Morning and evening peaks of activity rely on different brain

Nature

431, 869-873

DOI: 10.1038/nature02935

Citation Report

#	Article	IF	CITATIONS
2	Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature, 2004, 431, 862-868.	13.7	626
3	Sunrise and sunset in fly brains. Nature, 2004, 431, 751-752.	13.7	11
4	Accessing a transporter structure. Nature, 2004, 431, 752-753.	13.7	11
5	Brain clocks for morning and evening behaviour. Journal of Genetics, 2004, 83, 227-230.	0.4	O
6	PER/TIM-mediated amplification, gene dosage effects and temperature compensation in an interlocking-feedback loop model of the Drosophila circadian clock. Journal of Theoretical Biology, 2005, 237, 41-57.	0.8	40
7	Temperature cycles driveDrosophilacircadian oscillation in constant light that otherwise induces behavioural arrhythmicity. European Journal of Neuroscience, 2005, 22, 1176-1184.	1.2	107
8	Measuring Seasonal Time within the Circadian System: Regulation of the Suprachiasmatic Nuclei by Photoperiod. Journal of Neuroendocrinology, 2005, 17, 459-465.	1.2	41
9	A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature, 2005, 438, 238-242.	13.7	264
10	Clock coordination. Nature, 2005, 438, 173-175.	13.7	8
12	The Circadian Timekeeping System of Drosophila. Current Biology, 2005, 15, R714-R722.	1.8	384
13	Circadian Pathway: The Other Shoe Drops. Current Biology, 2005, 15, R987-R989.	1.8	2
14	Clock genes of mammalian cells: Practical implications in tissue culture. In Vitro Cellular and Developmental Biology - Animal, 2005, 41, 311-320.	0.7	22
16	Two Antiphase Oscillations Occur in Each Suprachiasmatic Nucleus of Behaviorally Split Hamsters. Journal of Neuroscience, 2005, 25, 9017-9026.	1.7	93
17	Drosophila Olfactory Response Rhythms Require Clock Genes but Not Pigment Dispersing Factor or Lateral Neurons. Journal of Biological Rhythms, 2005, 20, 237-244.	1.4	45
18	CLOCK GENES OF MAMMALIAN CELLS: PRACTICAL IMPLICATIONS IN TISSUE CULTURE. In Vitro Cellular and Developmental Biology - Animal, 2005, 41, 311.	0.7	1
19	Thinking about Visual Behavior; Learning about Photoreceptor Function. Current Topics in Developmental Biology, 2005, 69, 187-213.	1.0	23
20	Why and How Do We Model Circadian Rhythms?. Journal of Biological Rhythms, 2005, 20, 304-313.	1.4	26
21	Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19021-19026.	3.3	36

#	Article	IF	Citations
22	CAN FLIES TELL THE TIME?. Journal of Experimental Biology, 2005, 208, iv-iv.	0.8	0
23	The clock gene period in the medfly Ceratitis capitata. Genetical Research, 2005, 86, 13-30.	0.3	19
24	Structural daily rhythms in GFP-labelled neurons in the visual system of Drosophila melanogaster. Photochemical and Photobiological Sciences, 2005, 4, 721.	1.6	40
25	Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nature Reviews Genetics, 2005, 6, 544-556.	7.7	1,205
26	Connecting the Navigational Clock to Sun Compass Input in Monarch Butterfly Brain. Neuron, 2005, 46, 457-467.	3.8	183
27	Drosophila GPCR Han Is a Receptor for the Circadian Clock Neuropeptide PDF. Neuron, 2005, 48, 267-278.	3.8	278
28	A G Protein-Coupled Receptor, groom-of-PDF, Is Required for PDF Neuron Action in Circadian Behavior. Neuron, 2005, 48, 221-227.	3.8	217
29	PDF Receptor Signaling in Drosophila Contributes to Both Circadian and Geotactic Behaviors. Neuron, 2005, 48, 213-219.	3.8	313
30	The Ion Channel Narrow Abdomen Is Critical for Neural Output of the Drosophila Circadian Pacemaker. Neuron, 2005, 48, 965-976.	3.8	94
31	Systems Approaches to Biological Rhythms in Drosophila. Methods in Enzymology, 2005, 393, 61-185.	0.4	47
32	Entrainment of the Neurospora Circadian Clock. Chronobiology International, 2006, 23, 71-80.	0.9	24
33	Neural circuits underlying circadian behavior in Drosophila melanogaster. Behavioural Processes, 2006, 71, 211-225.	0.5	34
34	Multiple and Slave Oscillators. , 0, , 57-83.		3
35	Electrophysiological and Anatomical Characterization of PDF-Positive Clock Neurons in the Intact Adult Drosophila Brain. Journal of Neurophysiology, 2006, 95, 3955-3960.	0.9	53
36	The neural basis of Drosophila's circadian clock. Sleep and Biological Rhythms, 2006, 4, 224-234.	0.5	26
37	Entrainment of Drosophila circadian rhythms by temperature cycles. Sleep and Biological Rhythms, 2006, 4, 240-247.	0.5	13
38	Drosophila and mammalian circadian systems: Similarities on the surface, some differences at the core. Sleep and Biological Rhythms, 2006, 4, 235-239.	0.5	0
39	A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nature Neuroscience, 2006, 9, 212-219.	7.1	150

#	Article	IF	CITATIONS
40	Molecular genetics of the fruit-fly circadian clock. European Journal of Human Genetics, 2006, 14, 729-738.	1.4	44
41	Circadian regulation of egg-laying behavior in fruit flies Drosophila melanogaster. Journal of Insect Physiology, 2006, 52, 779-785.	0.9	45
42	Reevaluation of Drosophila melanogaster's neuronal circadian pacemakers reveals new neuronal classes. Journal of Comparative Neurology, 2006, 498, 180-193.	0.9	182
43	Control of Daily Transcript Oscillations in Drosophila by Light and the Circadian Clock. PLoS Genetics, 2006, 2, e39.	1.5	113
44	Mechanisms of Clock Output in the Drosophila Circadian Pacemaker System. Journal of Biological Rhythms, 2006, 21, 445-457.	1.4	84
45	Electrical Hyperexcitation of Lateral Ventral Pacemaker Neurons Desynchronizes Downstream Circadian Oscillators in the Fly Circadian Circuit and Induces Multiple Behavioral Periods. Journal of Neuroscience, 2006, 26, 479-489.	1.7	251
46	Functional Analysis of Circadian Pacemaker Neurons in Drosophila melanogaster. Journal of Neuroscience, 2006, 26, 2531-2543.	1.7	198
47	Sex- and clock-controlled expression of the neuropeptide F gene in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12580-12585.	3.3	145
48	PDF Cycling in the Dorsal Protocerebrum of the Drosophila Brain Is Not Necessary for Circadian Clock Function. Journal of Biological Rhythms, 2006, 21, 104-117.	1.4	45
49	Two Circadian Timing Circuits in Neurospora crassa Cells Share Components and Regulate Distinct Rhythmic Processes. Journal of Biological Rhythms, 2006, 21, 159-168.	1.4	53
50	Moonlight shifts the endogenous clock of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3538-3543.	3.3	129
51	Hofbauer-Buchner Eyelet Affects Circadian Photosensitivity and Coordinates TIM and PER Expression in Drosophila Clock Neurons. Journal of Biological Rhythms, 2007, 22, 29-42.	1.4	73
52	Interactions between Circadian Neurons Control Temperature Synchronization of <i>Drosophila </i> Behavior. Journal of Neuroscience, 2007, 27, 10722-10733.	1.7	82
53	Impaired clock output by altered connectivity in the circadian network. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5650-5655.	3.3	51
54	Light Activates Output from Evening Neurons and Inhibits Output from Morning Neurons in the Drosophila Circadian Clock. PLoS Biology, 2007, 5, e315.	2.6	134
55	Inducible and Reversible Clock Gene Expression in Brain Using the tTA System for the Study of Circadian Behavior. PLoS Genetics, 2007, 3, e33.	1.5	54
56	Integration of Light and Temperature in the Regulation of Circadian Gene Expression in Drosophila. PLoS Genetics, 2007, 3, e54.	1.5	160
57	What Makes a Fly Enter Diapause?. Fly, 2007, 1, 307-310.	0.9	47

#	ARTICLE	IF	CITATIONS
58	Separate Sets of Cerebral Clock Neurons Are Responsible for Light and Temperature Entrainment of Drosophila Circadian Locomotor Rhythms. Journal of Biological Rhythms, 2007, 22, 115-126.	1.4	111
59	Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component. Genes and Development, 2007, 21, 1675-1686.	2.7	166
60	Functional Role of CREB-Binding Protein in the Circadian Clock System of Drosophila melanogaster. Molecular and Cellular Biology, 2007, 27, 4876-4890.	1.1	47
61	Intracellular Ca ²⁺ Regulates Free-Running Circadian Clock Oscillation <i>In Vivo</i> Journal of Neuroscience, 2007, 27, 12489-12499.	1.7	119
62	A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes and Development, 2007, 21, 1687-1700.	2.7	150
63	Thermosensitive Splicing of a Clock Gene and Seasonal Adaptation. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 599-606.	2.0	24
64	Transcriptional Feedback Loop Regulation, Function, and Ontogeny in <i>Drosophila</i> . Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 437-444.	2.0	24
65	What Is There Left to Learn about the <i>Drosophila </i> Clock?. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 243-250.	2.0	5
66	Circadian control of the sleep–wake cycle. Physiology and Behavior, 2007, 90, 190-195.	1.0	75
67	A Subset of Dorsal Neurons Modulates Circadian Behavior and Light Responses in Drosophila. Neuron, 2007, 53, 689-701.	3.8	119
68	Two Oscillators Are Better Than One: A Circadian Pacemaker Escapes from the Light. Neuron, 2007, 53, 621-623.	3.8	0
69	Glia Got Rhythm. Neuron, 2007, 55, 337-339.	3.8	3
70	The suprachiasmatic nucleus functions beyond circadian rhythm generation. Neuroscience, 2007, 149, 508-517.	1.1	109
71	The Drosophila Circadian Network Is a Seasonal Timer. Cell, 2007, 129, 207-219.	13.5	221
72	A Blend of Two Circadian Clocks, Seasoned to Perfection. Cell, 2007, 129, 21-23.	13.5	0
73	The Inner Life of Bursts. Neuron, 2007, 55, 339-341.	3 . 8	4
74	Two Oscillators Might Control the Locomotor Activity Rhythm of the Highâ€Altitude Himalayan Strain ofDrosophila Helvetica. Chronobiology International, 2007, 24, 821-834.	0.9	9
75	Selection on the timing of adult emergence results in altered circadian clocks in fruit flies Drosophila melanogaster. Journal of Experimental Biology, 2007, 210, 906-918.	0.8	34

