Regulation of <i>11βâ€HSD</i> Genes in Human Adipo Weight Loss

Obesity 12, 9-17 DOI: 10.1038/oby.2004.3

Citation Report

#	Article	IF	CITATIONS
1	Obesity-Initiated Metabolic Syndrome and the Kidney: A Recipe for Chronic Kidney Disease?. Journal of the American Society of Nephrology: JASN, 2004, 15, 2775-2791.	3.0	219
2	Glucocorticoids contribute to the heritability of leptin in Scottish adult female twins. Clinical Endocrinology, 2004, 61, 149-154.	1.2	4
3	11βâ€Hydroxysteroid Dehydrogenase Type 1 in Obesity. Obesity, 2004, 12, 1-3.	4.0	27
4	Current and Investigational Antiobesity Agents and Obesity Therapeutic Treatment Targets. Obesity, 2004, 12, 1197-1211.	4.0	193
5	Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. Nutrition and Metabolism, 2004, 1, 12.	1.3	224
6	Mapping and association studies of diabetes related genes in the pig. Animal Genetics, 2005, 36, 36-42.	0.6	21
7	In vivo activity of 11beta-hydroxysteroid dehydrogenase type 1 and free fatty acid-induced insulin resistance. Clinical Endocrinology, 2005, 63, 442-449.	1.2	12
9	Increased uncoupling protein-2 mRNA abundance and glucocorticoid action in adipose tissue in the sheep fetus during late gestation is dependent on plasma cortisol and triiodothyronine. Journal of Physiology, 2005, 567, 283-292.	1.3	16
10	Regulation of 11β-hydroxysteroid dehydrogenase type 1 and glucose-stimulated insulin secretion in pancreatic islets of Langerhans. Diabetes/Metabolism Research and Reviews, 2005, 21, 359-366.	1.7	23
11	Maternal nutritional programming of fetal adipose tissue development: Long-term consequences for later obesity. Birth Defects Research Part C: Embryo Today Reviews, 2005, 75, 193-199.	3.6	76
12	Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1407-R1415.	0.9	94
13	11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. Journal of Experimental Medicine, 2005, 202, 517-527.	4.2	353
14	The Contribution of Visceral Adipose Tissue to Splanchnic Cortisol Production in Healthy Humans. Diabetes, 2005, 54, 1364-1370.	0.3	93
15	Reduced Adipose Glucocorticoid Reactivation and Increased Hepatic Glucocorticoid Clearance as an Early Adaptation to High-Fat Feeding in Wistar Rats. Endocrinology, 2005, 146, 913-919.	1.4	69
16	Inhibition of 11β-HSD1 as a novel treatment for the metabolic syndrome: do glucocorticoids play a role?. Expert Review of Cardiovascular Therapy, 2005, 3, 911-924.	0.6	45
17	Conformational Flexibility in Crystal Structures of Human 11β-Hydroxysteroid Dehydrogenase Type I Provide Insights into Glucocorticoid Interconversion and Enzyme Regulation. Journal of Biological Chemistry, 2005, 280, 4639-4648.	1.6	99
18	Adipocyte-Specific Glucocorticoid Inactivation Protects Against Diet-Induced Obesity. Diabetes, 2005, 54, 1023-1031.	0.3	235
19	Increased In Vivo Regeneration of Cortisol in Adipose Tissue in Human Obesity and Effects of the 11Â-Hydroxysteroid Dehydrogenase Type 1 Inhibitor Carbenoxolone. Diabetes, 2005, 54, 872-879.	0.3	179

