improving the thermal conductivity of silicone composites. <i>Journal of Alloys and Compounds</i> , 2012 , 540, 165-169	5.7	14
766	Hydrogen permeation through silicon nitride films. <i>Journal of Alloys and Compounds</i> , 2012 , 539, 184-189	95.7	18
765	Chemical bulk properties of multicrystalline silicon ingots for solar cells cast in silicon nitride crucibles. 2012 , 354, 27-33		15
764	Copper-free click biofunctionalization of silicon nitride surfaces via strain-promoted alkyne-azide cycloaddition reactions. 2012 , 28, 8651-63		44
763	Sintering Additive on the Pore Structure and Mechanical Properties of Si3N4 Ceramic Foam Produced by Protein Coagulation Casting. 2012 , 519, 281-286		
762	Deciphering the inert atmosphere degradation patterns in hybrid silicones. 2012 , 97, 1633-1643		8
761	Effect of pre-oxidation on the microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics. <i>Ceramics International</i> , 2012 , 38, 6021-6026	5.1	22
760	Porous Si3N4 Fabricated Using Benzoic Acid as Pore-Forming Agent. 2012 , 512-515, 820-823		О
759	Pressureless Sintering of Silicon Nitride Porous Ceramics with High Porosity and Bimodal Pore Structure. 2012 , 512-515, 873-877		
758	Coating on Porous Si3N4 Based Substrate with Sol-Gel Slurry. 2012 , 138, 111-116		2
757	Tribological and electrical properties of ceramic matrix composites with carbon nanotubes. <i>Ceramics International</i> , 2012 , 38, 5669-5676	5.1	47
756	Environmentally assisted debonding of copper/barrier interfaces. 2012 , 60, 2219-2228		26
755	Indentation Deformation and Microcracking in \$\varBi3N4\text{-Based Nanoceramic.} Journal of the American Ceramic Society, 2012 , 95, 1421-1428	3.8	8
754	Effects of diazenedicarboxamide additive on the content of Bi3N4 synthesized by combustion method. <i>Ceramics International</i> , 2012 , 38, 961-965	5.1	10
753	Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. <i>Ceramics International</i> , 2012 , 38, 4373-4377	5.1	45

75 ²	Rapid crystallization of amorphous silicon nitride powder accelerated by liquid Si. <i>Ceramics International</i> , 2012 , 38, 5311-5314	5.1	7
751	Slip Casting of a Si3N4-Based System. International Journal of Applied Ceramic Technology, 2012, 9, 246-	-258	1
75°	Effect of Y-Bialon Seeding and Holding Time on the Formation of Elongated (Ca,Dy)-Bialon Crystals Prepared via Carbothermal Reduction and Nitridation. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 2777-2781	3.8	6
749	Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. 2012 , 33, 98-103		66
748	Silicon imidonitride aerogel exhibiting macro- and meso-dual porosity. 2012 , 156, 196-201		9
747	Cytocompatibility property evaluation of gas pressure sintered SiAlONâBiC composites with L929 fibroblast cells and Saos-2 osteoblast-like cells. 2012 , 32, 464-469		18
746	Non-isothermal crystallization kinetics of recycled PET-Si3N4 nanocomposites. 2012, 31, 110-116		23
745	Fabrication of Si3N4-based composite containing needle-like TiN synthesized using NH3 nitridation of TiO2 nanofiber. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 1413-1417	6	5
744	Processing of vacuum heat-treated MgO-densified silicon nitride crucible for molten cast iron handling. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 1349-1353	6	3
743	Sintered silicon nitride/nano-silicon carbide materials based on preceramic polymers and ceramic powder. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 1893-1899	6	12
742	Effect of TiO2 addition on thermal and mechanical properties of YâBiâAlâDâN glasses. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 1157-1161	6	7
741	Grain boundary glasses in silicon nitride: A review of chemistry, properties and crystallisation. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 1925-1932	6	42
740	Spark plasma sintered 即hase silicon nitride with Sr and Ca as a sintering aid for load bearing medical applications. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 2705-2709	6	8
739	Improved nanocrystal formation, quantum confinement and carrier transport properties of doped Si quantum dot superlattices for third generation photovoltaics. 2013 , 21, 569-577		26
738	Fabrication and mechanical properties of		7
737	An investigation into a multilayered BN/Si3N4/BN interfacial coating. 2013 , 48, 6194-6202		8
736	Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements. 2013 , 25, 41-7		34
735	Effects of solid content on the phase assemblages, mechanical and dielectric properties of porous BiAlON ceramics fabricated by freeze casting. <i>Ceramics International</i> , 2013 , 39, 1075-1079	5.1	39

734	Recovery behavior of neutron irradiated \square and \square iAlON ceramics by thermal annealing up to 1473 K. 2013 , 437, 235-239		5
733	Photoluminescence and thermal stability of 鼫iAlON:Re (Re = Sm, Dy) phosphors. 2013 , 35, 1348-1351		8
732	Structure and composition of silicon nitride and silicon carbon nitride coatings for joint replacements. 2013 , 235, 827-834		27
731	Synthesis and structureaproperty relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems. <i>Journal of the European Ceramic Society</i> , 2013 , 33, 2831-2865		74
730	Nanofabrication with metallopolymers - recent developments and future perspectives. 2013 , 62, 1123-113	34	23
729	Development and Characterization of Porous Silicon Nitride Tubes. 2013 , 72, 52-55		
728	Tribological and cutting behavior of silicon nitride tools coated with monolayer- and multilayer-microcrystalline HFCVD diamond films. 2013 , 265, 850-859		31
727	Effect of BN content on microstructures, mechanical and dielectric properties of porous BN/Si3N4 composite ceramics prepared by gel casting. <i>Ceramics International</i> , 2013 , 39, 4231-4237	1	50
726	Synthesis of 虧i3N4 powder from quartz via carbothermal reduction nitridation. 2013 , 235, 728-734		28
725	Crystallization behavior of amorphous silicon nitride added with silicon powder. 2013 , 141, 874-881		6
724	Identification and quantification of reaction phases at Si3N4âTi interfaces by using analytical transmission electron microscopy techniques. <i>Ceramics International</i> , 2013 , 39, 1087-1095	1	15
723	Influence of rare-earth oxide additives and SiC nanoparticles on the wear behaviour of Si3N4-based composites at temperatures up to 900 °C. 2013 , 300, 155-162		22
722	In situ synthesis of FeSi particle toughening Si3N4 composite. 2013 , 37, 142-147		9
721	Carbothermal synthesis of Si3N4 powders using a combustion synthesis precursor. 2013 , 20, 76-81		3
720	Mechanisms for Formation of Mesoporous Materials. 2013 , 55-116		1
719	Mesoporous Nonsilica Materials. 2013 , 293-428		5
718	Mechanical characterization of highly porous \$\mathbb{E}\$i3N4 ceramics fabricated via partial sintering & starch addition. Journal of the European Ceramic Society, 2013 , 33, 1507-1515		47
717	Optical Properties of (Oxy)Nitride Materials: A Review. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 665-687	8	260

716	Electronic structure and properties of neutral, anionic and cationic silicon-nitrogen nanoclusters. 2013 , 19, 2657-68		О
715	Effect of ceramic bonding phases on the thermo-mechanical properties of Al 2 O 3 âld refractories. <i>Ceramics International</i> , 2013 , 39, 6069-6076	5.1	62
714	Hybrid Finishing Coatings Applied on Laminar Zinc Primers. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2013 , 52, 8223-8229	3.9	
713	Kinetic study on the direct nitridation of silicon powders diluted with E i3N4 at normal pressure. 2013 , 20, 493-498		15
712	Luminescence Spectra of BiAlON/Pr3+ Under High Hydrostatic Pressure. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 13181-13186	3.8	17
711	Ab initio study of iron nanowires encapsulated inside silicon nitride nanotubes. 2013 , 49, 97-104		5
710	Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at different temperatures. Journal of the European Ceramic Society, 2013 , 33, 1469-1477	6	108
709	Fiber-reinforced ceramic matrix composites processed by a hybrid technique based on chemical vapor infiltration, slurry impregnation and spark plasma sintering. <i>Journal of the European Ceramic Society</i> , 2013 , 33, 181-190	6	23
708	Unexpected low-temperature crystallization of amorphous silicon nitride into ⊞i3N4 in a ferritic FeâBi matrix. 2013 , 68, 187-190		9
707	Silicon Nitrideâtrain Boundary Oxynitride Glass Interfaces: Deductions From Glass Bulk Properties. <i>International Journal of Applied Ceramic Technology</i> , 2013 , 10, 747-755	2	13
706	Synthesis and reaction process of 虧i3N4 by means of carbothermal nitridation of serpentine. 2013 , 104, 586-589		1
705	Effects of BN content on the structural and mechanical properties of a-SiBN ceramics. 2013 , 104, 162-	167	
704	Effect of Si3N4 on Properties of Aluminum Borate Whisker/Aluminum Phosphates Ceramic. 2013 , 575-576, 50-53		
703	In Situ Synthesis of SiC and 邸i3Al3O3N5 Whiskers in Alumina Carbon Based Materials. 2013 , 745-746, 663-666		8
702	Effect of CaO Addition on Compressive Deformation of Silicon Nitride Ceramic with Y-Mg-Si-O-N Glassy System. <i>International Journal of Applied Ceramic Technology</i> , 2013 , 10, 756-763	2	3
701	Synthesis and Characterization of ⊕hase Silicon Nitride Powders by Direct Nitridation. 2013 , 631-632, 434-436		
700	版i3N4(0001)/Si(111) interface: Phosphorus defects, valence band offsets, and their role of passivating the interface states. 2013 , 88,		11
699	Processing, Characterization and Mechanical Properties of SiAlONs Produced from Low Cost 野i3N4 Powder. 2013 , 30, 22-30		10

698	Fabrication of a Nano-Si3N4/Nano-C Composite by High-Energy Ball Milling and Spark Plasma Sintering. 2014 , 405-409		
697	Self-crack-healing behavior in ceramic matrix composites. 2014 , 515-544		1
696	Introduction. 2014 , 1-12		3
695	Sintering Practice. 2014 , 471-512		2
694	Preparation of Zirconium Phosphate Bonded Silicon Nitride Ceramic Coatings by Cold Spray and Presureless Sintering. 2014 , 616, 47-51		
693	High-Pressure Routes to Ceramics. 2014 , 501-517		
692	Nitrides. 2014 , 59-89		
691	Ni-(In,Ga)As Alloy Formation Investigated by Hard-X-Ray Photoelectron Spectroscopy and X-Ray Absorption Spectroscopy. 2014 , 2,		9
690	Fundamental Aspects of Hard Ceramics. 2014 , 3-28		4
689	Effects of FeMo alloy on nitridation and mechanical properties of reaction bonded Bialon/FeMo ceramic composites. <i>Journal of Alloys and Compounds</i> , 2014 , 616, 639-645	5.7	10
688	Ceramic Cutting Tools. 2014 , 491-505		2
687	Processing of Silicon Carbide-Based Ceramics. 2014 , 89-175		14
686	Porous Si3N4/SiC Ceramics Prepared via Nitridation of Si Powder with SiC Addition. <i>International Journal of Applied Ceramic Technology</i> , 2014 , 11, 845-850	2	7
685	Fabrication of Porous SiAlON Using Fe2O3 as Pore Former. 2014 , 804, 267-270		
684	Formation and distribution of silicon carbide (SiC) precipitates in industrial directional solidification of mc-Si ingots. 2014 , 18, 99-103		2
683	Preparation, Microstructure, and Mechanical Properties of Spinel-Corundum-Sialon Composite Materials from Waste Fly Ash and Aluminum Dross. 2014 , 2014, 1-10		5
682	Interaction of silicene with 虧i3N4(0001)/Si(111) substrate; energetics and electronic properties. 2014 , 26, 395009		6
681	Fabrication and mechanical properties of SiC reinforced reaction-bonded silicon nitride based ceramics. <i>Ceramics International</i> , 2014 , 40, 4739-4743	5.1	19

680	Vibrational and dielectric properties of ⊞i3N4 from density functional theory. 2014 , 147, 42-49		13
679	Effect of dilution and additive on direct nitridation of ferrosilicon. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 1115-1122	6	8
678	Effect of particle size and oxygen content of Si on processing, microstructure and thermal conductivity of sintered reaction bonded Si3N4. <i>Journal of Alloys and Compounds</i> , 2014 , 595, 60-66	5.7	33
677	On the influence of transgranular and intergranular failure mechanisms during dynamic loading of silicon nitride. 2014 , 67, 239-251		12
676	In-situ formation of carbon nanotubes in pyrolytic carbonâlilicon nitride composite ceramics. <i>Ceramics International</i> , 2014 , 40, 531-540	5.1	18
675	Preparation of single phase nano-sized BiAlON powders by nitridation of silicaâllumina gel in ammonia. <i>Ceramics International</i> , 2014 , 40, 2539-2543	5.1	3
674	Fabrication and Characterization of In Situ Porous Si3N4-Si2N2O-BN Ceramic. <i>International Journal of Applied Ceramic Technology</i> , 2014 , 11, 832-838	2	13
673	Enhancement in wear resistance of sintered silicon carbide at various temperatures. 2014 , 74, 28-37		11
672	Properties of porous Si3N4 ceramic electromagnetic wave transparent materials prepared by technique combining freeze drying and oxidation sintering. 2014 , 25, 1949-1954		20
671	Porous silica and carbon derived materials from rice husk pyrolysis char. 2014 , 188, 46-76		155
671 670	Porous silica and carbon derived materials from rice husk pyrolysis char. 2014, 188, 46-76 Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination. 2014, 450, 197-206		155 84
ĺ	Preparation and characterization of silicon nitride hollow fiber membranes for seawater	5-7	
670	Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination. 2014 , 450, 197-206 Improvement in sinterability of SiAlON produced from kaolin. <i>Journal of Alloys and Compounds</i> ,	5:7	84
670 669	Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination. 2014, 450, 197-206 Improvement in sinterability of BiAlON produced from kaolin. Journal of Alloys and Compounds, 2014, 602, 140-149 Preparation of Zirconium Phosphate Bonded Silicon Nitride Porous Ceramics Reinforced by In-Situ	5.7	84
670 669 668	Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination. 2014, 450, 197-206 Improvement in sinterability of SiAlON produced from kaolin. Journal of Alloys and Compounds, 2014, 602, 140-149 Preparation of Zirconium Phosphate Bonded Silicon Nitride Porous Ceramics Reinforced by In-Situ Reacted Silicon Nitride Nanowires. 2014, 15-24 Synthesis of Si3N4 powder with tunable Si3N4 content from waste silica fume using	5.7	8 ₄ 8 0
670 669 668	Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination. 2014, 450, 197-206 Improvement in sinterability of BiAlON produced from kaolin. Journal of Alloys and Compounds, 2014, 602, 140-149 Preparation of Zirconium Phosphate Bonded Silicon Nitride Porous Ceramics Reinforced by In-Situ Reacted Silicon Nitride Nanowires. 2014, 15-24 Synthesis of Si3N4 powder with tunable Asi3N4 content from waste silica fume using carbothermal reduction nitridation. 2014, 252, 51-55 A broadband grating-coupled silicon nitride waveguide for the mid-IR: characterization and	5.7	8 ₄ 8 0 28
670 669 668 667	Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination. 2014, 450, 197-206 Improvement in sinterability of BiAlON produced from kaolin. Journal of Alloys and Compounds, 2014, 602, 140-149 Preparation of Zirconium Phosphate Bonded Silicon Nitride Porous Ceramics Reinforced by In-Situ Reacted Silicon Nitride Nanowires. 2014, 15-24 Synthesis of Si3N4 powder with tunable Bi3N4 content from waste silica fume using carbothermal reduction nitridation. 2014, 252, 51-55 A broadband grating-coupled silicon nitride waveguide for the mid-IR: characterization and sensitive measurements using an external cavity quantum cascade laser. 2014, 116, 325-332 Thermal, electrical, and mechanical properties of hexagonal boron nitridealEinforced epoxy	5·7 3.8	84 8 0 28

