Visual objects in context

Nature Reviews Neuroscience 5, 617-629 DOI: 10.1038/nrn1476

Citation Report

- IF ARTICLE CITATIONS Situating Concepts. , 2001, , 236-263. 13 1 The Time Course of Visual Processing: From Early Perception to Decision-Making, Journal of Cognitive 1.1 599 Neuroscience, 2001, 13, 454-461. 3 What is an auditory object?. Nature Reviews Neuroscience, 2004, 5, 887-892. 4.9 417 Autism and the experience of a perceptual object. Consciousness and Cognition, 2005, 14, 641-644. 0.8 Load-dependent modulation of affective picture processing. Cognitive, Affective and Behavioral 5 1.0 159 Neuroscience, 2005, 5, 388-395. To what extent are emotional visual stimuli processed without attention and awareness?. Current Opinion in Neurobiology, 2005, 15, 188-196. 420 Decrease and increase in brain activity during visual perceptual priming: An fMRI study on similar but 7 0.7 18 perceptually different complex visual scenes. Neuropsychologia, 2005, 43, 1887-1900. An effective 3D target recognition model imitating robust methods of the human visual system. 3.1 Pattern Analysis and Applications, 2005, 8, 211-226. 9 Visual working memory for briefly presented scenes. Journal of Vision, 2005, 5, 5-5. 0.1 34 Top-Down Facilitation of Visual Object Recognition., 2005, , 140-145. Chapter 1 Top-down facilitation of visual object recognition: object-based and context-based 11 0.9 153 contributions. Progress in Brain Research, 2006, 155, 3-21. Chapter 2 Building the gist of a scene: the role of global image features in recognition. Progress in 1,059 Brain Research, 2006, 155, 23-36. Orienting Attention Based on Long-Term Memory Experience. Neuron, 2006, 49, 905-916. 13 3.8 225 Successful declarative memory formation is associated with ongoing activity during encoding in a distributed neocortical network related to working memory: A magnetoencephalography study. 14 1.1 Neuroscience, 2006, 139, 291-297. Working memory for visual objects: Complementary roles of inferior temporal, medial temporal, and 15 186 1.1 prefrontal cortex. Neuroscience, 2006, 139, 277-289. Category-specific visual recognition as affected by aging and expertise. Archives of Gerontology and 1.4 Geriatrics, 2006, 42, 329-338. Object recognition in dense clutter. Perception & Psychophysics, 2006, 68, 911-918. 17 2.328 Cultural differences in neural function associated with object processing. Cognitive, Affective and 234
 - ^{.8} Behavioral Neuroscience, 2006, 6, 102-109.
 - 2

#	Article	IF	CITATIONS
19	"Did you see him in the newspaper?―Electrophysiological correlates of context and valence in face processing. Brain Research, 2006, 1119, 190-202.	1.1	42
20	Multi-modal Sequential Monte Carlo for On-Line Hierarchical Graph Structure Estimation in Model-based Scene Interpretation. , 2006, , .		0
21	Mistaking a House for a Face: Neural Correlates of Misperception in Healthy Humans. Cerebral Cortex, 2006, 16, 500-508.	1.6	100
22	Age-related Changes in Object Processing and Contextual Binding Revealed Using fMR Adaptation. Journal of Cognitive Neuroscience, 2006, 18, 495-507.	1.1	129
23	Faces are "spatial"holistic face perception is supported by low spatial frequencies Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 1023-1039.	0.7	322
24	The Kuleshov Effect: the influence of contextual framing on emotional attributions. Social Cognitive and Affective Neuroscience, 2006, 1, 95-106.	1.5	116
25	Chapter 3 Beyond the face: exploring rapid influences of context on face processing. Progress in Brain Research, 2006, 155, 37-48.	0.9	118
26	Context Influences Early Perceptual Analysis of Faces—An Electrophysiological Study. Cerebral Cortex, 2006, 16, 1249-1257.	1.6	191
27	Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search Psychological Review, 2006, 113, 766-786.	2.7	1,352
28	Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 449-454.	3.3	1,372
29	Neural Mechanisms of Expert Skills in Visual Working Memory. Journal of Neuroscience, 2006, 26, 11187-11196.	1.7	118
31	Limits of Event-related Potential Differences in Tracking Object Processing Speed. Journal of Cognitive Neuroscience, 2007, 19, 1241-1258.	1.1	40
32	Visual Categorization Robust to Large Intra-Class Variations using Entropy-guided Codebook. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	7
33	Differential Parahippocampal and Retrosplenial Involvement in Three Types of Visual Scene Recognition. Cerebral Cortex, 2007, 17, 1680-1693.	1.6	140
34	Memory, imagination, and the asymmetry between past and future. Behavioral and Brain Sciences, 2007, 30, 325-326.	0.4	2
35	On the constructive episodic simulation of past and future events. Behavioral and Brain Sciences, 2007, 30, 331-332.	0.4	96
36	The costs of mental time travel. Behavioral and Brain Sciences, 2007, 30, 317-318.	0.4	4
37	Has mental time travel really affected human culture?. Behavioral and Brain Sciences, 2007, 30, 326-327.	0.4	1

#	Article	IF	CITATIONS
38	Mental time travel across the disciplines: The future looks bright. Behavioral and Brain Sciences, 2007, 30, 335-345.	0.4	53
39	The meaning of "time―in episodic memory and mental time travel. Behavioral and Brain Sciences, 2007, 30, 323-323.	0.4	17
40	Is mental time travel a frame-of-reference issue?. Behavioral and Brain Sciences, 2007, 30, 316-317.	0.4	12
41	Mental time travel in the rat: Dissociation of recall and familiarity. Behavioral and Brain Sciences, 2007, 30, 322-323.	0.4	2
42	Prospection and the brain. Behavioral and Brain Sciences, 2007, 30, 318-319.	0.4	8
43	The continuum of "looking forward,―and paradoxical requirements from memory. Behavioral and Brain Sciences, 2007, 30, 315-316.	0.4	8
44	How developmental science contributes to theories of future thinking. Behavioral and Brain Sciences, 2007, 30, 314-315.	0.4	6
45	A unique role for the hippocampus in recollecting the past and remembering the future. