Functional interactions between receptors in bacterial

Nature 428, 437-441 DOI: 10.1038/nature02406

Citation Report

#	Article	IF	CITATIONS
1	Ligand-Specific Activation of Escherichia coli Chemoreceptor Transmethylation. Journal of Bacteriology, 2004, 186, 7556-7563.	1.0	24
2	Effect of Chemoreceptor Modification on Assembly and Activity of the Receptor-Kinase Complex in Escherichia coli. Journal of Bacteriology, 2004, 186, 6643-6646.	1.0	44
3	Three-dimensional structure and organization of a receptor/signaling complex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17480-17485.	3.3	60
4	Cellular Stoichiometry of the Components of the Chemotaxis Signaling Complex. Journal of Bacteriology, 2004, 186, 3687-3694.	1.0	231
5	A network of net-workers: report of the Euresco conference on â€~Bacterial Neural Networks' held at San Feliu (Spain) from 8 to 14 May 2004. Molecular Microbiology, 2004, 54, 2-13.	1.2	6
6	Making sense of it all: bacterial chemotaxis. Nature Reviews Molecular Cell Biology, 2004, 5, 1024-1037.	16.1	1,167
7	Modulated receptor interactions in bacterial transmembrane signaling. Trends in Cell Biology, 2004, 14, 478-482.	3.6	10
8	Bacterial Chemosensing: Cooperative Molecular Logic. Current Biology, 2004, 14, R486-R487.	1.8	27
9	Effects of Receptor Interaction in Bacterial Chemotaxis. Biophysical Journal, 2004, 87, 1578-1595.	0.2	50
10	Robustness of Cellular Functions. Cell, 2004, 118, 675-685.	13.5	930
11	Receptor clustering and signal processing in E. coli chemotaxis. Trends in Microbiology, 2004, 12, 569-576.	3.5	300
12	An Allosteric Model for Transmembrane Signaling in Bacterial Chemotaxis. Journal of Molecular Biology, 2004, 343, 291-303.	2.0	32
13	Ligand-induced Conformational Changes in the Bacillus subtilis Chemoreceptor McpB Determined by Disulfide Crosslinking in vivo. Journal of Molecular Biology, 2004, 344, 919-928.	2.0	19
14	Oligomers of D ₂ Dopamine Receptors: Evidence From Ligand Binding. Journal of Molecular Neuroscience, 2005, 26, 155-160.	1.1	23
15	Clustering requires modified methyl-accepting sites in low-abundance but not high-abundance chemoreceptors of Escherichia coli. Molecular Microbiology, 2005, 56, 1078-1086.	1.2	28
16	Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors. Molecular Microbiology, 2005, 57, 774-785.	1.2	48
17	Design principles of a bacterial signalling network. Nature, 2005, 438, 504-507.	13.7	260
18	Demonstration of interactions among Myxococcus xanthus Dif chemotaxis-like proteins by the yeast two-hybrid system. Archives of Microbiology, 2005, 183, 243-252.	1.0	26

#	Article	IF	CITATIONS
19	Stabilization of Polar Localization of a Chemoreceptor via Its Covalent Modifications and Its Communication with a Different Chemoreceptor. Journal of Bacteriology, 2005, 187, 7647-7654.	1.0	33
20	Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. Journal of Experimental Medicine, 2005, 202, 493-503.	4.2	288
21	Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15623-15628.	3.3	114
22	"Neural Networks―in Bacteria: Making Connections. Journal of Bacteriology, 2005, 187, 26-36.	1.0	19
23	Hypothesis: Chemotaxis in <i>Escherichia coli</i> Results from Hyperstructure Dynamics. Journal of Molecular Microbiology and Biotechnology, 2005, 10, 1-14.	1.0	11
24	Noisy signal amplification in ultrasensitive signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 331-336.	3.3	155
25	An allosteric model for heterogeneous receptor complexes: Understanding bacterial chemotaxis responses to multiple stimuli. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17354-17359.	3.3	135
26	The logical repertoire of ligand-binding proteins. Physical Biology, 2005, 2, 159-165.	0.8	13
27	Phosphatase localization in bacterial chemotaxis: divergent mechanisms, convergent principles. Physical Biology, 2005, 2, 148-158.	0.8	27
28	A Local Coupling Model and Compass Parameter for Eukaryotic Chemotaxis. Developmental Cell, 2005, 8, 215-227.	3.1	184
29	Adaptational assistance in clusters of bacterial chemoreceptors. Molecular Microbiology, 2005, 56, 1617-1626.	1.2	92
30	Plasticity in amino acid sensing of the chimeric receptor Taz. Molecular Microbiology, 2005, 58, 257-266.	1.2	11
31	Adaptation Mechanism of the Aspartate Receptor:  Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity. Biochemistry, 2005, 44, 1550-1560.	1.2	55
32	Evidence that the Adaptation Region of the Aspartate Receptor Is a Dynamic Four-Helix Bundle:  Cysteine and Disulfide Scanning Studies. Biochemistry, 2005, 44, 12655-12666.	1.2	32
33	Collaborative signaling by bacterial chemoreceptors. Current Opinion in Microbiology, 2005, 8, 116-121.	2.3	140
34	Conserved Glycine Residues in the Cytoplasmic Domain of the Aspartate Receptor Play Essential Roles in Kinase Coupling and Onâ^'Off Switchingâ€. Biochemistry, 2005, 44, 7687-7695.	1.2	60
35	Flexible peptides and cytoplasmic gels. Genome Biology, 2005, 6, 106.	13.9	6
36	Receptor-Receptor Coupling in Bacterial Chemotaxis: Evidence for Strongly Coupled Clusters. Biophysical Journal, 2006, 90, 4317-4326.	0.2	48