662	Fabrication of textured Si3N4 ceramics with		17
661	Graphitic silicon nitride: a metal-free ferromagnet with charge and spin current rectification. 2014 , 15, 2756-61		7
660	Fabrication of porous Si3N4 ceramics through a novel gelcasting method. 2014 , 133, 190-192		35
659	Properties and Processing of Porous Si3N4 Ceramics. 2014 , 602-603, 375-379		2
658	Ceramic materials and phosphors based on silicon nitride and sialon. 2014 , 50, 1325-1342		10
657	Electronic structure and optical properties of SiâDâN compounds with different crystal structures. 2014 , 4, 36485-36493		10
656	Polyimide nanocomposites with boron nitride-coated multi-walled carbon nanotubes for enhanced thermal conductivity and electrical insulation. 2014 , 2, 20958-20965		97
655	Bialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties. 2014 , 6, 424-32		23
654	Pentacoordinate Phosphorus in a High-Pressure Polymorph of Phosphorus Nitride Imide P4N6(NH). 2014 , 126, 14718-14721		19
653	Eutectic bonding of copper to ceramics for thermal dissipation applications âl A review. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 4117-4130	6	27
652	Self-crack-healing behavior in ceramic matrix composites. 2014 , 410-441		6
651	Effect of sintering additives on properties of Si3N4-BN composites fabricated via die pressing and precursor infiltration and pyrolysis route. 2014 , 29, 891-894		2
650	Optimization of reaction parameters for synthesis of amorphous silicon nitride powder by vapor phase reaction. <i>Ceramics International</i> , 2014 , 40, 14563-14568	5.1	9
649	The effect of fabrication parameters on the mechanical properties of sintered reaction bonded porous Si3N4 ceramics. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 3461-3467	6	32
648	Effects of a carbothermal reduction reaction on the microstructure of nano-silicon nitride ceramics. <i>Ceramics International</i> , 2014 , 40, 14313-14317	5.1	4
647	Performance and Properties of Ultra-Thin Silicon Nitride X-ray Windows. 2014 , 61, 695-699		11
646	Pentacoordinate phosphorus in a high-pressure polymorph of phosphorus nitride imide P4N6(NH). 2014 , 53, 14490-3		24
645	High-strength porous Si3N4 ceramics prepared by freeze casting and silicon powder nitridation process. 2014 , 133, 285-288		32

644	Phase transformation of coal gangue by aluminothermic reduction nitridation: Influence of sintering temperature and aluminum content. 2014 , 101, 94-99		14
643	The effect of the crystallization of oxidation-derived SiO2 on the properties of porous Si3N4âBiO2 ceramics synthesized by oxidation. <i>Ceramics International</i> , 2014 , 40, 4897-4902	5.1	12
642	Effects of ZrO2 on the Nitridation Behavior and Mechanical Properties of Reaction-Bonded Si3N4/h-BN Composite. 2014 , 23, 3436-3443		13
641	Solid particle erosion-wear behavior of SiCâBi 3 N 4 composite ceramic at elevated temperature. <i>Ceramics International</i> , 2014 , 40, 16201-16207	5.1	23
640	Improved mechanical properties of Cu matrix composites reinforced with 虧i3N4 whiskers. 2014 , 607, 287-293		22
639	Nitrogen-doped-CNTs/Si3N4 nanocomposites with high electrical conductivity. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 1097-1104	6	11
638	Heat conductivity, physico-mechanical properties and interrelations of them and structures of pressureless sintered composites produced of Si3N4-Al2O3-Y2O3(-ZrO2) nanodispersed system. 2014 , 36, 96-104		5
637	Co-catalyzed nitridation of silicon and in-situ growth of Esi3N4 nanorods. <i>Ceramics International</i> , 2014 , 40, 11063-11070	5.1	38
636	Carbon nanotubes/silicon nitride nanocomposites for gasoline lubricated high pressure pumps. 2014 , 64, 168-174		8
635	Silicon nitride foams from emulsions. 2014 , 128, 128-131		11
634	Synthesis and photoluminescence of heavily La-doped 5 i3N4 nanowires via nitriding cyromilled nanocrystalline La-doped silicon powder. 2014 , 151, 66-70		9
633	Analytical transmission electron microscopy observations on the stability of TiCN in electrically conductive Hialon/TiCN composites. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 2905-2911	6	6
632	Effect of homogenization treatment on the fracture behaviour of silicon nitride/graphene nanoplatelets composites. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 3291-3299	6	31
631	Formation process of Si3N4 particles on surface of Si ingots grown using silica crucibles with Si3N4 coating by noncontact crucible method. 2014 , 389, 112-119		17
630	SPS sintering of silicon nitride with fluoride additive. <i>Ceramics International</i> , 2014 , 40, 1399-1404	5.1	27
629	Influence of hBN content on mechanical and tribological properties of Si3N4/BN ceramic composites. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 3319-3328	6	45
628	Synthesis of Porous Silicon Nitride-Boron Nitride Composites by Gel-Casting and PIP. 2014 , 23, 2829-283	3	10
627	High Temperature Behavior of Si3N4 and Yb2SiO5 Coated Carbon Fibers for Silicon-Nitride CMC. 2014 , 16, 556-564		О

626	Gas pressure sintering of BN/Si3N4 wave-transparent material with Y2O3âMgO nanopowders addition. <i>Ceramics International</i> , 2014 , 40, 13537-13541	5.1	24
625	Initial stages of siliconâdrucible interactions in crystallisation of solar grade silicon: Kinetics of coating infiltration. 2014 , 76, 151-167		23
624	Identification and characterization of peptide fragments for the direct and site-specific immobilization of functional proteins onto the surface of silicon nitride. 2014 , 184, 103-10		9
623	Effects of growth parameters on the yield and morphology of Si3N4 microcoils prepared by chemical vapor deposition. 2014 , 50, 57-62		6
622	Silicon Nitride Nanorings: Synthesis and Optical Properties. 2014 , 43, 1360-1362		4
621	Spark Plasma Sintering of Ceramic Matrix Composites with Self-Healing Matrix. 2014 , 177-186		O
620	DFT study of electron affinity of alkali metal termination on clean and oxygenated 虧i3N4. 2015 , 58, 214-220		6
619	Microstructural investigation of α-β SiAlON/SiC composites by analytical transmission electron microscopy. <i>Journal of the Ceramic Society of Japan</i> , 2015 , 123, 136-141	1	
618	Silicon Nitride Ceramics. 2015, 77-97		1
617	Nitridation of Si surface at the bottom of submicron trench using nitrogen neutral beam. 2015 , 54, 06F	H07	1
616	Direct Synthesis of Bilicon Nitride Nanowires from Silicon Monoxide on Alumina. 2015 , 5, 32		11
615	Synthesis, characterization of silicon(IV) compounds containing 2-alkyl-aminopyridine ligands and evaluation of them as CVD precursors. 2015 , 5, 59991-59996		8
614	Effect of seed particles content on texture formation of Si3N4 ceramics by gel-casting in a strong magnetic field. 2015 , 3, 193-201		4
613	Intergranular Nanostructure Effects on Strength and Toughness of Si3N4. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 1650-1657	3.8	14
612	The Microstructure and Mechanical Properties of Porous Silicon Nitride Ceramics Prepared via Novel Aqueous Gelcasting. <i>International Journal of Applied Ceramic Technology</i> , 2015 , 12, 932-938	2	22
612 611	The Microstructure and Mechanical Properties of Porous Silicon Nitride Ceramics Prepared via	3.8	22
	The Microstructure and Mechanical Properties of Porous Silicon Nitride Ceramics Prepared via Novel Aqueous Gelcasting. <i>International Journal of Applied Ceramic Technology</i> , 2015 , 12, 932-938 Crystal Growth in the Combustion Synthesis of Bi3N4 Using Si with Different Particle Sizes.		

(2015-2015)

608	Low-Temperature Conformal Atomic Layer Deposition of SiNx Films Using Siâl (Iâland NHâl Plasma. 2015 , 7, 10806-13		59	
607	A novel sonochemical synthesis of nano-size silicon nitride and titanium carbide. <i>Ceramics International</i> , 2015 , 41, 11301-11305	5.1	16	
606	Multiple doping structures of the rare-earth atoms in 虧iAlON:Ce phosphors and their effects on luminescence properties. 2015 , 7, 11393-400		14	
605	Mechanical and electrical properties of DC magnetron sputter deposited amorphous silicon nitride thin films. 2015 , 589, 227-232		14	
604	Producing Nanodispersed Composite Nitride Powders by Nitriding of Precursors. 2015 , 54, 402-409			
603	Influence of CeO2 addition on Si3N4 ceramics. 2015 , 19, S1-339-S1-342		3	
602	PolyethyleneimineâDleic Acid Complex as a Polymeric Dispersant for Si3N4 and Si3N4-Based Multicomponent Nonaqueous Slurries. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 12847	^{,3} 1285	54 ²⁰	
601	Fabrication of gel cast BN/Si3N4 composite ceramics from surface-coated BN powder. 2015 , 626, 27-33		6	
600	DFT study of electron affinity of hydrogen terminated \$\varPsi\$ i3N4. 2015 , 53, 52-57		14	
599	Issues associated with the development of transparent oxynitride glasses. <i>Ceramics International</i> , 2015 , 41, 3345-3354	5.1	31	
598	Characterization of thermal conductivity of SiO2âAl2O3âA2O3 glasses. 2015 , 604, 1-6		7	
597	Microstructure and Thermo-Kinetics Analysis in Combustion Synthesis of Si3N4 with High Phase Content. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 263-268	3.8	26	
596	Reduced tight-binding models for elemental Si and N, and ordered binary Si-N systems. 2015 , 91,		9	
595	Silicon nitride foams from emulsions sintered by rapid intense thermal radiation. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 3263-3272	6	19	
594	How Does Crack Bridging Change at Cryogenic Temperatures?. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 898-901	3.8	6	
593	Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments. 2015 , 115, 49-54		7	
592	Preparation and characterisation of porous composite biomaterials based on silicon nitride and bioglass. <i>Ceramics International</i> , 2015 , 41, 9770-9778	5.1	17	
591	In-situ synthesis mechanism of plate-shaped Bialon and its effect on Al2O3all refractory properties. <i>Ceramics International</i> , 2015 , 41, 14376-14382	5.1	22	

590	Low thermal conductivity of Lu4Si2O7N2: Theoretical and experimental studies. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 3237-3247	4
589	Prediction of novel hard phases of Si3N4: First-principles calculations. 2015 , 228, 20-26	18
588	Znâßr mixing in the Y-sialon glass: Formation, properties and ballistic resistance. 2015 , 421, 41-47	9
587	Hertzian contact damage in silicon nitride ceramics with different porosity contents. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 2269-2276	6
586	Development of high-thermal-conductivity silicon nitride ceramicsPeer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society.View all notes. 2015 , 3, 221-229	61
585	Properties of a reaction-bonded SiAlON ceramic doped with an FeMo alloy for application to molten aluminum environments. 2015 , 22, 530-536	3
584	Preparation of nasal cavity-like SiCâBi3N4 foams with a hierarchical pore architecture. 2015 , 5, 27891-27900	19
583	Catalytic silylation of dinitrogen with a dicobalt complex. 2015 , 137, 4638-41	136
582	Ceramics and ceramic coatings in orthopaedics. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 4327- 4 369	126
581	Synthesis of porous Si3N4/SiC ceramics with rapid nitridation of silicon. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 3781-3787	31
580	Effects of humidity and counter-surface on tribochemical wear of soda-lime-silica glass. 2015 , 342-343, 100-106	36
579	Thin Films on Silicon. 2015 , 124-205	1
578	Preparation and artificial neural networks analysis of ultrafine sialon powders by microwave-assisted carbothermal reduction nitridation of solagel derived powder precursors. 2015 , 26, 1417-1422	19
577	Challenges and developments of self-assembled monolayers and polymer brushes as a green lubrication solution for tribological applications. 2015 , 5, 89698-89730	39
576	SHS of ultrafine and nanosized Si3N4 powders: The effect of inorganic and organic additives on the microstructures, morphology, and phase compositions of products. 2015 , 10, 763-776	1
575	Effect of 眡i3N4 Powder on Thermal Conductivity of Silicon Nitride Ceramics. 2015 , 655, 11-16	1
574	Synthesis, characterization, thermal properties of silicon(IV) compounds containing guanidinato ligands and their potential as CVD precursors. 2015 , 5, 71637-71643	9

(2016-2015)