ARTICLE IF CITATIONS # The Metabolic Syndrome and Cardiovascular Risk in Cushing's Syndrome. Endocrinology and 20 1.2 146 Metabolism Clinics of North America, 2005, 34, 327-339. Inhibition of 11Î²-Hydroxysteroid Dehydrogenase Type 1 in Obesity. Endocrine, 2006, 29, 101-108. 2.2 Adiposopathy: how do diet, exercise and weight loss drug therapies improve metabolic disease in 22 0.6 89 overweight patients?. Expert Review of Cardiovascular Therapy, 2006, 4, 871-895. Cortisol?cause and cure for metabolic syndrome?. Diabetic Medicine, 2006, 23, 1281-1288. 154 Role of 11-beta-hydroxysteroid dehydrogenase type 1 in differentiation of 3T3-L1 cells and in rats with 24 2.8 13 diet-induced obesity1. Acta Pharmacologica Sinica, 2006, 27, 588-596. Glucocorticoid metabolism within superficial subcutaneous rather than visceral adipose tissue is associated with features of the metabolic syndrome in South African women. Clinical Endocrinology, 1.2 2006, 65, 81-87. 11βâ€Hydroxysteroid Dehydrogenase Type 1 in Adipose Tissue and Prospective Changes in Body Weight and 1.5 26 19 Insulin Resistance. Obesity, 2006, 14, 1515-1522. 11βâ€Hydroxysteroid Dehydrogenase Type 1 mRNA is Increased in Both Visceral and Subcutaneous Adipose 1.5 Tissue of Obese Patients. Obesity, 2006, 14, 794-798. 28 Lipotoxicité etÂinsulinorésistance. Nutrition Clinique Et Metabolisme, 2006, 20, 108-113. 0.2 3 Tissue Production of Cortisol by 11beta-Hydroxysteroid Dehydrogenase Type 1 and Metabolic Disease. 1.8 Annals of the New York Academy of Sciences, 2006, 1083, 165-184. Comparison of a homology model and the crystallographic structure of human 11î²-hydroxysteroid dehydrogenase type 1 (1112HSD1) in a structure-based identification of inhibitors. Journal of 30 1.3 20 Computer-Aided Molecular Design, 2006, 20, 67-81. Enhanced 11Î²-Hydroxysteroid Dehydrogenase Activity, the Metabolic Syndrome, and Systemic 24 Hypertension. American Journal of Cardiology, 2006, 98, 544-548. Acute In Vivo Regulation of 11Î²-Hydroxysteroid Dehydrogenase Type 1 Activity by Insulin and Intralipid 32 1.8 52 Infusions in Humans. Journal of Clinical Éndocrinology and Metabolism, 2006, 91, 4682-4688. Perivascular adipose tissue promotes vasoconstriction: the role of superoxide anion. Cardiovascular Research, 2006, 71, 363-373. 1.8 Evidence That the 11 Î²-Hydroxysteroid Dehydrogenase (11 Î²-HSD1) Is Regulated by Pentose Pathway Flux. 34 1.6 63 Journal of Biological Chemistry, 2006, 281, 341-347. Adipose tissue 11β-hydroxysteroid dehydrogenase type 1 expression in obesity and Cushing's syndrome. European Journal of Endocrinology, 2006, 155, 435-441. Dietary Macronutrient Content Alters Cortisol Metabolism Independently of Body Weight Changes in 36 1.8 71 Obese Men. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 4480-4484. Structural and biochemical characterization of human orphan DHRS10 reveals a novel cytosolic enzyme with steroid dehydrogenase activity. Biochemical Journal, 2007, 402, 419-427.

