Cavity cooling of a microlever

Nature 432, 1002-1005 DOI: 10.1038/nature03118

Citation Report

CITATION	DEDODT

#	Article		CITATIONS
2	No red cell is an island. Nature, 2004, 432, 964-965.	13.7	8
3	Microlever chilled out. Nature, 2004, 432, 965-965.	13.7	2
4	The Measurement of Atomistic Behavior via the Stochastic Response of Quenched Microstructures. , 0, , .		0
5	Optical monitoring and cooling of a micro-mechanical oscillator to the quantum limit (Invited Paper). , 2005, 5846, 124.		7
6	<title>Optical monitoring and cooling of a micro-mechanical oscillator to the quantum limit</title> . , 2005, , .		2
7	Quantum nanoelectromechanics with electrons, quasi-particles and Cooper pairs: effective bath descriptions and strong feedback effects. New Journal of Physics, 2005, 7, 238-238.	1.2	94
8	Quantum Harmonic Oscillator and Nonstationary Casimir Effect. Journal of Russian Laser Research, 2005, 26, 445-483.	0.3	55
9	Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Physical Review Letters, 2005, 95, 033901.	2.9	634
10	Entangling movable mirrors in a double-cavity system. Europhysics Letters, 2005, 72, 747-753.	0.7	191
11	Beating quantum limits in an optomechanical sensor by cavity detuning. Physical Review A, 2006, 73, .	1.0	75
12	Dynamical Multistability Induced by Radiation Pressure in High-Finesse Micromechanical Optical Cavities. Physical Review Letters, 2006, 96, 103901.	2.9	323
13	A cooling light breeze. Nature, 2006, 444, 41-42.	13.7	11
14	Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters, 2006, 97, 243905.	2.9	503
15	Nanoelectromechanical system approaches the quantum detection limit. Physics Today, 2006, 59, 19-21.	0.3	1
16	Sensitivity Analysis of a Proposed Novel Opto-Nano-Mechanical Photodetector for Improving the Performance of LIDAR and Local Optical Sensors. Journal of Physics: Conference Series, 2006, 38, 171-173.	0.3	4
17	To work or not to work. Nature, 2006, 444, 42-43.	13.7	6
18	Sub-kelvin optical cooling of a micromechanical resonator. Nature, 2006, 444, 75-78.	13.7	582
19	Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 2006, 444, 71-74.	13.7	842

	CITATIO	on Report	
#	Article	IF	CITATIONS
20	Self-cooling of a micromirror by radiation pressure. Nature, 2006, 444, 67-70.	13.7	819
21	Influence of a controllable scatterer on the lasing properties of an ultralow threshold Raman microlaser. Applied Physics Letters, 2006, 89, 101105.	1.5	3
22	Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric) Tj ET 96-107.	Qq0 0 0 rgBT /C 1.9	overlock 10 7 69
23	High-Sensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum-Limited Optomechanical Sensor. Physical Review Letters, 2006, 97, 133601.	2.9	198
24	Coupled dynamics of atoms and radiation-pressure-driven interferometers. Physical Review A, 2006, 73,	1.0	63
25	High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror. Physical Review Letters, 2006, 96, 173901.	2.9	60
26	Bistability of a Compliant Cavity Induced by Acoustic Radiation Pressure. Physical Review Letters, 2006, 97, 074502.	2.9	19
27	Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity. Physical Review A, 2006, 74, .	1.0	136
28	Optical response of a misaligned and suspended Fabry-Perot cavity. Physical Review A, 2006, 74, .	1.0	2
29	Reconstructing the dynamics of a movable mirror in a detuned optical cavity. New Journal of Physics, 2006, 8, 107-107.	1.2	105
30	Mechanical manifestations of rare atomic jumps in dynamic force microscopy. Nanotechnology, 2007, 18, 395503.	1.3	32
31	Laser cooling of a microcantilever using a medium finesse optical cavity. , 2007, , .		0
32	Mode Splitting Induced by Radiation Pressure in a Spherical Microcavity. , 2007, , .		0
33	Cooling a micromechanical beam by coupling it to a transmission line. Physical Review B, 2007, 76, .	1.1	57
34	Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator: Dynamic squeezing and coherent manipulations. Physical Review B, 2007, 75, .	1.1	26
35	Femto-Newton Sensitivity Opto-Mechanical Force Measurement. , 2007, , .		0
36	Modal Spectroscopy of Optoexcited Vibrations of a Micron-Scale On-Chip Resonator at Greater than 1 GHz Frequency. Physical Review Letters, 2007, 98, 123901.	2.9	86
37	Stable, mode-matched, medium-finesse optical cavity incorporating a microcantilever mirror: Optical characterization and laser cooling. Review of Scientific Instruments, 2007, 78, 013107.	0.6	21

	CITATION	Report	
#	Article	IF	CITATIONS
38	Quantum analysis of a linear dc SQUID mechanical displacement detector. Physical Review B, 2007, 76, .	1.1	51
39	Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors. Applied Physics Letters, 2007, 90, 051114.	1.5	11
40	Bose-Einstein Condensate Coupled to a Nanomechanical Resonator on an Atom Chip. Physical Review Letters, 2007, 99, 140403.	2.9	185
41	Measurements of the Degree of Comprehensive Cooling in Stochastically Quenched Microstructures. IEEE Sensors Journal, 2007, 7, 352-360.	2.4	2
42	Allan variance of frequency fluctuations due to momentum exchange and thermomechanical noises. Journal of Applied Physics, 2007, 102, 076111.	1.1	5
43	On the interactions of a harmonic oscillator. European Journal of Physics, 2007, 28, 1207-1218.	0.3	2
44	QUANTUM ENGINEERING FOR THREAT REDUCTION AND HOMELAND SECURITY. International Journal of High Speed Electronics and Systems, 2007, 17, 607-618.	0.3	2
45	Quantum optics with a mechanical microresonator. , 2007, , .		Ο
46	Radiation-pressure-induced mode splitting in a spherical microcavity with an elastic shell. Optics Express, 2007, 15, 3597.	1.7	25
47	Cavity Opto-Mechanics. Optics Express, 2007, 15, 17172.	1.7	695
48	Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion. Physical Review Letters, 2007, 99, 093902.	2.9	957
49	Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction. Physical Review Letters, 2007, 99, 093901.	2.9	820
50	Cooling in a Bistable Optical Cavity. Physical Review Letters, 2007, 99, 103002.	2.9	17
51	Passive Cooling of a Micromechanical Oscillator with a Resonant Electric Circuit. Physical Review Letters, 2007, 99, 137205.	2.9	80
52	Stochastic excitation and delayed oscillation of a micro-oscillator. Physical Review B, 2007, 75, .	1.1	14
53	Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation. Science, 2007, 317, 780-783.	6.0	273
54	An All-Optical Trap for a Gram-Scale Mirror. Physical Review Letters, 2007, 98, 150802.	2.9	318
55	Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9ÂmK. Physical Review Letters, 2007, 99, 160801.	2.9	193

#	Article	IF	CITATIONS
56	All-optical micromechanical chemical sensors. , 2007, , .		0
57	Optical cooling of a micromirror of wavelength size. Applied Physics Letters, 2007, 90, 104101.	1.5	84
58	Feedback Cooling of a Cantilever's Fundamental Mode below 5ÂmK. Physical Review Letters, 2007, 99, 017201.	2.9	298
59	Trapping and Cooling a Mirror to Its Quantum Mechanical Ground State. Physical Review Letters, 2007, 99, 073601.	2.9	148
60	Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photonics, 2007, 1, 416-422.	15.6	216
61	Noise suppression for micromechanical resonator via intrinsic dynamic feedback. Frontiers of Physics in China, 2008, 3, 294-305.	1.0	3
62	Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008, 452, 72-75.	13.7	1,195
63	Harnessing optical forces in integrated photonic circuits. Nature, 2008, 456, 480-484.	13.7	492
64	On the evolution of minerals. Nature, 2008, 456, 456-458.	13.7	10
65	Nanomechanics gets the shakes. Nature, 2008, 456, 458-458.	13.7	4
66	Science on all scales. Nature Physics, 2008, 4, 514-514.	6.5	0
67	Push towards the quantum limit. Nature Physics, 2008, 4, 513-514.	6.5	12
68	Resolved-sideband cooling of a micromechanical oscillator. Nature Physics, 2008, 4, 415-419.	6.5	533
69	Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Physical Review B, 2008, 77, .	1.1	119
70	Cooling of a Gram-Scale Cantilever Flexure to 70ÂmK with a Servo-Modified Optical Spring. Physical Review Letters, 2008, 100, 010801.	2.9	52
71	Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Physical Review A, 2008, 77, .	1.0	475
72	Observation of optomechanical multistability in a high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>torsion balance oscillator. Physical Review A, 2008, 77</mml:math 	1.0	18
73	Robust entanglement of a micromechanical resonator with output optical fields. Physical Review A, 2008, 78, .	1.0	283