572	Indentation strength of silicon nitride ceramics processed by spark plasma sintering technique. 2015 , 644, 159-170		7
571	Surface modulation of silicon nitride ceramics for orthopaedic applications. 2015 , 26, 318-30		78
57°	First-principles investigation of titanium doping into 虧iAlON crystal in TiNâBiAlON composites for EDM applications. 2015 , 162, 781-786		5
569	Enhanced microstructural and mechanical gradients on silicon nitride ceramics. <i>Ceramics International</i> , 2015 , 41, 2594-2598	.1	11
568	Porous Si3N4 Ceramics Prepared by TBA-based Gel-casting. <i>Journal of Materials Science and Technology</i> , 2015 , 31, 295-299	.1	17
567	Sintered reaction-bonded silicon nitride foams with a high level of interconnected porosity. 2015 , 50, 570-576		4
566	Viscosity of liquids from the transfer function of microcantilevers. 2015 , 61, 67-74		6
565	First-principles study of Si3N2. 2015 , 96, 140-145		5
564	Label-free cellular structure imaging with 82 nm lateral resolution using an electron-beam excitation-assisted optical microscope. 2016 , 24, 16487-95		4
563	A Novel Synthesis of Green Apatite-Type Y5(SiO4)3N:Eu2+ Phosphor via SiC-Assisted SolâtGel Route. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 748-751	8	8
562	Highly Porous Silicon Nitride Foam Prepared Using a Route Similar to the Making of Aerated Food. International Journal of Applied Ceramic Technology, 2016, 13, 395-404		12
561	Combustion Synthesis of High Purity Esi3N4 by Premixing of Raw Materials. 2016 , 53, 301-305		3
560	Microstructural evolution of Si3N4 ceramics from starting powders with different α-to-β ratios. <i>Journal of the Ceramic Society of Japan</i> , 2016 , 124, 800-807		8
559	SiC/Si3N4 nanotubes from peanut shells. 2016 , 6, 065009		1
558	Nanostructured silicon nitride from wheat and rice husks. 2016 , 119, 134902		6
557	Elastic anisotropy and electronic properties of Si3N4 under pressures. 2016 , 6, 085207		8
556	Electron transport and dielectric breakdown in silicon nitride using a charge transport model. 2016 , 109, 152904		7
555	Enhanced nitridation of silicon compacts by Yb2O3 addition. <i>Ceramics International</i> , 2016 , 42, 7072-7079 ₅ .	1	7

554	Synthesis and processing of silicon nitride and related materials using preceramic polymer and non-oxide sol-gel approaches. 2016 , 323, 120-137		18
553	Influence of graphene addition and sintering temperature on physical properties of Si 3 N 4 matrix composites. 2016 , 57, 19-23		22
552	The preparation of silicon nitride ceramics by gelcasting and pressureless sintering. <i>Ceramics International</i> , 2016 , 42, 11593-11597	5.1	21
551	UV/VUV switch-driven color-reversal effect for Tb-activated phosphors. 2016 , 5, e16066		51
550	Mechanical and electrical properties of RF magnetron sputter deposited amorphous silicon-rich silicon nitride thin films. 2016 , 606, 7-12		5
549	Investigation of nano-silicon nitride ceramics containing an yttria sintering additive and the carbon thermal reduction reaction. <i>Ceramics International</i> , 2016 , 42, 12452-12459	5.1	9
548	Effect of Cu particles on phase transformation of spark plasma sintered silicon nitride. 2016 , 174, 122-	125	5
547	Rare Earth-Doped Phosphors for White Light-Emitting Diodes. 2016 , 49, 1-128		13
546	Fabrication of Si3N4 ceramics by post-reaction sintering using SiâN2O3âAl2O3 nanocomposite particles prepared by mechanical treatment. <i>Ceramics International</i> , 2016 , 42, 11554-11561	5.1	10
545	Rapid fabrication of Si3N4 ceramics by reaction-bonding and pressureless sintering. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 3919-3924	6	24
544	Effect of impurities MgO, CaO, Al2O3, AlN and Al on m atio in combustion synthesis of b i3N4. <i>Journal of Alloys and Compounds</i> , 2016 , 688, 1002-1007	5.7	10
543	Stabilizing Highly Loaded Silicon Nitride Aqueous Suspensions Using Comb Polymer Concrete Superplasticizers. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 3857-3865	3.8	7
542	Nanostructured Aniline Formaldehyde Resin/Polysilazane Hybrid Materials by Twin Polymerization. 2016 , 217, 2462-2472		4
541	Reactivity of different surface sites with silicon chlorides during atomic layer deposition of silicon nitride. 2016 , 6, 68515-68524		24
540	Fabrication of a polymer composite with high thermal conductivity based on sintered silicon nitride foam. 2016 , 90, 626-632		32
539	Highly Corrosion Resistant and Sandwich-like SiN/Cr-CrN/SiN Coatings Used for Solar Selective Absorbing Applications. 2016 , 8, 34008-34018		20
538	Development of a single-phase Ca-EsiAlON ceramic from nanosized precursors using spark plasma sintering. 2016 , 673, 243-249		18
537	Formation mechanism of Si3N4 in reaction-bonded Si3N4-SiC composites. <i>Ceramics International</i> , 2016 , 42, 16448-16452	5.1	15

536	In Situ Spectroscopic Screening of Osteosarcoma Living Cells on Stoichiometry-Modulated Silicon Nitride Bioceramic Surfaces. 2016 , 2, 1121-1134		31	
535	Enhanced thermal conductivity for poly(vinylidene fluoride) composites with nano-carbon fillers. 2016 , 6, 68357-68362		42	
534	Controlled atmosphere pyrolysis of polyureasilazane for tailored volume fraction Si3N4/SiC nanocomposites powders. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 3663-3669	5	9	
533	Spark Plasma Sintering of 趣 i3N4 Ceramics with MgO-Al2O3 and MgO-Y2O3 as Sintering Additives. 2016 , 25, 5220-5224		6	
532	Catalytic Effects of Cr on Nitridation of Silicon and Formation of One-dimensional Silicon Nitride Nanostructure. 2016 , 6, 31559		14	
531	The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites. 2016 , 6, 102542-102548		80	
530	Iron-Catalyzed Boron Removal from Molten Silicon in Ammonia. 2016 , 3, 228-233			
529	Consideration of the formation mechanism of an Al2O3-HfO2 eutectic film on a SiC substrate. 2016 , 68, 73-76			
528	Effect of Fe-Contained Species on the Preparation of & i3N4 Fibers in Combustion Synthesis. Journal of the American Ceramic Society, 2016 , 99, 1464-1471	3.8	17	
527	Design and fabrication of Si3N4/(W, Ti)C graded nano-composite ceramic tool materials. <i>Ceramics International</i> , 2016 , 42, 13497-13506	5.1	15	
526	Thermodynamic analysis on deposition of SiBCN ceramic by low pressure chemical vapor deposition/infiltration from SiCH3Cl3BCl3NH3H2Ar system. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 3581-3591	5	9	
525	Preparation of Si3N4 Form Diatomite via a Carbothermal Reduction-Nitridation Process. 2016 , 68, 1456-	1464	Ο	
524	Effect of TiO2 additives on nitridation of Si powders. 2016 , 177, 61-63		6	
523	Nitridation of silicon by nitrogen neutral beam. 2016 , 363, 555-559		1	
522	Effect of substitutional As impurity on electrical and optical properties of 野i3N4 structure. 2016 , 83, 128-134		5	
521	Effect of SiO2 content on the microstructure, mechanical and dielectric properties of Si3N4 ceramics. <i>Ceramics International</i> , 2016 , 42, 9921-9925	5.1	20	
520	Microstructure and properties of pressureless-sintered porous Si3N4 using PMMA as pore-forming agent. 2016 , 171, 46-51		3	
519	Radiative Properties of Ceramic (hbox $\{Al\}_{2}$ hbox $\{O\}_{3}$), AlN, and (hbox $\{Si\}_{3}$ hbox $\{N\}_{4}$): I. Experiments. 2016 , 37, 1		17	

518	Band structures and optical properties of Al-doped \(\overline{\pi}\)i3N4: theoretical and experimental studies. <i>Ceramics International</i> , 2016 , 42, 3681-3686	5.1	7
517	Synthesis and sintering of silicon nitride nano-powders via sodium reduction in liquid ammonia. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 1899-1904	6	9
516	Crystallization and melting behavior of poly(butylene succinate)/silicon nitride composites: The influence of fillerâ日 phase structure. 2016 , 627-629, 68-76		9
515	Effects of Sm2O3 Content on the Microstructure and Mechanical Properties of Post-Sintered Reaction-Bonded 野iAlON. 2016 , 25, 1143-1149		5
514	Preparation of porous Si3N4 ceramics with unidirectionally aligned channels. <i>Ceramics International</i> , 2016 , 42, 9145-9151	5.1	12
513	Preparation of high porous silicon nitride foams with ultra-thin walls and excellent mechanical performance for heat exchanger application by using a protein foaming method. <i>Ceramics International</i> , 2016 , 42, 1713-1719	5.1	12
512	Microstructural connectivity in sintered ex-situ MgB2 bulk superconductors. <i>Journal of Alloys and Compounds</i> , 2016 , 656, 172-180	5.7	11
511	Cell structure imaging with bright and homogeneous nanometric light source. 2017 , 10, 503-510		3
510	Densification, microstructural evolution and mechanical properties of Si-B-C-N monoliths with LaB6 addition. <i>Journal of Alloys and Compounds</i> , 2017 , 696, 1090-1095	5.7	12
509	Influence of carbon sources on nitriding process, microstructures and mechanical properties of Si3N4 bonded SiC refractories. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 1821-1829	6	11
508	Effects of h-BN on mechanical properties of reaction bonded 虧iAlON/h-BN composites. <i>Journal of Alloys and Compounds</i> , 2017 , 703, 180-187	5.7	18
507	Research on structural features and thermal conductivity of waterborne polyurethane. 2017 , 104, 271-	279	29
506	Silicon nitride equation of state. 2017 ,		3
505	SiNx coatings deposited by reactive high power impulse magnetron sputtering: Process parameters influencing the residual coating stress. 2017 , 121, 171904		13
504	The crucible/silicon interface in directional solidification of photovoltaic silicon. 2017 , 129, 415-427		16
503	Synthesis and characterization of the mechanical and optical properties of Ca-Si-O-N thin films deposited by RF magnetron sputtering. 2017 , 315, 88-94		6
502	A novel method for preparing Si 3 N 4 ceramics with unidirectional oriented pores from silicon aqueous slurries. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 3285-3291	6	11
501	Low temperature pressureless sintering of dense silicon nitride using BaO-Al2O3-SiO2 glass as sintering aid. <i>Ceramics International</i> , 2017 , 43, 10123-10129	5.1	7

500	Electromagnetic interference shielding and mechanical properties of Si3N4âBiOC composites fabricated by 3D-printing combined with polymer infiltration and pyrolysis. 2017 , 32, 3394-3401		13	
499	Effect of comburent ratios on combustion synthesis of Eu-doped 虧iAlON green phosphors. 2017 , 35, 430-435		10	
498	Microstructural evolution of Si 3 N 4 /Ti6Al4V joints brazed with nano-Si 3 N 4 reinforced AgCuTi composite filler. 2017 , 142, 58-65		22	
497	Interfacial microstructure and mechanical properties of porous-Si3N4 ceramic and TiAl alloy joints vacuum brazed with AgCu filler. <i>Ceramics International</i> , 2017 , 43, 9738-9745	5.1	16	
496	Corrosion behavior of thermo-mechanically processed biomedical Ti-29Nb-13Ta-4.6Zr. <i>Journal of Alloys and Compounds</i> , 2017 , 725, 23-31	5.7	17	
495	Near-net shaping of silicon nitride via aqueous room-temperature injection molding and pressureless sintering. <i>Ceramics International</i> , 2017 , 43, 10791-10798	5.1	9	
494	The effect of silicon nitride powder characteristics on SiAlON microstructures, densification and phase assemblage. <i>Ceramics International</i> , 2017 , 43, 10057-10065	5.1	11	
493	Nitridation behavior of silicon powder compacts of various thicknesses with Y2O3 and MgO as sintering additives. <i>International Journal of Applied Ceramic Technology</i> , 2017 , 14, 1157-1163	2	3	
492	Thermal conductivity and dielectric properties of PEDOT:PSS-AlN filler reinforced water-soluble polymer composites. <i>Ceramics International</i> , 2017 , 43, S710-S716	5.1	7	
491	Effect of magnesium titanate content on microstructures, mechanical performances and dielectric properties of Si3N4-based composite ceramics. <i>Ceramics International</i> , 2017 , 43, 9906-9911	5.1	8	
490	Formation mechanisms of Si 3 N 4 and Si 2 N 2 O in silicon powder nitridation. 2017 , 66, 50-56		12	
489	Optimization of the tape casting process for the development of high performance silicon nitride substrate. <i>International Journal of Applied Ceramic Technology</i> , 2017 , 14, 712-718	2	6	
488	Effect of addition of micron-sized TiC particles on mechanical properties of Si 3 N 4 matrix composites. <i>Journal of Alloys and Compounds</i> , 2017 , 709, 165-171	5.7	9	
487	Transparent polycrystalline cubic silicon nitride. 2017 , 7, 44755		36	
486	Si3N4/graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 3797-3804	6	33	
485	Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications. 2017 , 50, 025106		37	
484	Robocasting of silicon nitride with controllable shape and architecture for biomedical applications. <i>International Journal of Applied Ceramic Technology</i> , 2017 , 14, 117-127	2	30	
483	Phase transformation and interface segregation behavior in Si3N4 ceramics sintered with La2O3â[lu2O3 mixed additive. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 1231-1240	3.8	9	

482	Atomic Layer Deposition of Wet-Etch Resistant Silicon Nitride Using Di(sec-butylamino)silane and N Plasma on Planar and 3D Substrate Topographies. 2017 , 9, 1858-1869		35
481	Synthesis of Si3N4/SiC reaction-bonded SiC refractories: The effects of Si/C molar ratio on microstructure and properties. <i>Ceramics International</i> , 2017 , 43, 16518-16524	5.1	7
480	Reviewâßilicon Nitride and Silicon Nitride-Rich Thin Film Technologies: Trends in Deposition Techniques and Related Applications. 2017 , 6, P691-P714		78
479	Equiaxed 郡Si3N4 ceramics prepared by rapid reaction-bonding and post-sintering using TiO2âਊ2O3âਊ12O3 additives. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 5353-5357	3.8	6
478	Thermal Shock Resistance of Si3N4/h-BN Composites Prepared via Catalytic Reaction-Bonding Route. 2017 , 26, 4291-4296		2
477	The reaction behavior of MoSi2 powder in N2 atmosphere at high temperatures. <i>Ceramics International</i> , 2017 , 43, 16525-16530	5.1	1
476	Silicon nitride-based composites reinforced with zirconia nanofibres. <i>Ceramics International</i> , 2017 , 43, 16811-16818	5.1	12
475	Effect of precursor size on the structure and mechanical properties of calcium-stabilized sialon/cubic boron nitride nanocomposites. <i>Journal of Alloys and Compounds</i> , 2017 , 728, 836-843	5.7	18
474	Characterization of crystalline SiCN formed during the nitridation of silicon and cornstarch powder compacts. <i>Journal of Alloys and Compounds</i> , 2017 , 725, 326-333	5.7	5
473	Effect of SiO2 addition on Si3N4 ceramics prepared by rapid nitridation and post-sintering route. <i>Ceramics International</i> , 2017 , 43, 13901-13906	5.1	1
472	Open-Porous Silicon Nitride-Based Ceramics in Tubular Geometry Obtained by Slip-Casting and Gelcasting. 2017 , 19, 1700434		10
471	Enhanced tensile properties of Al matrix composites reinforced with Si3N4 whiskers. 2017 , 102, 145-7	153	18
470	Porous Si3N4 ceramics fabricated through a modified incomplete gelcasting and freeze-drying method. <i>Ceramics International</i> , 2017 , 43, 14678-14682	5.1	8
469	Processing and characterization of sintered reaction bonded Si3N4 ceramics. 2017 , 68, 75-83		6
468	Design of Metastable Tin Titanium Nitride Semiconductor Alloys. 2017 , 29, 6511-6517		19
467	Radiative Properties of Ceramic (hbox {Al}_{2}hbox {O}_{3}), AlN and (hbox {Si}_{3}hbox {N}_{4})âll: Modeling. 2017 , 38, 1		15
466	Atomic Layer Deposition of SiCxNy Using Si2Cl6 and CH3NH2 Plasma. 2017, 29, 6269-6278		16
465	Pyrite form of group-14 element pernitrides synthesized at high pressure and high temperature. 2017 , 46, 9750-9754		15

464	Anticorrosive yet conductive Hf/Si3N4 multilayer coatings on AZ91D magnesium alloy by magnetron sputtering. 2017 , 309, 12-20		14
463	Role of surface finishing on the in vitro biological properties of a silicon nitrideâ l ītanium nitride (Si3N4âl ī iN) composite. 2017 , 52, 467-477		15
462	Nanocomposites through the Chemistry of Single-Source Precursors: Understanding the Role of Chemistry behind the Design of Monolith-Type Nanostructured Titanium Nitride/Silicon Nitride. 2017 , 23, 832-845		30
461	Spark plasma sintering of silicon nitride using nanocomposite particles. 2017 , 28, 37-42		16
460	Effect of Z Values on the Microstructure and Mechanical Properties of Post-sintered Reaction Bonded 虧iAlON. 2017 , 36, 453-458		5
459	New route to improve the fracture toughness and flexural strength of Si3N4 ceramics by adding FeSi2. 2017 , 126, 11-14		28
458	Chemical stability of silicon nitride coatings used in the crystallization of photovoltaic silicon ingots. Part II: Stability under argon flow. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 75-82	6	8
457	Chemical stability of silicon nitride coatings used in the crystallization of photovoltaic silicon ingots. Part I: Stability in vacuum. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 69-74	6	13
456	Mechanical, elastic, anisotropy, and electronic properties of monoclinic phase of m -Si x Ge 3âlk N 4. 2017 , 26, 126105		3
455	Types of ceramics. 2017 , 21-82		7
100			/
454	Design of ceramic materials for orthopedic devices. 2017 , 331-353		1
454	Design of ceramic materials for orthopedic devices. 2017 , 331-353	3.5	1
454 453	Design of ceramic materials for orthopedic devices. 2017 , 331-353 Ceramics for joint replacement. 2017 , 129-179 Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations.	3.5	1
454 453 452	Design of ceramic materials for orthopedic devices. 2017 , 331-353 Ceramics for joint replacement. 2017 , 129-179 Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations. <i>Materials</i> , 2017 , 10, Microstructure and Properties of Porous Si3N4/Dense Si3N4 Joints Bonded Using REâBiâAlâDâN	3.5	1 1 3
454 453 452 451	Design of ceramic materials for orthopedic devices. 2017, 331-353 Ceramics for joint replacement. 2017, 129-179 Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations. Materials, 2017, 10, Microstructure and Properties of Porous Si3N4/Dense Si3N4 Joints Bonded Using REâBiâAlâDâN (RE = Y or Yb) Glasses. 2017, 7, 500 Fabrication of dense Si3N4 ceramics via coating amorphous Si3N4 nano-powders by sodium		1 1 3
454 453 452 451 450	Design of ceramic materials for orthopedic devices. 2017, 331-353 Ceramics for joint replacement. 2017, 129-179 Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations. Materials, 2017, 10, Microstructure and Properties of Porous Si3N4/Dense Si3N4 Joints Bonded Using REâBiâAlâDâN (RE = Y or Yb) Glasses. 2017, 7, 500 Fabrication of dense Si3N4 ceramics via coating amorphous Si3N4 nano-powders by sodium reduction in liquid ammonia. Journal of the Ceramic Society of Japan, 2017, 125, 509-512 Effective Assembly of Nano-Ceramic Materials for High and Anisotropic Thermal Conductivity in a		1 1 3

Finite Element Analysis of Self-Propagating High-Temperature Synthesis (SHS) of Silicon Nitride. 446 **2018**, 75-85 A first-principles investigation of the properties of two predicted novel structures of Sn3P4. 2018, 4 56.886-894 Fabrication and wear behaviors of graded Si3N4 ceramics by the combination of two-step sintering 6 19 444 and \$\Bi3N4 seeds. Journal of the European Ceramic Society, 2018, 38, 3457-3462 Damage evolution and contact surfaces analysis of high-loaded oscillating hybrid bearings. 2018, 443 9 406-407, 1-12 Silicon nitridation mechanism in reaction-bonded Si3N4âBiC and Si3N4-bonded ferrosilicon nitride. 3.8 442 10 Journal of the American Ceramic Society, 2018, 101, 4350-4356 Three-Dimensional Printing of Si3N4 Bioceramics by Robocasting. 2018, 235-246 441 Fabrication and properties of in situ silicon nitride nanowires reinforced porous silicon nitride 6 440 14 (SNNWs/SN) composites. Journal of the European Ceramic Society, 2018, 38, 2671-2675 Low temperature pressureless sintering of silicon nitride ceramics for circuit substrates in powder 5.1 439 electronic devices. Ceramics International, 2018, 44, 4375-4380 Low-temperature spark plasma sintering of calcium stabilized alpha sialon using nano-size 438 14 aluminum nitride precursor. 2018, 71, 301-306 Removal of Boron from Molten Si and Si-Cu Using Ammonia Containing Gas. 2018, 10, 1809-1817 437 Wetting of AgCu-Ti filler on porous Si3N4 ceramic and brazing of the ceramic to TiAl alloy. Ceramics 436 5.1 36 International, 2018, 44, 4622-4629 Dredged-Sediment-Promoted Synthesis of Boron-Nitride-Based Floating Photocatalyst with 18 435 Photodegradation of Neutral Red under Ultraviolet-Light Irradiation. 2018, 10, 4640-4651 Preferred Orientation of Porous Si3N4 Ceramics by Gel-Casting in a Longitudinal Rotating Magnetic 434 3 Field. 2018, 53, 1700147 Excellent corrosion protection performance of epoxy composite coatings filled with silane 433 125 functionalized silicon nitride. 2018, 25, 1 A novel method to prepare self-lubricity of Si3N4/Ag composite: Microstructure, mechanical and 3.8 11 432 tribological properties. Journal of the American Ceramic Society, 2018, 101, 3745-3748 Enhanced toughness and reliability of Si3N4-SiCw composites under oscillatory pressure sintering. 5.1 431 12 Ceramics International, 2018, 44, 12169-12173 Fabrication processing and mechanical properties of Si 3 N 4 ceramic turbocharger wheel. Ceramics 430 5.1 7 International, 2018, 44, 10596-10603 Synthesis of two aminosilanes as CVD precursors of SiCxNy films: Tuning film composition by Molecular Structures. 2018, 193, 568-573

428	Dry Sliding Friction and Wear Behavior of AA7075-Si3N4 Composite. 2018, 10, 1819-1829		68
427	Modeling amorphous silicon nitride: A comparative study of empirical potentials. 2018, 148, 165-175		8
426	Microstructure and mechanical properties of aluminum matrix composites reinforced with pre-oxidized 野i3N4 whiskers. 2018 , 723, 109-117		9
425	Development of a SiYAlON glaze for improved osteoconductivity of implantable medical devices. 2018 , 106, 1084-1096		13
424	High-pressure spark plasma sintering of silicon nitride with LiF additive. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 1271-1277	6	19
423	Spark plasma sintering of biodegradable Si3N4 bioceramic with Sr, Mg and Si as sintering additives for spinal fusion. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 2110-2119	6	12
422	Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramicsâ review. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 371-389	6	61
421	Stress distribution around Fe5Si3 and its effect on interface status and mechanical properties of Si3N4 ceramics. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 856-864	3.8	10
420	High throughput hybrid laser assisted machining of sintered reaction bonded silicon nitride. 2018 , 252, 628-635		19
419	Improving the electrical and microwave absorbing properties of Si3N4 ceramics with carbon nanotube fibers. <i>Ceramics International</i> , 2018 , 44, 2727-2731	5.1	9
418	Fracture toughness of silicon nitride balls via thermal shock. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 1278-1287	6	4
417	Architectural design and cryogenic synthesis of Si3N4@(TiNâBi3N4) for high conductivity. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 131-139	3.8	О
416	Synthesis and characterization of Titanium Silicon Nitride (TiSiN) thin film: A review. 2018 , 377, 012181		3
415	Transformation Toughening by Fracture-Induced Amorphization in Nanopolycrystalline Stishovite. 2018 , 28, 170-176		
414	Contact Stress Analysis on Composite Spur Gear using Finite Element Method. 2018 , 5, 13585-13592		9
413	Optical and electrical characterization methods of plasma-induced damage in silicon nitride films. 2018 , 57, 06JD03		3
412	Targeting Vacancies in Nitridosilicates: Aliovalent Substitution of M2+ (M=Ca, Sr) by Sc3+ and U3+. 2018 , 131, 850		
411	Numerical Investigation of Heat Transfer and Reaction Kinetics During the Self-Propagating High-Temperature Synthesis of Silicon Nitride. 2018 , 121-135		_

410	Formation mechanism of Sialon in alumina-ferro-silicon-nitride composite under nitrogen atmosphere at high temperatures. 2018 , 86, 19-23	2
409	Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. 2018 , 6, 299-313	95
408	Si NMR Chemical Shifts in Crystalline and Amorphous Silicon Nitrides. <i>Materials</i> , 2018 , 11, 3.5	4
407	Preparation of a Porous, Sintered and Reaction-Bonded SiâNâ[SRBSN) Planar Membrane for Filtration of an Oil-in-Water Emulsion with High Flux Performance. <i>Materials</i> , 2018 , 11,	6
406	Engineering of a Mo/SixNy Diffusion Barrier to Reduce the Formation of MoS2 in Cu2ZnSnS4 Thin Film Solar Cells. 2018 , 1, 2749-2757	11
405	Low-temperature sintered porous Si3N4 ceramics using two fluorides as sintering aid. 2018 , 76, 108-111	3
404	Actinide Elements in Catalysis. 2018 , 1-23	
403	An arene-tethered silylene ligand enabling reversible dinitrogen binding to iron and catalytic silylation. 2018 , 54, 8124-8127	27
402	Comparative study of fluoride and non-fluoride additives in high thermal conductive silicon nitride ceramics fabricated by spark plasma sintering and post-sintering heat treatment. <i>Ceramics</i> International, 2018 , 44, 23202-23207 5.1	12
401	Effect of temperature on dielectric response in X-band of silicon nitride ceramics prepared by gelcasting. 2018 , 8, 075127	2
400	N2 dissociation and kinetics of N(4S) atoms in nitrogen DC glow discharge. 2018 , 51, 364002	20
399	Response of Silicon Nitride Ceramics under High-enthalpy Plasma Flows. 2018 , 33, 828-835	1
398	Tribo-mechanical characterization of SPS processed, phase pure 15R-SiAlON polytype: Effect of sintering temperature. <i>Ceramics International</i> , 2018 , 44, 18703-18710	3
397	Microstructure and Mechanical Properties of SiâNâEFeâBi Composites Prepared by Gas-Pressure Sintering. <i>Materials</i> , 2018 , 11,	2
396	A novel approach to fabricate Si3N4 by selective laser melting. <i>Ceramics International</i> , 2018 , 44, 13689-1 <u>3</u> 69	14 22
395	Self-Lubricating Si3N4-based composites toughened by in situ formation of silver. <i>Ceramics International</i> , 2018 , 44, 14327-14334	18
394	Combustion synthesis of Ei3N4 with the addition of NH4Cl. <i>Ceramics International</i> , 2018 , 44, 20591-205941	6
393	Structure design, fabrication, properties of laminated ceramics: A review. 2018 , 1, 126-141	8

392	United in Nitride: The Highly Condensed Boron Phosphorus Nitride BP3N6. 2018 , 130, 13386-13389		13
391	United in Nitride: The Highly Condensed Boron Phosphorus Nitride BP N. 2018 , 57, 13202-13205		19
390	A non-sintering fabrication method for porous Si3N4 ceramics via sol hydrothermal process. <i>Ceramics International</i> , 2018 , 44, 19699-19705	5.1	5
389	Mechanical and Dielectric Properties of Two Types of SiâNâlFibers Annealed at Elevated Temperatures. <i>Materials</i> , 2018 , 11,	3.5	3
388	Effect of ZrB2 content on phase assemblage and mechanical properties of Si3N4âØrB2 ceramics prepared at low temperature. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 4870-4875	3.8	8
387	Microstructure and Dielectric Property of 3D BNf/Si3N4 Fabricated by CVI Process. 2019 , 34, 818-823		O
386	Gas permeation performance of porous silicon nitride ceramics with controllable pore structures. <i>Ceramics International</i> , 2019 , 45, 22351-22356	5.1	5
385	Enhanced mechanical properties of Si3N4 ceramics with ZrB2-B binary additives prepared at low temperature. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 5102-5105	6	5
384	Design of Optimal Organic Materials System for Ceramic Suspension-Based Additive Manufacturing. 2019 , 21, 1900445		8
383	Synthesis and mechanical properties of highly porous ultrafine-grain Si3N4 ceramics via carbothermal reduction-nitridation combined with liquid phase sintering. <i>Ceramics International</i> , 2019 , 45, 21359-21364	5.1	4
382	Microstructure evolution and mechanical properties of porous Si3N4 and dense Si3N4 joints bonded using CaOâlli2O-Al2O3âBiO2 glass-ceramic. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 4545-4553	6	12
381	Continuous and symmetric graded Si3N4 ceramics designed by spark plasma sintering at 15 MPa. <i>Ceramics International</i> , 2019 , 45, 16703-16706	5.1	4
380	Fluoride doped SiC/Si3N4 composite as a high thermal conductive material with enhanced mechanical properties. <i>Ceramics International</i> , 2019 , 45, 21004-21010	5.1	9
379	Preparation and characterization of tough cerium hexaaluminate bodies. 2019, 254, 402-406		3
378	Effect of load on the friction and wear behaviour of silicon nitride and silicon nitride titanium carbide ceramic composite. 2019 , 19, 474-477		5
377	Shock-induced phase transition of g-C3N4 to a new C3N4 phase. 2019 , 126, 155901		2
376	Formation of 趣i3N4 nanoparticles by carbothermal reduction and nitridation of geopolymers. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 6542-6551	3.8	6
375	Effect of Si particle size and NH4Cl additive on combustion synthesis of 岳i3N4. <i>Ceramics International</i> , 2019 , 45, 21635-21639	5.1	2