#	Article	IF	CITATIONS
38	Free fatty acids and insulin resistance. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 142-148.	1.3	369
39	Extra-adrenal regeneration of glucocorticoids by 11l²-hydroxysteroid dehydrogenase type 1: physiological regulator and pharmacological target for energy partitioning. Proceedings of the Nutrition Society, 2007, 66, 1-8.	0.4	43
40	GIP receptor mRNA expression in different fat tissue depots in postmenopausal non-diabetic women. Regulatory Peptides, 2007, 142, 138-145.	1.9	47
41	11-β Hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity. Journal of Steroid Biochemistry and Molecular Biology, 2007, 104, 81-84.	1.2	41
42	Angiotensin II, corticosteroids, type II diabetes and the metabolic syndrome. Medical Hypotheses, 2007, 68, 1200-1207.	0.8	14
43	Cell-type specific regulation of the human 11beta-hydroxysteroid dehydrogenase type 1 promoter. Archives of Physiology and Biochemistry, 2007, 113, 110-115.	1.0	3
44	Glucocorticoids and Cardiovascular Disease. European Journal of Endocrinology, 2007, 157, 545-559.	1.9	446
45	The Adipocyte as an Active Participant in Energy Balance and Metabolism. Gastroenterology, 2007, 132, 2103-2115.	0.6	228
48	Adipose tissue expression of 11beta-Hydroxysteroid dehydrogenase type 1 in cushing's syndrome and in obesity. Arquivos Brasileiros De Endocrinologia E Metabologia, 2007, 51, 1397-1403.	1.3	21
49	Effects of Gonadectomy on Glucocorticoid Metabolism in Obese Zucker Rats. Endocrinology, 2007, 148, 4836-4843.	1.4	16
50	Cushing's Syndrome and Human Glucocorticoid Hypertension. , 2007, , 835-864.		0
51	Depot-specific messenger RNA expression of 11β-hydroxysteroid dehydrogenase type 1 and leptin in adipose tissue of children and adults. International Journal of Obesity, 2007, 31, 820-828.	1.6	28
52	Type 2 diabetes and metabolic syndrome are associated with increased expression of 11β-hydroxysteroid dehydrogenase 1 in obese subjects. International Journal of Obesity, 2007, 31, 1826-1831.	1.6	59
53	11βâ€HSD Type 1 Expression in Human Adipose Tissue: Impact of Gender, Obesity, and Fat Localization. Obesity, 2007, 15, 1954-1960.	1.5	122
54	Omental 11βâ€hydroxysteroid Dehydrogenase 1 Correlates with Fat Cell Size Independently of Obesity. Obesity, 2007, 15, 1155-1163.	1.5	95
55	Rosiglitazone decreases 11?-hydroxysteroid dehydrogenase type�1 in subcutaneous adipose tissue. Clinical Endocrinology, 2007, 67, 419-425.	1.2	34
56	Losartan decreases vasopressinâ€mediated cAMP accumulation in the thick ascending limb of the loop of Henle in rats with congestive heart failure. Acta Physiologica, 2007, 190, 339-350.	1.8	13
57	11 beta-hydroxysteroid dehydrogenase type 1 promotes differentiation of 3T3-L1 preadipocyte. Acta Pharmacologica Sinica, 2007, 28, 1198-1204.	2.8	11

#	Article	IF	CITATIONS
58	Inhibition of 11ß-hydroxysteroid dehydrogenase type 1 as a promising therapeutic target. Drug Discovery Today, 2007, 12, 504-520.	3.2	148
59	Highâ€Cortisol States Can Masquerade as the Cardiometabolic Syndrome. Journal of the Cardiometabolic Syndrome, 2007, 2, 223-226.	1.7	0
60	Correlation of Obesity and Osteoporosis: Effect of Fat Mass on the Determination of Osteoporosis. Journal of Bone and Mineral Research, 2008, 23, 17-29.	3.1	408
61	Discovery and Metabolic Stabilization of Potent and Selective 2-Amino-N-(adamant-2-yl) Acetamide 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 149-164.	2.9	80
62	Lysophosphatidylcholine upregulates LOX-1, chemokine receptors, and activation-related transcription factors in human T-cell line Jurkat. Journal of Thrombosis and Thrombolysis, 2008, 26, 113-118.	1.0	18