#	Article	IF	CITATIONS
37	Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing. Cell, 2006, 126, 1095-1108.	13.5	258
38	Systems biology of bacterial chemotaxis. Current Opinion in Microbiology, 2006, 9, 187-192.	2.3	61
39	Spatial organization of the bacterial chemotaxis system. Current Opinion in Microbiology, 2006, 9, 619-624.	2.3	90
40	12 Reversible methylation of glutamate residues in the receptor proteins of bacterial sensory systems. The Enzymes, 2006, 24, 325-382.	0.7	9
41	Determinants of chemoreceptor cluster formation in Escherichia coli. Molecular Microbiology, 2006, 61, 407-417.	1.2	87
42	Inch by inch, row by row. Nature Structural and Molecular Biology, 2006, 13, 382-384.	3.6	9
43	Simulating the evolution of signal transduction pathways. Journal of Theoretical Biology, 2006, 241, 223-232.	0.8	40
44	Prediction and systematic study of protein-protein interaction networks of Leptospira interrogans. Science Bulletin, 2006, 51, 1296-1305.	1.7	2
45	Conformational spread: The propagation of allosteric states in large multiprotein complexes. Rendiconti Lincei, 2006, 17, 221-241.	1.0	0
46	Signal transduction in bacterial chemotaxis. BioEssays, 2006, 28, 9-22.	1.2	286
47	Synthetic Multivalent Ligands as Probes of Signal Transduction. Angewandte Chemie - International Edition, 2006, 45, 2348-2368.	7.2	774
49	Chemosensing in Escherichia coli: Two regimes of two-state receptors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1786-1791.	3.3	181
50	Optimal Noise Filtering in the Chemotactic Response of Escherichia coli. PLoS Computational Biology, 2006, 2, e154.	1.5	106
51	Mutational Analysis of the Chemoreceptor-Coupling Domain of the Escherichia coli Chemotaxis		20
	Signaling Kinase CheA. Journal of Bacteriology, 2006, 188, 3299-3307.	1.0	30
52	Signaling Kinase CheA. Journal of Bacteriology, 2006, 188, 3299-3307. Competitive and Cooperative Interactions in Receptor Signaling Complexes*. Journal of Biological Chemistry, 2006, 281, 30512-30523.	1.0	23
52 53	Signaling Kinase CheA. Journal of Bacteriology, 2006, 188, 3299-3307. Competitive and Cooperative Interactions in Receptor Signaling Complexes*. Journal of Biological Chemistry, 2006, 281, 30512-30523. Conformational suppression of inter-receptor signaling defects. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9292-9297.	1.0 1.6 3.3	23 41
52 53 54	Signaling Kinase CheA. Journal of Bacteriology, 2006, 188, 3299-3307. Competitive and Cooperative Interactions in Receptor Signaling Complexes*. Journal of Biological Chemistry, 2006, 281, 30512-30523. Conformational suppression of inter-receptor signaling defects. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9292-9297. Monitoring bacterial chemotaxis by using bioluminescence resonance energy transfer: Absence of feedback from the flagellar motors. Proceedings of the National Academy of Sciences of the United States of America, 2007.	1.0 1.6 3.3 3.3	30 23 41 35

#	Article	IF	CITATIONS
56	Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11509-11514.	3.3	181
57	Precise adaptation in bacterial chemotaxis through "assistance neighborhoods". Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13040-13044.	3.3	136
58	Control of Chemotactic Signal Gain via Modulation of a Pre-formed Receptor Array. Journal of Biological Chemistry, 2006, 281, 23880-23886.	1.6	22
59	Osmotic stress mechanically perturbs chemoreceptors in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 592-596.	3.3	80
60	Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3777-3781.	3.3	176
61	Ancient chemoreceptors retain their flexibility. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2559-2560.	3.3	3
62	Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2885-2890.	3.3	235
63	Chemotaxis Receptor Complexes: From Signaling to Assembly. PLoS Computational Biology, 2007, 3, e150.	1.5	18
64	Detection of Protein-Protein Interactions Using Protein-Fragment Complementation Assays (PCA). Current Proteomics, 2007, 4, 17-27.	0.1	7
65	Liposomeâ€Mediated Assembly of Receptor Signaling Complexes. Methods in Enzymology, 2007, 423, 267-298.	0.4	10
66	Phenotypic Suppression Methods for Analyzing Intra―and Interâ€Molecular Signaling Interactions of Chemoreceptors. Methods in Enzymology, 2007, 423, 436-457.	0.4	9
67	Functional Taxonomy of Bacterial Hyperstructures. Microbiology and Molecular Biology Reviews, 2007, 71, 230-253.	2.9	79
68	In Vivo Crosslinking Methods for Analyzing the Assembly and Architecture of Chemoreceptor Arrays. Methods in Enzymology, 2007, 423, 414-431.	0.4	17
69	Crystal structure of scaffolding protein CheW from thermoanaerobacter tengcongensis. Biochemical and Biophysical Research Communications, 2007, 361, 1027-1032.	1.0	8
70	Physical Responses of Bacterial Chemoreceptors. Journal of Molecular Biology, 2007, 366, 1416-1423.	2.0	82
71	Co-expression of signaling proteins improves robustness of the bacterial chemotaxis pathway. Journal of Biotechnology, 2007, 129, 173-180.	1.9	26
72	Simultaneous high gain and wide dynamic range in a model of bacterial chemotaxis. IET Systems Biology, 2007, 1, 222-229.	0.8	5
73	Toward a Hyperstructure Taxonomy. Annual Review of Microbiology, 2007, 61, 309-329.	2.9	63

#	Article	IF	CITATIONS
74	Formation and Activity of Template-Assembled Receptor Signaling Complexes. Langmuir, 2007, 23, 3280-3289.	1.6	21
75	Effects of Adaptation in Maintaining High Sensitivity over a Wide Range of Backgrounds for Escherichia coli Chemotaxis. Biophysical Journal, 2007, 92, 2329-2337.	0.2	85
76	Physiology Of Root-Nodule Bacteria. , 2008, , 241-292.		3
77	In Vivo Measurement by FRET of Pathway Activity in Bacterial Chemotaxis. Methods in Enzymology, 2007, 423, 365-391.	0.4	111
78	Guiding Bacteria with Small Molecules and RNA. Journal of the American Chemical Society, 2007, 129, 6807-6811.	6.6	149
79	Positioning of chemosensory clusters in E. coli and its relation to cell division. EMBO Journal, 2007, 26, 1615-1623.	3.5	94
80	Subcellular location characteristics of the <i>Pseudomonas aeruginosa</i> GGDEF protein, WspR, indicate that it produces cyclicâ€diâ€GMP in response to growth on surfaces. Molecular Microbiology, 2007, 66, 1459-1473.	1.2	205
81	Cholesterol as a determinant of cooperativity in the M2 muscarinic cholinergic receptor. Biochemical Pharmacology, 2007, 74, 236-255.	2.0	21
82	In Silico Biology: From Simulation to Understanding. Current Biology, 2007, 17, R132-R134.	1.8	18
83	Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis I: The Single Cell. Bulletin of Mathematical Biology, 2008, 70, 1525-1569.	0.9	96
84	A simple immune system simulation reveals optimal movement and cell density parameters for successful target clearance. Immunology, 2008, 123, 519-527.	2.0	7
85	Location and architecture of the <i>Caulobacter crescentus</i> chemoreceptor array. Molecular Microbiology, 2008, 69, 30-41.	1.2	111
86	Stochastic assembly of chemoreceptor clusters in <i>Escherichia coli</i> . Molecular Microbiology, 2008, 68, 1228-1236.	1.2	60
87	Looking inside the box: bacterial transistor arrays. Molecular Microbiology, 2008, 69, 5-9.	1.2	7
88	Tsr–GFP accumulates linearly with time at cell poles, and can be used to differentiate â€~old' versus â€~new' poles, in <i>Escherichia coli</i> . Molecular Microbiology, 2008, 69, 1427-1438.	1.2	28
89	Receptor mosaics of neural and immune communication: Possible implications for basal ganglia functions. Brain Research Reviews, 2008, 58, 400-414.	9.1	15
90	Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends in Biochemical Sciences, 2008, 33, 9-19.	3.7	571
91	Toward a Biomechanical Understanding of Whole Bacterial Cells. Annual Review of Biochemistry, 2008, 77, 583-613.	5.0	51