374	Microstructural evolution mechanism of porous reaction bonded silicon nitride ceramics heat-treated in two powder beds. <i>Ceramics International</i> , 2019 , 45, 21986-21997	5.1	4
373	Monitoring of Surface Reactions during Atomic Layer Etching of Silicon Nitride Using Hydrogen Plasma and Fluorine Radicals. 2019 , 11, 37263-37269		13
372	Direct fabrication mechanism of pre-sintered Si3N4 ceramic with ultra-high porosity by laser additive manufacturing. 2019 , 173, 91-95		8
371	Synthesis of ⊞i3N4 powder by high energy ball milling assisting molten salt nitridation method at low temperature. <i>Ceramics International</i> , 2019 , 45, 18445-18451	5.1	1
370	The effect of gelcasting parameters on microstructural optimization of porous Si3N4 ceramics. <i>Ceramics International</i> , 2019 , 45, 9719-9725	5.1	13
369	Preparation and mechanical properties of Si3N4 nanocomposites reinforced by Si3N4@rGO particles. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 6991-7002	3.8	13
368	High tough W-added silicon nitride ceramics. Ceramics International, 2019, 45, 19055-19059	5.1	5
367	High flow rate nanofluidics for in-liquid electron microscopy and diffraction. 2019 , 30, 395703		6
366	Microstructure and Mechanical Properties of Spark Plasma Sintered SiN/WC Ceramic Tools. <i>Materials</i> , 2019 , 12,	3.5	9
365	Optical and mechanical properties of amorphous Mg-Si-O-N thin films deposited by reactive magnetron sputtering. 2019 , 372, 9-15		3
364	Preparation and thermal stability of a novel mid-temperature air-stable solar selective coating. 2019 , 487, 840-847		3
363	Effects of 虧i3N4 whiskers addition on mechanical properties and tribological behaviors of Al matrix composites. 2019 , 430-431, 145-156		10
362	Microstructure and properties of Si3N4 foam ceramics modified by in-situ self-grown nanowires. <i>Ceramics International</i> , 2019 , 45, 16725-16730	5.1	8
361	Boron Phosphorus Nitride at Extremes: PN Octahedra in the High-Pressure Polymorph		7
360	Fabrication of fine-grained	5.1	5
359	Microwave Sintering of SiAlON Ceramics with TiN Addition. <i>Materials</i> , 2019 , 12,	3.5	3
358	Effects of porosity and pore distribution on static strength properties of porous zirconia. 2019 , 42, 177	75-178	6 2
357	A first-principles study of the properties of P-43m-Si3 $\overline{\mathbf{Z}}$ (X = N, P and As). 2019 , 59, 535-545		2

356	Boron Phosphorus Nitride at Extremes: PN6 Octahedra in the High-Pressure Polymorph	6
355	Surface modification of ultrafine silicon nitride powders by calcination. <i>International Journal of Applied Ceramic Technology</i> , 2019 , 16, 1364-1372	5
354	Structure and performance of Si3N4/SiC/CNT composite fibres. <i>Ceramics International</i> , 2019 , 45, 12677-152687	4
353	An investigation of the wetting behavior of heat-treated silicon nitride particles with liquid silicon. 2019 , 516, 1-9	6
352	Superconducting Diamond on Silicon Nitride for Device Applications. 2019 , 9, 2911	15
351	The improved mechanical properties of Al matrix composites reinforced with oriented Si3N4 whisker. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 1345-1353	16
350	High thermal conductivity silicon nitride ceramics prepared by pressureless sintering with ternary sintering additives. <i>International Journal of Applied Ceramic Technology</i> , 2019 , 16, 1399-1406	6
349	Microscopic mechanisms of Si(111) surface nitridation and energetics of Si3N4/Si(111) interface. 2019 , 483, 302-312	1
348	Recent advances in catalytic silylation of dinitrogen using transition metal complexes. 2019 , 389, 73-93	44
347	Fabrication, microstructural characterization and gas permeability behavior of porous silicon nitride ceramics with controllable pore structures. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 2855-2861 ⁶	25
346	Effect of Si3N4 diluent on direct nitridation of silicon powder. <i>Ceramics International</i> , 2019 , 45, 10943-10950	3
345	Effect of MgF2 addition on mechanical properties and thermal conductivity of silicon nitride ceramics. <i>Ceramics International</i> , 2019 , 45, 12757-12763	7
344	First principles prediction of the elastic, electronic and optical properties of Sn3X4 (X = P, As, Sb, Bi) compounds: Potential photovoltaic absorbers. 2019 , 59, 265-272	4
343	Morphological engineering of silicon nitride hollow fiber membrane for oil-field-produced-water treatment. <i>Ceramics International</i> , 2019 , 45, 10541-10549	6
342	Fabrication and properties of Si3N4 based ceramics using combustion synthesized powders. 2019 , 81, 325-332	1
341	Tribological performance of SiO2-based nanofluids in minimum quantity lubrication grinding of Si3N4 ceramic. 2019 , 41, 135-147	14
340	The fabrication of tungsten reinforced silicon nitride ceramics by altering nitrogen pressure. **Ceramics International*, 2019*, 45, 5927-5931* 5.1	5
339	Function mechanism of Y2O3 additive in silicon powder nitridation. <i>International Journal of Applied Ceramic Technology</i> , 2019 , 16, 1407-1415	3

338	Effect of nano-sized sintering additives on microstructure and mechanical properties of Si3N4 ceramics. 2019 , 750, 132-140		17
337	The effect of high-energy methods of forming on the sintering behaviour and properties of Si3N4-based materials. 2019 , 80, 277-285		1
336	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. 2019 , 119, 2752-28	375	377
335	Low-Temperature Preparation of &i3N4 Powder via Combined High-Energy Ball Milling and Molten Salt Nitridation Method. 2019 , 678, 012001		
334	Sintering Behavior of Si3N4 Ceramics at Low Temperature in Air Atmosphere Furnace. 2019 , 678, 01204	45	
333	Mechanisms of Powder Diameter and Thermal Diffusion on the Produced 胜i3N4 Proportion. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 23005-23013	3.9	1
332	Bandgap trimming and optical properties of Si3N4:Al microbelt phosphors for warm white light-emitting diodes. 2019 , 21, 6566-6573		0
331	Effects of Microwave Sintering Temperature and Holding Time on Mechanical Properties and Microstructure of SiN/n-SiC ceramics. <i>Materials</i> , 2019 , 12,	3.5	2
330	Unveiling the reaction products in heat treated Si3N4-Ti joined ceramics by transmission electron microscopy. <i>Journal of Advanced Ceramics</i> , 2019 , 8, 500-508	10.7	5
329	Organosilicon polymer-derived ceramics: An overview. <i>Journal of Advanced Ceramics</i> , 2019 , 8, 457-478	10.7	60
328	Crosslinking ionic oligomers as conformable precursors to calcium carbonate. 2019 , 574, 394-398		84
327	Phase relations in silicon and germanium nitrides up to 98 GPa and 2400°C. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 2195-2202	3.8	8
326	Interfacial adhesion: improving the mechanical properties of silicon nitride fibre - epoxy polymer composites. 2019 , 26, 263-273		10
325	Combustion synthesis of Bi3N4 with green additives. <i>Ceramics International</i> , 2019 , 45, 6594-6596	5.1	5
324	Temperature-driven wear behavior of Si3N4-based ceramic reinforced by in situ formed TiC0.3N0.7 particles. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 4333-4343	3.8	7
323	Effect of nano-size oxy-nitride starting precursors on spark plasma sintering of calcium sialons along the alpha/(alpha + beta) phase boundary. <i>Ceramics International</i> , 2019 , 45, 9638-9645	5.1	11
322	Targeting Vacancies in Nitridosilicates: Aliovalent Substitution of M (M=Ca, Sr) by Sc and U. 2019 , 58, 840-843		3
321	Rivalry under Pressure: The Coexistence of Ambient-Pressure Motifs and Close-Packing in Silicon Phosphorus Nitride Imide SiP N NH. 2019 , 58, 3398-3401		5

(2020-2019)

320	Rivalry under Pressure: The Coexistence of Ambient-Pressure Motifs and Close-Packing in Silicon Phosphorus Nitride Imide SiP2N4NH. 2019 , 131, 3436-3439		4	
319	Preparation of high-purity \text{\text{\text{\text{5}}}} i3N4 nano-powder by precursor-carbothermal reduction and nitridation. <i>Ceramics International</i> , 2019 , 45, 6335-6339	5.1	4	
318	Optimizing the defensive characteristics of mild steel via the electrodeposition of Zn Si3N4 reinforcing particles. 2019 , 15, 526-532		17	
317	Ceramic Membrane Distillation for Desalination. 2020 , 49, 317-356		14	
316	Si@Si3N4@C composite with egg-like structure as high-performance anode material for lithium ion batteries. 2020 , 24, 565-573		66	
315	Structural defects in MAX phases and their derivative MXenes: A look forward. <i>Journal of Materials Science and Technology</i> , 2020 , 38, 205-220	9.1	27	
314	Mechanical properties and thermal conductivity of dense BiAlON ceramics fabricated by two-stage spark plasma sintering with Al2O3-AlN-Y2O3 additives. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 12-18	6	11	
313	Pore structure, porosity and compressive strength of highly porous reaction-bonded silicon nitride ceramics with various grain morphologies. 2020 , 55, 509-523		7	
312	Feasibility of SiAlONâBi3N4 composite ceramic as a potential bone repairing material. <i>Ceramics International</i> , 2020 , 46, 1760-1765	5.1	7	
311	Orentational effect of graphene on the friction and wear behavior of Si3N4/TiC based composite ceramic tool materials. <i>Ceramics International</i> , 2020 , 46, 3550-3557	5.1	4	
310	Thermodynamic study on the carbothermal nitridation synthesis of silicon nitride using silicon kerf loss. 2020 , 139, 1883-1893		3	
309	Synthesis of Si3N4 whiskers by rapid nitridation of silicon droplets. <i>International Journal of Applied Ceramic Technology</i> , 2020 , 17, 296-303	2	2	
308	Combustion synthesis of MgSiN2 powders and Si3N4-MgSiN2 composite powders: Effects of processing parameters. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 122-135	3.8	8	
307	Laser-induced Si3N4âIIiN ceramics degradation. <i>Ceramics International</i> , 2020 , 46, 3668-3674	5.1	2	
306	Combustion synthesis of well-dispersed rod-like \$\mathbb{E}\$i3N4 crystals by the addition of carbon. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 757-761	3.8	3	
305	Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 298-304	6	12	
304	ZrSi2âMgO as novel additives for high thermal conductivity of 虧i3N4 ceramics. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 2090-2100	3.8	11	
303	Low temperature heat capacity measurements of 邸i3N4 and ഓi3N4: Determination of the equilibrium phase boundary between 邸i3N4 and ഓi3N4. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 6309-6315	6	2	

302	Thermally Conducting Polymer Composites with EMI Shielding: A review. 2020 , 49, 1749-1764		31
301	Effect of in situ synthesis of Si2N2O on microstructure and the mechanical properties of fused quartz ceramics. <i>Ceramics International</i> , 2020 , 46, 8725-8729	5.1	5
300	Surface characterization of silicon nitride powder and electrokinetic behavior of its aqueous suspension. <i>Ceramics International</i> , 2020 , 46, 9530-9537	5.1	2
299	Ab initio calculation of the evolution of [SiN4-nOn] tetrahedron during Si3N4(0001) surface oxidation. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 2808-2816	3.8	2
298	Growth of Si multicrystalline ingots using the conventional cast method. 2020 , 101-154		
297	Minimization of the sample temperature deviation and the effect of current during high-temperature compressive creep testing by the spark plasma sintering apparatus. 2020 , 9, 100550		5
296	Development of calcium stabilized nitrogen rich Bialon ceramics along the Si3N4:1/2Ca3N2:3AlN line using spark plasma sintering. <i>Journal of Advanced Ceramics</i> , 2020 , 9, 606-616	10.7	5
295	Improved Understanding of Atomic Ordering in Y4SixAl2â⊠O9â⊠Nx Materials Using a Combined Solid-State NMR and Computational Approach. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 23976-23987	3.8	1
294	A comparative study on nitridation mechanism and microstructural development of porous reaction bonded silicon nitride in the presence of CaO, MgO and Al2O3. 2020 , 8, 873-890		1
293	A polarization propagation mechanism of Fe and Cu atoms co-doped in two-dimensional-Si3N4. 2020 , 44, 14082-14086		
292	Influence of MXene (TiC) Phase Addition on the Microstructure and Mechanical Properties of Silicon Nitride Ceramics. <i>Materials</i> , 2020 , 13,	3.5	8
291	A Critical Review on Advanced Reinforcements and Base Materials on Hybrid Metal Matrix Composites. 2020 , 1		4
2 90	Influence of anisotropy of nickel-based single crystal superalloy in atomic and close-to-atomic scale cutting. 2020 , 66, 347-362		2
289	Toward Ceramic Anticorrosion Coatings: A Review. 2020 , 76, 895-917		3
288	Fabrication of high thermal conductivity silicon nitride ceramics by pressureless sintering with MgO and Y2O3 as sintering additives. <i>Ceramics International</i> , 2020 , 46, 27175-27183	5.1	5
287	Two-step strategy for improving the tribological performance of Si3N4 ceramics: Controlled addition of SiC nanoparticles and graphene-based nanostructures. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 5298-5304	6	2
286	The Influence of Alkaline Earth Elements on Electronic Properties of ⊞i3N4 via DFT Calculation. 2020 , 35, 863-871		1
285	Fabrication and flexural strength of porous Si3N4 ceramics with Li2CO3 and Y2O3 as sintering additives. 2020 , 27, 2548-2556		2

284 Kenneth Henderson Jack. 12 October 1918â\(\textit{\textit{B}}\)8 January 2013. **2020**, 69, 247-272

283	Effects of Ti(C, N) addition on the microstructure and mechanical properties of spark plasma sintered Si3N4/Ti(C, N) ceramic tool material. <i>Ceramics International</i> , 2020 , 46, 28459-28466	5.1	2
282	Innovative Approach on Dynamic Behavior of LPCVD Nitride Process on Diffusion Furnace: Equipment Optimization/Advanced Process Control/Contamination Free Manufacturing. 2020 ,		
281	Rheology and Curability Characterization of Photosensitive Slurries for 3D Printing of Si3N4 Ceramics. 2020 , 10, 6438		7
280	Sustainable ceramics derived from solid wastes: a review. 2020 , 8, 984-1009		11
279	Gel-Casting Prepared Porous Si3N4 Ceramics with Different Contents of Y2O3 and Al2O3 Additives. 2020 , 29, 7891-7898		2
278	Effective Thermal Conductivity for Low Density Silicon Nitride Porous Ceramics. 2020 , 1681, 012003		
277	Mechanical properties optimization of Si3N4 ceramics by in-situ introduction of core-shell structural W-Fe5Si3. 2020 , 196, 108134		2
276	Micro scale fracture strength of grains and grain boundaries in polycrystalline La-doped 野i3N4 ceramics. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 4783-4791	6	4
275	Nitrification protection of Si monocrystal nanoparticles into the graphene matrix as the high-performance anode material for lithium-ion batteries. 2020 , 249, 123156		4
274	Improved thermal conductivity of 野i3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 5567-5572	3.8	4
273	Effect of Y2O3 on the physical properties and biocompatibility of BiAlON ceramics. <i>Ceramics International</i> , 2020 , 46, 23427-23432	5.1	5
272	Oriented Si3N4 crystallites formed by plasma nitriding of SiO2/Si (111) substrate. 2020 , 395, 125877		3
271	Carbon nanostructure-reinforced SiC/SiN composite with enhanced thermal conductivity and mechanical properties 2020 , 10, 15023-15029		6
270	Mechanical and thermal properties of light weight boron-mullite Al5BO9. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 5939-5951	3.8	2
269	Influence of Graphene and Graphene Oxide on Properties of Spark Plasma Sintered Si3N4 Ceramic Matrix. 2020 , 3, 40-50		7
268	The Influence of Thermal Residual Stresses on Mechanical Properties of Silicon Nitride-Based Composites. <i>Materials</i> , 2020 , 13,	3.5	1
267	Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of \$\Bi3N4\$ ceramics. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 5316-5323	6	5

266	Silicon Nitride-Based Composites with the Addition of CNTs-A Review of Recent Progress, Challenges, and Future Prospects. <i>Materials</i> , 2020 , 13,	3.5	4
265	The novel Sialon-Sn composite with high toughness and wear resistance prepared at a lower-temperature. 2020 , 147, 106239		3
264	Effect of SiC on the dielectric and microwave absorption performance of F-doped Si3N4 ceramics in X-band. 2020 , 758, 012005		1
263	Protein adsorption and in vitro behavior of additively manufactured 3D-silicon nitride scaffolds intended for bone tissue engineering. 2020 , 115, 110734		9
262	Dense, Strong, and Precise Silicon Nitride-Based Ceramic Parts by Lithography-Based Ceramic Manufacturing. 2020 , 10, 996		24
261	High-entropy silicide ceramics developed from (TiZrNbMoW)Si2 formulation doped with aluminum. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 2752-2759	6	13
260	Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics. 2020 , 39, 463-478		13
259	High-pressure synthesis of high-performance submicron-sized polycrystalline 野i3N4 bulk without additives. <i>Ceramics International</i> , 2020 , 46, 12449-12457	5.1	5
258	Fractography of silicon nitride based ceramics to guide process improvements. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 4746-4752	6	2
257	Plasmonic Metasurface for Spatially Resolved Optical Sensing in Three Dimensions. 2020 , 14, 2345-23	53	28
² 57	Plasmonic Metasurface for Spatially Resolved Optical Sensing in Three Dimensions. 2020 , 14, 2345-23. Efficient Preparation of SiN by Microwave Treatment of Solar-Grade Waste Silicon Powder. 2020 , 5, 58		
256	Efficient Preparation of SiN by Microwave Treatment of Solar-Grade Waste Silicon Powder. 2020 , 5, 58	34-584	
256 255	Efficient Preparation of SiN by Microwave Treatment of Solar-Grade Waste Silicon Powder. 2020 , 5, 58 CNTi-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives TiSiC. <i>Materials</i> , 2020 , 13, Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride	3 4-5 84 3·5	134
256 255 254	Efficient Preparation of SiN by Microwave Treatment of Solar-Grade Waste Silicon Powder. 2020, 5, 58 CNTi-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives TiSiC. <i>Materials</i> , 2020, 13, Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride ceramics. <i>Ceramics International</i> , 2020, 46, 17776-17783 Porous sandwich ceramic of layered silicon nitride-zirconia composite with various multilayered	3.5 5.1	3
256 255 254 253	Efficient Preparation of SiN by Microwave Treatment of Solar-Grade Waste Silicon Powder. 2020, 5, 58 CNTi-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives TiSiC. <i>Materials</i> , 2020, 13, Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride ceramics. <i>Ceramics International</i> , 2020, 46, 17776-17783 Porous sandwich ceramic of layered silicon nitride-zirconia composite with various multilayered graphene content. <i>Journal of Alloys and Compounds</i> , 2020, 832, 154984 Crystal structures and electronic properties of Sn3N4 polymorphs synthesized via high-pressure	3.5 5.1	3
256 255 254 253 252	Efficient Preparation of SiN by Microwave Treatment of Solar-Grade Waste Silicon Powder. 2020, 5, 58 CNTi-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives TiSiC. <i>Materials</i> , 2020, 13, Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride ceramics. <i>Ceramics International</i> , 2020, 46, 17776-17783 Porous sandwich ceramic of layered silicon nitride-zirconia composite with various multilayered graphene content. <i>Journal of Alloys and Compounds</i> , 2020, 832, 154984 Crystal structures and electronic properties of Sn3N4 polymorphs synthesized via high-pressure nitridation of tin. 2020, 22, 3531-3538 Self-coiling silicon nitride nanobelts into microrings. <i>Journal of the American Ceramic Society</i> , 2020,	3.5 5.1 5.7	3

248	Unveiling the first post-graphene member of silicon nitrides: A novel 2D material. 2020 , 180, 109693		6
247	Wetting and joining of porous Si3N4 and dense Si3N4 ceramics with in-situ formed 野podumene/spinel glass-ceramic interlayer. 2020 , 517, 146178		11
246	Fabrication of electrically conductive barium aluminum silicate/silicon nitride composites with enhanced strength and toughness. 2021 , 56, 1221-1230		4
245	Manufacture of Si3N4-SiCN composite bulks with hierarchical pore structure. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 284-289	6	1
244	Enhanced thermal conductivity in Si3N4 ceramics prepared by using ZrH2 as an oxygen getter. Journal of Alloys and Compounds, 2021, 855, 157451	5.7	4
243	Brazing of porous Si3N4 ceramic to Invar alloy with a novel Cuâlli filler alloy: Microstructure and mechanical properties. <i>Ceramics International</i> , 2021 , 47, 2068-2076	5.1	6
242	Quick test for reversible and irreversible PID of bifacial PERC solar cells. 2021 , 219, 110755		8
241	Mechanical and dielectric properties of functionalized boron nitride nanosheets/silicon nitride composites. <i>Ceramics International</i> , 2021 , 47, 2058-2067	5.1	6
240	Novel silicothermic reduction method to obtain Si3N4 ceramics with enhanced thermal conductivity and fracture toughness. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 1735-1738	6	2
239	Preparation of thermal conductive Poly(methyl methacrylate)/Silicon nitride nanocomposites via click chemistry. 2021 , 212, 123285		10
238	Combustion synthesis of ⊞i3N4 powders using in-situ nano-SiO2 coated Si and Si3N4 reactants. Ceramics International, 2021 , 47, 4854-4857	F-1	3
		5.1	
237	Improved thermal conductivity of	5.1	3
237			
	using GdH2 as a sintering additive. <i>Ceramics International</i> , 2021 , 47, 5631-5638 X-ray microtomography investigations on the residual pore structure in silicon nitride bars		3
236	using GdH2 as a sintering additive. <i>Ceramics International</i> , 2021 , 47, 5631-5638 X-ray microtomography investigations on the residual pore structure in silicon nitride bars manufactured by direct ink writing using different printing patterns. 2021 , 5, 100042 Susceptor-assisted fast microwave sintering of TiN reinforced SiAlON composites in a single mode	5.1	7
236 235	using GdH2 as a sintering additive. <i>Ceramics International</i> , 2021 , 47, 5631-5638 X-ray microtomography investigations on the residual pore structure in silicon nitride bars manufactured by direct ink writing using different printing patterns. 2021 , 5, 100042 Susceptor-assisted fast microwave sintering of TiN reinforced SiAlON composites in a single mode cavity. <i>Ceramics International</i> , 2021 , 47, 828-835 Fabrication and properties of pressure-sintered reaction-bonded Si3N4 ceramics with addition of	5.1 5.1	3 7 2
236 235 234	Using GdH2 as a sintering additive. <i>Ceramics International</i> , 2021 , 47, 5631-5638 X-ray microtomography investigations on the residual pore structure in silicon nitride bars manufactured by direct ink writing using different printing patterns. 2021 , 5, 100042 Susceptor-assisted fast microwave sintering of TiN reinforced SiAlON composites in a single mode cavity. <i>Ceramics International</i> , 2021 , 47, 828-835 Fabrication and properties of pressure-sintered reaction-bonded Si3N4 ceramics with addition of Eu2O3âMgOâM2O3. <i>Ceramics International</i> , 2021 , 47, 935-942 Effect of ZrO2 on the physicochemical properties and biological properties of ₩SiAlONâZrO2	5.1 5.1	3 7 2

230	Si3N4 Ceramics, Structure and Properties. 2021 , 109-118		1
229	A comparative study of silicon nitride and SiAlON ceramics against E. coli. <i>Ceramics International</i> , 2021 , 47, 1837-1843	5.1	6
228	Influence of SiAlON Ceramic Reinforcement on Ti6Al4V Alloy Matrix via Spark Plasma Sintering Technique. 2021 , 27, 1769-1778		4
227	Preparation, Properties and Growth Mechanism of Low-Cost Porous Si3N4 Ceramics with High Levels of 野i3N4 Powders. 1		1
226	Spark plasma sintering of Si3N4-YAG nanocomposite. 2021 , 1014, 012002		O
225	Glasses: Oxynitride Glass Formation and Structure. 2021 , 555-568		
224	Formation of hierarchical Si3N4 foams by protein-based gelcasting and chemical vapor infiltration. Journal of Advanced Ceramics, 2021 , 10, 187-193	10.7	7
223	Construction of Inorganic Bulks through Coalescence of Particle Precursors. 2021 , 11,		2
222	Ceramic Matrix Graphene and Carbon Nanotube Composites. 2021 , 243-259		
221	Wire Electrical Discharge Machining, Mechanical and Tribological Performance of TiN Reinforced Multiscale SiAlON Ceramic Composites Fabricated by Spark Plasma Sintering. 2021 , 11, 657		3
220	High mechanical properties of		1
219	Preparation of Silicon Nitride with High Thermal Conductivity and High Flexural Strength Using YbH2-MgO as Sintering Additive. 2021 , 36, 959		O
218	Non-Oxide Ceramics as Biomaterials. 2021 , 526-532		О
217	Nitriding synthesis and structural change of phosphorus nitrides at high pressures. 2021 , 52, 1064-1072		2
216	Mechanochemical Synthesis of Catalytic Materials. 2021 , 27, 6819-6847		40
215	Nonaqueous gel casting using multicomponent concentrated slurries through Michael additive reaction for fabricating silicon nitride dense ceramics. 2021 , 32, 472-479		3
214	Oxynitride Glasses. 2021 , 891-900		O
213	Phase analysis, mechanical properties and in vitro bioactivity of graphene nanoplatelet-reinforced silicon nitride-calcium phosphate composites. 2021 , 9, 471-486		1

212	Coarse-grained	3.8	О
211	Tunable Electronic Trap Energy in Sol-Gel Processed Dielectrics. 2021 , 68, 1190-1195		14
210	Simulations and Experiments to Analyze Stress Phenomena in Soldered and Sintered Interconnections between Silicon Nitride chips and Copper Substrates. 2021 ,		
209	Designs of Silicon Nitride Slot Waveguide Modulators With Electro-Optic Polymer and the Effect of Induced Charges in Si-Substrate on Their Performance. 2021 , 13, 1-15		3
208	Alloy Engineering of a Polar (Si,Ge)NO System for Controllable Second Harmonic Performance. 2021 , 60, 7381-7388		1
207	A study on fabrication of silicon nitride-based advanced ceramic composite materials via spark plasma sintering. 2021 , 235, 1739-1756		
206	High temperature ceramic radomes (HTCR) âlA review. Ceramics International, 2021,	5.1	6
205	Tuning the Characteristics of Novel (PVA-Li-Si3N4) Structures for Renewable and Electronics Fields. 1		3
204	Principles, design, structure and properties of ceramics for microwave absorption or transmission at high-temperatures. 1-32		5
203	Mechanical Properties of WC-Si3N4 Composites With Ultrafine Porous Boron Nitride Nanofiber Additive. 2021 , 8,		3
202	An in situ method of measuring electrolyte solution at the solidâllquid interface with MeV He+beam in a vacuum. 2021 , 497, 24-27		
201	Investigation of the Effect of Sintering Additive on the Microstructure and the Antibacterial Behavior of Reaction Bonded Silicon Nitride Ceramics. 2021 , 13, 375-381		
200	Preparation, oxidation property and mechanism of Si3N4/O?-SiAlON composite ceramics. <i>Ceramics International</i> , 2021 , 47, 15383-15391	5.1	2
199	Hybrid and heterogeneous photonic integration. 2021 , 6, 061102		13
198	Scratch Behaviour of Bulk Silicon Nitride Ceramics. 2021 , 12,		1
197	Pressure-driven fusion of amorphous particles into integrated monoliths. 2021 , 372, 1466-1470		11
196	Characterization of Ultra-Thin Diamond-Like Carbon Films by SEM/EDX. 2021, 11, 729		1
195	Densification of Ceramic Matrix Composite Preforms by Si2N2O Formed by Reaction of Si with SiO2 under High Nitrogen Pressure. Part 1: Materials Synthesis. 2021 , 5, 178		O