#	Article	IF	CITATIONS
74	Monocrystalline AlxGa1â^'xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. Applied Physics Letters, 2008, 92, .	1.5	65
75	Potential of interferometric cantilever detection and its application for SFM/AFM in liquids. Nanotechnology, 2008, 19, 384019.	1.3	24
76	Cavity Optomechanics: Back-Action at the Mesoscale. Science, 2008, 321, 1172-1176.	6.0	1,638
77	Optomechanical trapping and cooling of partially reflective mirrors. Physical Review A, 2008, 77, .	1.0	166
78	Emergence of atom-light-mirror entanglement inside an optical cavity. Physical Review A, 2008, 77, .	1.0	241
79	Cavity Optomechanics with a Bose-Einstein Condensate. Science, 2008, 322, 235-238.	6.0	502
80	Mode manipulation in spherical microcavity using radiation pressure. , 2008, , .		0
81	Active damping control of a torsion pendulum by radiation pressure. , 2008, , .		1
82	Resonant excitations of single and two-qubit systems coupled to a tank circuit. Physical Review B, 2008, 78, .	1.1	33
83	The optomechanical instability in the quantum regime. New Journal of Physics, 2008, 10, 095013.	1.2	150
84	Dispersive optomechanics: a membrane inside a cavity. New Journal of Physics, 2008, 10, 095008.	1.2	331
85	Cavity-assisted backaction cooling of mechanical resonators. New Journal of Physics, 2008, 10, 095007.	1.2	114
86	Route to ponderomotive entanglement of light via optically trapped mirrors. New Journal of Physics, 2008, 10, 095017.	1.2	30
87	Ground-state cooling of a nanomechanical resonator via a Cooper-pair box qubit. New Journal of Physics, 2008, 10, 095019.	1.2	49
88	Creating and verifying a quantum superposition in a micro-optomechanical system. New Journal of Physics, 2008, 10, 095020.	1.2	116
89	Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New Journal of Physics, 2008, 10, 095010.	1.2	261
90	Quantum limits of photothermal and radiation pressure cooling of a movable mirror. New Journal of Physics, 2008, 10, 095012.	1.2	23
91	Cooling of a micro-mechanical resonator by the back-action of Lorentz force. New Journal of Physics, 2008, 10, 043015.	1.2	28

#	Article	IF	Citations
92	Cavity cooling of a nanomechanical resonator by light scattering. New Journal of Physics, 2008, 10, 095006.	1.2	41
93	Radiation-pressure self-cooling of a micromirror in a cryogenic environment. Europhysics Letters, 2008, 81, 54003.	0.7	52
94	Experimental optomechanics with silicon micromirrors. New Journal of Physics, 2008, 10, 125021.	1.2	17
95	X-ray pushing of a mechanical microswing. Nanotechnology, 2008, 19, 445501.	1.3	2
96	Optical self cooling of a deformable Fabry-Perot cavity in the classical limit. Physical Review B, 2008, 78, .	1.1	99
97	Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator. Physical Review B, 2008, 78, .	1.1	54
98	Quantum theory of optomechanical cooling. Journal of Modern Optics, 2008, 55, 3329-3338.	0.6	53
99	Noise thermometry and electron thermometry of a sample-on-cantilever system below 1Kelvin. Applied Physics Letters, 2008, 92, .	1.5	16
100	In-plane microelectromechanical resonator with integrated Fabry–Pérot cavity. Applied Physics Letters, 2008, 92, .	1.5	36
101	Self-cooling of a movable mirror to the ground state using radiation pressure. Physical Review A, 2008, 77, .	1.0	47
102	Cavity optomechanical coupling assisted by an atomic gas. Physical Review A, 2008, 78, .	1.0	166
103	Quantum analysis of a nonlinear microwave cavity-embedded dc SQUID displacement detector. Physical Review B, 2008, 78, .	1.1	34
104	Doppler Optomechanics of a Photonic Crystal. Physical Review Letters, 2008, 100, 240801.	2.9	36
105	Feedback Cooling of the Normal Modes of a Massive Electromechanical System to Submillikelvin Temperature. Physical Review Letters, 2008, 101, 033601.	2.9	56
106	Mechanical Mode Dependence of Bolometric Backaction in an Atomic Force Microscopy Microlever. Physical Review Letters, 2008, 101, 133904.	2.9	42
107	How to silence a one-ton bell. Physics Magazine, 2008, 1, .	0.1	1
108	Radiation-pressure effects upon a micromirror in a high-finesse optical cavity. Proceedings of SPIE, 2008, , .	0.8	1
109	Optomechanical effects in a dispersively coupled high finesse cavity and micromechanical membrane. , 2008, , .		0

#	Article	IF	CITATIONS
110	Limit to mass sensitivity of nanoresonators with random rough surfaces due to intrinsic sources and interactions with the surrounding gas. Journal of Applied Physics, 2008, 104, 016107.	1.1	1
111	Controlling Quality Factor in Micromechanical Resonators by Carrier Excitation. Applied Physics Express, 2009, 2, 035001.	1.1	7
112	Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Physical Review B, 2009, 79, .	1.1	329
113	Photonic Micro-Electromechanical Systems Vibrating at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>X </mml:mi> -band (11-GHz) Rates. Physical Review Letters, 2009, 102, 113601.</mml:math 	2.9	249
114	Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control. Physical Review A, 2009, 79, .	1.0	67
115	Cavity quantum optomechanics of ultracold atoms in an optical lattice: Normal-mode splitting. Physical Review A, 2009, 80, .	1.0	76
116	Phase noise and laser-cooling limits of optomechanical oscillators. Physical Review A, 2009, 80, .	1.0	33
117	Cooling a mechanical resonator via coupling to a tunable double quantum dot. Physical Review B, 2009, 79, .	1.1	41
118	Ground state cooling of a nanomechanical resonator via parametric linear coupling. Physical Review B, 2009, 79, .	1.1	37
119	Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors. Physical Review A, 2009, 80, .	1.0	36
120	Transport properties of a superconducting single-electron transistor coupled to a nanomechanical oscillator. Physical Review B, 2009, 79, .	1.1	8
121	Cooling a magnetic resonance force microscope via the dynamical back action of nuclear spins. Physical Review B, 2009, 80, .	1.1	12
122	Scattering theory of cooling and heating in optomechanical systems. Physical Review A, 2009, 79, .	1.0	49
123	Improving the sensitivity of a torsion pendulum by using an optical spring method. Physical Review A, 2009, 80, .	1.0	8
124	The effective quality factor at low temperatures in dynamic force microscopes with Fabry–Pérot interferometer detection. Applied Physics Letters, 2009, 94, .	1.5	31
125	Chapter 2 Quantum Effects in Optomechanical Systems. Advances in Atomic, Molecular and Optical Physics, 2009, 57, 33-86.	2.3	159
126	A MEMS-based high frequency x-ray chopper. Nanotechnology, 2009, 20, 175501.	1.3	3
127	Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light. New Journal of Physics, 2009, 11, 103044.	1.2	119

#	Article	IF	CITATIONS
128	Collective transverse cavity cooling of a dense molecular beam. New Journal of Physics, 2009, 11, 055025.	1.2	23
129	Harmonic damped oscillators with feedback: a Langevin study. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P10016.	0.9	9
130	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	1.2	123
131	Nanonewton Force Generation and Detection Based on a Sensitive Torsion Pendulum. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 897-901.	2.4	18
132	Dynamical coupling between a Bose–Einstein condensate andÂaÂcavity optical lattice. Applied Physics B: Lasers and Optics, 2009, 95, 213-218.	1.1	90
133	A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 2009, 459, 550-555.	13.7	625
134	Optomechanics of deformable optical cavities. Nature Photonics, 2009, 3, 201-205.	15.6	333
135	Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Physics, 2009, 5, 485-488.	6.5	304
136	Near-field cavity optomechanics with nanomechanical oscillators. Nature Physics, 2009, 5, 909-914.	6.5	430
137	Fundamental metrology in the future: Measuring the single quantum. European Physical Journal: Special Topics, 2009, 172, 399-408.	1.2	3
138	Feedback-controlled nonresonant laser cooling. Laser Physics, 2009, 19, 752-761.	0.6	1
139	Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement. Nanotechnology, 2009, 20, 405705.	1.3	37
140	Fluctuating nanomechanical system in a high finesse optical microcavity. Optics Express, 2009, 17, 12813.	1.7	64
141	An opto-electro-mechanical infrared photon detector with high internal gain at room temperature. Optics Express, 2009, 17, 14458.	1.7	12
142	Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity. Optics Express, 2009, 17, 15726.	1.7	27
143	Enhancement of cavity cooling of a micromechanical mirror using parametric interactions. Physical Review A, 2009, 79, .	1.0	130
144	Cavity-assisted squeezing of a mechanical oscillator. Physical Review A, 2009, 79, .	1.0	178
145	Gently Modulating Optomechanical Systems. Physical Review Letters, 2009, 103, 213603.	2.9	271

#	Article	IF	CITATIONS
146	Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Physical Review A, 2009, 80, .	1.0	114
147	Three-Mode Optoacoustic Parametric Amplifier: A Tool for Macroscopic Quantum Experiments. Physical Review Letters, 2009, 102, 243902.	2.9	41
148	Bistable Mott-insulator–to–superfluid phase transition in cavity optomechanics. Physical Review A, 2009, 80, .	1.0	31
149	Dipole emission rate inside a nano quantum dot resonator. International Journal of Nanomanufacturing, 2009, 4, 92.	0.3	2
150	Optomechanics. Physics Magazine, 0, 2, .	0.1	681
151	Wavelength and Coherence Independent Method of Optically Exciting Mechanical Resonance. , 2009, , .		0
152	Optical Micromechanical Amplification and Damping in a Waveguide Microcavity. , 2010, , .		1
153	Quantum entanglement of nanocantilevers. Physical Review A, 2010, 82, .	1.0	19
154	An Optomechanical Oscillator on a Silicon Chip. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 276-287.	1.9	68
155	Control of micro-cantilever using passive optical feedback for force microscopy. Sensors and Actuators A: Physical, 2010, 163, 533-536.	2.0	4
156	SI traceability: Current status and future trends for forces below 10 microNewtons. Measurement: Journal of the International Measurement Confederation, 2010, 43, 169-182.	2.5	47
157	Laser cooling of solids to cryogenic temperatures. Nature Photonics, 2010, 4, 161-164.	15.6	279
158	Optomechanical Cooling with Generalized Interferometers. Physical Review Letters, 2010, 105, 013602.	2.9	22
159	Achieving ground state and enhancing optomechanical entanglement by recovering information. New Journal of Physics, 2010, 12, 083032.	1.2	24
160	Universal quantum entanglement between an oscillator and continuous fields. Physical Review A, 2010, 81, .	1.0	23
161	Probing macroscopic quantum states with a sub-Heisenberg accuracy. Physical Review A, 2010, 81, .	1.0	38
162	Doppler Cooling a Microsphere. Physical Review Letters, 2010, 105, 073002.	2.9	59
163	Quantification of antagonistic optomechanical forces in an interferometric detection system for dynamic force microscopy. Applied Physics Letters, 2010, 97, .	1.5	9