63	Obesity, sleep apnea, aldosterone, and hypertension. Current Hypertension Reports, 2008, 10, 222-226.	1.5	37
64	Fat feeding potentiates the diabetogenic effect of dexamethasone in Wistar rats. International Archive of Medicine, 2008, 1, 7.	1.2	12
65	Type 2 diabetes: Gaining insight into the disease process using proteomics. Proteomics - Clinical Applications, 2008, 2, 312-326.	0.8	7
66	Upregulation of Adipose 11â€Î²â€Hydroxysteroid Dehydrogenase Type 1 Expression in Ovariectomized Rats Is due to Obesity Rather Than Lack of Estrogen. Obesity, 2008, 16, 731-735.	1.5	13
67	Depotâ€specific Regulation of the Conversion of Cortisone to Cortisol in Human Adipose Tissue. Obesity, 2008, 16, 1178-1185.	1.5	62
68	11-Beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors in Type 2 diabetes mellitus and obesity. Expert Opinion on Investigational Drugs, 2008, 17, 481-496.	1.9	84
69	Comparison of messenger RNA distribution for 60 proteins in fat cells vs the nonfat cells of human omental adipose tissue. Metabolism: Clinical and Experimental, 2008, 57, 1005-1015.	1.5	61
70	$11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 1 and Obesity. , 2007, , 175-196.		0
71	The biological roles of extracellular and intracytoplasmic glucocorticoids in skeletal cells. Journal of Steroid Biochemistry and Molecular Biology, 2008, 111, 164-170.	1.2	13
72	Tissue-specific glucocorticoid action: a family affair. Trends in Endocrinology and Metabolism, 2008, 19, 331-339.	3.1	169
73	Impact of visceral adipose tissue on liver metabolism. Diabetes and Metabolism, 2008, 34, 317-327.	1.4	114
74	11&Bgr-Hydroxysteroid Dehydrogenase Type 1 and Obesity. , 2008, 36, 146-164.		117
75	Insulin and Dexamethasone Dynamically Regulate Adipocyte 11β-Hydroxysteroid Dehydrogenase Type 1. Endocrinology, 2008, 149, 4069-4079.	1.4	54

#	Article	IF	CITATIONS
76	Glucocorticoid Regulation of the Promoter of 11β-Hydroxysteroid Dehydrogenase Type 1 Is Indirect and Requires CCAAT/Enhancer-Binding Protein-β. Molecular Endocrinology, 2008, 22, 2049-2060.	3.7	75
77	Physiological roles of 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase. Current Opinion in Pediatrics, 2008, 20, 453-457.	1.0	13
78	Renin–angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. Journal of Hypertension, 2008, 26, 831-843.	0.3	236
79	Tissue-Specific Increases in 11β-Hydroxysteroid Dehydrogenase Type 1 in Normal Weight Postmenopausal Women. PLoS ONE, 2009, 4, e8475.	1.1	32
80	Enhanced cortisol production rates, free cortisol, and 11β-HSD-1 expression correlate with visceral fat and insulin resistance in men: effect of weight loss. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E351-E357.	1.8	94
81	The pituitary–adrenal axis and body composition. Pituitary, 2009, 12, 105-115.	1.6	47
82	Expression of 11β-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome. International Journal of Obesity, 2009, 33, 1249-1256.	1.6	26
83	Expression of cortisol metabolism-related genes shows circadian rhythmic patterns in human adipose tissue. International Journal of Obesity, 2009, 33, 473-480.	1.6	51
84	Mechanisms of obesity and related pathology: linking immune responses to metabolic stress. FEBS Journal, 2009, 276, 5747-5754.	2.2	115
85	Quantitative measurements of corticosteroids in ex vivo samples using on-line SPE-LC/MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 303-310.	1.2	16
86	The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in the inflammatory response. Molecular and Cellular Endocrinology, 2009, 301, 123-131.	1.6	70
87	Effects of glucocorticoids on fat mass and the therapeutic potential of targeting 11β-hydroxysteroid dehydrogenase type 1 in obesity. Clinical Lipidology, 2009, 4, 439-447.	0.4	0