194	Magnetic plasmons induced in a dielectric-metal heterostructure by optical magnetism. 2021 , 10, 2639	-2649	1
193	Toughness and R-curve behaviour of laminated Si3N4/SiCw ceramics. <i>Ceramics International</i> , 2021 , 47, 18693-18698	5.1	O
192	Ceramic Cutting Materials and Tools Suitable for Machining High-Temperature Nickel-Based Alloys: A Review. 2021 , 11, 1385		3
191	Synthesis of monodisperse and high-purity 🖽 i3N4 powder by carbothermal reduction and nitridation. 2021 , 32, 3101-3106		O
190	Mechanical properties, microstructure, and bioactivity of 虧i3N4/HA composite ceramics for bone reconstruction. <i>Ceramics International</i> , 2021 ,	5.1	О
189	Study on the evolution mechanism of subsurface defects in nickel-based single crystal alloy during atomic and close-to-atomic scale cutting. 2021 , 68, 14-33		3
188	Electromagnetic wave-transparent porous silicon nitride ceramic prepared by gel-casting combined with in-situ nitridation reaction. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 7620-7620	6	4
187	Pressure-assisted direct bonding of copper to silicon nitride for high thermal conductivity and strong interfacial bonding strength. 2021 , 56, 17994-18005		O
186	Enhancement of the mechanical properties of nacre-like alumina ceramic by the synergism of graphene oxide and Si3N4 whisker. <i>Ceramics International</i> , 2021 , 48, 941-941	5.1	1
185	Combustion synthesis of porous ceramic #Si3N4 -based composites with the use of ferroalloys. <i>Ceramics International</i> , 2021 , 47, 34765-34765	5.1	1
184	Silicon nitrideâlilicon carbide micro/nanocomposites: A review. <i>International Journal of Applied Ceramic Technology</i> ,	2	О
183	Effect of nano- and micro-sized Si3N4 powder on phase formation, microstructure and properties of 卧SiAlON prepared by spark plasma sintering. <i>Ceramics International</i> , 2021 , 48, 1916-1916	5.1	O
182	Carbothermal synthesis of micron-sized, uniform, spherical silicon carbide (SiC) particles.		
181	Preparation of broadband transparent Si3N4-SiO2 ceramics by digital light processing (DLP) 3D printing technology. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 5495-5504	6	6
180	Joining dense Si3N4 to porous Si3N4 using a novel glass-ceramic interlayer with precipitated <code>LiAlSi2O6/Mg2SiO4</code> . <i>Journal of the European Ceramic Society</i> , 2021 ,	6	O
179	A novel strategy for c-axis textured silicon nitride ceramics by hot extrusion. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 6059-6063	6	1
178	Biocompatibility of 2D silicon nitride: interaction at the nano-bio interface. 2021 , 8, 095404		2
177	Fracture toughness of Si3N4 ceramic composites: Effect of texture. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 6346-6355	6	2

176	Effect of ZrB2 and its oxide impurities (ZrO2 and B2O3) on hot-pressed Si3N4 ceramics at low temperature. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 6763-6766		Ο
175	Self-assembling of versatile SiN@SiO nanofibre sponges by direct nitridation of photovoltaic silicon waste. 2021 , 419, 126385		O
174	Pressureless sintering of high performance silicon nitride ceramics at 1620 °C. <i>Ceramics International</i> , 2021 , 47, 29371-29378	-	0
173	Oxidation and phase transformation behaviors of Si3N4-xMgAl2O4 (0 Ceramics International, 2021 , 47, 30807-30814	-	1
172	Study on self-derived products of nanometer lignin in silicon nitride ceramics during sintering process. 2021 , 12, 100228		0
171	Ceramic Additive for Aerospace. 2021 , 119-133		O
170	Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride-Zirconia-Graphene Composite Using Multi-Scale and In-Situ Microscopy. 2021 , 11,		0
169	SiAlONs and the Representation of Phase Relationships. 2021 , 119-127		Ο
168	Ceramics, Ceramic Processing.		1
167	Spark Plasma Sintering Mechanisms in Si3N4 Based Materials. 63-69		2
166	Mechanical Properties of Boron Nitride Nanosheets (BNNSs) Reinforced Si3N4 Composites. 2020 , 79-88		2
165	Thin films on silicon. 2020 , 133-213		1
164	Biofunctionalized silicon nitride platform for sensing applications. 2018 , 102, 497-503		7
163	Graphene added multilayer ceramic sandwich (GMCS) composites: Structure, preparation and properties. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 4792-4798		4
162	Rapid Inactivation of SARS-CoV-2 by Silicon Nitride, Copper, and Aluminum Nitride.		8
161	Silicon nitride bioceramics in healthcare. <i>International Journal of Applied Ceramic Technology</i> , 2018 , 15, 861-872		19
160	Analytic Equation of State and Thermodynamic Properties for 日日 and Esi3N4Based on Analytic Mean Field Approach. 2008 , 114, 807-818		8
159	Evaluation of silicon nitride as a substrate for culture of PC12 cells: an interfacial model for functional studies in neurons. 2014 , 9, e90189		16

158	Development of Porous Silicon Nitride with Tailor-Made Pore Structure for Bio-Filter: I. Search of Sintering Aids. 2008 , 124, 245-248	5
157	Preparation and Microstructural Analysis of High-Performance Ceramics. 2004, 1057-1066	13
156	Activity and Mechanism of Action of the Bioceramic Silicon Nitride as an Environmentally Friendly Alternative for the Control of the Grapevine Downy Mildew Pathogen. 2020 , 11, 610211	3
155	Oxidation resistance and high-temperature mechanical properties of porous Si2N2O/Si3N4 composite ceramics. 2019 , 20, 216-221	1
154	High Flexural Strength Porous Silicon Nitride Prepared via Nitridation of Silicon Powdernitridation; porous silicon nitride; flexural strength; porosity. 2011 , 26, 422-426	8
153	Combustion Synthesis of Bi3N4 Powder Using AC as Additive. 2012 , 27, 169-173	3
152	Microstructure and Mechanical Properties of 野iAlON Ceramics Fabricated Using Self-Propagating High-Temperature Synthesized 野iAlON Powder. 2017 , 54, 292-297	2
151	Formation of Aligned E i3N4 Microfibers by Plasma Nitridation of Si (110) Substrate Coated with SiO2. 2021 , 11, 1251	
150	The effect of CaO on the physicochemical and biological properties of BiAlON ceramics. <i>Journal of the American Ceramic Society</i> ,	3.8
149	Caracterizaß estrutural por difraß de raios X de alta resoluß de SiAlONs sinterizados com diferentes aditivos. 2005 , 51, 313-317	1
148	Sintering of Si3N4 with Li-exchanged zeolite additive. 2006 , 97, 1264-1267	
147	Solid-State and Viscous Sintering. 2007 , 61-120	
146	Bonding and Thermal Fracture of Silicon Nitride / Stainless Steal (SUS316). 2008 , 33, 953-956	
145	The Effect of Al2O3addition on the Characteristics of Sintering Behavior, Phase Transformation and Mechanical Properties of Spark Plasma Sintered Si3N4Ceramics. 2008 , 45, 94-98	
144	Development of Porous Silicon Nitride with Tailor-made Pore Structure for Bio-Filter: II.Development of Tape Casting Process and Strength of Porous Body. 2009 , 125, 502-506	2
143	Novel Chemistry Modification Approach for Synthesis of SiAlON from Fly Ash. 131-142	
142	Silicon Nitride Ceramics. 2011 , 1-10	
141	Correlation between Mechanical Strength and Surface Conditions of Laser Assisted Machined Silicon Nitride. 2011 , 187-197	1

(2020-)

140	Preparation of Sialon-Based Materials from Coal Fly Ash using Carbothermal Reduction and Nitridation Method. 1-8
139	Processing of Nitride Porous Ceramic Composites via Hybrid Precursor System Chemical Vapor Deposition (HYSYCVD)/Direct Nitridation (DN). 161-171
138	Development of Porous Silicon Nitride with Tailor-Made Pore Structure for Bio-Filter: III. Control of Micro-Pore. 2012 , 128, 173-177
137	Si3N4 Powders Applied for Water-Based DCT. 47-62
136	Preparation of Nanosize Silicon-Nitride-Based Ceramics and Their Superplasticity. 2015 , 5-33
135	Introduction: Deformation of Silicon Nitride at High Temperatures. 2015, 1-3
134	Optimization of the Industrial Synthesis of Silicon Carbide - Reaction Bonded Silicon Nitride (SiC-RBSN). 245-257
133	Preparation of Fine-Grained Silicon-Nitride Ceramics and their Characterization by Depth-Sensing Indentation Tests. 2015 , 128, B-355-B-360
132	Influence of Si Atoms Insertion on the Formation of the Ti-Si-N Composite by DFT Simulation. 2016 , 12, 11-23
131	Comparative Study on Electrical and Dielectric Properties of Sintered Nano and Micro Silicon Nitride Ceramics. 2016 , 2, 13-18
130	Fluidized Bed Process with Silane. 2017 , 1-40
129	DEPENDENCE OF SIALON-TIN COMPOSITE PROPERTIES ON TIN REINFORCEMENT PARTICLE SIZES. 1-1
128	HYDROTHERMAL CORROSION RESISTANCE OF SILICON NITRIDE WITH O'-SI ALON GRAIN BOUNDARY PHASE. 2018 , 382-388
127	Thermal Modelling of Pulsed Laser Ablation of Silicon Nitride Ceramics. 2019 , 369-381
126	Fluidized Bed Process with Silane. 2019 , 69-108
125	Microstructure Design for Oxide/Non-oxide Ceramics for Structural Applications. 2019 , 135-144
124	Determination of fracture toughness and elastic module in materials based silicon nitride. 2019 , 20, 1-13
123	Experimental and Numerical Investigation of Dynamic Fracture Toughness of Ceramic Composites. 2020 , 134-140

122	Stress Evaluations of Silicon Nitride Chips Bonded onto Copper Substrates via SAC Soldering, AuSn Soldering, and Copper Sintering. 2020 ,		
121	Study on Dry Sliding Wear and Friction Behaviour of Al7068/SiN/BN Hybrid Composites. <i>Materials</i> , 2021 , 14,	3.5	5
120	Tribomechanical Behaviour of Non-oxide Ceramic Matrix Composites in Dry Sliding. 2021 , 1-49		Ο
119	Growth of Si3N4 Thin Films on Si(111) Surface by RF-N2 Plasma Nitriding. 2021, 11, 2		
118	The structural-phase composition of the magnetron-sputtered Al-Si-N-O-based coatings. 2020,		1
117	Fabrication and Investigation of Mechanical and Dry Sliding Wear Characteristics of Al6061-Si3N4 Composites. 2020 , 9, 20200037		1
116	Review of additive manufacturing and densification techniques for the net- and near net-shaping of geometrically complex silicon nitride components. <i>Journal of the European Ceramic Society</i> , 2021 ,	6	1
115	Electrical resistivity of Si3N4 ceramics with Yb2O3 additive. Journal of the American Ceramic Society,	3.8	
114	Effect of thermal annealing on dielectric property and thermal conductivity of Si3N4âBaTiO3 composite ceramics. <i>Ceramics International</i> , 2021 ,	5.1	0
113	Implementation of SiN thin film in fiber-optic sensor working in telecommunication range of wavelengths. 2021 , 11, 22402		
112	Effect of Solid Loading of Slurry on Properties of Si3N4 Ceramics Formed by Digital Light Processing. 2021 , 609		
111	A comparative study of the structural, vibrational, electronic and thermoelastic properties of BiO2 and Bi(NH)2 from first principles. 2022 , 278, 125564		
110	Synergistic Effect of Binary Fluoride Sintering Additives on the Properties of Silicon Nitride Ceramics.		
109	Combustion of Ferrosiliconâ⁄Iircon Mixtures in Nitrogen Gas: Impact of Aluminum Additives. 2021 , 30, 236-240		O
108	Low-temperature reactive sintering of carbon vacant high-entropy carbide ceramics with in-situ formed silicon carbide. <i>Journal of the American Ceramic Society</i> , 2022 , 105, 2392-2398	3.8	0
107	Research Progress and Prospects of Non-oxide Ceramic in Stereolithography Additive Manufacturing. 2022 , 705		
106	Oxidation behaviors of carbon fiber reinforced multilayer SiC-Si3N4 matrix composites. <i>Journal of Advanced Ceramics</i> , 2022 , 11, 354-364	10.7	1
105	Understanding the luminescence in Yb3+ co-doped Sialon: Eu2+/Eu3+ transparent phosphor ceramic plate.		

104	Improving cure performance of Si3N4 suspension with a high refractive index resin for stereolithography-based additive manufacturing. <i>Ceramics International</i> , 2022 ,	5.1	О
103	Tensile deformation mechanism of amorphous silicon nitride: Insights from molecular dynamics simulations. 2022 , 581, 121381		O
102	Recent advances and perspectives in carbon-based fillers reinforced Si3N4 composite for high power electronic devices. <i>Ceramics International</i> , 2022 ,	5.1	1
101	The Formation Process and Strengthening Mechanism of SiC Nanowires in a Carbon-Coated Porous BN/SiN Ceramic Joint <i>Materials</i> , 2022 , 15,	3.5	
100	Synthesis of Rare Earth Doped Si3n4 Nanowires with Excellent Luminescence Properties by Plasma-Assisted Direct Nitridation Method.		
99	Fabrication of highly dense si 3 n 4 via record low-content additive system for low-temperature pressureless sintering. <i>Journal of the American Ceramic Society</i> ,	3.8	O
98	Studying the Role of Gelation Agents in Gelcasting Non-porous Si3N4 Bodies by Pressureless Sintering. 1		
97	Thermal and mechanical properties of Si3N4 ceramics obtained via two-step sintering. <i>Ceramics International</i> , 2022 ,	5.1	O
96	Mechanical properties of reinforced porcelain slabs with mullite whiskers introduced by aluminum silicate fiber. <i>Ceramics International</i> , 2022 ,	5.1	1
95	Anisotropic, biomorphic cellular Si3N4 ceramics with directional well-aligned nanowhisker arrays based on wood-mimetic architectures. <i>Journal of Advanced Ceramics</i> , 2022 , 11, 656-664	10.7	1
94	Enhanced thermal conductivity in Si3N4 ceramics by carbonizing polydopamine coatings. <i>Ceramics International</i> , 2022 ,	5.1	
93	Surface modification of Si3N4 powder for hydrolysis control. Ceramics International, 2022,	5.1	
92	節i₃N₄ whiskers prepared by heating a mixture of B₂O₃ and 臣i₃4</sub>. <i>Journal of the Ceramic Society of Japan</i> ,	1	
91	2022 , 130, 303-307 Effects of Y 2 O 3 /MgO ratio on mechanical properties and thermal conductivity of silicon nitride ceramics. <i>International Journal of Applied Ceramic Technology</i> ,	2	О
90	High-strength and wave-transmitting Si3N4âBi2N2O-BN composites prepared using selective laser sintering. <i>Ceramics International</i> , 2022 ,	5.1	1
89	Preparation and properties of Si3N4 ceramics via digital light processing using Si3N4 powder coated with Al2O3-Y2O3 sintering additives. <i>Additive Manufacturing</i> , 2022 , 53, 102713	6.1	O
88	New design concept for stable Bilicon nitride based on the initial oxidation evolution at the atomic and molecular levels. <i>Journal of Materials Science and Technology</i> , 2022 , 122, 156-164	9.1	О
87	Fabrication and modelling of Si3N4 ceramics with radial grain alignment generated through centripetal sinter-forging. <i>Journal of Materials Science and Technology</i> , 2022 ,	9.1	O

86	Microstructure, Mechanical and Tribological Properties of SiN/Mo-Laminated Composites <i>Materials</i> , 2022 , 15,	3.5	
85	Polymer-derived SiHfN ceramics: from amorphous bulk ceramics with excellent mechanical properties to high temperature resistant ceramic nanocomposites. <i>Journal of the European Ceramic Society</i> , 2022 ,	6	O
84	Table_1.docx. 2020 ,		
83	Synergistic effect of binary fluoride sintering additives on the properties of silicon nitride ceramics. <i>Ceramics International</i> , 2022 ,	5.1	Ο
82	Silicon Oxynitride Thin Film Coating to Lossy Mode Resonance Fiber-Optic Refractometer. <i>Sensors</i> , 2022 , 22, 3665	3.8	0
81	Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants. <i>Materials Today Bio</i> , 2022 , 15, 100270	9.9	3
80	Sandwich structure SiCf/Si3N4âBiOCâBi3N4 composites for high-temperature oxidation resistance and microwave absorption. <i>Ceramics International</i> , 2022 ,	5.1	0
79	Synthesis of rare earth doped Si3N4 nanowires with excellent luminescence properties by plasma-assisted direct nitridation method. <i>Journal of Alloys and Compounds</i> , 2022 , 165458	5.7	O
78	Study on rapid nitridation process of molten silicon by thermogravimetry and in-situ Raman spectroscopy. <i>Journal of the American Ceramic Society</i> ,	3.8	0
77	An ultra-thin silicon nitride membrane for label-free CTCs isolation from whole blood with low WBC residue. <i>Separation and Purification Technology</i> , 2022 , 296, 121349	8.3	O
76	Preparation and properties of ultralight fibrous \$\overline{15}\$ i3N4 3D scaffolds with honeycomb-like structure by directional freeze-casting. <i>Journal of the European Ceramic Society</i> , 2022 ,	6	0
75	Boron-modified perhydropolysilazane towards facile synthesis of amorphous SiBN ceramic with excellent thermal stability. <i>Journal of Advanced Ceramics</i> ,	10.7	O
74	High-temperature ablation performance of Si3N4-Si2N2O-BN composites prepared using selective laser sintering. <i>Corrosion Science</i> , 2022 , 204, 110404	6.8	0
73	Silicon Nitride as a Biomedical Material: An Overview. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 6551	6.3	1
72	Effects of AlN inorganic binder on the properties of porous Si3N4 ceramics prepared by selective laser sintering. <i>Ceramics International</i> , 2022 ,	5.1	0
71	Granulation of Silicon Nitride Powders by Spray Drying: A Review. <i>Materials</i> , 2022 , 15, 4999	3.5	
7°	Thermal Equation of State of Bilicon Nitride. Journal of Physical Chemistry C,	3.8	
69	Mechanical and dielectric properties of spark plasma sintered Si3N4/SiO2/Eu2O3 composite. <i>Ceramics International</i> , 2022 ,	5.1	

68	Formation mechanism of AlN-SiC solid solution with multiple morphologies in Al-Si-SiC composites under flowing nitrogen at 1300 °C. <i>Journal of the European Ceramic Society</i> , 2022 ,	6	О
67	Kinetics of Silicon Nitridation and the Formation Mechanism of 應i3N4 at Atmospheric Pressure and 1410 °C. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	
66	In-situ combustion synthesis of spherical Si@Si 3 N 4 granules. <i>Journal of the American Ceramic Society</i> ,	3.8	
65	Twofold increase in Weibull modulus of hot-pressed Si3N4 ceramic by modified pressing profile. <i>Materials Today Communications</i> , 2022 , 32, 103979	2.5	O
64	Effect of a new nonoxide additive, Y 3 Si 2 C 2 , on the thermal conductivity and mechanical properties of Si 3 N 4 ceramics. <i>International Journal of Applied Ceramic Technology</i> ,	2	O
63	Fabrication and oxidation behavior of 断iAlON powders in presence of trace Y2O3. <i>Ceramics International</i> , 2022 ,	5.1	
62	Effects of Temperature and Si3N4 Diluent on Nitriding of Diamond Wire Silicon Cutting Waste.		
61	COMPOSITION, STRUCTURE, AND FUNCTIONAL PROPERTIES OF THIN SILICON NITRIDE FILMS GROWN BY ATOMIC LAYER DEPOSITION FOR MICROELECTRONIC APPLICATIONS (REVIEW OF 25 YEARS OF RESEARCH). 2022 , 63, 1019-1050		
60	Microstructural evolution during thermal shock process and the residual strength of Si 3 N 4 ceramics.		О
59	Assessment of the tribolological behavior of a metallic tribopair: LM25 alloy-Si3N4 composites against EN 31 steel. 2022 ,		Ο
58	Single-source-precursor derived bulk Si 3 N 4 /HfB \times N 1- \times ceramic nanocomposites with excellent oxidation resistance.		
57	A Novel Method of Si and Si3N4 Powder Resources Recycling: Cold Bonding Briquettes. 2022 , 15, 5496		
56	Revealing Phosphorus Nitrides up to the Megabar Regime: Synthesis of &P3N5, P3N5 and PN2.		О
55	Influence of ternary oxide additives on thermal conductivity of pressureless sintered Si3N4. 2022 , 328, 133189		Ο
54	High Mechanical Properties and Microwave Absorption Performances of Sicw/S3n4 Ceramic Composites.		О
53	Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives. 2022 , 37, 947		O
52	Preparation of Si2N2O Ceramics by Spark Plasma Sintering. 2022 , 58, 772-777		О
51	The capillary and thermal performance of the porous silicon nitride ceramics with nearly spherical pore structure.		O

50	A novel Si3N4/BAS/BN composite synthesized by spark plasma sintering. 2022 ,	0
49	Liquid-Phase-Assisted Catalytic Nitridation of Silicon and In Situ Growth of ⊞i3N4. 2022 , 15, 6074	O
48	Defect structures and dopant solution states of Hf-doped Si 3 N 4 ceramics.	O
47	Preparation of Si 3 N 4 ceramic based on digital light processing 3D printing and precursor infiltration and pyrolysis.	O
46	Dielectric constant and flexural strength of micro porous slip cast partially sintered silicon nitride. 2022 ,	0
45	Synthesis of Mg-stabilized nitrogen rich alpha sialons along Si 3 N 4 â ${\mathbb m}$ Mg 3 N 2 :3AlN line via field-assisted sintering.	O
44	Atomic and electronic structures of nitrogen vacancies in silicon nitride: Emergence of floating gap states. 2022 , 106,	0
43	Elastic properties of porous silicon nitride fabricated via a low-temperature processing route. 2022,	O
42	Molecular-level composition design for efficient synthesis of SiAlON ceramics.	0
41	A ceramic that bends instead of shattering. 2022 , 378, 359-360	O
40	Plastic deformation in silicon nitride ceramics via bond switching at coherent interfaces. 2022 , 378, 371-376	4
39	Ablation and surface structuring of Si3N4 ceramics by nanosecond laser pulses. 2022 , 128,	O
38	Stereolithography 3D printing of Si3N4 cellular ceramics with ultrahigh strength by using highly viscous paste. 2022 ,	0
37	High performance inorganic all-solid-state electrochromic devices based on Si3N4 ion conducting layer. 2023 , 250, 112073	O
36	Fabrication of high performance silicon nitride ceramics with TiO2 additive by annealing process. 2022 ,	О
35	Dry sliding friction and wear behavior of Al7075/TiC/Si3N4 hybrid metal matrix composites. 2022,	O
34	Analysis of the structural integrity of (Si3N4 and Al2O3) individuals coatings and the [Si3N4 /Al2O3]n heterostructure exposed to corrosive environments. 2023 , 294, 127062	O
33	EMENDEN — âC » — □ CEM —	O

32	Effects of Gd $2\mathrm{O}3$ and MgSiN $2\mathrm{sintering}$ additives on the thermal conductivity and mechanical properties of Si $3\mathrm{N}4$ ceramics.	0
31	Processing of nanoreinforced aluminium hybrid metal matrix composites and the effect of post-heat treatment: a review.	O
30	Grain growth modeling for gas pressure sintering of silicon nitride based ceramics. 2022, 105189	О
29	Cure behaviour and mechanical properties of Si3N4 ceramics with bimodal particle size distribution prepared using digital light processing. 2022 ,	O
28	Effects of a porous boron nitride nanofiber on nano-mechanical properties in shallow surface of WC-Si3N4 composite. 2022 , 2390, 012023	O
27	Correlation between Dielectric Constant Change and Oxidation Behavior of Silicon Nitride Ceramics at Elevating Temperature up to 1,000 °C. 2022 , 25, 580-585	O
26	Synthesis of Silicon Nitride Nanoparticles by Upcycling Silicon Wafer Waste Using Thermal Plasma Jets. 2022 , 15, 8796	О
25	Friction and wear behavior of fluoride added Si3N4-SiC ceramic composites at elevated temperature. 2022 ,	0
24	Ellipsometry study on silicon nitride film with uneven thickness distribution by plasma-enhanced chemical vapor deposition. 2023 , 55,	0
23	Synthesis mechanism of ⊞i3N4 whiskers via SiO vapor in reaction bonded Si3N4-SiC composite. 2023 , 938, 168723	O
22	The preparation of SrSi2O2N2:Eu2+ and Sr2Si5N8:Eu2+ phosphors by a direct silicon nitridation process and Sr(NO3)2 as strontium and oxygen sources. 2023 , 297, 127317	0
21	Wear Performance of a Novel Silicon Nitride Ceramic for Biomedical Applications.	0
20	Spark Plasma Sintering of Si3N4 Ceramics with Y2O3âAl2O3 (3%âl10% wt.) as Sintering Additive. 2023 , 13, 240	O
19	Microstructural and Mechanical Properties of Cubic Silicon Nitride: Insights from Molecular Dynamics Simulation.	0
18	High-purity stoichiometric Si 3 N 4 ceramics through trimethylsilyl-substituted polysilazanes.	0
17	Experimental interrogations on morphologies and mechanical delineation of silicon nitride fortified Mg-Al-Zn alloy composites. 2023 , 35, 105731	0
16	Inverse solution to two-dimensional transient coupled radiation and conduction problems and the application in recovering radiative thermo-physical properties of Si3N4 ceramics. 2023 , 190, 108303	О
15	Effect of interfacial microstructure evolution on the peeling strength and fracture of silicon nitride/oxygen-free copper foil joints brazed with Ag-Cu-TiH2 filler. 2023 , 43, 4374-4385	0

14	Multiscale ablation mechanism and performance of 2.5D Si3N4 f/SiBN-CMCs under continuous-wave laser irradiation. 2023 ,	0
13	A novel thermally matched conductive phase of silicon nitride ceramics. 2023 , 111379	O
12	Silicon Nitride Supported Cobalt Catalyst for Enhanced Hydrogen Production from Ethanol Steam Reforming. 2022 , 37, 1172-1179	O
11	A novel method of strong and tough Si 3 N 4 ceramic from the particle-stabilized foam. 2023 , 106, 3832-3842	O
10	Effect of particle size and shape of diluent on the reaction process of combustion synthesis of ⊞i 3 N 4 powder.	O
9	Structural Control and Optimization Schemes of Silicon-Based Anode Materials. 2201496	O
8	Preparation of In Situ Growth Multiscale Sialon Grain-Reinforced Al2O3-Based Composite Ceramic Tool Materials. 2023 , 16, 2333	0
7	Effect of Fe 2 O 3 additive on the preparation of Si 3 N 4 âBi 2 N 2 O composite ceramics via diamond-wire saw silicon waste.	O
6	Morphology control and blue luminescent performance of one dimensional Si3N4 via Nano-SiO2 assisted pyrolysis of polyvinylsilazane. 2023 ,	О
5	Poly(ether-ketone) (PEK)/ceramic nanocomposites as alternate materials for printed circuit board application. 2022 , 61, 471-481	О
4	Development of an advanced flexible ceramic material from graphene-incorporated alumina nanocomposite. 2023 , 541-550	О
3	Advances in the Synthesis of Preceramic Polymers for the Formation of Silicon-Based and Ultrahigh-Temperature Non-Oxide Ceramics.	O
2	Tailoring the Structure, Electronic and Optical Properties of PEO/CuO/In2O3 New Structures for Flexible Electronics and Optics Approaches. 2022 , 20,	О
1	Non-Oxide Ceramics for Bone Implant Application: State-of-the-Art Overview with an Emphasis on the Acetabular Cup of Hip Joint Prosthesis 2023 6, 994-1016	0