#	Article	IF	CITATIONS
164	Observability of radiation-pressure shot noise in optomechanical systems. Physical Review A, 2010, 82, .	1.0	34
165	Chip-scale wavelength-division multiplexed integrated sensor arrays. , 2010, , .		0
166	Optomechanics of ultracold atomic gases. Physica Scripta, 2010, 82, 038111.	1.2	32
167	Quantum noise reduction using a cavity with a Bose–Einstein condensate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 205301.	0.6	29
168	Spontaneous Symmetry Breaking in Two Coupled Nanomechanical Electron Shuttles. Physical Review Letters, 2010, 105, 067204.	2.9	26
169	Cavity cooling of an optically trapped nanoparticle. Physical Review A, 2010, 81, .	1.0	130
170	Strong Gate Coupling of High- <i>Q</i> Nanomechanical Resonators. Nano Letters, 2010, 10, 4884-4889.	4.5	44
171	Dynamics of a movable micromirror in a nonlinear optical cavity. Physical Review A, 2010, 81, .	1.0	71
172	Integrated optic glass microcantilevers with Bragg grating interrogation. Optics Express, 2010, 18, 23296.	1.7	20
173	Coupling-rate determination based on radiation-pressure-induced normal mode splitting in cavity optomechanical systems. Optics Letters, 2010, 35, 339.	1.7	34
174	Quantum optomechanics—throwing a glance [Invited]. Journal of the Optical Society of America B: Optical Physics, 2010, 27, A189.	0.9	247
175	Classical dynamics of the optomechanical modes of a Bose-Einstein condensate in a ring cavity. Physical Review A, 2010, 81, .	1.0	25
176	Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators. Advances in Atomic, Molecular and Optical Physics, 2010, 58, 207-323.	2.3	84
177	Entanglement generated in a nanomechanical oscillator system. Journal of Modern Optics, 2011, 58, 839-844.	0.6	2
178	Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system with intensity-dependent coupling. Physical Review A, 2011, 84, .	1.0	36
179	Opto-Mechanical Force Mapping of Deep Subwavelength Plasmonic Modes. Nano Letters, 2011, 11, 3378-3382.	4.5	50
180	Quantum-limited amplification with a nonlinear cavity detector. Physical Review A, 2011, 83, .	1.0	39
181	Multicolor quadripartite entanglement from an optomechanical cavity. Physical Review A, 2011, 84, .	1.0	25

		Citation R	EPORT	
#	Article		IF	CITATIONS
182	Microwave amplification with nanomechanical resonators. Nature, 2011, 480, 351-354	1.	13.7	253
183	Dynamics of coupled multimode and hybrid optomechanical systems. Comptes Rendu 12, 837-847.	s Physique, 2011,	0.3	17
184	Classical and quantum theory of photothermal cavity cooling of a mechanical oscillato Rendus Physique, 2011, 12, 860-870.	r. Comptes	0.3	58
185	Coupling ultracold atoms to mechanical oscillators. Comptes Rendus Physique, 2011,	12, 871-887.	0.3	57
186	Photon energy dependence of the light pressure exerted onto a thin silicon slab. Physic 2011, 83, .	cal Review B,	1.1	1
187	Bonding, antibonding and tunable optical forces in asymmetric membranes. Optics Exp 2225.	press, 2011, 19,	1.7	24
188	Fano-like resonance in an optically driven atomic force microscope cantilever. Optics E 2317.	xpress, 2011, 19,	1.7	7
189	Integrated waveguide-DBR microcavity opto-mechanical system. Optics Express, 2011	, 19, 21904.	1.7	32
190	The gentle cooling touch of light. Nature, 2011, 478, 47-48.		13.7	4
191	Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 20	011, 478, 89-92.	13.7	1,866
192	An Introduction to Quantum Optomechanics. Acta Physica Slovaca, 2011, 61, .		1.4	56
193	Efficient optomechanical cooling in one-dimensional interferometers. Proceedings of S	PIE, 2011, , .	0.8	0
194	IR photodetector based on an optically cooled micromirror as a light pressure sensor. F SPIE, 2011, , .	Proceedings of	0.8	0
195	Piezoresistive heat engine and refrigerator. Nature Physics, 2011, 7, 354-359.		6.5	144
196	Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Physics, 201	1, 7, 527-530.	6.5	456
197	A theoretical multi-reflection method for analysis of optomechanical behavior of the Fa cavity with moving boundary condition. Optics Communications, 2011, 284, 4789-479	bry–Perot 94.	1.0	4
198	Fast ground-state cooling of mechanical resonators with time-dependent optical caviti Review A, 2011, 83, .	es. Physical	1.0	113
199	Optically-driven cooling for collective atomic excitations. European Physical Journal D, 215-220.	2011, 61,	0.6	8

		LPORT	
# 200	ARTICLE Cavity cooling of atoms: within and without a cavity. European Physical Journal D, 2011, 65, 273-278.	IF 0.6	Citations 2
201	Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors. Laser and Photonics Reviews, 2011, 5, 677-696.	4.4	67
202	Effect of higher-order waves in parametric oscillatory instability in optical cavities. Physica Scripta, 2011, 83, 045401.	1.2	3
203	Forced and self-excited oscillations of an optomechanical cavity. Physical Review E, 2011, 84, 046605.	0.8	67
204	Quantum-mechanical theory of optomechanical Brillouin cooling. Physical Review A, 2011, 84, .	1.0	21
205	Quantum optomechanics in the bistable regime. Physical Review A, 2011, 84, .	1.0	79
206	Effect of phase noise on the generation of stationary entanglement in cavity optomechanics. Physical Review A, 2011, 84, .	1.0	62
207	Room-temperature steady-state optomechanical entanglement on a chip. Physical Review A, 2011, 84, .	1.0	24
208	Back-action ground-state cooling of a micromechanical membrane via intensity-dependent interaction. Physical Review A, 2011, 84, .	1.0	29
209	Active feedback cooling of massive electromechanical quartz resonators. Physical Review A, 2011, 84, .	1.0	9
210	Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Physical Review A, 2011, 83, .	1.0	148
211	Distributing fully optomechanical quantum correlations. Physical Review A, 2011, 83, .	1.0	56
212	Quantum noise in photothermal cooling. Physical Review A, 2011, 83, .	1.0	48
213	Multistability in an optomechanical system with a two-component Bose-Einstein condensate. Physical Review A, 2011, 83, .	1.0	34
214	Carrier-mediated optomechanical coupling in GaAs cantilevers. Physical Review B, 2011, 84, .	1.1	7
215	Nondeterministic ultrafast ground-state cooling of a mechanical resonator. Physical Review B, 2011, 84, .	1.1	55
216	Macrorealism inequality for optoelectromechanical systems. Physical Review B, 2011, 84, .	1.1	42
217	Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy. Applied Physics Letters, 2011, 99, 173501.	1.5	18

#	Article	IF	CITATIONS
218	Vibration Amplification, Damping, and Self-Oscillations in Micromechanical Resonators Induced by Optomechanical Coupling through Carrier Excitation. Physical Review Letters, 2011, 106, 036801.	2.9	51
219	Cavity cooling of a mechanical resonator in the presence of a two-level-system defect. Physical Review B, 2011, 84, .	1.1	25
220	"Negative―Backaction Noise in Interferometric Detection of a Microlever. Physical Review Letters, 2011, 107, 050801.	2.9	4
221	Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy. Review of Scientific Instruments, 2011, 82, 033702.	0.6	32
222	Cooling a nanomechanical resonator by a triple quantum dot. Europhysics Letters, 2011, 95, 40003.	0.7	19
223	Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. , 2011, , .		1
224	Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane. , 2011, , .		0
225	Generation of motional nonlinear coherent states and their superpositions via an intensity-dependent coupling of a cavity field to a micromechanical membrane. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 105504.	0.6	13
226	Remote actuation of a mechanical resonator. Applied Physics Letters, 2011, 99, 103105.	1.5	1
227	Acoustic whispering-gallery modes in optomechanical shells. New Journal of Physics, 2012, 14, 115026.	1.2	21
228	Cavity optomechanics with Si ₃ N ₄ membranes at cryogenic temperatures. New Journal of Physics, 2012, 14, 115021.	1.2	55
229	Continuous mode cooling and phonon routers for phononic quantum networks. New Journal of Physics, 2012, 14, 115004.	1.2	143
230	Exciton-mediated photothermal cooling in GaAs membranes. New Journal of Physics, 2012, 14, 085024.	1.2	10
231	Using dark modes for high-fidelity optomechanical quantum state transfer. New Journal of Physics, 2012, 14, 105010.	1.2	89
232	Cryogenic optical refrigeration. Advances in Optics and Photonics, 2012, 4, 78.	12.1	79
233	Optically pumped coherent mechanical oscillators: the laser rate equation theory and experimental verification. New Journal of Physics, 2012, 14, 105022.	1.2	14
234	Theoretical Study of Mechanical Control of Micro- and Nano-Mechanical Systems by Cavity-Induced Radiation Force. Japanese Journal of Applied Physics, 2012, 51, 06FH02.	0.8	0
235	Suppression of extraneous thermal noise in cavity optomechanics. Optics Express, 2012, 20, 3586.	1.7	12