88	Is metabolic syndrome a mild form of Cushing's syndrome?. Reviews in Endocrine and Metabolic Disorders, 2010, 11, 141-145.	2.6	19
90	Emodin, a natural product, selectively inhibits 11βâ€hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in dietâ€induced obese mice. British Journal of Pharmacology, 2010, 161, 113-126.	2.7	109
91	Estrogen Reduces 11βâ€Hydroxysteroid Dehydrogenase Type 1 in Liver and Visceral, but Not Subcutaneous, Adipose Tissue in Rats. Obesity, 2010, 18, 470-475.	1.5	28
92	The balance between gluco- and mineralo-corticoid action critically determines inflammatory adipocyte responses. Journal of Endocrinology, 2010, 204, 153-164.	1.2	106
93	"Control―laboratory rodents are metabolically morbid: Why it matters. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6127-6133.	3.3	317
94	Role of Heme Oxygenase in Inflammation, Insulin-Signalling, Diabetes and Obesity. Mediators of Inflammation, 2010, 2010, 1-18.	1.4	129

#	Article	IF	CITATIONS
95	Weight Loss after Gastric Bypass Surgery in Women Is Followed by a Metabolically Favorable Decrease in 1112-Hydroxysteroid Dehydrogenase 1 Expression in Subcutaneous Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3527-3531.	1.8	19
96	11β-Hydroxysteroid dehydrogenase type 1 inhibitors for the treatment of type 2 diabetes. Expert Opinion on Investigational Drugs, 2010, 19, 1067-1076.	1.9	44
97	Role of glucocorticoids and the glucocorticoid receptor in metabolism: Insights from genetic manipulations. Journal of Steroid Biochemistry and Molecular Biology, 2010, 122, 10-20.	1.2	97
98	Expression of genes related to glucocorticoid action in human subcutaneous and omental adipose tissue. Journal of Steroid Biochemistry and Molecular Biology, 2010, 122, 28-34.	1.2	53
99	Targeting the pre-receptor metabolism of cortisol as a novel therapy in obesity and diabetes. Journal of Steroid Biochemistry and Molecular Biology, 2010, 122, 21-27.	1.2	75
100	Obesity and corticosteroids: 11β-Hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease. Molecular and Cellular Endocrinology, 2010, 316, 154-164.	1.6	150
101	Dexamethasone and the inflammatory response in explants of human omental adipose tissue. Molecular and Cellular Endocrinology, 2010, 315, 292-298.	1.6	14
102	Cortisol response to the Trier Social Stress Test in obese and reduced obese individuals. Biological Psychology, 2010, 84, 325-329.	1.1	25
103	Differences in associations between HSD11B1 gene expression and metabolic parameters in subjects with and without impaired glucose homeostasis. Diabetes Research and Clinical Practice, 2010, 88, 252-258.	1.1	8
106	Adipocyte Development and Experimental Obesity. Growth Hormone, 2011, , 321-352.	0.2	1
107	Expression of 11β-hydroxysteroid dehydrogenase type 1 in visceral and subcutaneous adipose tissues of patients with polycystic ovary syndrome is associated with adiposity. Journal of Steroid Biochemistry and Molecular Biology, 2011, 123, 127-132.	1.2	19
108	Adipose tissue-targeted 11.BETAhydroxysteroid dehydrogenase type 1 inhibitor protects against diet-induced obesity. Endocrine Journal, 2011, 58, 199-209.	0.7	20
109	11β-Hydroxysteroid dehydrogenases and the brain: From zero to hero, a decade of progress. Frontiers in Neuroendocrinology, 2011, 32, 265-286.	2.5	201
110	Metabolic gene expression changes in the hippocampus of obese epileptic male rats in the pilocarpine model of temporal lobe epilepsy. Brain Research, 2011, 1426, 86-95.	1.1	11
111	Steroid metabolism and excretion in severe anorexia nervosa: effects of refeeding. American Journal of Clinical Nutrition, 2011, 93, 911-917.	2.2	21