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
92	Adaptive dynamics with a single two-state protein. Journal of the Royal Society Interface, 2008, 5, S41-7.	1.5	16
93	Direct Evidence for Coupling between Bacterial Chemoreceptors. Journal of Molecular Biology, 2008, 382, 573-577.	2.0	20
94	Deducing Receptor Signaling Parameters from In Vivo Analysis: LuxN/Al-1 Quorum Sensing in Vibrio harveyi. Cell, 2008, 134, 461-473.	13.5	101
95	How the "Melting―and "Freezing―of Protein Molecules May Be Used in Cell Signaling. ACS Chemical Biology, 2008, 3, 89-91.	1.6	6
96	Chemical Probes of Bacterial Signal Transduction Reveal That Repellents Stabilize and Attractants Destabilize the Chemoreceptor Array. ACS Chemical Biology, 2008, 3, 101-109.	1.6	25
97	Different Signaling Roles of Two Conserved Residues in the Cytoplasmic Hairpin Tip of Tsr, the <i>Escherichia coli</i> Serine Chemoreceptor. Journal of Bacteriology, 2008, 190, 8065-8074.	1.0	30
98	Receptor density balances signal stimulation and attenuation in membrane-assembled complexes of bacterial chemotaxis signaling proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12289-12294.	3.3	32
99	Protein exchange dynamics at chemoreceptor clusters in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6403-6408.	3.3	75
100	Modeling the chemotactic response of <i>Escherichia coli</i> to time-varying stimuli. Proceedings of the United States of America, 2008, 105, 14855-14860.	3.3	225
101	The nonequilibrium mechanism for ultrasensitivity in a biological switch: Sensing by Maxwell's demons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11737-11741.	3.3	118
102	Chemotaxis in Escherichia coli: A Molecular Model for Robust Precise Adaptation. PLoS Computational Biology, 2008, 4, e1.	1.5	156
103	Relationship between cellular response and behavioral variability in bacterial chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3304-3309.	3.3	119
104	Self-Organized Periodicity of Protein Clusters in Growing Bacteria. Physical Review Letters, 2008, 101, 218101.	2.9	42
105	Variable sizes of <i>Escherichia coli</i> chemoreceptor signaling teams. Molecular Systems Biology, 2008, 4, 211.	3.2	62
107	Universal architecture of bacterial chemoreceptor arrays. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17181-17186.	3.3	320
108	A feeling for the numbers in biology. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21465-21471.	3.3	100
109	Dynamic map of protein interactions in the <i>Escherichia coli</i> chemotaxis pathway. Molecular Systems Biology, 2009, 5, 238.	3.2	84
110	The Molecular Basis of Excitation and Adaptation during Chemotactic Sensory Transduction in Bacteria. Contributions To Microbiology, 2009, 16, 33-64.	2.1	30

#	Article	IF	CITATIONS
111	Self-Organization of the Escherichia coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy. PLoS Biology, 2009, 7, e1000137.	2.6	310
112	Chemotaxis. , 2009, , 71-78.		9
113	Role of Translational Coupling in Robustness of Bacterial Chemotaxis Pathway. PLoS Biology, 2009, 7, e1000171.	2.6	54
114	Cellular Localization of Predicted Transmembrane and Soluble Chemoreceptors in <i>Sinorhizobium meliloti</i> . Journal of Bacteriology, 2009, 191, 5724-5733.	1.0	37
115	Accuracy of direct gradient sensing by cell-surface receptors. Progress in Biophysics and Molecular Biology, 2009, 100, 33-39.	1.4	47
116	Introducing simulated cellular architecture to the quantitative analysis of fluorescent microscopy. Progress in Biophysics and Molecular Biology, 2009, 100, 25-32.	1.4	6
117	Equilibrium mechanisms of receptor clustering. Progress in Biophysics and Molecular Biology, 2009, 100, 18-24.	1.4	24
118	Translational Diffusion and Interaction of a Photoreceptor and Its Cognate Transducer Observed in Giant Unilamellar Vesicles by Using Dualâ€Focus FCS. ChemBioChem, 2009, 10, 1823-1829.	1.3	33
119	Upward mobility and alternative lifestyles: a report from the 10th biennial meeting on Bacterial Locomotion and Signal Transduction. Molecular Microbiology, 2009, 73, 5-19.	1.2	2
120	The regulatory interplay between membraneâ€integrated sensors and transport proteins in bacteria. Molecular Microbiology, 2009, 73, 982-991.	1.2	67
121	High-resolution, long-term characterization of bacterial motility using optical tweezers. Nature Methods, 2009, 6, 831-835.	9.0	139
122	The Core Signaling Proteins of Bacterial Chemotaxis Assemble To Form an Ultrastable Complex. Biochemistry, 2009, 48, 6975-6987.	1.2	67
124	Polar Chemoreceptor Clustering by Coupled Trimers of Dimers. Biophysical Journal, 2009, 96, 453-463.	0.2	26
125	Logarithmic Sensing in Escherichia coli Bacterial Chemotaxis. Biophysical Journal, 2009, 96, 2439-2448.	0.2	211
126	Chemotaxis: how bacteria use memory. Biological Chemistry, 2009, 390, 1097-1104.	1.2	111
127	Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi) Tj ETQq1	1,0,7843	14. ₇₈ BT /O
128	Signal amplification in a lattice of coupled protein kinases. Molecular BioSystems, 2009, 5, 1853.	2.9	23
129	Bacterial Quorum-Sensing Network Architectures. Annual Review of Genetics, 2009, 43, 197-222.	3.2	1,426

	CHAIC	IN REPORT	
#	Article	IF	CITATIONS
130	Nucleating the Assembly of Macromolecular Complexes. ChemBioChem, 2010, 11, 1955-1962.	1.3	6
131	Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient. Biosensors and Bioelectronics, 2010, 26, 351-356.	5.3	31
132	A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis. BMC Systems Biology, 2010, 4, 27.	3.0	11
133	Molecular mechanisms in signal transduction at the membrane. Nature Structural and Molecular Biology, 2010, 17, 659-665.	3.6	248
134	Spatial organization of transmembrane receptor signalling. EMBO Journal, 2010, 29, 2677-2688.	3.5	115
135	Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis. EMBO Journal, 2010, 29, 3484-3495.	3.5	74
136	Classifying chemoreceptors: quantity versus quality. EMBO Journal, 2010, 29, 3435-3436.	3.5	2
137	Interdependence of behavioural variability and response to small stimuli in bacteria. Nature, 2010, 468, 819-823.	13.7	67
138	Spatial organization and signal transduction at intercellular junctions. Nature Reviews Molecular Cell Biology, 2010, 11, 342-352.	16.1	114
139	An Agent-Based Model of Signal Transduction in Bacterial Chemotaxis. PLoS ONE, 2010, 5, e9454.	1.1	12
140	The Chemoreceptor Dimer Is the Unit of Conformational Coupling and Transmembrane Signaling. Journal of Bacteriology, 2010, 192, 1193-1200.	1.0	35
141	PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2235-2240.	3.3	68
142	Responses of <i>Escherichia coli</i> Bacteria to Two Opposing Chemoattractant Gradients Depend on the Chemoreceptor Ratio. Journal of Bacteriology, 2010, 192, 1796-1800.	1.0	97
143	Challenges and Approaches for Assay Development of Membrane and Membrane-Associated Proteins in Drug Discovery. Progress in Molecular Biology and Translational Science, 2010, 91, 209-239.	0.9	2
144	A dynamic-signaling-team model for chemotaxis receptors in <i>Escherichia coli</i> . Proceedings of the United States of America, 2010, 107, 17170-17175.	3.3	37
145	Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12846-12849.	3.3	82
146	Chemotactic Response and Adaptation Dynamics in Escherichia coli. PLoS Computational Biology, 2010, 6, e1000784.	1.5	54
147	Phototactic and Chemotactic Signal Transduction by Transmembrane Receptors and Transducers in Microorganisms. Sensors, 2010, 10, 4010-4039.	2.1	27

#	Article	lF	CITATIONS
148	Predicted Auxiliary Navigation Mechanism of Peritrichously Flagellated Chemotactic Bacteria. PLoS Computational Biology, 2010, 6, e1000717.	1.5	42
149	The SCHOOL of nature: I. Transmembrane signaling. Self/nonself, 2010, 1, 4-39.	2.0	16
150	Precision and Kinetics of Adaptation in Bacterial Chemotaxis. Biophysical Journal, 2010, 99, 2766-2774.	0.2	34
151	Use of Fluorescence Microscopy to Study Intracellular Signaling in Bacteria. Annual Review of Microbiology, 2010, 64, 373-390.	2.9	38
152	Structure of the Ternary Complex Formed by a Chemotaxis Receptor Signaling Domain, the CheA Histidine Kinase, and the Coupling Protein CheW As Determined by Pulsed Dipolar ESR Spectroscopy. Biochemistry, 2010, 49, 3824-3841.	1.2	73
153	A modular gradientâ€sensing network for chemotaxis in <i>Escherichia coli</i> revealed by responses to timeâ€varying stimuli. Molecular Systems Biology, 2010, 6, 382.	3.2	204
154	Protein Localization in <i>Escherichia coli</i> Cells: Comparison of the Cytoplasmic Membrane Proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. Journal of Bacteriology, 2010, 192, 912-924.	1.0	104
155	Two component systems in the spatial program of bacteria. Current Opinion in Microbiology, 2010, 13, 210-218.	2.3	20
156	The Asymmetric Flagellar Distribution and Motility of Escherichia coli. Journal of Molecular Biology, 2010, 397, 906-916.	2.0	22
157	Spatial aspects of intracellular information processing. Current Opinion in Genetics and Development, 2010, 20, 31-40.	1.5	33
158	Spatial organization in bacterial chemotaxis. EMBO Journal, 2010, 29, 2724-2733.	3.5	135
160	Microfluidic Technologies for Temporal Perturbations of Chemotaxis. Annual Review of Biomedical Engineering, 2010, 12, 259-284.	5.7	60
161	Dynamic Omics Approach Identifies Nutrition-Mediated Microbial Interactions. Journal of Proteome Research, 2011, 10, 824-836.	1.8	45
162	Single-Molecule and Nanoscale Approaches to Biological Signaling. , 2011, , 287-323.		0
163	Thermal Robustness of Signaling in Bacterial Chemotaxis. Cell, 2011, 145, 312-321.	13.5	70
164	Construction of a Genetic Multiplexer to Toggle between Chemosensory Pathways in Escherichia coli. Journal of Molecular Biology, 2011, 406, 215-227.	2.0	59
165	Protein Footprinting in a Complex Milieu: Identifying the Interaction Surfaces of the Chemotaxis Adaptor Protein CheW. Journal of Molecular Biology, 2011, 409, 483-495.	2.0	22
166	The Physical and Functional Thermal Sensitivity of Bacterial Chemoreceptors. Journal of Molecular Biology, 2011, 411, 554-566.	2.0	10

#	Article	IF	CITATIONS
167	Adapt locally and act globally: strategy to maintain high chemoreceptor sensitivity in complex environments. Molecular Systems Biology, 2011, 7, 475.	3.2	38
168	Bacterial Chemotaxis in an Optical Trap. PLoS ONE, 2011, 6, e18231.	1.1	28
169	Chemotaxis kinase CheA is activated by three neighbouring chemoreceptor dimers as effectively as by receptor clusters. Molecular Microbiology, 2011, 79, 677-685.	1.2	38
170	Lateral density of receptor arrays in the membrane plane influences sensitivity of the E. coli chemotaxis response. EMBO Journal, 2011, 30, 1719-1729.	3.5	37
171	Transmembrane signal transduction in archaeal phototaxis: The sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy. European Journal of Cell Biology, 2011, 90, 731-739.	1.6	30
172	Role of pathogens, signal recalcitrance, and organisms shifting for ecosystem recuperation. A review. Agronomy for Sustainable Development, 2011, 31, 205-215.	2.2	8
173	Noise characteristics of the Escherichia coli rotary motor. BMC Systems Biology, 2011, 5, 151.	3.0	10
174	Evolution of response dynamics underlying bacterial chemotaxis. BMC Evolutionary Biology, 2011, 11, 240.	3.2	9
175	Effects of receptor modification and temperature on dynamics of sensory complexes in Escherichia coli chemotaxis. BMC Microbiology, 2011, 11, 222.	1.3	8
176	Attractant Binding Induces Distinct Structural Changes to the Polar and Lateral Signaling Clusters in Bacillus subtilis Chemotaxis*. Journal of Biological Chemistry, 2011, 286, 2587-2595.	1.6	18
177	Optimal receptor-cluster size determined by intrinsic and extrinsic noise. Physical Review E, 2011, 83, 021914.	0.8	27
178	Mutational Analysis of N381, a Key Trimer Contact Residue in Tsr, the Escherichia coli Serine Chemoreceptor. Journal of Bacteriology, 2011, 193, 6452-6460.	1.0	18
179	Effects of population density and chemical environment on the behavior of <i>Escherichia coli</i> in shallow temperature gradients. Physical Biology, 2011, 8, 063001.	0.8	18
180	Response rescaling in bacterial chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13870-13875.	3.3	142
181	Mutational Analysis of the Control Cable That Mediates Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor. Journal of Bacteriology, 2011, 193, 5062-5072.	1.0	39
182	Site-specific methylation in Bacillus subtilis chemotaxis: effect of covalent modifications to the chemotaxis receptor McpB. Microbiology (United Kingdom), 2011, 157, 56-65.	0.7	13
183	Transmembrane Helix Dynamics of Bacterial Chemoreceptors Supports a Piston Model of Signalling. PLoS Computational Biology, 2011, 7, e1002204.	1.5	39
184	Noise in Bacterial Chemotaxis: Sources, Analysis, and Control. BioScience, 2012, 62, 1030-1038.	2.2	9

#	Article	IF	Citations
185	Stochastic coordination of multiple actuators reduces latency and improves chemotactic response in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 805-810.	3.3	54
186	Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3766-3771.	3.3	247
187	Fold-change detection as a chemotaxis model discrimination tool. , 2012, , .		1
188	Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of <i>Escherichia coli</i> minicells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1481-8.	3.3	187
189	Surface sensing and lateral subcellular localization of <scp>WspA</scp> , the receptor in a chemosensoryâ€like system leading to câ€diâ€ <scp>GMP</scp> production. Molecular Microbiology, 2012, 86, 720-729.	1.2	145
190	Opposite responses by different chemoreceptors set a tunable preference point in <i><scp>E</scp>scherichia coli</i> <scp>pH</scp> taxis. Molecular Microbiology, 2012, 86, 1482-1489.	1.2	70
191	Adaptation at the output of the chemotaxis signalling pathway. Nature, 2012, 484, 233-236.	13.7	132
192	Ligand Affinity and Kinase Activity Are Independent of Bacterial Chemotaxis Receptor Concentration: Insight into Signaling Mechanisms. Biochemistry, 2012, 51, 6920-6931.	1.2	12
193	Isolated Bacterial Chemosensory Array Possesses Quasi- and Ultrastable Components: Functional Links between Array Stability, Cooperativity, and Order. Biochemistry, 2012, 51, 10218-10228.	1.2	14
194	Characterization of the Adaptation Module of the Signaling Network in Bacterial Chemotaxis by Measurement of Step Responses. Biophysical Journal, 2012, 103, L31-L33.	0.2	2
195	The Relation of Signal Transduction to the Sensitivity and Dynamic Range of Bacterial Chemotaxis. Biophysical Journal, 2012, 103, 1390-1399.	0.2	9
196	A "Trimer of Dimersâ€â€"Based Model for the Chemotactic Signal Transduction Network in Bacterial Chemotaxis. Bulletin of Mathematical Biology, 2012, 74, 2339-2382.	0.9	17
197	Effects of cooperative ion-channel interactions on the dynamics of excitable membranes. Physical Review E, 2012, 85, 061904.	0.8	10
198	The protein interaction network of a taxis signal transduction system in a Halophilic Archaeon. BMC Microbiology, 2012, 12, 272.	1.3	37
199	Cell orientation of swimming bacteria: From theoretical simulation to experimental evaluation. Science China Life Sciences, 2012, 55, 202-209.	2.3	11
200	Responding to chemical gradients: bacterial chemotaxis. Current Opinion in Cell Biology, 2012, 24, 262-268.	2.6	437
201	Cooperative luminescence quenching on many-particle acceptors in disordered media. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 3526-3532.	1.2	3
202	<i>Salmonella</i> chemoreceptors McpB and McpC mediate a repellent response to <i>L</i> â€cystine: a potential mechanism to avoid oxidative conditions. Molecular Microbiology, 2012, 84, 697-711.	1.2	16

#	Article	IF	CITATIONS
203	Prolonged stimuli alter the bacterial chemosensory clusters. Molecular Microbiology, 2013, 88, 634-644.	1.2	24
204	A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors. Nature Communications, 2013, 4, 2881.	5.8	37
205	Discovery of novel chemoeffectors and rational design of <i>Escherichia coli</i> chemoreceptor specificity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16814-16819.	3.3	46
206	Pump-less static microfluidic device for analysis of chemotaxis of Pseudomonas aeruginosa using wetting and capillary action. Biosensors and Bioelectronics, 2013, 47, 278-284.	5.3	29
207	Genome-wide transcriptional responses of Escherichia coli to glyphosate, a potent inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Molecular BioSystems, 2013, 9, 522-530.	2.9	45
208	Quantitative Modeling of Bacterial Chemotaxis: Signal Amplification and Accurate Adaptation. Annual Review of Biophysics, 2013, 42, 337-359.	4.5	139
209	Ultrasensitivity of an Adaptive Bacterial Motor. Journal of Molecular Biology, 2013, 425, 1760-1764.	2.0	65
210	Defining a Key Receptor–CheA Kinase Contact and Elucidating Its Function in the Membrane-Bound Bacterial Chemosensory Array: A Disulfide Mapping and TAM-IDS Study. Biochemistry, 2013, 52, 3866-3880.	1.2	35
211	Conformational Coupling between Receptor and Kinase Binding Sites through a Conserved Salt Bridge in a Signaling Complex Scaffold Protein. PLoS Computational Biology, 2013, 9, e1003337.	1.5	13
212	Adaptation Dynamics in Densely Clustered Chemoreceptors. PLoS Computational Biology, 2013, 9, e1003230.	1.5	23
213	Excitation and Adaptation in Bacteria–a Model Signal Transduction System that Controls Taxis and Spatial Pattern Formation. International Journal of Molecular Sciences, 2013, 14, 9205-9248.	1.8	21
214	Transient dynamic phenotypes as criteria for model discrimination: fold-change detection in Rhodobacter sphaeroides chemotaxis. Journal of the Royal Society Interface, 2013, 10, 20120935.	1.5	15
215	The biophysical model for accuracy of cellular sensing spatial gradients of multiple chemoattractants. Physical Biology, 2013, 10, 056014.	0.8	0
216	Coordinated Switching of Bacterial Flagellar Motors: Evidence for Direct Motor-Motor Coupling?. Physical Review Letters, 2013, 110, 158703.	2.9	20
217	Directional sensing by cooperative chemoreceptor arrays modeled as Monod-Wyman-Changeux clusters. Physical Review E, 2013, 87, .	0.8	1
218	Cell biology of bacterial sensory modules. Frontiers in Bioscience - Landmark, 2013, 18, 928.	3.0	8
219	Imprecision of Adaptation in Escherichia coli Chemotaxis. PLoS ONE, 2014, 9, e84904.	1.1	34
220	FtsZ Placement in Nucleoid-Free Bacteria. PLoS ONE, 2014, 9, e91984.	1.1	34

#	Article	IF	CITATIONS
221	Chemotaxis of Escherichia coli to Norepinephrine (NE) Requires Conversion of NE to 3,4-Dihydroxymandelic Acid. Journal of Bacteriology, 2014, 196, 3992-4000.	1.0	59
222	Functional Organization of a Multimodular Bacterial Chemosensory Apparatus. PLoS Genetics, 2014, 10, e1004164.	1.5	32
223	Predicting Chemical Environments of Bacteria from Receptor Signaling. PLoS Computational Biology, 2014, 10, e1003870.	1.5	27
224	Compact Modeling of Allosteric Multisite Proteins: Application to a Cell Size Checkpoint. PLoS Computational Biology, 2014, 10, e1003443.	1.5	7
225	Limits of Feedback Control in Bacterial Chemotaxis. PLoS Computational Biology, 2014, 10, e1003694.	1.5	65
226	The Role of Membrane-Mediated Interactions in the Assembly and Architecture of Chemoreceptor Lattices. PLoS Computational Biology, 2014, 10, e1003932.	1.5	32
227	High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. Journal of Cell Biology, 2014, 206, 541-557.	2.3	35
228	Simulation tools for particle-based reaction-diffusion dynamics in continuous space. BMC Biophysics, 2014, 7, 11.	4.4	74
229	Ultrasensitivity in independent multisite systems. Journal of Mathematical Biology, 2014, 69, 977-999.	0.8	9
230	InÂVivo Kinetics of Segregation and Polar Retention of MS2-GFP-RNA Complexes in Escherichia coli. Biophysical Journal, 2014, 106, 1928-1937.	0.2	28
231	New Insights into Bacterial Chemoreceptor Array Structure and Assembly from Electron Cryotomography. Biochemistry, 2014, 53, 1575-1585.	1.2	91
232	Selective allosteric coupling in core chemotaxis signaling complexes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15940-15945.	3.3	60
233	Bacterial chemoreceptors of different length classes signal independently. Molecular Microbiology, 2014, 93, 814-822.	1.2	17
234	Architecture and signal transduction mechanism of the bacterial chemosensory array: Progress, controversies, and challenges. Current Opinion in Structural Biology, 2014, 29, 85-94.	2.6	44
235	An Unorthodox Sensory Adaptation Site in the Escherichia coli Serine Chemoreceptor. Journal of Bacteriology, 2014, 196, 641-649.	1.0	24
236	Diversity of Magneto-Aerotactic Behaviors and Oxygen Sensing Mechanisms in Cultured Magnetotactic Bacteria. Biophysical Journal, 2014, 107, 527-538.	0.2	122
237	Fold-Change Detection in a Whole-Pathway Model of Escherichia coli chemotaxis. Bulletin of Mathematical Biology, 2014, 76, 1376-1395.	0.9	2
238	Lightâ€induced switching of HAMP domain conformation and dynamics revealed by timeâ€resolved EPR spectroscopy. FEBS Letters, 2014, 588, 3970-3976.	1.3	24

		CITATION REPORT		
#	ARTICLE		IF	Citations
239	Self-assembly of active colloidal molecules with dynamic function. Physical Review E, 2	015, 91, 052304.	0.8	63
240	Concentration Threshold and Amplification Exhibited by a Helicene Oligomer during He Formation: A Proposal on How a Cell Senses Concentration Changes of a Chemical. Ch European Journal, 2015, 21, 13788-13792.	elixâ€Dimer emistry - A	1.7	16
241	Specific gammaâ€aminobutyrate chemotaxis in pseudomonads with different lifestyle. Microbiology, 2015, 97, 488-501.	Molecular	1.2	67
242	Elements of the cellular metabolic structure. Frontiers in Molecular Biosciences, 2015,	2, 16.	1.6	33
243	A Gateway-Based System for Fast Evaluation of Protein-Protein Interactions in Bacteria 2015, 10, e0123646.	. PLoS ONE,	1.1	8
244	Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Na pharaonis. PLoS Computational Biology, 2015, 11, e1004561.	tronomonas	1.5	15
245	Protein Connectivity in Chemotaxis Receptor Complexes. PLoS Computational Biology e1004650.	, 2015, 11,	1.5	6
246	Importance of Multiple Methylation Sites in Escherichia coli Chemotaxis. PLoS ONE, 20)15, 10, e0145582.	1.1	15
247	Precision and Variability in Bacterial Temperature Sensing. Biophysical Journal, 2015, 1	08, 2427-2436.	0.2	28
248	Dynamic membrane patterning, signal localization and polarity in living cells. Soft Matt 838-849.	ter, 2015, 11,	1.2	9
249	Preformed Soluble Chemoreceptor Trimers That Mimic Cellular Assembly States and Ac Autophosphorylation. Biochemistry, 2015, 54, 3454-3468.	tivate CheA	1.2	14
250	A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemore of Bacteriology, 2015, 197, 2568-2579.	ceptor. Journal	1.0	17
251	Nutrient-Sensing Mechanisms across Evolution. Cell, 2015, 161, 67-83.		13.5	293
252	Fundamental Constraints on the Abundances of Chemotaxis Proteins. Biophysical Jour 1293-1305.	nal, 2015, 108,	0.2	14
253	Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Tre Microbiology, 2015, 23, 257-266.	ends in	3.5	317
254	Relation between chemotaxis and consumption of amino acids in bacteria. Molecular N 2015, 96, 1272-1282.	Лicrobiology,	1.2	121
255	Universal Response-Adaptation Relation in Bacterial Chemotaxis. Journal of Bacteriolog 307-313.	;y, 2015, 197,	1.0	18
256	Correlation between signal input and output in <scp>PctA</scp> and <scp>PctBchemoreceptor of <scp><i>P</i></scp><i>seudomonas aeruginosa</i>. Molecular Mic 96, 513-525.</scp>	> amino acid robiology, 2015,	1.2	41