#	Article	IF	CITATIONS
236	GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators. Optics Express, 2012, 20, 5204.	1.7	9
237	Laser spot position dependence in photothermal mode cooling of a microcantilever. Optics Letters, 2012, 37, 584.	1.7	9
238	Casimir force measurements in Au-Au and Au-Si cavities at low temperature. Physical Review B, 2012, 85,	1.1	31
239	Optomechanical effects in self-organization of a Bose–Einstein condensate in an optical cavity. Canadian Journal of Physics, 2012, 90, 1223-1231.	0.4	4
240	Improving the optomechanical entanglement and cooling by photothermal force. Physical Review A, 2012, 85, .	1.0	8
241	Optomechanical cooling of levitated spheres with doubly resonant fields. Physical Review A, 2012, 85, .	1.0	40
242	Optomechanical Quantum Information Processing with Photons and Phonons. Physical Review Letters, 2012, 109, 013603.	2.9	374
243	Optomechanical photoabsorption spectroscopy of exciton states in GaAs. Applied Physics Letters, 2012, 101, 082107.	1.5	10
244	Hot electrons but cool vibrations. Nature Physics, 2012, 8, 110-111.	6.5	2
245	Opto-Mechanical Effects in Superradiant Light Scattering by Bose—Einstein Condensate in an Optical Cavity. Communications in Theoretical Physics, 2012, 58, 840-846.	1.1	2
246	Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature. Nature Communications, 2012, 3, 728.	5.8	71
247	Photonic crystals, resonators, and cavity optomechanics. , 0, , 338-368.		1
248	Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle. Physical Review Letters, 2012, 109, 103603.	2.9	461
249	Radiation pressure in stratified moving media. Physical Review A, 2012, 86, .	1.0	1
250	Precision measurement of electrical charge with optomechanically induced transparency. Physical Review A, 2012, 86, .	1.0	203
251	High quality factor single-crystal diamond mechanical resonators. Applied Physics Letters, 2012, 101, .	1.5	123
252	Optical multistability and cooling of a micromechanical mirror induced by radiation pressure in optomechanical cavity. Optik, 2012, 123, 1965-1970.	1.4	1
253	Multimode circuit optomechanics near the quantum limit. Nature Communications, 2012, 3, 987.	5.8	193

#	Article	IF	Citations
254	Quantum optomechanics of a multimode system coupled via a photothermal and a radiation pressure force. Physical Review A, 2012, 86, .	1.0	14
255	Optical cavity cooling of mechanical modes of a semiconductor nanomembrane. Nature Physics, 2012, 8, 168-172.	6.5	79
256	Decoherence suppression by cavity optomechanical cooling. Comptes Rendus Physique, 2012, 13, 454-469.	0.3	4
257	Cavity-mediated stationary atom–mirror entanglement in the presence of photothermal effects. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2955-2961.	0.9	3
258	Carbon's superconducting footprint. Nature Physics, 2012, 8, 111-112.	6.5	12
259	Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems. Nano Letters, 2012, 12, 4681-4686.	4.5	166
260	Observation of spontaneous Brillouin cooling. Nature Physics, 2012, 8, 203-207.	6.5	193
261	Fiber-cavity-based optomechanical device. Applied Physics Letters, 2012, 101, .	1.5	122
262	Phonon-cavity electromechanics. Nature Physics, 2012, 8, 387-392.	6.5	127
263	Laser-Rate-Equation Description of Optomechanical Oscillators. Physical Review Letters, 2012, 108, 223904.	2.9	52
264	Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity. Nonlinear Dynamics, 2012, 69, 1589-1610.	2.7	35
265	Optomechanical coupling between two optical cavities: Cooling of a micro-mirror and parametric normal mode splitting. Optics Communications, 2012, 285, 300-306.	1.0	7
266	Decoherence strength of multiple non-Markovian environments. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 4206-4214.	1.2	2
267	Mechanical systems in the quantum regime. Physics Reports, 2012, 511, 273-335.	10.3	398
268	Emergence of multipartite optomechanical entanglement in microdisk cavities coupled to nanostring waveguide. Quantum Information Processing, 2013, 12, 3179-3190.	1.0	1
269	Threshold behavior and operating regimes of an optically driven phonon laser: Semiclassical theory. Physical Review B, 2013, 88, .	1.1	17
270	The properties of Stokes and anti-Stokes processes in a double-cavity optomechanical system. Optics Communications, 2013, 308, 265-269.	1.0	4
271	Quadrature phase interferometer for high resolution force spectroscopy. Review of Scientific Instruments, 2013, 84, 095001.	0.6	36

#	Article	IF	CITATIONS
272	Photonic Cavity Synchronization of Nanomechanical Oscillators. Physical Review Letters, 2013, 111, 213902.	2.9	156
273	Cavity-mediated cooling of a single atom in the intermediate coupling regime. Journal of the Korean Physical Society, 2013, 63, 922-926.	0.3	0
274	Acoustical spring effect in a compliant cavity. European Physical Journal E, 2013, 36, 9854.	0.7	1
275	Classical and semiclassical studies of nonlinear nano-optomechanical oscillators. European Physical Journal D, 2013, 67, 1.	0.6	7
276	Optical control of microcavity by mechanical nonlinearity under environmental fluctuations. , 2013, ,		0
270	·		0
277	Self-oscillations in nonlinear torsional metamaterials. New Journal of Physics, 2013, 15, 073036.	1.2	22
	Effective scheme for enhancing entanglement in distant ontomechanical system by injecting the		
278	atomic medium. Canadian Journal of Physics, 2013, 91, 146-152.	0.4	0
279	Strong Optical-Mechanical Coupling in a Vertical GaAs/AlAs Microcavity for Subterahertz Phonons	2.9	145
280	Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose-Einstein condensate. Physical Review A, 2013, 87, .	1.0	41
0.01	Millibelia Capling of an Onticelly Trans of Misson base in Massure Casterony Theory 2012 - 01 110		10
281	Millikeivin Cooling of an Optically frapped Microsphere in Vacuum. Springer Theses, 2013, , 81-110.	0.0	10
282	Optomechanical and photothermal interactions in suspended photonic crystal membranes. Optics Express, 2013, 21, 7258.	1.7	32
283	optomechanics. Optik, 2013, 124, 5267-5270.	1.4	1
284	Optomechanical effects in superfluid properties of BEC in an optical lattice. Open Physics, 2013, 11, .	0.8	0
201		0.0	0
285	Cooling a charged mechanical resonator with time-dependent bias gate voltages. Journal of Physics Condensed Matter, 2013, 25, 142201.	0.7	13
	Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane.		
286	Physical Review A, 2013, 87, .	1.0	60
287	Single-photon nonlinearities in two-mode optomechanics. Physical Review A, 2013, 87, .	1.0	146
288	Cold atoms in cavity-generated dynamical optical potentials. Reviews of Modern Physics, 2013, 85,	16.4	664
_00	553-601. 		
289	A short walk through quantum optomechanics. Annalen Der Physik, 2013, 525, 215-233.	0.9	349

#	Article	IF	CITATIONS
290	Optomechanical Cavity With a Buckled Mirror. Journal of Microelectromechanical Systems, 2013, 22, 430-437.	1.7	16
291	Ultra Low Power Consumption for Self-Oscillating Nanoelectromechanical Systems Constructed by Contacting Two Nanowires. Nano Letters, 2013, 13, 1451-1456.	4.5	14
292	Optomechanical effect on the Dicke quantum phase transition and quasi-particle damping in a Bose–Einstein condensate: a new tool to measure weak force. Journal of Modern Optics, 2013, 60, 1263-1272.	0.6	8
293	Entrainment of Micromechanical Limit Cycle Oscillators in the Presence of Frequency Instability. Journal of Microelectromechanical Systems, 2013, 22, 835-845.	1.7	13
294	THE SPECTRA AND OPTICAL BISTABILITY OF CAVITY FIELD COUPLED TO A MECHANICAL MIRROR. International Journal of Quantum Information, 2013, 11, 1350033.	0.6	4
295	Multiple limit cycles in laser interference transduced resonators. International Journal of Non-Linear Mechanics, 2013, 52, 119-126.	1.4	10
296	Review of cavity optomechanical cooling. Chinese Physics B, 2013, 22, 114213.	0.7	104
297	Waveguide coupled air-slot photonic crystal nanocavity for optomechanics. Optics Express, 2013, 21, 21961.	1.7	11
298	Dynamics of levitated nanospheres: towards the strong coupling regime. New Journal of Physics, 2013, 15, 015001.	1.2	45
299	Parametric mode mixing in asymmetric doubly clamped beam resonators. New Journal of Physics, 2013, 15, 015023.	1.2	22
300	Laser noise in cavity-optomechanical cooling and thermometry. New Journal of Physics, 2013, 15, 035007.	1.2	76
301	Driving a mechanical resonator into coherent states via random measurements. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 485305.	0.7	1
302	Optical back-action in silicon nanowire resonators: bolometric versus radiation pressure effects. New Journal of Physics, 2013, 15, 035001.	1.2	20
303	Photothermal Actuation of Cantilevered Multiwall Carbon Nanotubes with Bimaterial Configuration toward Calorimeter. Japanese Journal of Applied Physics, 2013, 52, 06CH02.	0.8	3
304	Confocal Scanner for Highly Sensitive Photonic Transduction of Nanomechanical Resonators. Applied Physics Express, 2013, 6, 065202.	1.1	13
305	Simultaneous electrical and optical readout of graphene-coated high Q silicon nitride resonators. Applied Physics Letters, 2013, 103, .	1.5	18
306	Anomalous dynamic backaction in interferometers. Physical Review A, 2013, 88, .	1.0	35
307	Collectively enhanced optomechanical coupling in periodic arrays of scatterers. Physical Review A, 2013, 88, .	1.0	45