112	Recycling Between Cortisol and Cortisone in Human Splanchnic, Subcutaneous Adipose, and Skeletal Muscle Tissues In Vivo. Diabetes, 2012, 61, 1357-1364.	0.3	57
113	Adipokines and Cardiovascular Risk in Cushing's Syndrome. Neuroendocrinology, 2012, 95, 187-206.	1.2	47
114	11β-Hydroxysteroid dehydrogenase type 1: potential therapeutic target for metabolic syndrome. Pharmacological Reports, 2012, 64, 1055-1065.	1.5	26

#	Article	IF	CITATIONS
115	Contribution of glucocorticoid–mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochemical and Biophysical Research Communications, 2012, 419, 182-187.	1.0	65
116	The role of mediastinal adipose tissue 11β-hydroxysteroid d ehydrogenase type 1 and glucocorticoid expression in the development of coronary atherosclerosis in obese patients with ischemic heart disease. Cardiovascular Diabetology, 2012, 11, 115.	2.7	18
117	Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging. Frontiers in Endocrinology, 2012, 3, 19.	1.5	82
118	Adipose tissue development and its potential contribution to later obesity. , 0, , 124-134.		0
119	Tissue-specific modulation of mineralocorticoid receptor function by 11β-hydroxysteroid dehydrogenases: An overview. Molecular and Cellular Endocrinology, 2012, 350, 168-186.	1.6	134
120	Liver Upregulation of Genes Involved in Cortisol Production and Action Is Associated with Metabolic Syndrome in Morbidly Obese Patients. Obesity Surgery, 2012, 22, 478-486.	1.1	30
121	Induction of 11β-HSD 1 and Activation of Distinct Mineralocorticoid Receptor- and Glucocorticoid Receptor-Dependent Gene Networks in Decidualizing Human Endometrial Stromal Cells. Molecular Endocrinology, 2013, 27, 192-202.	3.7	74
122	11β-Hydroxysteroid Dehydrogenases: Intracellular Gate-Keepers of Tissue Glucocorticoid Action. Physiological Reviews, 2013, 93, 1139-1206.	13.1	659
123	11beta-Hydroxysteroid dehydrogenase type 1 inhibitors: novel agents for the treatment of metabolic syndrome and obesity-related disorders?. Metabolism: Clinical and Experimental, 2013, 62, 21-33.	1.5	87
124	Herbal approaches to system dysfunctions. , 2013, , 183-350.		0
125	Mediastinal adipose tissue expresses a pathogenic profile of 11 Î ² -hydroxysteroid dehydrogenase Type 1, glucocorticoid receptor, and CD68 in patients with coronary artery disease. Cardiovascular Pathology, 2013, 22, 183-188.	0.7	9
126	Pathophysiology of Human Visceral Obesity: An Update. Physiological Reviews, 2013, 93, 359-404.	13.1	1,751
127	11β-Hydroxysteroid Dehydrogenase 1: Translational and Therapeutic Aspects. Endocrine Reviews, 2013, 34, 525-555.	8.9	152
128	Differences between men and women in the regulation of adipose 11β-HSD1 and in its association with adiposity and insulin resistance. Diabetes, Obesity and Metabolism, 2013, 15, 1056-1060.	2.2	8
129	Steroid Metabolism and Excretion in Anorexia Nervosa. Vitamins and Hormones, 2013, 92, 125-140.	0.7	11
130	The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome. Hormone Molecular Biology and Clinical Investigation, 2013, 15, 37-48.	0.3	26
131	Stress and Its Effects on Glucose Metabolism and 11-HSD Activities in Rats Fed on a Combination of High-Fat and High-Sucrose Diet with Glycyrrhizic Acid. Journal of Diabetes Research, 2013, 2013, 1-18.	1.0	15
132	Increased Visceral Adiposity and Cortisol to Cortisone Ratio in Adults With Congenital Lifetime Isolated GH Deficiency. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3285-3289.	1.8	28

#	Article	IF	CITATIONS
133	The Alliance of Mesenchymal Stem Cells, Bone, and Diabetes. International Journal of Endocrinology, 2014, 2014, 1-26.	0.6	72