#		IF	CITATIONS
π	Sugar Influx Sensing by the Phosphotransferase System of Escherichia coli. PLoS Biology, 2016, 14,	11	CHAHONS
257	e2000074.	2.6	51
258	Dose-Response Analysis of Chemotactic Signaling Response in Salmonella typhimurium LT2 upon Exposure to Cysteine / Cystine Redox Pair. PLoS ONE, 2016, 11, e0152815.	1.1	2
259	A boolean approach to bacterial chemotaxis. , 2016, 2016, 6125-6129.		1
260	Sperm as microswimmers – navigation and sensing at the physical limit. European Physical Journal: Special Topics, 2016, 225, 2119-2139.	1.2	28
261	Polar Localization of the Serine Chemoreceptor of Escherichia coli Is Nucleoid Exclusion-Dependent. Biophysical Journal, 2016, 111, 2512-2522.	0.2	22
262	Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers. Scientific Reports, 2016, 6, 32135.	1.6	94
263	Networked Chemoreceptors Benefit Bacterial Chemotaxis Performance. MBio, 2016, 7, .	1.8	46
264	Evidence for a Helix-Clutch Mechanism of Transmembrane Signaling in a Bacterial Chemoreceptor. Journal of Molecular Biology, 2016, 428, 3776-3788.	2.0	18
265	Information processing in bacteria: memory, computation, and statistical physics: a key issues review. Reports on Progress in Physics, 2016, 79, 052601.	8.1	54
267	Effective Dynamics of Microorganisms That Interact with Their Own Trail. Physical Review Letters, 2016, 117, 038101.	2.9	32
268	Multicellular Self-Organization of <i>P. aeruginosa</i> due to Interactions with Secreted Trails. Physical Review Letters, 2016, 117, 178102.	2.9	31
269	Engineering Hybrid Chemotaxis Receptors in Bacteria. ACS Synthetic Biology, 2016, 5, 989-1001.	1.9	55
270	Evaporation-induced stimulation of bacterial osmoregulation for electrical assessment of cell viability. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7059-7064.	3.3	21
271	The effect of site-to-site variability in ultrasensitive dose responses. Journal of Mathematical Biology, 2017, 74, 23-41.	0.8	4
272	Sperm Sensory Signaling. Cold Spring Harbor Perspectives in Biology, 2017, 9, a028225.	2.3	39
273	Signaling Consequences of Structural Lesions that Alter the Stability of Chemoreceptor Trimers of Dimers. Journal of Molecular Biology, 2017, 429, 823-835.	2.0	14
274	Sensory Rhodopsin I and Sensory Rhodopsin <scp>II</scp> Form Trimers of Dimers in Complex with their Cognate Transducers. Photochemistry and Photobiology, 2017, 93, 796-804.	1.3	20
275	Reconstructing the genotype-to-fitness map for the bacterial chemotaxis network and its emergent behavioural phenotypes. Journal of Theoretical Biology, 2017, 420, 200-212.	0.8	0

#	Article	IF	Citations
276	Drift and Behavior of E.Âcoli Cells. Biophysical Journal, 2017, 113, 2321-2325.	0.2	8
277	Paradoxical enhancement of chemoreceptor detection sensitivity by a sensory adaptation enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7583-E7591.	3.3	3
278	Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient. Scientific Reports, 2017, 7, 8959.	1.6	18
279	His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays. Biochemistry, 2017, 56, 5874-5885.	1.2	19
280	Real-Time Imaging of Single-Molecule Enzyme Cascade Using a DNA Origami Raft. Journal of the American Chemical Society, 2017, 139, 17525-17532.	6.6	100
281	Mutational Replacements at the "Glycine Hinge―of the <i>Escherichia coli</i> Chemoreceptor Tsr Support a Signaling Role for the C-Helix Residue. Biochemistry, 2017, 56, 3850-3862.	1.2	10
282	Physical model of protein cluster positioning in growing bacteria. New Journal of Physics, 2017, 19, 105004.	1.2	2
283	Mechanism of bidirectional thermotaxis in Escherichia coli. ELife, 2017, 6, .	2.8	47
284	Multiple sources of slow activity fluctuations in a bacterial chemosensory network. ELife, 2017, 6, .	2.8	31
285	Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET. ELife, 2017, 6, .	2.8	58
286	Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation. PLoS Computational Biology, 2017, 13, e1005429.	1.5	36
287	FRET Analysis of the Chemotaxis Pathway Response. Methods in Molecular Biology, 2018, 1729, 107-126.	0.4	3
288	Cooperativity Principles in Self-Assembled Nanomedicine. Chemical Reviews, 2018, 118, 5359-5391.	23.0	129
289	Behavioral Variability and Phenotypic Diversity in Bacterial Chemotaxis. Annual Review of Biophysics, 2018, 47, 595-616.	4.5	54
290	A zipped-helix cap potentiates HAMP domain control of chemoreceptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3519-E3528.	3.3	10
291	Dynamics of Bacterial Gene Regulatory Networks. Annual Review of Biophysics, 2018, 47, 447-467.	4.5	20
292	Motor Adaptive Remodeling Speeds Up Bacterial Chemotactic Adaptation. Biophysical Journal, 2018, 114, 1225-1231.	0.2	20
293	Quantitative chemical biosensing by bacterial chemotaxis in microfluidic chips. Environmental Microbiology, 2018, 20, 241-258.	1.8	31

#	Article	IF	CITATIONS
294	Long-term positioning and polar preference of chemoreceptor clusters in E. coli. Nature Communications, 2018, 9, 4444.	5.8	25
295	Structure of the sensory domain of McpX from Sinorhizobium meliloti, the first known bacterial chemotactic sensor for quaternary ammonium compounds. Biochemical Journal, 2018, 475, 3949-3962.	1.7	21
296	Inverted signaling by bacterial chemotaxis receptors. Nature Communications, 2018, 9, 2927.	5.8	26
297	Cellular Targeting and Segregation of Bacterial Chemosensory Systems. FEMS Microbiology Reviews, 2018, 42, 462-476.	3.9	18
298	Mechanism of Apoptosis Induction by Mycoplasmal Nuclease MGA_0676 in Chicken Embryo Fibroblasts. Frontiers in Cellular and Infection Microbiology, 2018, 8, 105.	1.8	7
299	Chemotaxis of <i>Escherichia coli</i> to major hormones and polyamines present in human gut. ISME Journal, 2018, 12, 2736-2747.	4.4	62
300	Spatial self-organization resolves conflicts between individuality and collective migration. Nature Communications, 2018, 9, 2177.	5.8	74
301	Decoding the chemotactic signal. Journal of Leukocyte Biology, 2018, 104, 359-374.	1.5	28
302	New Twists and Turns in Bacterial Locomotion and Signal Transduction. Journal of Bacteriology, 2019, 201, .	1.0	7
303	<i>In Situ</i> Conformational Changes of the Escherichia coli Serine Chemoreceptor in Different Signaling States. MBio, 2019, 10, .	1.8	29
304	Identification of a Kinase-Active CheA Conformation in Escherichia coli Chemoreceptor Signaling Complexes. Journal of Bacteriology, 2019, 201, .	1.0	12
305	Chemotaxis as a navigation strategy to boost range expansion. Nature, 2019, 575, 658-663.	13.7	108
306	Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Sub-Cellular Biochemistry, 2019, 92, 223-274.	1.0	23
307	A PilZ-Containing Chemotaxis Receptor Mediates Oxygen and Wheat Root Sensing in Azospirillum brasilense. Frontiers in Microbiology, 2019, 10, 312.	1.5	12
308	A divergent CheW confers plasticity to nucleoid-associated chemosensory arrays. PLoS Genetics, 2019, 15, e1008533.	1.5	3
309	Regulation of the chemotaxis histidine kinase CheA: A structural perspective. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183030.	1.4	45
310	Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments. Nature Structural and Molecular Biology, 2020, 27, 42-48.	3.6	53
311	A Skeptic's Guide to Bacterial Mechanosensing. Journal of Molecular Biology, 2020, 432, 523-533.	2.0	41