#	Article	IF	Citations
76	Natural plasticity in circadian rhythms is mediated by reorganization in the molecular clockwork in honeybees. FASEB Journal, 2007, 21, 2304-2311.	0.2	67
77	5-HT2 receptors in Drosophila are expressed in the brain and modulate aspects of circadian behaviors. Developmental Neurobiology, 2007, 67, 752-763.	1.5	67
78	Start the clock! Circadian rhythms and development. Developmental Dynamics, 2007, 236, 142-155.	0.8	61
79	Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. Journal of Comparative Neurology, 2007, 500, 47-70.	0.9	207
80	Glutamate and its metabotropic receptor in <i>Drosophila</i> clock neuron circuits. Journal of Comparative Neurology, 2007, 505, 32-45.	0.9	87
81	Neurons and networks in daily rhythms. Nature Reviews Neuroscience, 2007, 8, 790-802.	4.9	259
82	Possible evidence for morning and evening oscillators in Drosophila melanogaster populations selected for early and late adult emergence. Journal of Insect Physiology, 2007, 53, 332-342.	0.9	7
83	Neuroanatomical Approaches to the Study of Insect Photoperiodismâ€. Photochemistry and Photobiology, 2007, 83, 76-86.	1.3	43
84	Even a stopped clock tells the right time twice a day: circadian timekeeping in Drosophila. Pflugers Archiv European Journal of Physiology, 2007, 454, 857-867.	1.3	14
85	A Plastic Clock: How Circadian Rhythms Respond to Environmental Cues in Drosophila. Molecular Neurobiology, 2008, 38, 129-145.	1.9	117
86	The Drosophila melanogaster circadian pacemaker circuit. Journal of Genetics, 2008, 87, 485-493.	0.4	29
87	A peripheral pacemaker drives the circadian rhythm of synaptic boutons in Drosophila independently of synaptic activity. Cell and Tissue Research, 2008, 334, 103-109.	1.5	15
88	Cryptochrome is present in the compound eyes and a subset of <i>Drosophila</i> 's clock neurons. Journal of Comparative Neurology, 2008, 508, 952-966.	0.9	221
89	Circadian release of pigmentâ€dispersing factor in the visual system of the housefly, <i>Musca domestica</i> . Journal of Comparative Neurology, 2008, 509, 422-435.	0.9	16
90	For whom the bells toll: Networked circadian clocks. Sleep and Biological Rhythms, 2008, 6, 67-75.	0.5	7
91	Organization of cell and tissue circadian pacemakers: A comparison among species. Brain Research Reviews, 2008, 58, 18-47.	9.1	72
92	Organization of the Drosophila Circadian Control Circuit. Current Biology, 2008, 18, R84-R93.	1.8	274
93	Circatidal clocks. Current Biology, 2008, 18, R753-R755.	1.8	46

#	Article	IF	Citations
94	Large Ventral Lateral Neurons Modulate Arousal and Sleep in Drosophila. Current Biology, 2008, 18, 1537-1545.	1.8	260
95	Clines in clock genes: fine-tuning circadian rhythms to the environment. Trends in Genetics, 2008, 24, 124-132.	2.9	140
96	The Blue-Light Photoreceptor CRYPTOCHROME is Expressed in a Subset of Circadian Oscillator Neurons in the <i>Drosophila</i> CNS. Journal of Biological Rhythms, 2008, 23, 296-307.	1.4	94
98	Widespread Receptivity to Neuropeptide PDF throughout the Neuronal Circadian Clock Network of Drosophila Revealed by Real-Time Cyclic AMP Imaging. Neuron, 2008, 58, 223-237.	3.8	295
99	PDF Cells Are a GABA-Responsive Wake-Promoting Component of the Drosophila Sleep Circuit. Neuron, 2008, 60, 672-682.	3.8	366
100	The Biological Clock and Its Resetting by Light. , 2008, , 321-388.		3
101	The <i>Drosophila</i> Circadian Pacemaker Circuit: Pas de Deux or Tarantella?. Critical Reviews in Biochemistry and Molecular Biology, 2008, 43, 37-61.	2.3	36
102	Absolute Temperature. , 2008, , 2-2.		1
103	Behavioral Dissection of the Drosophila Circadian Multioscillator System that Regulates Locomotor Rhythms. Zoological Science, 2008, 25, 1146-1155.	0.3	9
104	Circadian Phenotypes of Drosophila Fragile X Mutants in Alternative Genetic Backgrounds. Zoological Science, 2008, 25, 561-571.	0.3	18
105	Circadian Control of Membrane Excitability in Drosophila melanogaster Lateral Ventral Clock Neurons. Journal of Neuroscience, 2008, 28, 6493-6501.	1.7	141
106	Pigment Dispersing Factor-Dependent and -Independent Circadian Locomotor Behavioral Rhythms. Journal of Neuroscience, 2008, 28, 217-227.	1.7	62
107	Photoperiodic Induction of Diapause Requires Regulated Transcription of <i>timeless </i> in the Larval Brain of <i>Chymomyza costata </i> . Journal of Biological Rhythms, 2008, 23, 129-139.	1.4	88
108	Drosophila ATF-2 Regulates Sleep and Locomotor Activity in Pacemaker Neurons. Molecular and Cellular Biology, 2008, 28, 6278-6289.	1.1	24
109	Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the <i>Drosophila</i> brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19587-19594.	3.3	275
110	S-Phase and M-Phase Timing Are under Independent Circadian Control in the Dinoflagellate <i>Lingulodinium</i> . Journal of Biological Rhythms, 2008, 23, 400-408.	1.4	19
111	Pigment-Dispersing Factor (PDF) Has Different Effects on <i>Drosophila </i> 's Circadian Clocks in the Accessory Medulla and in the Dorsal Brain. Journal of Biological Rhythms, 2008, 23, 409-424.	1.4	65
112	Circadian Remodeling of Neuronal Circuits Involved in Rhythmic Behavior. PLoS Biology, 2008, 6, e69.	2.6	192

#	Article	IF	CITATIONS
113	Lego clocks: building a clock from parts. Genes and Development, 2008, 22, 1422-1426.	2.7	10
114	Dominant-Negative CK2α Induces Potent Effects on Circadian Rhythmicity. PLoS Genetics, 2008, 4, e12.	1.5	47
115	TIMELESS Is an Important Mediator of CK2 Effects on Circadian Clock Function (i>In Vivo (i>. Journal of Neuroscience, 2008, 28, 9732-9740.	1.7	39
116	Electrical Silencing of PDF Neurons Advances the Phase of non-PDF Clock Neurons in <i>Drosophila</i> . Journal of Biological Rhythms, 2008, 23, 117-128.	1.4	50
117	Neurotransmitter-Mediated Collective Rhythms in Grouped Drosophila Circadian Clocks. Journal of Biological Rhythms, 2008, 23, 472-482.	1.4	22
118	The Clockwork Orange <i>Drosophila</i> Protein Functions as Both an Activator and a Repressor of Clock Gene Expression. Journal of Biological Rhythms, 2008, 23, 103-116.	1.4	82
119	PDF as a coupling mediator between the light-entrainable and temperature-entrainable clocks inDrosophila melanogaster. Acta Biologica Hungarica, 2008, 59, 149-155.	0.7	10
120	Phase Coupling of a Circadian Neuropeptide With Rest/Activity Rhythms Detected Using a Membrane-Tethered Spider Toxin. PLoS Biology, 2008, 6, e273.	2.6	53
121	Perturbing Dynamin Reveals Potent Effects on the Drosophila Circadian Clock. PLoS ONE, 2009, 4, e5235.	1.1	26
122	Temporal requirements of the fragile X mental retardation protein in modulating circadian clock circuit synaptic architecture. Frontiers in Neural Circuits, 2009, 3, 8.	1.4	42
123	Phase organization of circadian oscillators in extended gate and oscillator models. Nature Precedings, 2009, , .	0.1	0
124	Does the Morning and Evening Oscillator Model Fit Better for Flies or Mice?. Journal of Biological Rhythms, 2009, 24, 259-270.	1.4	63
125	Pigment Dispersing Factor: An Output Regulator of the Circadian Clock in the German Cockroach. Journal of Biological Rhythms, 2009, 24, 35-43.	1.4	38
126	Comparative Analysis of Pdf-Mediated Circadian Behaviors Between <i>Drosophila melanogaster</i> and <i>D. virilis</i> . Genetics, 2009, 181, 965-975.	1.2	69
127	A Role for Blind DN2 Clock Neurons in Temperature Entrainment of the Drosophila Larval Brain. Journal of Neuroscience, 2009, 29, 8312-8320.	1.7	41
128	HSP90, a Capacitor of Behavioral Variation. Journal of Biological Rhythms, 2009, 24, 183-192.	1.4	20
129	The Neuropeptide Pigment-Dispersing Factor Adjusts Period and Phase of <i>Drosophila' </i> Clock. Journal of Neuroscience, 2009, 29, 2597-2610.	1.7	225
130	<i>Period </i> Gene Expression in Four Neurons Is Sufficient for Rhythmic Activity of <i>Drosophila melanogaster</i> under Dim Light Conditions. Journal of Biological Rhythms, 2009, 24, 271-282.	1.4	51

#	Article	IF	CITATIONS
131	Roles of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, <i>Protophormia terraenovae</i> . Journal of Experimental Biology, 2009, 212, 867-877.	0.8	81
132	The Neuropeptide PDF Acts Directly on Evening Pacemaker Neurons to Regulate Multiple Features of Circadian Behavior. PLoS Biology, 2009, 7, e1000154.	2.6	93
133	Synergic Entrainment of <i>Drosophila's</i> Circadian Clock by Light and Temperature. Journal of Biological Rhythms, 2009, 24, 452-464.	1.4	106
134	Analysis of the i>Drosophila Clock i>Promoter Reveals Heterogeneity in Expression between Subgroups of Central Oscillator Cells and Identifies a Novel Enhancer Region. Journal of Biological Rhythms, 2009, 24, 353-367.	1.4	99
135	Understanding the neurogenetics of sleep: progress from Drosophila. Trends in Genetics, 2009, 25, 262-269.	2.9	48
136	Clock genes period and timeless are rhythmically expressed in brains of newly hatched, photosensitive larvae of the fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 2009, 55, 408-414.	0.9	42
137	Body size-related variation in Pigment Dispersing Factor-immunoreactivity in the brain of the bumblebee Bombus terrestris (Hymenoptera, Apidae). Journal of Insect Physiology, 2009, 55, 479-487.	0.9	30
138	Cellular Dissection of Circadian Peptide Signals with Genetically Encoded Membrane-Tethered Ligands. Current Biology, 2009, 19, 1167-1175.	1.8	76
139	The CRYPTOCHROME Photoreceptor Gates PDF Neuropeptide Signaling to Set Circadian Network Hierarchy in Drosophila. Current Biology, 2009, 19, 2050-2055.	1.8	45
140	Peptidergic clock neurons in <i>Drosophila</i> : Ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. Journal of Comparative Neurology, 2009, 516, 59-73.	0.9	181
141	The circadian timing system in the brain of the fifth larval instar of <i>Rhodnius prolixus </i> (hemiptera). Journal of Comparative Neurology, 2010, 518, 1264-1282.	0.9	45
142	The Fragile X Mental Retardation Protein in Circadian Rhythmicity and Memory Consolidation. Molecular Neurobiology, 2009, 39, 107-129.	1.9	32
143	Remodeling the clock: coactivators and signal transduction in the circadian clockworks. Die Naturwissenschaften, 2009, 96, 321-337.	0.6	19
144	PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila. Nature Neuroscience, 2009, 12, 1431-1437.	7.1	77
145	From daily behavior to hormonal and neurotransmitters rhythms: Comparison between diurnal and nocturnal rat species. Hormones and Behavior, 2009, 55, 338-347.	1.0	100
146	BLOCKING ENDOCYTOSIS IN <i>DROSOPHILA'S</i> CIRCADIAN PACEMAKER NEURONS INTERFERES WITH THE ENDOGENOUS CLOCK IN A PDF-DEPENDENT WAY. Chronobiology International, 2009, 26, 1307-1322.	0.9	20
147	Increased Late Night Response to Light Controls the Circadian Pacemaker in a Nocturnal Primate. Journal of Biological Rhythms, 2010, 25, 186-196.	1.4	11
148	A comparative view of insect circadian clock systems. Cellular and Molecular Life Sciences, 2010, 67, 1397-1406.	2.4	143

#	Article	IF	CITATIONS
149	Effect of photoperiod on clock gene expression and subcellular distribution of PERIOD in the circadian clock neurons of the blow fly Protophormia terraenovae. Cell and Tissue Research, 2010, 340, 497-507.	1.5	23
150	The neuronal network of the endogenous clock. E-Neuroforum, 2010, 16, 17-22.	0.2	1
151	Circadian Biology: Environmental Regulation of a Multi-Oscillator Network. Current Biology, 2010, 20, R322-R324.	1.8	9
152	Apoptosis: Conserved Roles for Integrins in Clearance. Current Biology, 2010, 20, R324-R327.	1.8	10
153	Light and Temperature Control the Contribution of Specific DN1 Neurons to Drosophila Circadian Behavior. Current Biology, 2010, 20, 600-605.	1.8	164
154	DN1p Circadian Neurons Coordinate Acute Light and PDF Inputs to Produce Robust Daily Behavior in Drosophila. Current Biology, 2010, 20, 591-599.	1.8	158
155	Synaptic connections of PDFâ€immunoreactive lateral neurons projecting to the dorsal protocerebrum of <i>Drosophila melanogaster</i>). Journal of Comparative Neurology, 2010, 518, 292-304.	0.9	53
156	PDF receptor expression reveals direct interactions between circadian oscillators in <i>drosophila</i> . Journal of Comparative Neurology, 2010, 518, 1925-1945.	0.9	166
157	Phase organization of circadian oscillators in extended gate and oscillator models. Journal of Theoretical Biology, 2010, 264, 367-376.	0.8	4
158	Evening circadian oscillator as the primary determinant of rhythmic motivation for <i>Drosophila</i> courtship behavior. Genes To Cells, 2010, 15, 1240-1248.	0.5	30
159	Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nature Neuroscience, 2010, 13, 60-68.	7.1	135
160	Clocks not winding down: unravelling circadian networks. Nature Reviews Molecular Cell Biology, 2010, 11, 764-776.	16.1	394
161	Circadian clocks in crustaceans: identified neuronal and cellular systems. Frontiers in Bioscience - Landmark, 2010, 15, 1040.	3.0	89
162	The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules. PLoS ONE, 2010, 5, e15316.	1.1	35
163	Biological clocks and rhythms in intertidal crustaceans. Frontiers in Bioscience - Elite, 2010, E2, 1394-1404.	0.9	9
165	Surprising gene expression patterns within and between PDF-containing circadian neurons in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13497-13502.	3.3	154
166	The Transcription Factor Mef2 Is Required for Normal Circadian Behavior in Drosophila. Journal of Neuroscience, 2010, 30, 5855-5865.	1.7	53
167	Ventral lateral and DN1 clock neurons mediate distinct properties of male sex drive rhythm in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10590-10595.	3.3	42

#	Article	IF	Citations
168	Fragile X mental retardation protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P or FXR2P. DMM Disease Models and Mechanisms, 2010, 3, 471-485.	1.2	58
169	Drosophila neuropeptides in regulation of physiology and behavior. Progress in Neurobiology, 2010, 92, 42-104.	2.8	442
170	MOLECULAR CLONING, TISSUE DISTRIBUTION, AND DAILY RHYTHMS OF EXPRESSION OF <i>PER1 </i> FUROPEAN SEA BASS (<i>DICENTRARCHUS LABRAX </i> Functional (i) Chronobiology International (i) 2010, 27, 19-33.	0.9	51
171	The rhythmic characteristics of locomotion between females and males inDrosophila melanogasteras detected by manual recordings. Biological Rhythm Research, 2010, 41, 349-361.	0.4	2
172	Functional Conservation of Clock Output Signaling between Flies and Intertidal Crabs. Journal of Biological Rhythms, 2011, 26, 518-529.	1.4	11
173	Circadian Plasticity: From Structure to Behavior. International Review of Neurobiology, 2011, 99, 107-138.	0.9	22
174	Signalling through pigment dispersing hormone-like peptides in invertebrates. Progress in Neurobiology, 2011, 93, 125-147.	2.8	60
175	Fragile X mental retardation protein is required for programmed cell death and clearance of developmentally-transient peptidergic neurons. Developmental Biology, 2011, 356, 291-307.	0.9	29
176	Biochemical Frequency Control by Synchronisation of Coupled Repressilators: AnIn SilicoStudy of Modules for Circadian Clock Systems. Computational Intelligence and Neuroscience, 2011, 2011, 1-9.	1.1	7
177	PDFR and CRY Signaling Converge in a Subset of Clock Neurons to Modulate the Amplitude and Phase of Circadian Behavior in Drosophila. PLoS ONE, 2011, 6, e18974.	1.1	65
178	The Clock Input to the First Optic Neuropil of Drosophila melanogaster Expressing Neuronal Circadian Plasticity. PLoS ONE, 2011, 6, e21258.	1.1	25
179	Circadian Consequence of Socio-Sexual Interactions in Fruit Flies Drosophila melanogaster. PLoS ONE, 2011, 6, e28336.	1.1	13
180	Unity and diversity in the insect photoperiodic mechanism*. Entomological Science, 2011, 14, 235-244.	0.3	45
181	The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature, 2011, 470, 399-403.	13.7	79
182	Insect photoperiodic calendar and circadian clock: Independence, cooperation, or unity?. Journal of Insect Physiology, 2011, 57, 538-556.	0.9	127
183	Deciphering time measurement: The role of circadian †clock†mgenes and formal experimentation in insect photoperiodism. Journal of Insect Physiology, 2011, 57, 557-566.	0.9	84
184	Blocking synaptic transmission with tetanus toxin light chain reveals modes of neurotransmission in the PDF-positive circadian clock neurons of Drosophila melanogaster. Journal of Insect Physiology, 2011, 57, 1290-1299.	0.9	16
185	NEMO Kinase Contributes to Core Period Determination by Slowing the Pace of the Drosophila Circadian Oscillator. Current Biology, 2011, 21, 756-761.	1.8	54

#	Article	IF	CITATIONS
186	Glial Cells Physiologically Modulate Clock Neurons and Circadian Behavior in a Calcium-Dependent Manner. Current Biology, 2011, 21, 625-634.	1.8	130
187	Adult-Specific Electrical Silencing of Pacemaker Neurons Uncouples Molecular Clock from Circadian Outputs. Current Biology, 2011, 21, 1783-1793.	1.8	114
188	Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies. Lessons from Drosophila melanogaster and Apis mellifera. Arthropod Structure and Development, 2011, 40, 381-394.	0.8	97
189	The hormonal and circadian basis for insect photoperiodic timing. FEBS Letters, 2011, 585, 1450-1460.	1.3	86
190	Setting the clock – by nature: Circadian rhythm in the fruitfly <i>Drosophila melanogaster</i> Letters, 2011, 585, 1435-1442.	1.3	195
191	Animal clocks: a multitude of molecular mechanisms for circadian timekeeping. Wiley Interdisciplinary Reviews RNA, 2011, 2, 312-320.	3.2	24
192	Molecular Genetic Analysis of Circadian Timekeeping in Drosophila. Advances in Genetics, 2011, 74, 141-173.	0.8	324
193	Adult Circadian Behavior in Drosophila Requires Developmental Expression of cycle, But Not period. PLoS Genetics, 2011, 7, e1002167.	1.5	15
194	Analysis of functional neuronal connectivity in the <i>Drosophila </i> hrain. Journal of Neurophysiology, 2012, 108, 684-696.	0.9	114
195	CULLIN-3 Controls TIMELESS Oscillations in the Drosophila Circadian Clock. PLoS Biology, 2012, 10, e1001367.	2.6	51
196	No lazing on sunny afternoons. Nature, 2012, 484, 325-326.	13.7	1
197	Two clocks in the brain. Progress in Brain Research, 2012, 199, 59-82.	0.9	64
198	In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation. Human Molecular Genetics, 2012, 21, 900-915.	1.4	44
199	Sympatric Drosophilid Species melanogaster and ananassae Differ in Temporal Patterns of Activity. Journal of Biological Rhythms, 2012, 27, 365-376.	1.4	26
200	Flies in the North. Journal of Biological Rhythms, 2012, 27, 377-387.	1.4	44
201	Laboratory versus Nature. Journal of Biological Rhythms, 2012, 27, 433-442.	1.4	62
202	Influence of Photoperiod in Accelerating the Reentrainment in <i>Drosophila</i> . Chronobiology International, 2012, 29, 1405-1411.	0.9	1
203	Large Ventral Lateral Neurons Determine the Phase of Evening Activity Peak across Photoperiods in <i>Drosophila melanogaster</i> Large Ventral Lateral Neurons Determine the Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Activity Peak across Photoperiods in Carlos Phase of Evening Ph	1.4	14

#	Article	IF	CITATIONS
204	Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of <i> Drosophila < /i > 's circadian clock neuron network. Journal of Neurophysiology, 2012, 107, 2096-2108.</i>	0.9	43
205	The Circadian Clock of the Fly: A Neurogenetics Journey Through Time. Advances in Genetics, 2012, 77, 79-123.	0.8	122
206	NAT1/DAP5/p97 and Atypical Translational Control in the <i>Drosophila</i> Circadian Oscillator. Genetics, 2012, 192, 943-957.	1.2	35
207	Autoreceptor Control of Peptide/Neurotransmitter Corelease from PDF Neurons Determines Allocation of Circadian Activity in Drosophila. Cell Reports, 2012, 2, 332-344.	2.9	76
208	Daily rhythms of PERIOD protein in the eyestalk of the American lobster, Homarus americanus. Marine and Freshwater Behaviour and Physiology, 2012, 45, 269-279.	0.4	4
209	A Mechanism for Circadian Control of Pacemaker Neuron Excitability. Journal of Biological Rhythms, 2012, 27, 353-364.	1.4	49
210	Balance of Activity between LNvs and Glutamatergic Dorsal Clock Neurons Promotes Robust Circadian Rhythms in Drosophila. Neuron, 2012, 74, 706-718.	3.8	77
211	Genes for iron metabolism influence circadian rhythms in Drosophila melanogaster. Metallomics, 2012, 4, 928.	1.0	55
212	Old flies have a robust central oscillator but weaker behavioral rhythms that can be improved by genetic and environmental manipulations. Aging Cell, 2012, 11, 428-438.	3.0	92
213	The Nuclear Receptor unfulfilled Is Required for Free-Running Clocks in Drosophila Pacemaker Neurons. Current Biology, 2012, 22, 1221-1227.	1.8	18
214	Control of Sleep by Cyclin A and Its Regulator. Science, 2012, 335, 1617-1621.	6.0	73
215	Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature, 2012, 484, 371-375.	13.7	260
216	KAYAK-α Modulates Circadian Transcriptional Feedback Loops in <i>Drosophila</i> Pacemaker Neurons. Journal of Neuroscience, 2012, 32, 16959-16970.	1.7	21
217	Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect. Current Opinion in Neurobiology, 2012, 22, 609-614.	2.0	31
218	Circadian Rhythm of Temperature Preference and Its Neural Control in Drosophila. Current Biology, 2012, 22, 1851-1857.	1.8	84
219	Peptide Neuromodulation in Invertebrate Model Systems. Neuron, 2012, 76, 82-97.	3.8	237
220	Solitary and Gregarious Locusts Differ in Circadian Rhythmicity of a Visual Output Neuron. Journal of Biological Rhythms, 2012, 27, 196-205.	1.4	17
221	Paradoxical Masking Effects of Bright Photophase and High Temperature in Drosophila malerkotliana. Chronobiology International, 2012, 29, 157-165.	0.9	9

#	Article	IF	Citations
222	In search of a temporal niche. Progress in Brain Research, 2012, 199, 281-304.	0.9	166
223	Cellular Requirements for LARK in the Drosophila Circadian System. Journal of Biological Rhythms, 2012, 27, 183-195.	1.4	19
224	Molecular and Neural Control of Insect Circadian Rhythms. , 2012, , 513-551.		18
225	Ih Current Is Necessary to Maintain Normal Dopamine Fluctuations and Sleep Consolidation in Drosophila. PLoS ONE, 2012, 7, e36477.	1.1	21
226	The Dual-Oscillator System of Drosophila melanogaster Under Natural-Like Temperature Cycles. Chronobiology International, 2012, 29, 395-407.	0.9	25
227	Temperature can entrain egg laying rhythm of Drosophila but may not be a stronger zeitgeber than light. Journal of Insect Physiology, 2012, 58, 245-255.	0.9	9
228	Neuropeptide F immunoreactive clock neurons modify evening locomotor activity and freeâ€running period in ⟨i⟩Drosophila melanogaster⟨ i⟩. Journal of Comparative Neurology, 2012, 520, 970-987.	0.9	81
229	Circadian expression of the presynaptic active zone protein bruchpilot in the lamina of <i>Drosophila melanogaster</i> . Developmental Neurobiology, 2013, 73, 14-26.	1.5	55
230	Circadian Timing. , 2013, , 609-627.		0
231	GW182 Controls Drosophila Circadian Behavior and PDF-Receptor Signaling. Neuron, 2013, 78, 152-165.	3.8	46
232	Genetic correlation between the pre-adult developmental period and locomotor activity rhythm in Drosophila melanogaster. Heredity, 2013, 110, 312-320.	1.2	14
233	Emerging roles for post-transcriptional regulation in circadian clocks. Nature Neuroscience, 2013, 16, 1544-1550.	7.1	138
234	Retrograde Bone Morphogenetic Protein Signaling Shapes a Key Circadian Pacemaker Circuit. Journal of Neuroscience, 2013, 33, 687-696.	1.7	17
235	The circadian clock network in the brain of different <i>Drosophila</i> species. Journal of Comparative Neurology, 2013, 521, 367-388.	0.9	58
236	Accelerated Degradation of <i>per^S</i> Protein Provides Insight into Light-Mediated Phase Shifting. Journal of Biological Rhythms, 2013, 28, 171-182.	1.4	15
237	Environmentally-induced modulations of developmental rates do not affect the selection-mediated changes in pre-adult development time of fruit flies Drosophila melanogaster. Journal of Insect Physiology, 2013, 59, 729-737.	0.9	3
238	Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra. Current Biology, 2013, 23, 1863-1873.	1.8	153
239	<i>Drosophila</i> TRPA1 Functions in Temperature Control of Circadian Rhythm in Pacemaker Neurons. Journal of Neuroscience, 2013, 33, 6716-6725.	1.7	57

#	Article	IF	CITATIONS
240	Inter and intraspecific variation in female remating propensity in the cactophilic sibling species Drosophila buzzatii and D. koepferae. Journal of Insect Physiology, 2013, 59, 569-576.	0.9	5
241	The circadian system: Plasticity at many levels. Neuroscience, 2013, 247, 280-293.	1.1	44
242	ATAXIN-2 Activates PERIOD Translation to Sustain Circadian Rhythms in <i>Drosophila</i> . Science, 2013, 340, 875-879.	6.0	136
243	Regulation of circadian locomotor rhythm by neuropeptide <scp>Y</scp> â€like system in <i><scp>D</scp>rosophila melanogaster</i> Insect Molecular Biology, 2013, 22, 376-388.	1.0	33
244	Adaptation of molecular circadian clockwork to environmental changes: a role for alternative splicing and miRNAs. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130011.	1.2	31
245	Translational Profiling of Clock Cells Reveals Circadianly Synchronized Protein Synthesis. PLoS Biology, 2013, 11, e1001703.	2.6	77
246	Circadian Period Integrates Network Information Through Activation of the BMP Signaling Pathway. PLoS Biology, 2013, 11, e1001733.	2.6	21
247	Behavioral Systems. , 2013, , 255-304.		0
248	Deleterious effect of suboptimal diet on rest-activity cycle in Anastrepha ludens manifests itself with age. Scientific Reports, 2013, 3, 1773.	1.6	6
249	E and M Circadian Pacemaker Neurons Use Different PDF Receptor Signalosome Components in <i>Drosophila</i> . Journal of Biological Rhythms, 2013, 28, 239-248.	1.4	31
250	The relation between egg hatching and photoperiod in <i>Amphinemura</i> sp. (Plecoptera). Biological Rhythm Research, 0, , 1-8.	0.4	1
251	A Mathematical Model of Communication between Groups of Circadian Neurons in Drosophila melanogaster. Journal of Biological Rhythms, 2014, 29, 401-410.	1.4	7
252	Differentially Timed Extracellular Signals Synchronize Pacemaker Neuron Clocks. PLoS Biology, 2014, 12, e1001959.	2.6	46
253	Mmp1 Processing of the PDF Neuropeptide Regulates Circadian Structural Plasticity of Pacemaker Neurons. PLoS Genetics, 2014, 10, e1004700.	1.5	43
254	A Homeostatic Sleep-Stabilizing Pathway in Drosophila Composed of the Sex Peptide Receptor and Its Ligand, the Myoinhibitory Peptide. PLoS Biology, 2014, 12, e1001974.	2.6	68
255	Dual PDF Signaling Pathways Reset Clocks Via TIMELESS and Acutely Excite Target Neurons to Control Circadian Behavior. PLoS Biology, 2014, 12, e1001810.	2.6	118
256	Synergistic Interactions between the Molecular and Neuronal Circadian Networks Drive Robust Behavioral Circadian Rhythms in Drosophila melanogaster. PLoS Genetics, 2014, 10, e1004252.	1.5	17
257	Role of Temperature in Mediating Morning and Evening Emergence Chronotypes in Fruit Flies <i>Drosophila melanogaster</i>). Journal of Biological Rhythms, 2014, 29, 427-441.	1.4	16

#	Article	IF	CITATIONS
258	Simulating natural light and temperature cycles in the laboratory reveals differential effects on activity/rest rhythm of four Drosophilids. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 849-862.	0.7	8
259	The Ion Transport Peptide Is a New Functional Clock Neuropeptide in the Fruit Fly <i>Drosophila melanogaster</i> . Journal of Neuroscience, 2014, 34, 9522-9536.	1.7	86
260	Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle. Nature Communications, 2014, 5, 5549.	5.8	98
261	Quantifying Global International Migration Flows. Science, 2014, 343, 1520-1522.	6.0	416
262	The Logic of Circadian Organization in Drosophila. Current Biology, 2014, 24, 2257-2266.	1.8	62
263	Phylogeny and oscillating expression ofperiodandcryptochromein short and long photoperiods suggest a conserved function inNasonia vitripennis. Chronobiology International, 2014, 31, 749-760.	0.9	46
264	Bimodal Oscillations of Cyclic Nucleotide Concentrations in the Circadian System of the Madeira Cockroach <i>Rhyparobia maderae</i>). Journal of Biological Rhythms, 2014, 29, 318-331.	1.4	9
265	Morning and Evening Oscillators Cooperate to Reset Circadian Behavior in Response to Light Input. Cell Reports, 2014, 7, 601-608.	2.9	29
266	Studying circadian rhythms in Drosophila melanogaster. Methods, 2014, 68, 140-150.	1.9	71
267	cis -Regulatory Requirements for Tissue-Specific Programs of the Circadian Clock. Current Biology, 2014, 24, 1-10.	1.8	376
268	The <i>Drosophila</i> Circadian Clock Is a Variably Coupled Network of Multiple Peptidergic Units. Science, 2014, 343, 1516-1520.	6.0	185
269	Identification of a Circadian Output Circuit for Rest:Activity Rhythms in Drosophila. Cell, 2014, 157, 689-701.	13.5	201
270	Calcitonin Gene-Related Peptide Neurons Mediate Sleep-Specific Circadian Output in Drosophila. Current Biology, 2014, 24, 2652-2664.	1.8	182
271	Compression of daily activity time in mice lacking functionalPerorCrygenes. Chronobiology International, 2014, 31, 645-654.	0.9	6
272	An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nature Communications, 2014, 5, 4391.	5.8	88
273	Circadian Pacemaker Neurons Change Synaptic Contacts across the Day. Current Biology, 2014, 24, 2161-2167.	1.8	93
274	Natural Populations of <i>Drosophila melanogaster</i> Reveal Features of an Uncharacterized Circadian Property. Journal of Biological Rhythms, 2014, 29, 167-180.	1.4	11
275	CaMKII is essential for the cellular clock and coupling between morning and evening behavioral rhythms. Genes and Development, 2014, 28, 1101-1110.	2.7	69

#	ARTICLE	IF	CITATIONS
276	From Neurogenetic Studies in the Fly Brain to a Concept in Circadian Biology. Journal of Neurogenetics, 2014, 28, 329-347.	0.6	33
277	Pigment-dispersing factor signaling and circadian rhythms in insect locomotor activity. Current Opinion in Insect Science, 2014, 1, 73-80.	2.2	85
278	Circadian rhythms. , 0, , 104-115.		0
280	Exaggerated Nighttime Sleep and Defective Sleep Homeostasis in a Drosophila Knock-In Model of Human Epilepsy. PLoS ONE, 2015, 10, e0137758.	1.1	10
281	A Stochastic Burst Follows the Periodic Morning Peak in Individual Drosophila Locomotion. PLoS ONE, 2015, 10, e0140481.	1,1	6
282	Thermotaxis, circadian rhythms, and TRP channels in <i>Drosophila</i> . Temperature, 2015, 2, 227-243.	1.7	27
284	Novel masking effects of light are revealed inDrosophilaby skeleton photoperiods. Biological Rhythm Research, 2015, 46, 275-285.	0.4	6
285	Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say?. Frontiers in Neurology, 2015, 6, 80.	1.1	14
286	RNA-seq Profiling of Small Numbers of Drosophila Neurons. Methods in Enzymology, 2015, 551, 369-386.	0.4	32
287	Patch-Clamp Electrophysiology in Drosophila Circadian Pacemaker Neurons. Methods in Enzymology, 2015, 552, 23-44.	0.4	10
288	Structural plasticity of the circadian timing system. An overview from flies to mammals. Frontiers in Neuroendocrinology, 2015, 38, 50-64.	2.5	19
289	Clock network in Drosophila. Current Opinion in Insect Science, 2015, 7, 65-70.	2.2	54
290	Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock. Current Biology, 2015, 25, 1502-1508.	1.8	39
291	<i>Drosophila</i> circadian rhythms in seminatural environments: Summer afternoon component is not an artifact and requires TrpA1 channels. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8702-8707.	3.3	55
292	Evidence that natural selection maintains genetic variation for sleep in Drosophila melanogaster. BMC Evolutionary Biology, 2015, 15, 41.	3.2	34
293	Common features in diverse insect clocks. Zoological Letters, 2015, 1, 10.	0.7	62
294	Cryptochrome-Dependent and -Independent Circadian Entrainment Circuits in <i>Drosophila </i> Journal of Neuroscience, 2015, 35, 6131-6141.	1.7	52
295	Warming Up Your Tick-Tock. Neuroscientist, 2015, 21, 503-518.	2.6	19

#	Article	IF	CITATIONS
296	Cellular Clocks in AVP Neurons of the SCN Are Critical for Interneuronal Coupling Regulating Circadian Behavior Rhythm. Neuron, 2015, 85, 1103-1116.	3.8	200
297	The Influence of Light on Temperature Preference in Drosophila. Current Biology, 2015, 25, 1063-1068.	1.8	34
298	Communication between circadian clusters: The key to a plastic network. FEBS Letters, 2015, 589, 3336-3342.	1.3	38
299	Glia in Drosophila behavior. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2015, 201, 879-893.	0.7	26
300	Rhythmic control of activity and sleep by class B1 GPCRs. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 18-30.	2.3	14
301	Neural clocks and Neuropeptide F/Y regulate circadian gene expression in a peripheral metabolic tissue. ELife, 2016, 5, .	2.8	61
302	Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. ELife, 2016, 5, .	2.8	22
303	Heterogeneity of the Peripheral Circadian Systems in Drosophila melanogaster: A Review. Frontiers in Physiology, 2016, 7, 8.	1.3	63
304	CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila. Scientific Reports, 2016, 6, 32113.	1.6	7
305	The Drosophila Clock Neuron Network Features Diverse Coupling Modes and Requires Network-wide Coherence for Robust Circadian Rhythms. Cell Reports, 2016, 17, 2873-2881.	2.9	41
307	Mushroom body signaling is required for locomotor activity rhythms in Drosophila. Neuroscience Research, 2016, 111, 25-33.	1.0	17
308	Pacemaker-neuron–dependent disturbance of the molecular clockwork by a <i>Drosophila</i> CLOCK mutant homologous to the mouse <i>Clock</i> mutation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4904-13.	3.3	15
309	GSK-3 and CK2 Kinases Converge on Timeless to Regulate the Master Clock. Cell Reports, 2016, 16, 357-367.	2.9	65
310	Circadian neuron feedback controls the Drosophila sleep–activity profile. Nature, 2016, 536, 292-297.	13.7	249
311	The temporal †structure†and function of the insect photoperiodic clock: a tribute to Colin S. Pittendrigh. Physiological Entomology, 2016, 41, 1-18.	0.6	29
312	Circadian rhythm in mRNA expression of the glutathione synthesis gene <i>Gclc</i> is controlled by peripheral glial clocks in <i>Drosophila melanogaster</i> . Physiological Entomology, 2016, 41, 369-377.	0.6	18
313	A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila. Journal of Neuroscience, 2016, 36, 9084-9096.	1.7	111
314	Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila. Scientific Reports, 2016, 6, 37784.	1.6	5

#	Article	IF	CITATIONS
315	The <i>Drosophila </i> Circadian Clock Gates Sleep through Time-of-Day Dependent Modulation of Sleep-Promoting Neurons. Sleep, 2016, 39, 345-356.	0.6	34
316	Modulation of light-driven arousal by LIM-homeodomain transcription factor Apterous in large PDF-positive lateral neurons of the Drosophila brain. Scientific Reports, 2016, 6, 37255.	1.6	12
317	A Genetic Screen To Assess Dopamine Receptor (DopR1) Dependent Sleep Regulation in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2016, 6, 4217-4226.	0.8	8
318	The Timed Depolarization of Morning and Evening Oscillators Phase Shifts the Circadian Clock of <i>Drosophila</i> . Journal of Biological Rhythms, 2016, 31, 428-442.	1.4	31
319	A mathematical model provides mechanistic links to temporal patterns in Drosophila daily activity. BMC Neuroscience, 2016, 17, 14.	0.8	7
320	Circadian Modulation of Alcohol-Induced Sedation and Recovery in Male and Female <i>Drosophila</i>). Journal of Biological Rhythms, 2016, 31, 142-160.	1.4	23
321	The clock gene period is essential for the photoperiodic response in the jewel wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). Applied Entomology and Zoology, 2016, 51, 185-194.	0.6	60
322	Circadian light-input pathways in < i > Drosophila < /i > . Communicative and Integrative Biology, 2016, 9, e1102805.	0.6	68
323	Reorganization of Sleep by Temperature in Drosophila Requires Light, the Homeostat, and the Circadian Clock. Current Biology, 2016, 26, 882-892.	1.8	83
324	miR-124 Regulates Diverse Aspects of Rhythmic Behavior in <i>Drosophila</i> . Journal of Neuroscience, 2016, 36, 3414-3421.	1.7	32
325	<i>miR-124</i> Regulates the Phase of <i>Drosophila</i> Circadian Locomotor Behavior. Journal of Neuroscience, 2016, 36, 2007-2013.	1.7	40
326	Circadian clock properties of fruit flies Drosophila melanogaster exhibiting early and late emergence chronotypes. Chronobiology International, 2016, 33, 22-38.	0.9	18
327	Synchronous <i>Drosophila</i> circadian pacemakers display nonsynchronous Ca ²⁺ rhythms in vivo. Science, 2016, 351, 976-981.	6.0	168
328	Circadian rhythms in neuronal activity propagate through output circuits. Nature Neuroscience, 2016, 19, 587-595.	7.1	99
329	Identification of Light-Sensitive Phosphorylation Sites on PERIOD That Regulate the Pace of Circadian Rhythms in <i>Drosophila</i>). Molecular and Cellular Biology, 2016, 36, 855-870.	1.1	4
330	Regulation of sleep plasticity by a thermo-sensitive circuit in Drosophila. Scientific Reports, 2017, 7, 40304.	1.6	52
331	The Drosophila Clock System. , 2017, , 133-176.		20
332	Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids. Current Biology, 2017, 27, 833-839.	1.8	62

#	ARTICLE	IF	CITATIONS
333	Timeâ€restricted feeding for prevention and treatment of cardiometabolic disorders. Journal of Physiology, 2017, 595, 3691-3700.	1.3	117
334	A Longer Siesta? DN1s in Control!. Neuroscience Bulletin, 2017, 33, 113-114.	1.5	O
335	A Series of Suppressive Signals within the Drosophila Circadian Neural Circuit Generates Sequential Daily Outputs. Neuron, 2017, 94, 1173-1189.e4.	3.8	112
336	Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach, <i>Rhyparobia maderae</i>). Journal of Comparative Neurology, 2017, 525, 1250-1272.	0.9	17
337	LSM12 and ME31B/DDX6 Define Distinct Modes of Posttranscriptional Regulation by ATAXIN-2 Protein Complex in Drosophila Circadian Pacemaker Neurons. Molecular Cell, 2017, 66, 129-140.e7.	4.5	59
338	Circadian Rhythms and Sleep in <i>Drosophila melanogaster</i>). Genetics, 2017, 205, 1373-1397.	1.2	331
339	Chronobiological studies on body search, oviposition and emergence of Megaselia scalaris (Diptera,) Tj ETQq0 C) 0 rgBT /O	verlock 10 Tf
340	Temporal calcium profiling of specific circadian neurons in freely moving flies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8780-E8787.	3.3	70
341	A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity. Current Biology, 2017, 27, 1915-1927.e5.	1.8	70
342	Hourly associations between heat and ambulance calls. Environmental Pollution, 2017, 220, 1424-1428.	3.7	64
343	Involvement of circadian clock in crowing of red jungle fowls (<i>Gallus gallus</i>). Animal Science Journal, 2017, 88, 691-695.	0.6	2
344	Reciprocal regulation of carbon monoxide metabolism and the circadian clock. Nature Structural and Molecular Biology, 2017, 24, 15-22.	3.6	49
345	Circadian Rhythms in Visual Responsiveness in the Behaviorally ArrhythmicDrosophilaClock MutantClkJrk. Journal of Biological Rhythms, 2017, 32, 583-592.	1.4	22
346	NMDA Receptor-mediated Ca2+ Influx in the Absence of Mg2+ Block Disrupts Rest: Activity Rhythms in Drosophila. Sleep, 2017, 40, .	0.6	4
347	Circadian Rhythm Neuropeptides in Drosophila: Signals for Normal Circadian Function and Circadian Neurodegenerative Disease. International Journal of Molecular Sciences, 2017, 18, 886.	1.8	22
348	Identification of Genes that Maintain Behavioral and Structural Plasticity during Sleep Loss. Frontiers in Neural Circuits, 2017 , 11 , 79 .	1.4	13
349	Oscillating PDF in termini of circadian pacemaker neurons and synchronous molecular clocks in downstream neurons are not sufficient for sustenance of activity rhythms in constant darkness. PLoS ONE, 2017, 12, e0175073.	1.1	12
350	RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides. PLoS Genetics, 2017, 13, e1006613.	1.5	111

#	Article	IF	Citations
351	Walking behavior in a circular arena modified by pulsed light stimulation in Drosophila melanogaster w1118 line. Physiology and Behavior, 2018, 188, 227-238.	1.0	5
352	Neuroanatomical details of the lateral neurons of <i>Drosophila melanogaster</i> support their functional role in the circadian system. Journal of Comparative Neurology, 2018, 526, 1209-1231.	0.9	71
353	Reflections on contributing to "big discoveries―about the fly clock: Our fortunate paths as post-docs with 2017 Nobel laureates Jeff Hall, Michael Rosbash, and Mike Young. Neurobiology of Sleep and Circadian Rhythms, 2018, 5, 58-67.	1.4	4
354	Interspecific studies of circadian genes period and timeless in Drosophila. Gene, 2018, 648, 106-114.	1.0	6
355	Persistent One-Way Walking in a Circular Arena in Drosophila melanogaster Canton-S Strain. Behavior Genetics, 2018, 48, 80-93.	1.4	13
356	Coordination between Differentially Regulated Circadian Clocks Generates Rhythmic Behavior. Cold Spring Harbor Perspectives in Biology, 2018, 10, a033589.	2.3	62
357	A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in <i>Drosophila melanogaster </i> . Journal of Biological Rhythms, 2018, 33, 24-34.	1.4	45
358	Beyond the molecular clock. Current Opinion in Physiology, 2018, 5, 109-116.	0.9	2
359	Responses to Intermittent Light Stimulation Late in the Night Phase Before Dawn. Clocks & Sleep, 2018, 1, 26-41.	0.9	5
361	The CCHamide1 Neuropeptide Expressed in the Anterior Dorsal Neuron 1 Conveys a Circadian Signal to the Ventral Lateral Neurons in Drosophila melanogaster. Frontiers in Physiology, 2018, 9, 1276.	1.3	53
362	Circadian and Sleep Circuits Ring Together. Neuron, 2018, 100, 514-516.	3.8	4
363	Contribution of non-circadian neurons to the temporal organization of locomotor activity. Biology Open, 2019, 8, .	0.6	7
364	Circadian Rhythm Abnormalities in Parkinson's Disease from Humans to Flies and Back. International Journal of Molecular Sciences, 2018, 19, 3911.	1.8	33
365	A Circadian Output Circuit Controls Sleep-Wake Arousal in Drosophila. Neuron, 2018, 100, 624-635.e4.	3.8	152
366	How Many Clocks, How Many Times? On the Sensory Basis and Computational Challenges of Circadian Systems. Frontiers in Behavioral Neuroscience, 2018, 12, 211.	1.0	5
367	Calmodulin Enhances Cryptochrome Binding to INAD in Drosophila Photoreceptors. Frontiers in Molecular Neuroscience, 2018, 11, 280.	1.4	15
368	Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila. Nature Communications, 2018, 9, 4247.	5.8	67
369	The auxinâ€inducible degradation system enables conditional <scp>PERIOD </scp> protein depletion in the nervous system of <i>Drosophila melanogaster </i> FEBS Journal, 2018, 285, 4378-4393.	2.2	22

#	Article	IF	CITATIONS
370	Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biology, 2018, 8, 170224.	1.5	55
371	Non-canonical Phototransduction Mediates Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light Responses. Current Biology, 2018, 28, 1725-1735.e3.	1.8	50
372	NonA and CPX Link the Circadian Clockwork to Locomotor Activity in Drosophila. Neuron, 2018, 99, 768-780.e3.	3.8	11
373	Modulation of miR-210 alters phasing of circadian locomotor activity and impairs projections of PDF clock neurons in Drosophila melanogaster. PLoS Genetics, 2018, 14, e1007500.	1.5	37
374	High-Amplitude Circadian Rhythms in <i>Drosophila</i> Driven by Calcineurin-Mediated Post-translational Control of <i>sarah</i> Cenetics, 2018, 209, 815-828.	1.2	7
375	Circadian modulation of light-evoked avoidance/attraction behavior in Drosophila. PLoS ONE, 2018, 13, e0201927.	1.1	22
376	Neural Network Interactions Modulate CRY-Dependent Photoresponses in <i>Drosophila</i> . Journal of Neuroscience, 2018, 38, 6161-6171.	1.7	15
377	Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock. Current Biology, 2018, 28, 2007-2017.e4.	1.8	68
378	Single Cells of <i>Neurospora Crassa</i> Show Circadian Oscillations, Light Entrainment, Temperature Compensation, and Phase Synchronization. IEEE Access, 2019, 7, 49403-49417.	2.6	6
379	Phenotypic plasticity in the invasive pest <i>Drosophila suzukii</i> : activity rhythms and gene expression in response to temperature. Journal of Experimental Biology, 2019, 222, .	0.8	12
380	miR-210 controls the evening phase of circadian locomotor rhythms through repression of Fasciclin 2. PLoS Genetics, 2019, 15, e1007655.	1.5	16
381	Decoding Drosophila circadian pacemaker circuit. Current Opinion in Insect Science, 2019, 36, 33-38.	2.2	8
382	SUR-8 interacts with PP1-87B to stabilize PERIOD and regulate circadian rhythms in Drosophila. PLoS Genetics, 2019, 15, e1008475.	1.5	5
383	Expression of mutant CHMP2B linked to neurodegeneration in humans disrupts circadian rhythms in Drosophila. FASEB BioAdvances, 2019, 1, 511-520.	1.3	5
384	Splice variants of DOMINO control Drosophila circadian behavior and pacemaker neuron maintenance. PLoS Genetics, 2019, 15, e1008474.	1.5	9
385	miR-263b Controls Circadian Behavior and the Structural Plasticity of Pacemaker Neurons by Regulating the LIM-Only Protein Beadex. Cells, 2019, 8, 923.	1.8	14
386	Targeting epigenetic machinery: Emerging novel allosteric inhibitors., 2019, 204, 107406.		32
387	Light-Mediated Circuit Switching in the Drosophila Neuronal Clock Network. Current Biology, 2019, 29, 3266-3276.e3.	1.8	36

#	Article	IF	CITATIONS
388	Ubiquitylome study identifies increased histone 2A ubiquitylation as an evolutionarily conserved aging biomarker. Nature Communications, 2019, 10, 2191.	5.8	27
389	A Symphony of Signals: Intercellular and Intracellular Signaling Mechanisms Underlying Circadian Timekeeping in Mice and Flies. International Journal of Molecular Sciences, 2019, 20, 2363.	1.8	24
390	Neuronal Activity in Non-LNv Clock Cells Is Required to Produce Free-Running Rest:Activity Rhythms in <i>Drosophila</i> . Journal of Biological Rhythms, 2019, 34, 249-271.	1.4	22
391	PERIOD-controlled deadenylation of the <i>timeless</i> transcript in the <i>Drosophila</i> circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5721-5726.	3.3	11
392	Morning and Evening Circadian Pacemakers Independently Drive Premotor Centers via a Specific Dopamine Relay. Neuron, 2019, 102, 843-857.e4.	3.8	89
393	Circadian Clocks Function in Concert with Heat Shock Organizing Protein to Modulate Mutant Huntingtin Aggregation and Toxicity. Cell Reports, 2019, 27, 59-70.e4.	2.9	35
394	The circadian system in insects: Cellular, molecular, and functional organization. Advances in Insect Physiology, 2019, 56, 73-115.	1.1	25
395	Age-dependent changes in clock neuron structural plasticity and excitability are associated with a decrease in circadian output behavior and sleep. Neurobiology of Aging, 2019, 77, 158-168.	1.5	19
396	The RNA Helicase BELLE Is Involved in Circadian Rhythmicity and in Transposons Regulation in Drosophila melanogaster. Frontiers in Physiology, 2019, 10, 133.	1.3	5
397	Circadian oscillator proteins across the kingdoms of life: structural aspects. BMC Biology, 2019, 17, 13.	1.7	50
398	Misregulation of Drosophila Myc Disrupts Circadian Behavior and Metabolism. Cell Reports, 2019, 29, 1778-1788.e4.	2.9	5
399	Role of Tau Protein in Remodeling of Circadian Neuronal Circuits and Sleep. Frontiers in Aging Neuroscience, 2019, 11, 320.	1.7	26
400	A distinct visual pathway mediates high light intensity adaptation of the circadian clock in <i>Drosophila</i> . Journal of Neuroscience, 2019, 39, 1497-18.	1.7	31
401	Allatostatin-C/AstC-R2 Is a Novel Pathway to Modulate the Circadian Activity Pattern in Drosophila. Current Biology, 2019, 29, 13-22.e3.	1.8	55
402	Aging and the clock: Perspective from flies to humans. European Journal of Neuroscience, 2020, 51, 454-481.	1.2	35
403	Molecular and circuit mechanisms mediating circadian clock output in the <i>Drosophila</i> brain. European Journal of Neuroscience, 2020, 51, 268-281.	1.2	59
404	<i>Drosophila</i> Cryptochrome: Variations in Blue. Journal of Biological Rhythms, 2020, 35, 16-27.	1.4	21
405	DN1p or the "Fluffy―Cerberus of Clock Outputs. Frontiers in Physiology, 2019, 10, 1540.	1.3	26