#	Article	IF	CITATIONS
308	Ambient-dependent optomechanical control of cantilever with mechanical nonlinearity by cavity-induced radiation force. Applied Physics Letters, 2013, 102, .	1.5	14
309	Microwave amplification with nanomechanical resonators. , 2013, , .		0
310	EMISSION SPECTRUM OF A TWO-LEVEL ATOM IN AN OPTOMECHANICAL CAVITY. Modern Physics Letters B, 2013, 27, 1350226.	1.0	1
311	No-go theorem for ground state cooling given initial system-thermal bath factorization. Scientific Reports, 2013, 3, 1824.	1.6	23
312	Dynamical Casimir effect in superradiant light scattering by Bose—Einstein condensate in an optomechanical cavity. Chinese Physics B, 2014, 23, 020315.	0.7	7
313	Temperature dependence of the photothermal laser cooling efficiency for a micro-cantilever. Chinese Physics B, 2014, 23, 107801.	0.7	4
314	Cavity optomechanics. Reviews of Modern Physics, 2014, 86, 1391-1452.	16.4	4,064
315	Suspended Mirrors: From Test Masses to Micromechanics. , 2014, , 57-81.		0
316	Brillouin Optomechanics. , 2014, , 157-168.		0
317	Cooling the centre-of-mass motion of a silica microsphere. , 2014, , .		3
318	Light-to-matter entanglement transfer in optomechanics. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2821.	0.9	86
319	Aerostatically tunable optomechanical oscillators. Optics Express, 2014, 22, 1267.	1.7	36
320	Superradiance and collective gain in multimode optomechanics. Physical Review A, 2014, 90, .	1.0	30
321	A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors. Applied Physics Letters, 2014, 105, 042102.	1.5	7
322	Measurement of Enhanced Radiation Force on a Parallel Metallic-Plate System in the Microwave Regime. Physical Review Letters, 2014, 112, 045504.	2.9	7
323	Multistability of a Josephson parametric amplifier coupled to a mechanical resonator. Physical Review B, 2014, 90, .	1.1	3
324	Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation. Physical Review A, 2014, 90, .	1.0	11
325	Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Physical Review A, 2014, 90, .	1.0	149

ARTICLE IF CITATIONS # Applications of cavity optomechanics. Applied Physics Reviews, 2014, 1, 031105. 326 5.5 192 Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators. ACS Photonics, 2014, 1, 3.2 23 1181-1188. Phase Space Distribution Near the Self-Excited Oscillation Threshold. Physical Review Letters, 2014, 328 2.9 7 112, . Thermodynamic cycle in a cavity optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 135502. Exploring Coulomb interaction in piezoelectric materials for assisting the laser cooling of solids., 330 0 2014,,. Cavity Optomechanics with Whispering-Gallery-Mode Microresonators., 2014, , 121-148. Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 2014, 3, 332 2.9 82 413-440. Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity. Journal of 44 the Optical Society of America B: Optical Physics, 2014, 31, 1087. An Optomechanical Transducer Platform for Evanescent Field Displacement Sensing. IEEE Sensors 334 2.4 9 Journal, 2014, 14, 3473-3481. Optically Induced Self-Excited Oscillations in an On-Fiber Optomechanical Cavity. Journal of 1.7 Microelectromechanical Systems, 2014, 23, 563-569. Circuit optomechanics: concepts and materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and 336 3 1.7 Frequency Control, 2014, 61, 1889-1898. Excitations of optomechanically driven Boseâ€"Einstein condensates in a cavity: Photodetection 337 measurements. Chinese Physics B, 2014, 23, 100305. An optical fiber optofluidic particle aspirator. Applied Physics Letters, 2014, 105, . 338 1.5 2 Optical driving of macroscopic mechanical motion by a single two-level system. Physical Review A, 1.0 2014, 90, . 340 Optically induced forces in scanning probe microscopy. Nanophotonics, 2014, 3, 105-116. 2.9 7 Multimode laser cooling and ultra-high sensitivity force sensing with nanowires. Nature 341 5.8 Communications, 2014, 5, 4663. Dynamics and transmission of single two-level atom in an optomechanical system. European Physical 342 1.2 6 Journal Plus, 2014, 129, 1. 343 Nonlinear optomechanics in the stationary regime. Physical Review A, 2014, 89, . 58

	Сг	CITATION REPORT	
#	Article	IF	CITATIONS
344	Dynamic entanglement transfer in a double-cavity optomechanical system. Physical Review A, 2015, 9	92,. 1.0	30
345	Surface-plasmon-polariton–assisted dissipative backaction cooling and amplification. Physical Revie A, 2015, 92, .	w 1.0	1
346	Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes. Physical Review B, 2015, 92, .	1.1	103
347	Sound and noisy light: Optical control of phonons in photoswitchable structures. Physical Review B, 2015, 92, .	1.1	2
348	Single-Crystal Diamond Nanobeam Waveguide Optomechanics. Physical Review X, 2015, 5, .	2.8	60
349	Laser optomechanics. Scientific Reports, 2015, 5, 13700.	1.6	31
350	Dynamical backaction cooling with free electrons. Nature Communications, 2015, 6, 8104.	5.8	23
351	Controlling the opto-mechanics of a cantilever in an interferometer via cavity loss. Applied Physics Letters, 2015, 107, 123111.	1.5	5
352	Integrated III-V Photonic Crystal – Si waveguide platform with tailored optomechanical coupling. Scientific Reports, 2015, 5, 16526.	1.6	19
353	Selective nonresonant excitation of vibrational modes in suspended graphene via vibron–plasmon interaction. 2D Materials, 2015, 2, 045008.	2.0	Ο
354	Controlling optomechanically induced transparency through rotation. Europhysics Letters, 2015, 112 64002.	, 0.7	19
355	Nonresonant high-frequency excitation of mechanical vibrations in a movable quantum dot. New Journal of Physics, 2015, 17, 113057.	1.2	Ο
356	Synchronization in an optomechanical cavity. Physical Review E, 2015, 91, 032910.	0.8	34
357	Time-resolved phase-space tomography of an optomechanical cavity. Physical Review A, 2015, 91, .	1.0	6
358	Coupled Electromagnetic and Elastic Dynamics in Metamaterials. Springer Series in Materials Science, 2015, , 59-87.	0.4	0
359	Suspended photonic waveguide devices. Applied Optics, 2015, 54, F164.	2.1	18
360	Manipulating a micro-cantilever between its optomechanical bistable states in a lever-based Fabry-Pérot cavity. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-5.	2.0	4
361	Quantum state transfer between two distant membranes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 185501.	0.6	2

#	Article	IF	CITATIONS
362	Tracing the transition of a macro electron shuttle into nonlinear response. Applied Physics Letters, 2015, 106, 061909.	1.5	7
363	Nonresonant high frequency excitation of mechanical vibrations in a graphene based nanoresonator. New Journal of Physics, 2015, 17, 033016.	1.2	3
364	Quadrature squeezing of a mechanical resonator generated by the electromechanical coupling with two coupled quantum dots. Annalen Der Physik, 2015, 527, 169-179.	0.9	2
365	Delayed-response quantum back action in nanoelectromechanical systems. Physical Review B, 2015, 91, .	1.1	15
366	Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-large-amplitude regime. Physical Review A, 2015, 91, .	1.0	24
367	Dynamics of an optomechanical resonator containing a quantum well induced by periodic modulation of cavity field and external laser beam. Canadian Journal of Physics, 2015, 93, 716-724.	0.4	6
368	Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures. Nature Communications, 2015, 6, 8478.	5.8	24
369	Entanglement versus Gaussian quantum discord in a double-cavity opto-mechanical system. International Journal of Quantum Information, 2015, 13, 1550041.	0.6	14
370	Quantitative measurement of radiation pressure on a microcantilever in ambient environment. Applied Physics Letters, 2015, 106, 091107.	1.5	36
371	Temperature and non-linear response of cantilever-type mechanical oscillators used in atomic force microscopes with interferometric detection. Applied Physics Letters, 2015, 106, .	1.5	5
372	Classical and fluctuationâ€induced electromagnetic interactions in micronâ€scale systems: designer bonding, antibonding, and Casimir forces. Annalen Der Physik, 2015, 527, 45-80.	0.9	45
373	Normal-mode splitting and output-field squeezing in a Kerr-down conversion optomechanical system. Journal of Modern Optics, 2015, 62, 114-124.	0.6	16
374	Understanding interferometry for micro-cantilever displacement detection. Beilstein Journal of Nanotechnology, 2016, 7, 841-851.	1.5	11
375	Nanorobotics for NEMS Using Helical Nanostructures. , 2016, , 2659-2666.		1
376	Nanoengineered Concrete. , 2016, , 2369-2379.		1
377	Active control of probability amplitudes in a mesoscale system via feedback-induced suppression of dissipation and noise. Journal of Applied Physics, 2016, 120, 224902.	1.1	1
378	Wide-dynamic-range cantilever magnetometry using a fiber-optic interferometer and its application to high-frequency electron spin resonance spectroscopy. Applied Physics Express, 2016, 9, 126701.	1.1	8
379	Absolute rotation detection by Coriolis force measurement using optomechanics. New Journal of Physics, 2016, 18, 103047.	1.2	15

#	Article	IF	CITATIONS
380	Cancelation of thermally induced frequency shifts in bimaterial cantilevers by nonlinear optomechanical interactions. Applied Physics Letters, 2016, 109, .	1.5	16
381	Deviation from the Normal Mode Expansion in a Coupled Graphene-Nanomechanical System. Physical Review Applied, 2016, 6, .	1.5	20
382	Oscillation control of carbon nanotube mechanical resonator by electrostatic interaction induced retardation. Scientific Reports, 2016, 6, 22600.	1.6	11
383	Enhancing thermally induced effects on atomic force microscope cantilevers using optical microcavities. Applied Physics Express, 2016, 9, 126601.	1.1	6
384	Low power damping control of a resonant sensor using back action in silicon nanowires. , 2016, , .		10
385	Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nature Photonics, 2016, 10, 709-714.	15.6	134
386	Sensing dispersive and dissipative forces by an optomechanical cavity. Europhysics Letters, 2016, 115, 14001.	0.7	4
387	Strong quantum squeezing near the pull-in instability of a nonlinear beam. Physical Review A, 2016, 94,	1.0	5
388	Optical gradient force assist maneuver. Optics Letters, 2016, 41, 4142.	1.7	3
389	Ripplon laser through stimulated emission mediated by water waves. Nature Photonics, 2016, 10, 758-761.	15.6	28
390	Rotranslational cavity cooling of dielectric rods and disks. Physical Review A, 2016, 94, .	1.0	48
391	Alq ₃ coated silicon nanomembranes for cavity optomechanics. Proceedings of SPIE, 2016, ,	0.8	1
392	High Quality Factor Mechanical Resonators Based on WSe ₂ Monolayers. Nano Letters, 2016, 16, 5102-5108.	4.5	117
393	Ground-state cooling of quantum systems via a one-shot measurement. Physical Review A, 2016, 93, .	1.0	14
394	Ground-state cooling of micromechanical oscillators in the unresolved-sideband regime induced by a quantum well. Physical Review A, 2016, 93, .	1.0	27
395	Optically defined mechanical geometry. Physical Review A, 2016, 93, .	1.0	7
396	Devil's staircase in an optomechanical cavity. Physical Review E, 2016, 93, 023007.	0.8	9
397	Microphotonic Forces from Superfluid Flow. Physical Review X, 2016, 6, .	2.8	13

#	ARTICLE	IF	CITATIONS
398	Optomechanics for absolute rotation detection. Physical Review A, 2016, 94, .	1.0	16
399	Near-Field Integration of a SiN Nanobeam and a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>SiO</mml:mi><mml:mn>2</mml:mn></mml:msub>Microcay for Heisenberg-Limited Displacement Sensing, Physical Review Applied, 2016, 5, .</mml:math 	vity ⁵	48
400	Stable Optical Trap from a Single Optical Field Utilizing Birefringence. Physical Review Letters, 2016, 117, 213604.	2.9	20
401	Feedback control of two-mode output entanglement and steering in cavity optomechanics. Physical Review A, 2016, 94, .	1.0	27
402	Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Science Advances, 2016, 2, e1600485.	4.7	31
403	Gate-controlled electromechanical backaction induced by a quantum dot. Nature Communications, 2016, 7, 11132.	5.8	47
404	Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator. Nature Communications, 2016, 7, 12694.	5.8	28
405	Feedback damping of a microcantilever at room temperature to the minimum vibration amplitude limited by the noise level. Scientific Reports, 2016, 6, 27843.	1.6	5
406	Sympathetic laser cooling of graphene with Casimir-Polder forces. Physical Review A, 2016, 94, .	1.0	5
407	Quality-Factor Enhancement of Nanoelectromechanical Systems by Capacitive Driving Beyond Resonance. Physical Review Applied, 2016, 6, .	1.5	5
408	Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible 3He/10 T cryostat. Review of Scientific Instruments, 2016, 87, 073702.	0.6	4
409	Nanophononics: state of the art and perspectives. European Physical Journal B, 2016, 89, 1.	0.6	149
410	Dynamics and entanglement of a membrane-in-the-middle optomechanical system in the extremely-large-amplitude regime. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	27
411	Temporal Dynamics and Nonclassical Photon Statistics of Quadratically Coupled Optomechanical Systems. International Journal of Theoretical Physics, 2016, 55, 287-301.	0.5	12
412	Optomechanical electromagnetically induced transparency in inverted atomic configurations: a comparative view. Laser Physics, 2017, 27, 035202.	0.6	13
413	Real-Time Measurement of Nanotube Resonator Fluctuations in an Electron Microscope. Nano Letters, 2017, 17, 1748-1755.	4.5	33
414	Direct and parametric synchronization of a graphene self-oscillator. Applied Physics Letters, 2017, 110,	1.5	18
415	Controllable Bistability and Normal Mode Splitting in an Optomechanical System Assisted by an Atomic Ensemble. International Journal of Theoretical Physics, 2017, 56, 1635-1645.	0.5	2

#	Article	IF	CITATIONS
416	Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction. Nature Communications, 2017, 8, 14358.	5.8	47
417	Quantum feedback: Theory, experiments, and applications. Physics Reports, 2017, 679, 1-60.	10.3	181
418	Fundamental Limitation on Cooling under Classical Noise. Scientific Reports, 2017, 7, 176.	1.6	1
419	Dynamical Gaussian quantum steering in optomechanics. European Physical Journal D, 2017, 71, 1.	0.6	16
420	Enhancing amplitudes of higher-order eigenmodes of atomic force microscope cantilevers by laser for better mass sensing. Japanese Journal of Applied Physics, 2017, 56, 06GK05.	0.8	10
421	High-Q nested resonator in an actively stabilized optomechanical cavity. Applied Physics Letters, 2017, 110, 104104.	1.5	4
422	Optomechanics for thermal characterization of suspended graphene. Physical Review B, 2017, 96, .	1.1	38
423	Near-Surface Electronic Contribution to Semiconductor Elasticity. Physical Review Applied, 2017, 8, .	1.5	5
424	Mode-selective control of thermal Brownian vibration of micro-resonator (Generation of a thermal) Tj ETQq0 0 0	rgBT_/Ovei 1.5	rloçk 10 Tf 50
425	Resonance Control of a Graphene Drum Resonator in a Nonlinear Regime by a Standing Wave of Light. ACS Omega, 2017, 2, 5792-5797.	1.6	15
426	Quantum state atomic force microscopy. Physical Review A, 2017, 95, .	1.0	10
427	Optimal coating thickness for enhancement of optical effects in optical multilayer-based metrologies. Optics Communications, 2017, 403, 150-154.	1.0	9
428	Non-conservative optical forces. Reports on Progress in Physics, 2017, 80, 112001.	8.1	78
429	Enhanced photothermal cooling of nanowires. Quantum Science and Technology, 2017, 2, 034005.	2.6	0
430	Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity. Physical Review A, 2017, 96, .	1.0	36
431	Bistability in a Hybrid Optomechanical System under the Effect of a Nonlinear Medium. Chinese Physics Letters, 2017, 34, 084205.	1.3	6
432	Nonmonotonic dependence of bimaterial cantilever deflection on the coating thickness and the optimum thermal sensitivity. Journal of Applied Physics, 2017, 122, 224502.	1.1	4
433	Cavity Cooling of Many Atoms. Physical Review Letters, 2017, 118, 183601.	2.9	26

#	Article	IF	CITATIONS
434	Model and phase-diagram analysis of photothermal instabilities in an optomechanical resonator. New Journal of Physics, 2017, 19, 103008.	1.2	0
435	Optomechanical measurement of a millimeter-sized mechanical oscillator approaching the quantum ground state. New Journal of Physics, 2017, 19, 103014.	1.2	12
436	Tunable two-phonon higher-order sideband amplification in a quadratically coupled optomechanical system. Scientific Reports, 2017, 7, 17637.	1.6	21
437	Optomechanical coupling between AFM cantilever and semiconductor laser. IOP Conference Series: Materials Science and Engineering, 2017, 256, 012002.	0.3	Ο
438	A robust single-beam optical trap for a gram-scale mechanical oscillator. Scientific Reports, 2017, 7, 14546.	1.6	12
439	Role of optical density of states in Brillouin optomechanical cooling. Optics Express, 2017, 25, 776.	1.7	9
440	Suppression of optomechanical parametric oscillation in a toroid microcavity assisted by a Kerr comb. Optics Express, 2017, 25, 28806.	1.7	11
441	The vacuum friction paradox and related puzzles. Contemporary Physics, 2018, 59, 145-154.	0.8	4
442	Robustness of the Gaussian interferometric power in two optomechanical systems. International Journal of Quantum Information, 2018, 16, 1850015.	0.6	0
443	Optomechanics with a hybrid carbon nanotube resonator. Nature Communications, 2018, 9, 662.	5.8	42
444	Radiation-pressure-mediated control of an optomechanical cavity. Physical Review A, 2018, 97, .	1.0	22
445	Engineering the optical spring via intra-cavity optical-parametric amplification. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2238-2244.	0.9	15
446	Effective quality factor tuning mechanisms in micromechanical resonators. Applied Physics Reviews, 2018, 5, .	5.5	91
447	Micro Fabry-Pérot Interferometer at Rayleigh Range. Scientific Reports, 2018, 8, 15193.	1.6	4
448	Optomechanical effects in a macroscopic hybrid system. Physical Review A, 2018, 98, .	1.0	11
449	Nanomechanical Plasmon Spectroscopy of Single Gold Nanoparticles. Nano Letters, 2018, 18, 7165-7170.	4.5	21
450	Thermal-Piezoresistive Tuning of the Effective Quality Factor of a Micromechanical Resonator. Physical Review Applied, 2018, 10, .	1.5	14
451	Quadrature squeezing of a higher-order sideband spectrum in cavity optomechanics. Optics Letters, 2018, 43, 9.	1.7	43