#	Article	IF	CITATIONS
312	Adaptive tuning of cell sensory diversity without changes in gene expression. Science Advances, 2020, 6, .	4.7	21
313	Application of Systems Engineering Principles and Techniques in Biological Big Data Analytics: A Review. Processes, 2020, 8, 951.	1.3	10
314	A Multi-Scale Approach to Modeling E. coli Chemotaxis. Entropy, 2020, 22, 1101.	1.1	8
315	Filament formation by metabolic enzymes—A new twist on regulation. Current Opinion in Cell Biology, 2020, 66, 28-33.	2.6	39
316	Bacteriumâ€Templated Polymer for Selfâ€Selective Ablation of Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2020, 30, 2001338.	7.8	35
317	Analysis of Microbial Cell Viability in a Liquid Using an Acoustic Sensor. Ultrasound in Medicine and Biology, 2020, 46, 1026-1039.	0.7	2
318	Current Understanding toward Isonitrile Group Biosynthesis and Mechanism. Chinese Journal of Chemistry, 2021, 39, 463-472.	2.6	12
321	Connection between the Bacterial Chemotactic Network and Optimal Filtering. Physical Review Letters, 2021, 126, 128102.	2.9	12
322	Collective motion enhances chemotaxis in a two-dimensional bacterial swarm. Biophysical Journal, 2021, 120, 1615-1624.	0.2	17
323	Global transcriptomic response of Listeria monocytogenes exposed to Fingered Citron (Citrus medica) Tj ETQq1	1 0.78431 2.9	.4 rgBT /Ov <mark>e</mark> r
324	Multistep Signaling in Nature: A Close-Up of Geobacter Chemotaxis Sensing. International Journal of Molecular Sciences, 2021, 22, 9034.	1.8	3
327	Nonequilibrium polarity-induced chemotaxis: Emergent Galilean symmetry and exact scaling exponents. Physical Review Research, 2021, 3, .	1.3	18
329	Signaling Chain Homooligomerization (SCHOOL) Model. Advances in Experimental Medicine and Biology, 2008, 640, 121-163.	0.8	26
330	Swimming and Behavior in Purple Non-Sulfur Bacteria. Advances in Photosynthesis and Respiration, 2009, , 643-654.	1.0	2
331	Statistical Abstraction for Multi-scale Spatio-Temporal Systems. Lecture Notes in Computer Science, 2017, , 243-258.	1.0	2
332	How an unusual chemosensory system forms arrays on the bacterial nucleoid. Biochemical Society Transactions, 2020, 48, 347-356.	1.6	3
333	Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology (United Kingdom), 2010, 156, 2283-2293.	0.7	75
335	Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone. PLoS Computational Biology, 2015, 11, e1004407.	1.5	65

#	Article	IF	CITATIONS
336	The nucleoid as a scaffold for the assembly of bacterial signaling complexes. PLoS Genetics, 2017, 13, e1007103.	1.5	8
337	Comparing Apples and Oranges: Fold-Change Detection of Multiple Simultaneous Inputs. PLoS ONE, 2013, 8, e57455.	1.1	16
338	Exponential Signaling Gain at the Receptor Level Enhances Signal-to-Noise Ratio in Bacterial Chemotaxis. PLoS ONE, 2014, 9, e87815.	1.1	10
339	Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. ELife, 2014, 3, e02151.	2.8	112
342	In Vivo Bacterial Morphogenetic Protein Interactions. , 0, , .		0
347	Modeling of Bacterial Chemotaxis in a Medium with a Repellent. Ukrainian Journal of Physics, 2018, 63, 802.	0.1	1
351	Statistical Abstraction for Multi-scale Spatio-temporal Systems. ACM Transactions on Modeling and Computer Simulation, 2019, 29, 1-29.	0.6	2
352	Spatial modulation of individual behaviors enables an ordered structure of diverse phenotypes during bacterial group migration. ELife, 2021, 10, .	2.8	10
353	Efficiency and Robustness of Processes Driven by Nucleoid Exclusion in Escherichia coli. Advances in Experimental Medicine and Biology, 2020, 1267, 59-80.	0.8	1
354	Navigation on a Micron Scale. , 2007, , 1-13.		1
355	Escherichia coli chemotaxis is information limited. Nature Physics, 2021, 17, 1426-1431.	6.5	42
356	Characterization of Opposing Responses to Phenol by Bacillus subtilis Chemoreceptors. Journal of Bacteriology, 2022, 204, JB0044121.	1.0	5
357	Signal Amplification in Highly Ordered Networks Is Driven by Geometry. Cells, 2022, 11, 272.	1.8	5
358	Hexameric rings of the scaffolding protein CheW enhance response sensitivity and cooperativity in <i>Escherichia coli</i> chemoreceptor arrays. Science Signaling, 2022, 15, eabj1737.	1.6	12
359	Protein rings are critical to the remarkable signaling properties of bacterial chemotaxis nanoarrays. Science Signaling, 2022, 15, eabn2056.	1.6	0
360	Effect of switching time scale of receptor activity on chemotactic performance of Escherichia coli. Indian Journal of Physics, 2022, 96, 2619-2627.	0.9	2
361	Optimal sensing and control of run-and-tumble chemotaxis. Physical Review Research, 2022, 4, .	1.3	5
362	Discovery of a New Chemoeffector for <i>Escherichia coli</i> Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing. ACS Bio & Med Chem Au, 2022, 2, 386-394.	1.7	4

#	Article	IF	CITATIONS
363	Collective responses of bacteria to a local source of conflicting effectors. Scientific Reports, 2022, 12, 4928.	1.6	2
367	The Effect of the Second Messenger c-di-GMP on Bacterial Chemotaxis in Escherichia coli. Applied and Environmental Microbiology, 2022, 88, e0037322.	1.4	3
368	Signal binding at both modules of its dCache domain enables the McpA chemoreceptor of <i>Bacillus velezensis</i> to sense different ligands. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
369	The pH Robustness of Bacterial Sensing. MBio, 2022, 13, .	1.8	6
370	Novel prokaryotic system employing previously unknown nucleic acids-based receptors. Microbial Cell Factories, 2022, 21, .	1.9	5
371	Transcriptomics reveals substance biosynthesis and transport on membranes of Listeria monocytogenes affected by antimicrobial lipopeptide brevilaterin B. Food Science and Human Wellness, 2023, 12, 1359-1368.	2.2	4
374	Chemotaxis and autoinducer-2 signalling mediate colonization and contribute to co-existence of Escherichia coli strains in the murine gut. Nature Microbiology, 2023, 8, 204-217.	5.9	13
376	The Key Roles of Mycobacterium tuberculosis FadD23 C-terminal Domain in Catalytic Mechanisms. Frontiers in Microbiology, 0, 14, .	1.5	2
377	Exploiting compositional disorder in collectives of light-driven circle walkers. Science Advances, 2023, 9, .	4.7	4