#	Article	IF	CITATIONS
406	A Catalog of GAL4 Drivers for Labeling and Manipulating Circadian Clock Neurons in <i>Drosophila melanogaster </i> . Journal of Biological Rhythms, 2020, 35, 207-213.	1.4	22
407	Circadian Structural Plasticity Drives Remodeling of E Cell Output. Current Biology, 2020, 30, 5040-5048.e5.	1.8	20
408	Circadian Clocks: Mosquitoes Master the Dark Side ofÂthe Room. Current Biology, 2020, 30, R932-R934.	1.8	1
409	Circadian VIPergic Neurons of the Suprachiasmatic Nuclei Sculpt the Sleep-Wake Cycle. Neuron, 2020, 108, 486-499.e5.	3.8	55
410	NeitherÂper, nor tim1, nor cry2 alone are essential components of the molecular circadian clockwork in the Madeira cockroach. PLoS ONE, 2020, 15, e0235930.	1.1	3
411	The optic lobe–pars intercerebralis axis is involved in circa'bi'dian rhythm of the large black chafer Holotrichia parallela. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 819-829.	0.7	3
412	Better Sleep at Night: How Light Influences Sleep in Drosophila. Frontiers in Physiology, 2020, 11, 997.	1.3	11
413	Communication Among Photoreceptors and the Central Clock Affects Sleep Profile. Frontiers in Physiology, 2020, 11, 993.	1.3	10
414	Drosophila as a Model to Study the Relationship Between Sleep, Plasticity, and Memory. Frontiers in Physiology, 2020, 11, 533.	1.3	28
415	The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks. Journal of Molecular Biology, 2020, 432, 3525-3546.	2.0	58
416	Disrupted Glutamate Signaling in Drosophila Generates Locomotor Rhythms in Constant Light. Frontiers in Physiology, 2020, 11, 145.	1.3	11
417	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. PLoS Genetics, 2020, 16, e1008312.	1.5	19
418	Norpa Signalling and the Seasonal Circadian Locomotor Phenotype in Drosophila. Biology, 2020, 9, 130.	1.3	3
419	Antagonistic Regulation of Circadian Output and Synaptic Development by JETLAG and the DYSCHRONIC-SLOWPOKE Complex. IScience, 2020, 23, 100845.	1.9	2
420	Entrainment of the <i>Drosophila </i> clock by the visual system. Neuroscience Insights, 2020, 15, 263310552090370.	0.9	3
421	Regulation of circadian locomotor rhythm by miR-263a. Biological Rhythm Research, 2022, 53, 148-158.	0.4	3
422	Candidates for photic entrainment pathways to the circadian clock via optic lobe neuropils in the Madeira cockroach. Journal of Comparative Neurology, 2020, 528, 1754-1774.	0.9	6
423	Circadian and Genetic Modulation of Visually-Guided Navigation in Drosophila Larvae. Scientific Reports, 2020, 10, 2752.	1.6	6

#	Article	IF	CITATIONS
424	A Functional Clock Within the Main Morning and Evening Neurons of D. melanogaster Is Not Sufficient for Wild-Type Locomotor Activity Under Changing Day Length. Frontiers in Physiology, 2020, 11, 229.	1.3	13
425	Responses of activity rhythms to temperature cues evolve in <i>Drosophila</i> populations selected for divergent timing of eclosion. Journal of Experimental Biology, 2020, 223, .	0.8	2
426	High-Frequency Neuronal Bursting is Essential for Circadian and Sleep Behaviors in (i) Drosophila (i). Journal of Neuroscience, 2021, 41, 689-710.	1.7	15
428	Phosphatase of Regenerating Liver-1 Selectively Times Circadian Behavior in Darkness via Function in PDF Neurons and Dephosphorylation of TIMELESS. Current Biology, 2021, 31, 138-149.e5.	1.8	17
430	Natural Zeitgebers Under Temperate Conditions Cannot Compensate for the Loss of a Functional Circadian Clock in Timing of a Vital Behavior in <i>Drosophila</i> . Journal of Biological Rhythms, 2021, 36, 271-285.	1.4	3
431	Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Frontiers in Neurology, 2021, 12, 625369.	1.1	8
432	Integration of Circadian Clock Information in the <i>Drosophila</i> Circadian Neuronal Network. Journal of Biological Rhythms, 2021, 36, 203-220.	1.4	21
433	<i>Drosophila</i> clock cells use multiple mechanisms to transmit time-of-day signals in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
434	Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like phenotypes in <i> Drosophila </i>). DMM Disease Models and Mechanisms, 2021, 14, .	1.2	9
435	Uncovering the Roles of Clocks and Neural Transmission in the Resilience of Drosophila Circadian Network. Frontiers in Physiology, 2021, 12, 663339.	1.3	3
436	Assessing olfactory, memory, social and circadian phenotypes associated with schizophrenia in a genetic model based on Rim. Translational Psychiatry, 2021, 11, 292.	2.4	5
437	Sleep drive reconfigures wake-promoting clock circuitry to regulate adaptive behavior. PLoS Biology, 2021, 19, e3001324.	2.6	8
438	Metabolic control of daily locomotor activity mediated by tachykinin in Drosophila. Communications Biology, 2021, 4, 693.	2.0	13
439	Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
440	The Neuropeptide PDF Is Crucial for Delaying the Phase of <i>Drosophila's</i> Evening Neurons Under Long Zeitgeber Periods. Journal of Biological Rhythms, 2021, 36, 442-460.	1.4	10
441	Getting into rhythm: developmental emergence of circadian clocks and behaviors. FEBS Journal, 2022, 289, 6576-6588.	2.2	4
442	Mesencephalic Astrocyte-Derived Neurotrophic Factor Regulates Morphology of Pigment-Dispersing Factor-Positive Clock Neurons and Circadian Neuronal Plasticity in Drosophila melanogaster. Frontiers in Physiology, 2021, 12, 705183.	1.3	0
443	Dorsal clock neurons in Drosophila sculpt locomotor outputs but are dispensable for circadian activity rhythms. IScience, 2021, 24, 103001.	1.9	8

#	Article	IF	CITATIONS
444	Gap junction protein Innexin2 modulates the period of free-running rhythms in Drosophila melanogaster. IScience, 2021, 24, 103011.	1.9	5
445	The Regulation of Drosophila Sleep. Current Biology, 2021, 31, R38-R49.	1.8	104
446	A History of Chronobiological Concepts. , 2010, , 1-35.		45
447	Comparative Clocks. , 2010, , 157-177.		1
448	Control of Sleep-Wake Cycles in Drosophila. Research and Perspectives in Endocrine Interactions, 2016, , 71-78.	0.2	5
449	Neuropeptides PDF and DH31 hierarchically regulate free-running rhythmicity in Drosophila circadian locomotor activity. Scientific Reports, 2019, 9, 838.	1.6	25
450	Circadian timekeeping in <i>Drosophila melanogaster</i> and <i>Mus musculus</i> . Essays in Biochemistry, 2011, 49, 19-35.	2.1	10
451	Insect circadian clock outputs. Essays in Biochemistry, 2011, 49, 87-101.	2.1	20
452	SIK3–HDAC4 signaling regulates ⟨i⟩Drosophila⟨/i⟩ circadian male sex drive rhythm via modulating the DN1 clock neurons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6669-E6677.	3.3	23
456	Synchronization of the <i>Drosophila </i> Circadian Clock by Temperature Cycles. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 233-242.	2.0	45
457	The Lateral and Dorsal Neurons of (i) Drosophila melanogaster: (i) New Insights about Their Morphology and Function. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 517-525.	2.0	75
458	The Circadian Neuropeptide PDF Signals Preferentially through a Specific Adenylate Cyclase Isoform AC3 in M Pacemakers of Drosophila. PLoS Biology, 2012, 10, e1001337.	2.6	62
459	RNA-Interference Knockdown of Drosophila Pigment Dispersing Factor in Neuronal Subsets: The Anatomical Basis of a Neuropeptide's Circadian Functions. PLoS ONE, 2009, 4, e8298.	1.1	99
460	Functional Synchronization of Biological Rhythms in a Tritrophic System. PLoS ONE, 2010, 5, e11064.	1.1	21
461	Persistence of Morning Anticipation Behavior and High Amplitude Morning Startle Response Following Functional Loss of Small Ventral Lateral Neurons in Drosophila. PLoS ONE, 2010, 5, e11628.	1.1	55
462	Sexual Interactions Influence the Molecular Oscillations in DN1 Pacemaker Neurons in Drosophila melanogaster. PLoS ONE, 2013, 8, e84495.	1.1	16
463	Contribution of Drosophila TRPA1-Expressing Neurons to Circadian Locomotor Activity Patterns. PLoS ONE, 2013, 8, e85189.	1.1	15
464	GSK-3 Beta Does Not Stabilize Cryptochrome in the Circadian Clock of Drosophila. PLoS ONE, 2016, 11, e0146571.	1.1	9