		CITATION R	EPORT	
#	Article		IF	CITATIONS
452	Optomechanical Cavities for All-Optical Photothermal Sensing. ACS Photonics, 2018, 5	, 3214-3221.	3.2	14
453	Heisenberg-limited estimation of the coupling rate in an optomechanical system with a system. Physical Review A, 2018, 98, .	two-level	1.0	7
454	Electrically tunable plasmomechanical oscillators for localized modulation, transductior amplification. Optica, 2018, 5, 71.	ı, and	4.8	18
455	Unconventional photon blockade in three-mode optomechanics. Physical Review A, 201	18, 98, .	1.0	60
456	Measurement of Mechanical Deformations Induced by Enhanced Electromagnetic Stres Metallic-Plate System. Physical Review Letters, 2018, 121, 035502.	ss on a Parallel	2.9	1
457	Measurements of Radiation Pressure Owing to the Grating Momentum. Physical Review 121, 063903.	v Letters, 2018,	2.9	20
458	The amplitude of the cavity pump field and dissipation effects on the entanglement dyr statistical properties of an optomechanical system. Optics Communications, 2019, 452	namics and 2, 31-39.	1.0	9
459	Absolute deflection measurements in a micro- and nano-electromechanical Fabry-Perot interferometry system. Journal of Applied Physics, 2019, 126, .		1.1	6
460	Energy Transfer Control of Mode Cooling Induced by Capacitive Nonlinear Coupling in N Resonator. , 2019, , .	VEMS		0
461	Self-excited oscillation and synchronization of an on-fiber optomechanical cavity. Physic 2019, 100, 032202.	cal Review E,	0.8	9
462	Transmissivity of optomechanical system containing a two-level system. International Jo Modern Physics B, 2019, 33, 1950252.	ournal of	1.0	2
463	Swept-Frequency Drumhead Optomechanical Resonators. ACS Photonics, 2019, 6, 525	-530.	3.2	21
464	Dueling dynamical backaction in a cryogenic optomechanical cavity. Physical Review A,	2019, 99, .	1.0	7
465	Strain-induced exciton decomposition and anisotropic lifetime modulation in a GaAs mi resonator. Physical Review B, 2019, 99, .	cromechanical	1.1	0
466	Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical Physical Review A, 2019, 99, .	system.	1.0	36
467	High-frequency cavity optomechanics using bulk acoustic phonons. Science Advances, eaav0582.	2019, 5,	4.7	37
468	Optomechanical Measurement of Thermal Transport in Two-Dimensional MoSe _{24 Nano Letters, 2019, 19, 3143-3150.}	Lattices.	4.5	43
469	Optomechanically Induced Mode Transition and Spectrum Enhancement in a Microresc Annalen Der Physik, 2019, 531, 1800419.	onator System.	0.9	4

#	Article	IF	CITATIONS
470	Mechanical feedback cooling assisted by optical cavity cooling of the thermal vibration of a microcantilever. Scientific Reports, 2019, 9, 19094.	1.6	0
471	Phase space trajectories generated under coupling between a dynamic system and a thermal reservoir. Journal of Physics Communications, 2019, 3, 125003.	0.5	0
472	Coherent Optical Transduction of Suspended Microcapillary Resonators for Multi-Parameter Sensing Applications. Sensors, 2019, 19, 5069.	2.1	9
473	Floquet dynamics in the quantum measurement of mechanical motion. Physical Review A, 2019, 100, .	1.0	13
474	Vibration detection schemes based on absorbance tuning in monolayer molybdenum disulfide mechanical resonators. 2D Materials, 2019, 6, 011003.	2.0	4
475	Traceable atomic force microscope based on monochromatic light interference. Precision Engineering, 2020, 61, 48-54.	1.8	1
476	Lie algebraic approach to quantum driven optomechanics. Physica Scripta, 2020, 95, 035103.	1.2	4
477	Microwave and optical photons entanglement in a hybrid electro-optomechanical system: effect of a mechanical plasmonic waveguide at high temperatures. European Physical Journal Plus, 2020, 135, 1.	1.2	1
478	Induced Transparency with Optical Cavities. Advanced Photonics Research, 2020, 1, 2000009.	1.7	17
480	Quantum Thermodynamics and Optomechanics. Springer Theses, 2020, , .	0.0	1
480 481	Quantum Thermodynamics and Optomechanics. Springer Theses, 2020, , . Force Sensing with an Optomechanical Self-Oscillator. Physical Review Applied, 2020, 14, .	0.0	1 17
480 481 482	Quantum Thermodynamics and Optomechanics. Springer Theses, 2020, , . Force Sensing with an Optomechanical Self-Oscillator. Physical Review Applied, 2020, 14, . Widely Tunable Coupling between a Mechanical Mode and Cavity Photons via a Superconductor. Journal of the Korean Physical Society, 2020, 77, 927-930.	0.0 1.5 0.3	1 17 0
480 481 482 483	Quantum Thermodynamics and Optomechanics. Springer Theses, 2020, , . Force Sensing with an Optomechanical Self-Oscillator. Physical Review Applied, 2020, 14, . Widely Tunable Coupling between a Mechanical Mode and Cavity Photons via a Superconductor. Journal of the Korean Physical Society, 2020, 77, 927-930. Radiation pressure measurement using a macroscopic oscillator in an ambient environment. Scientific Reports, 2020, 10, 20419.	0.0 1.5 0.3 1.6	1 17 0 10
480 481 482 483 483	Quantum Thermodynamics and Optomechanics. Springer Theses, 2020, , . Force Sensing with an Optomechanical Self-Oscillator. Physical Review Applied, 2020, 14, . Widely Tunable Coupling between a Mechanical Mode and Cavity Photons via a Superconductor. Journal of the Korean Physical Society, 2020, 77, 927-930. Radiation pressure measurement using a macroscopic oscillator in an ambient environment. Scientific Reports, 2020, 10, 20419. Approximate Evolution for A Hybrid System—An Optomechanical Jaynes-Cummings Model. Entropy, 2020, 22, 1373.	0.0 1.5 0.3 1.6 1.1	1 17 0 10 2
480 481 482 483 483 484	Quantum Thermodynamics and Optomechanics. Springer Theses, 2020, , . Force Sensing with an Optomechanical Self-Oscillator. Physical Review Applied, 2020, 14, . Widely Tunable Coupling between a Mechanical Mode and Cavity Photons via a Superconductor. Journal of the Korean Physical Society, 2020, 77, 927-930. Radiation pressure measurement using a macroscopic oscillator in an ambient environment. Scientific Reports, 2020, 10, 20419. Approximate Evolution for A Hybrid System—An Optomechanical Jaynes-Cummings Model. Entropy, 2020, 22, 1373. Measurement-based cooling of a nonlinear mechanical resonator. Physical Review B, 2020, 101, .	0.0 1.5 0.3 1.6 1.1	1 17 0 10 2 14
480 481 482 483 483 484 486	Quantum Thermodynamics and Optomechanics. Springer Theses, 2020, , . Force Sensing with an Optomechanical Self-Oscillator. Physical Review Applied, 2020, 14, . Widely Tunable Coupling between a Mechanical Mode and Cavity Photons via a Superconductor. Journal of the Korean Physical Society, 2020, 77, 927-930. Radiation pressure measurement using a macroscopic oscillator in an ambient environment. Scientific Reports, 2020, 10, 20419. Approximate Evolution for A Hybrid System—An Optomechanical Jaynes-Cummings Model. Entropy, 2020, 22, 1373. Measurement-based cooling of a nonlinear mechanical resonator. Physical Review B, 2020, 101, . Thermal decoherence and laser cooling of Kerr microresonator solitons. Nature Photonics, 2020, 14, 480-485.	0.0 1.5 0.3 1.6 1.1 1.1 1.1	1 17 0 10 2 14 56
480 481 482 483 483 484 486 487	Quantum Thermodynamics and Optomechanics. Springer Theses, 2020, , .Force Sensing with an Optomechanical Self-Oscillator. Physical Review Applied, 2020, 14, .Widely Tunable Coupling between a Mechanical Mode and Cavity Photons via a Superconductor.Journal of the Korean Physical Society, 2020, 77, 927-930.Radiation pressure measurement using a macroscopic oscillator in an ambient environment. ScientificReports, 2020, 10, 20419.Approximate Evolution for A Hybrid Systemâ€"An Optomechanical Jaynes-Cummings Model. Entropy,2020, 22, 1373.Measurement-based cooling of a nonlinear mechanical resonator. Physical Review B, 2020, 101, .Thermal decoherence and laser cooling of Kerr microresonator solitons. Nature Photonics, 2020, 14, 480-485.Advances on studying optical forces: optical manipulation, optical cooling and light induced dynamics. Journal Physics D: Applied Physics, 2020, 53, 283001.	0.0 1.5 0.3 1.6 1.1 1.1 1.1 15.6	1 17 0 10 2 14 56 15

#	Article	IF	CITATIONS
490	Photothermally induced transparency. Science Advances, 2020, 6, eaax8256.	4.7	24
491	High sensitivity sensing system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure. Optics Communications, 2020, 470, 125392.	1.0	9
492	Strong optical coupling through superfluid Brillouin lasing. Nature Physics, 2020, 16, 417-421.	6.5	27
493	Optomechanical resonating probe for very high frequency sensing of atomic forces. Nanoscale, 2020, 12, 2939-2945.	2.8	28
494	Momentum-Topology-Induced Optical Pulling Force. Physical Review Letters, 2020, 124, 143901.	2.9	34
495	Competition between heating and cooling effects in an optomechanical oscillator using a squeezed field. Journal of Modern Optics, 2021, 68, 63-71.	0.6	3
496	Optical back-action on the photothermal relaxation rate. Optica, 2021, 8, 177.	4.8	5
497	Mechanical Dissipation Below <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mn>1</mml:mn><mml:mspace <br="" width="0.2em">/><mml:mi>μ</mml:mi><mml:mi>Hz</mml:mi></mml:mspace></mml:math> with a Cryogenic Diamagnetic Levitated Micro-Oscillator. Physical Review Applied. 2021, 15	1.5	21
498	Optical actuation of a micromechanical photodiode via the photovoltaic-piezoelectric effect. Microsystems and Nanoengineering, 2021, 7, 29.	3.4	4
499	Phonon lasing with an atomic thin membrane resonator at room temperature. Optics Express, 2021, 29, 16241.	1.7	4
500	Effect of mechanical mode - qubit interaction on perfect optical non-reciprocity in double cavity system. Journal of Physics: Conference Series, 2021, 1913, 012046.	0.3	0
501	Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system*. Chinese Physics B, 2021, 30, 054209.	0.7	3
502	Electro-Optomechanical Modulation Instability in a Semiconductor Resonator. Physical Review Letters, 2021, 126, 243901.	2.9	8
503	Polariton multistability in a nonlinear optomechanical cavity. Journal of Physics Condensed Matter, 2021, 33, 365302.	0.7	4
504	Plasmomechanical Systems: Principles and Applications. Advanced Functional Materials, 2021, 31, 2103706.	7.8	18
505	Tunable Amplification and Cooling of a Diamond Resonator with a Microscope. Physical Review Applied, 2021, 16, .	1.5	2
506	Floquet Phonon Lasing in Multimode Optomechanical Systems. Physical Review Letters, 2021, 127, 073601.	2.9	31
507	Accurate modeling and characterization of photothermal forces in optomechanics. APL Photonics, 2021, 6, 086101.	3.0	7