134	Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk. Hormone Molecular Biology and Clinical Investigation, 2014, 19, 75-88.	0.3	37
135	Mechanisms of Glucocorticoid-Induced Insulin Resistance. Endocrinology and Metabolism Clinics of North America, 2014, 43, 75-102.	1.2	264
136	The Postprandial Rise in Plasma Cortisol in Men Is Mediated by Macronutrient-Specific Stimulation of Adrenal and Extra-Adrenal Cortisol Production. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 160-168.	1.8	56
137	The glucocorticoid receptor, not the mineralocorticoid receptor, plays the dominant role in adipogenesis and adipokine production in human adipocytes. International Journal of Obesity, 2014, 38, 1228-1233.	1.6	75
138	Dietary fructose-related adiposity and glucocorticoid receptor function in visceral adipose tissue of female rats. European Journal of Nutrition, 2014, 53, 1409-1420.	1.8	23
139	Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 473-481.	1.8	265
140	Glycyrrhizic Acid as the Modulator of 11β -hydroxysteroid dehydrogenase (Type 1 and 2) in Rats under Different Physiological Conditions in Relation to the Metabolic Syndrome. Journal of Diabetes & Metabolism, 2015, 06, .	0.2	1
141	Association of HSD11B1 polymorphic variants and adipose tissue gene expression with metabolic syndrome, obesity and type 2 diabetes mellitus: a systematic review. Diabetology and Metabolic Syndrome, 2015, 7, 38.	1.2	23
142	Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E435-E449.	1.8	91
143	Tissue Specific Regulation of Glucocorticoids in Severe Obesity and the Response to Significant Weight Loss Following Bariatric Surgery (BARICORT). Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1434-1444.	1.8	35
144	Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: A systematic review. Psychoneuroendocrinology, 2015, 62, 301-318.	1.3	297
145	Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations. Endocrine, 2015, 50, 608-619.	1.1	3
146	Updated survey of the steroid-converting enzymes in human adipose tissues. Journal of Steroid Biochemistry and Molecular Biology, 2015, 147, 56-69.	1.2	57
147	Diet-induced weight loss has chronic tissue-specific effects on glucocorticoid metabolism in overweight postmenopausal women. International Journal of Obesity, 2015, 39, 814-819.	1.6	29
148	Serum Cortisol-to-Cortisone Ratio and Blood Pressure in Severe Obesity before and after Weight Loss. CardioRenal Medicine, 2016, 6, 1-7.	0.7	7
149	In Obesity, HPA Axis Activity Does Not Increase with BMI, but Declines with Aging: A Meta-Analysis of Clinical Studies. PLoS ONE, 2016, 11, e0166842.	1.1	17
150	Regulation of 11β-hydroxysteroid dehydrogenase type 1 following caloric restriction and re-feeding is species dependent. Chemico-Biological Interactions, 2017, 276, 95-104.	1.7	3

#	Article	IF	CITATIONS
151	Cortisol Metabolism as a Regulator of the Tissue-Specific Glucocorticoid Action. , 2017, , 271-301.		0
152	11Î ² -Hydroxysteroid Dehydrogenases and Hypertension in the Metabolic Syndrome. Current Hypertension Reports, 2017, 19, 100.	1.5	34
153	Adipocyte Glucocorticoid Receptor Deficiency Attenuates Aging- and HFD-Induced Obesity and Impairs the Feeding-Fasting Transition. Diabetes, 2017, 66, 272-286.	0.3	53
154	Dietary and Hormonal Factors Involved in Healthy or Unhealthy Visceral Adipose Tissue Expansion. , 2017, , .		0
155	Alterations of Cortisol Metabolism in Human Disorders. Hormone Research in Paediatrics, 2018, 89, 320-330.	0.8	20
156	Impact of MR on mature adipocytes in high-fat/high-sucrose diet-induced obesity. Journal of Endocrinology, 2018, 239, 63-71.	1.2	13