#	Article	IF	CITATIONS
465	Social Experience Is Sufficient to Modulate Sleep Need of Drosophila without Increasing Wakefulness. PLoS ONE, 2016, 11, e0150596.	1.1	22
466	White - cGMP Interaction Promotes Fast Locomotor Recovery from Anoxia in Adult Drosophila. PLoS ONE, 2017, 12, e0168361.	1.1	16
467	Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms. PLoS ONE, 2017, 12, e0177197.	1.1	8
468	Tet protein function during Drosophila development. PLoS ONE, 2018, 13, e0190367.	1.1	30
469	Insect photoperiodism: Seasonal development on a revolving planet. European Journal of Entomology, 0, 117, 328-342.	1.2	29
470	Dopamine Signaling in Wake-Promoting Clock Neurons Is Not Required for the Normal Regulation of Sleep in <i>Drosophila</i>). Journal of Neuroscience, 2020, 40, 9617-9633.	1.7	13
471	Brain plasticity in Diptera and Hymenoptera. Frontiers in Bioscience - Scholar, 2010, S2, 268-288.	0.8	36
472	The role of PDF neurons in setting the preferred temperature before dawn in Drosophila. ELife, 2017, 6,	2.8	34
473	Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. ELife, 2019, 8, .	2.8	53
474	Neuron-specific knockouts indicate the importance of network communication to Drosophila rhythmicity. ELife, 2019, 8, .	2.8	48
475	Dissection of central clock function in Drosophila through cell-specific CRISPR-mediated clock gene disruption. ELife, 2019, 8, .	2.8	45
476	The microtubule-associated protein Tau suppresses the axonal distribution of PDF neuropeptide and mitochondria in circadian clock neurons. Human Molecular Genetics, 2022, 31, 1141-1150.	1.4	2
478	Behavioral Systems., 2008,, 239-291.		0
479	Circadian Neural Networks. , 2010, , 179-194.		O
480	Photoperiod-induced clock-shifting in the circadian protein and amino acid rhythms in the larval fat body of silkworm, Bombyx mori. Journal of Applied and Natural Science, 2011, 3, 38-50.	0.2	5
481	Photoperiod-modulated instar-specific clock-shifting in the circadian protein and amino acid rhythms in the larval segmental muscle of Bombyx mori. Journal of Applied and Natural Science, 2011, 3, 176-188.	0.2	4
482	Control of Rest–Activity Behavior by the Central Clock in Drosophila. , 2015, , 31-53.		0
483	Gènes d'horloge : de la drosophile à l'homme. Bulletin De L'Academie Nationale De Medecine, 2015, 199 1115-1131.	, 0.0	2

#	Article	IF	CITATIONS
485	Circadian temperature adaptations in the fruit fly <i>Drosophila melanogaster</i> . Hikaku Seiri Seikagaku(Comparative Physiology and Biochemistry), 2017, 34, 80-91.	0.0	0
488	How a brain keeps its cool. ELife, 2017, 6, .	2.8	O
491	Why circadian rhythms are needed, or how to change the rate of the "biological clock". Visnik Nacional Noi Academii Nauk Ukrai Ni, 2017, 12, 50-62.	0.0	0
504	Circadian rhythms and clock in the colony of social insects Hikaku Seiri Seikagaku(Comparative) Tj ETQq $1\ 1\ 0.7$	84314 rgE	BT /Overlock
512	Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors. Molecules and Cells, 2019, 42, 301-312.	1.0	8
514	Single-cell resolution long-term luciferase imaging in cultivated brains. MicroPublication Biology, 2020, 2020, .	0.1	0
515	High-Salt Diet Impairs the Neurons Plasticity and the Neurotransmitters-Related Biological Processes. Nutrients, 2021, 13, 4123.	1.7	4
517	Pigment-dispersing factor is involved in photoperiodic control of reproduction in the brown-winged green bug, Plautia stali. Journal of Insect Physiology, 2022, 137, 104359.	0.9	12
518	Systematic modeling-driven experiments identify distinct molecular clockworks underlying hierarchically organized pacemaker neurons. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	15
519	Under warm ambient conditions, <scp> <i>Drosophila melanogaster</i> </scp> suppresses nighttime activity via the neuropeptide pigment dispersing factor. Genes, Brain and Behavior, 2022, 21, e12802.	1.1	3
521	Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade. Current Biology, 2022, 32, 1429-1438.e6.	1.8	8
522	Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Current Biology, 2022, 32, 1895-1908.e5.	1.8	10
524	An auxin-inducible, GAL4-compatible, gene expression system for Drosophila. ELife, 2022, 11, .	2.8	17
528	Perception of Daily Time: Insights from the Fruit Flies. Insects, 2022, 13, 3.	1.0	1
530	Ubiquitin proteasome system in circadian rhythm and sleep homeostasis: Lessons from <i>Drosophila</i> . Genes To Cells, 2022, 27, 381-391.	0.5	3
531	Morning/Evening Oscillators., 2009,, 2396-2397.		0
565	The Magnesium Transporter UEX Regulates Sleep via Ca ²⁺ -dependent CREB signaling and a CNK-dependent ERK Pathway. SSRN Electronic Journal, 0, , .	0.4	0
566	The Neuronal Circuit of the Dorsal Circadian Clock Neurons in Drosophila melanogaster. Frontiers in Physiology, 2022, 13, 886432.	1.3	19

#	Article	IF	CITATIONS
567	Knockdown of a Cyclic Nucleotide-Gated Ion Channel Impairs Locomotor Activity and Recovery From Hypoxia in Adult Drosophila melanogaster. Frontiers in Physiology, 2022, 13, 852919.	1.3	0
568	Glia-Neurons Cross-Talk Regulated Through Autophagy. Frontiers in Physiology, 2022, 13, 886273.	1.3	7
569	Recurrent circadian circuitry regulates central brain activity to maintain sleep. Neuron, 2022, 110, 2139-2154.e5.	3.8	13
570	Effects of Eph/ephrin signalling and human Alzheimer's disease-associated EphA1 on Drosophila behaviour and neurophysiology. Neurobiology of Disease, 2022, 170, 105752.	2.1	10
571	Regulation of PDF receptor signaling controlling daily locomotor rhythms in Drosophila. PLoS Genetics, 2022, 18, e1010013.	1.5	4
573	Hsp40 overexpression in pacemaker neurons delays circadian dysfunction in a <i>Drosophila</i> model of Huntington's disease. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	2
574	Circadian programming of the ellipsoid body sleep homeostat in Drosophila. ELife, 0, 11, .	2.8	11
575	Photoperiodic time measurement, photoreception, and circadian clocks in insect photoperiodism. Applied Entomology and Zoology, 2022, 57, 193-212.	0.6	15
576	The Drosophila circadian clock circuit is a nonhierarchical network of peptidergic oscillators. Current Opinion in Insect Science, 2022, 52, 100944.	2.2	4
577	PHASE: An Open-Source Program for the Analysis of <i>Drosophila</i> <u>Ph</u> Phase, <u>A</u> ctivity, and <u>S</u> leep Under <u>E</u> ntrainment. Journal of Biological Rhythms, 2022, 37, 455-467.	1.4	10
578	Connectomic analysis of the Drosophila lateral neuron clock cells reveals the synaptic basis of functional pacemaker classes. ELife, 0, 11 , .	2.8	23
579	Circadian Neuropeptide-Expressing Clock Neurons as Regulators of Long-Term Memory: Molecular and Cellular Perspectives. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	7
580	Comparative analysis of temperature preference behavior and effects of temperature on daily behavior in 11 Drosophila species. Scientific Reports, 2022, 12, .	1.6	10
581	The Role of Glia Clocks in the Regulation of Sleep in <i>Drosophila melanogaster</i> . Journal of Neuroscience, 2022, 42, 6848-6860.	1.7	5
582	The Effects of Artificial Night Lighting on Tail Regeneration and Prey Consumption in a Nocturnal Salamander (Plethodon cinereus) and on the Behavior of Fruit Fly Prey (Drosophila virilis). Animals, 2022, 12, 2105.	1.0	0
583	Dopamine and GPCR-mediated modulation of DN1 clock neurons gates the circadian timing of sleep. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
584	Behavioral systems., 2023,, 247-295.		0
585	An extra-clock ultradian brain oscillator sustains circadian timekeeping. Science Advances, 2022, 8, .	4.7	6

#	Article	IF	Citations
586	Death of a Protein: The Role of E3 Ubiquitin Ligases in Circadian Rhythms of Mice and Flies. International Journal of Molecular Sciences, 2022, 23, 10569.	1.8	3
588	Real time, in vivo measurement of neuronal and peripheral clocks in Drosophila melanogaster. ELife, 0, 11 , .	2.8	4
590	Peculiar sleep features in sympatric species may contribute to the temporal segregation. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2023, 193, 57-70.	0.7	1
591	Action potential firing rhythms in the suprachiasmatic nucleus of the diurnal grass rat, Arvicanthis niloticus. Neuroscience Letters, 2023, 792, 136954.	1.0	0
592	Light triggers a network switch between circadian morning and evening oscillators controlling behaviour during daily temperature cycles. PLoS Genetics, 2022, 18, e1010487.	1.5	2
593	Light exposure during development affects physiology of adults in Drosophila melanogaster. Frontiers in Physiology, 0, 13, .	1.3	2
594	Reduced branched-chain aminotransferase activity alleviates metabolic vulnerability caused by dim light exposure at night in <i>Drosophila</i> . Journal of Neurogenetics, 2023, 37, 25-35.	0.6	3
595	Mating disrupts morning anticipation in Drosophila melanogaster females. PLoS Genetics, 2022, 18, e1010258.	1.5	3
596	Circadian gating of light-induced arousal in <i>Drosophila</i> sleep. Journal of Neurogenetics, 0, , 1-11.	0.6	1
597	Polyphasic circadian neural circuits drive differential activities in multiple downstream rhythmic centers. Current Biology, 2023, 33, 351-363.e3.	1.8	6
599	Light Pollution Disrupts Seasonal Differences in the Daily Activity and Metabolic Profiles of the Northern House Mosquito, Culex pipiens. Insects, 2023, 14, 64.	1.0	5
600	Pigment-dispersing factor and CCHamide1 in the <i>Drosophila</i> circadian clock network. Chronobiology International, 2023, 40, 284-299.	0.9	2
602	Neurocircuitry of Circadian Clocks. Entomology Monographs, 2023, , 85-113.	0.6	1
603	Molecular Mechanism of the Circadian Clock. Entomology Monographs, 2023, , 49-84.	0.6	3
604	Neural Mechanism of Photoperiodism. Entomology Monographs, 2023, , 293-320.	0.6	2
605	Phosphorylation Promotes the Accumulation of PERIOD Protein Foci. Research, 2023, 6, .	2.8	1
608	A four-oscillator model of seasonally adapted morning and evening activities in Drosophila melanogaster. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 0, , .	0.7	1
613	On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 0, , .	0.7	4

Article IF Citations