#	Article	IF	CITATIONS
508	Strong phonon-cavity coupling and parametric interaction in a single microcantilever under ambient conditions. Journal Physics D: Applied Physics, 2021, 54, 475307.	1.3	3
509	Photothermally induced transparency in coupled-cavity system. Physica Scripta, 2021, 96, 125109.	1.2	5
510	Imaging vibrations of electromechanical few layer graphene resonators with a moving vacuum enclosure. Precision Engineering, 2021, 72, 769-776.	1.8	2
513	Photonic Structures of Luminescent Semiconductor Nanocrystals and Spherical Microcavities. , 2009, , 653-703.		1
515	Quantum optics with micromirrors. Annales De Physique, 2007, 32, 33-38.	0.2	1
516	Eigenfrequency loci crossings, veerings and mode splittings of two cantilevers coupled by an overhang. Journal of Physics Communications, 2020, 4, 085010.	0.5	3
517	Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction. Physical Review Letters, 2008, 101, 133903.	2.9	184
518	Photonic tractor beams: a review. Advanced Photonics, 2019, 1, 1.	6.2	59
519	Optical pulling forces and their applications. Advances in Optics and Photonics, 2020, 12, 288.	12.1	99
520	Four-wave mixing response in a hybrid atom-optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 162.	0.9	14
521	Quantum repeater protocol using an arrangement of QED–optomechanical hybrid systems. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2669.	0.9	7
522	Polarization gradient cooling and trapping of charged and neutral microspheres. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 60.	0.9	3
523	Sensitive optomechanical transduction of electric and magnetic signals to the optical domain. Optics Express, 2019, 27, 18561.	1.7	13
524	Optomechanical cooling and self-stabilization of a waveguide coupled to a whispering-gallery-mode resonator. Photonics Research, 2020, 8, 844.	3.4	10
525	Quantum sensing with nanoparticles for gravimetry: when bigger is better. Advanced Optical Technologies, 2020, 9, 227-239.	0.9	30
527	Cooling photon-pressure circuits into the quantum regime. Science Advances, 2021, 7, eabg6653.	4.7	8
528	Quantum theory of cavity-assisted cantilever cooling. , 2007, , .		0
530	Optomechanics. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 153-164.	0.2	1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
531	Quantum Back Action in Tabletop Interferometers. , 2010, , .			0
532	Experimental Demonstration of Cryogenic Mirror Technique. TEION KOGAKU (Journal of Cryogenic	s) Tj ETQq1 1 ().784314 0.1	rg&T /Overlo
533	Normal mode splitting and cooling in strong coupling optomechanical cavity. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 124206.		0.2	10
534	Gravitational Wave Astronomy. Issues in Agroecology, 2011, , 87-106.		0.1	0
535	Dynamics of a tethered silicon photonic crystal membrane due to optical gradient, photothermal a Casimir forces. , 2012, , .	ınd		0
536	Achieving the Ground State and Enhancing Optomechanical Entanglement. , 2012, , 107-125.			0
537	Universal Entanglement Between an Oscillator and Continuous Fields. , 2012, , 127-139.			0
538	Mechanical Laser Cooling in Cryogenic Cavities. Springer Theses, 2012, , 101-121.		0.0	0
539	High-Reflectivity, High-Q Mechanical Resonators. Springer Theses, 2012, , 81-99.		0.0	0
541	Probing Macroscopic Quantum States. , 2012, , 165-202.			0
542	Applications of Transfer Matrices. Springer Theses, 2012, , 115-135.		0.0	0
543	Theoretical Study of Mechanical Control of Micro- and Nano-Mechanical Systems by Cavity-Induce Radiation Force. Japanese Journal of Applied Physics, 2012, 51, 06FH02.	d	0.8	0
544	Towards Quantum Ground-State Cooling. Springer Theses, 2013, , 111-122.		0.0	0
545	Quantum optomechanics. , 2014, , 321-350.			0
546	Nano-Optomechanical Systems (NOMS). , 2015, , 1-8.			0
547	Arrays of optomechanical systems. , 2015, , 296-317.			0
548	Single-photon optomechanics. , 2015, , 212-249.			0
549	Nano-optomechanical Systems (NOMS). , 2016, , 2539-2546.			0

		CITATION REPOR	т	
# 550	ARTICLE Chapter 13 Coulomb-Assisted Laser Cooling of Piezoelectric Semiconductors. , 2016, , 409-452		Ο Ο	ONS
551	Experimental Platform: Cryogenic Near-Field Cavity Optomechanics. Springer Theses, 2018, , 10	3-126. 0.	0 0	
552	Tunable Optomechanical Cavity Filters. , 2019, , .		0	
553	Radiation-Pressure-Mediated Control ofÂanÂOptomechanical Cavity. Springer Theses, 2020, , 6	7-79. 0.	0 1	
554	Optomechanical atomic force microscope. Nanotechnology, 2021, 32, 085505.	1.3	6	
555	Average Thermodynamics of Hybrid Optomechanical Systems. Springer Theses, 2020, , 29-44.	0.	0 0	
556	Ground-state cooling of mechanical resonator in double optical cavity. Wuli Xuebao/Acta Physic Sinica, 2020, 69, 064202.	a 0.1	2 3	
557	Light-Mediated Control of Superfluid Flow. Springer Theses, 2020, , 55-74.	0.0	0 0	
558	Photon force microelectromechanical system cantilever combined with a fibre optic system as a measurement technique for optomechanical studies. Measurement Science and Technology, 20 027001.	1.4	- 2	
559	Noise Reduction of a Mechanical Resonator by Laser Cooling. Vacuum and Surface Science, 202 536-541.	0, 63, 0.	D O	
561	Exact mode shapes of T-shaped and overhang-shaped microcantilevers. Communications in Phy 2020, 30, .	sics, 0.0) 2	
562	Quality factor control of mechanical resonators using variable phononic bandgap on periodic microstructures. Scientific Reports, 2022, 12, 392.	1.6	9	
563	Torsional optomechanical cooling of a nanofiber. Photonics Research, 2022, 10, 601.	3.4	5	
564	Robustness of quantum correlations in driven cavity optomechanical system interacted with squeezed light. Optik, 2022, 258, 168812.	1.4	3	
565	Magnomechanics in suspended magnetic beams. Physical Review B, 2021, 104, .	1.1	. 7	
566	Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity. P Quantum, 2022, 3, .	RX 3.5	6	
567	Improving the Stochastic Feedback Cooling of a Mechanical Oscillator Using a Degenerate Para Amplifier. Photonics, 2022, 9, 264.	metric 0.9) 1	
569	Radiation Pressure on a Graphene Layer Inserted Inside an Optical Microcavity. SSRN Electronic Journal, 0, , .	0.4	4 O	

#	Article	IF	CITATIONS
570	Entanglement between mechanical modes of an optomechanical system according to Simon and Mancini. Materials Today: Proceedings, 2022, 66, 181-186.	0.9	1
571	Operational regimes of lasers based on gain media with a large Raman scattering cross-section. Scientific Reports, 2022, 12, 7588.	1.6	1
572	Radiation pressure on a graphene layer inserted inside an optical microcavity. Optics Communications, 2022, 520, 128478.	1.0	0
573	Time-dependent quantum teleportation via a parametric converter. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 145501.	0.6	2
574	Superfluid SBS. Semiconductors and Semimetals, 2022, , 193-225.	0.4	0
575	The convergence of cavity optomechanics and Brillouin scattering. Semiconductors and Semimetals, 2022, , 93-131.	0.4	0
576	Thermal-piezoresistive pumping on double SiC layer resonator for effective quality factor tuning. Sensors and Actuators A: Physical, 2022, 343, 113678.	2.0	2
577	Quantum Biotechnology. Advanced Quantum Technologies, 2022, 5, .	1.8	5
578	Two-color transparency in a hybrid photothermal cavity system. European Physical Journal Plus, 2022, 137, .	1.2	0
579	From cavity optomechanics to cavity-less exciton optomechanics: a review. Nanoscale, 2022, 14, 16710-16730.	2.8	4
580	Soft-Clamped Silicon Nitride String Resonators at Millikelvin Temperatures. Physical Review Letters, 2022, 129, .	2.9	3
581	Emerging low-dimensional materials for nanoelectromechanical systems resonators. Materials Research Letters, 2023, 11, 21-52.	4.1	6
582	Photothermal effect in macroscopic optomechanical systems with an intracavity nonlinear optical crystal. Optics Express, 2022, 30, 42579.	1.7	0
583	Coupled spherical-cavities. AIP Advances, 2022, 12, .	0.6	3
584	Unconventional photon blockade in four mode coupled optomechanical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 462, 128653.	0.9	1
585	Unconventional magnon blockade in a superconducting qubit coupled magnomechanical system. European Physical Journal D, 2023, 77, .	0.6	2
586	Extreme mechanical tunability in suspended MoS2 resonator controlled by Joule heating. Npj 2D Materials and Applications, 2023, 7, .	3.9	6
587	Dynamical backaction evading magnomechanics. Physical Review B, 2023, 107, .	1.1	9

#	Article	IF	CITATIONS
590	Applications of Radiation Pressure Force on a Thin Diffractive Film. , 2023, , .		0
592	The Influence of an Extended Optical Mode on the Performance of Microcavity Forced Oscillator. Lecture Notes in Networks and Systems, 2023, , 289-298.	0.5	1