158	Glucocorticoid-induced insulin resistance is related to macrophage visceral adipose tissue infiltration. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 150-162.	1.2	25
159	<p>Regulation of alternative splicing in obesity-induced hypertension</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2019, Volume 12, 1597-1615.	1.1	9
160	Expression and activity of the cortisol-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 is tissue and species-specific. Chemico-Biological Interactions, 2019, 303, 57-61.	1.7	18
161	Environmental Factors Associated with Physical Activity and Screen Time Among Children With and Without Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2020, 50, 1572-1579.	1.7	30
162	Changes of BMI, steroid metabolome and psychopathology in patients with anorexia nervosa during hospitalization. Steroids, 2020, 153, 108523.	0.8	7
163	Early weaning leads to specific glucocorticoid signalling in fat depots of adult rats. Endocrine, 2020, 67, 180-189.	1.1	3
164	Stress, glucocorticoid signaling pathway, and metabolic disorders. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2020, 14, 1273-1280.	1.8	10
165	Glucocorticoid Metabolism in Obesity and Following Weight Loss. Frontiers in Endocrinology, 2020, 11, 59.	1.5	56
166	The mineralocorticoid receptor—an emerging player in metabolic syndrome?. Journal of Human Hypertension, 2021, 35, 117-123.	1.0	20
167	The Impact of Epigallocatechin Gallate and Coconut Oil Treatment on Cortisol Activity and Depression in Multiple Sclerosis Patients. Life, 2021, 11, 353.	1.1	11
168	Stress, Hormones, and Metabolism. , 2022, , 502-509.		0
169	The Role of Environmental Obesogens in the Obesity Epidemic. Growth Hormone, 2011, , 383-399.	0.2	7

IF ARTICLE CITATIONS Early Origins of Obesity and Developmental Regulation of Adiposity., 2012,, 379-408. 170 2 171 Sex Differences in Body Fat Distribution., 2012, , 123-166. Association between 1112-hydroxysteroid dehydrogenase type 1 gene polymorphisms and metabolic 172 1.2 14 syndrome. Biochemia Medica, 0, , 76-85. Effects of Proportions of Dietary Macronutrients on Glucocorticoid Metabolism in Diet-Induced 1.1 Obesity in Rats. PLoS ONE, 2010, 5, e8779. Skeletal Muscle 11beta-HSD1 Controls Glucocorticoid-Induced Proteolysis and Expression of E3 174 1.1 39 Ubiquitin Ligases Atrogin-1 and MuRF-1. PLoS ONE, 2011, 6, e16674. Obesity and Insulin Resistance in Childhood and Adolescence., 2005, , 293-319. Upregulation of Adipose 11-Î²-Hydroxysteroid Dehydrogenase Type 1 Expression in Ovariectomized Rats Is 176 1.5 0 due to Obesity Rather Than Lack of Estrogen. Obesity, 0, , . Glucocorticoids as Modulators of Adipose Inflammation. Oxidative Stress and Disease, 2009, , 127-148. 0.3 178 Hepatic Carbohydrate Metabolism. Molecular Pathology Library, 2011, , 109-123. 0.1 0 179 Gamete/Embryo-Fetal Origins of Obesity., 2014, , 137-156. Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?. 180 2.5 1 Nuclear Receptor Research, 2014, 1, . 11Î²-Hydroxysteroid Dehydrogenase Type 1 is not Overexpressed in Cushingâ \in [™]s Syndrome Adipose Depots. 0.2 Journal of Diabetes, Metábolic Disorders & Control, 2014, 1, . Early Origins of Obesity and Developmental Regulation of Adiposity., 2017, , 427-456. 182 0 Sex Differences in Body Fat Distribution. , 2017, , 257-300. Association between 11beta-hydroxysteroid dehydrogenase type 1 gene polymorphisms and metabolic 184 1.2 6 syndrome in Bosnian population. Biochemia Medica, 2012, 22, 76-85. Effects of very low-calorie ketogenic diet on hypothalamic–pituitary–adrenal axis and 1.8 renin–angiótensin–aldosterone system. Jóurnal of Endocrinologićal Investigation, 2023, 46, 1509-1520.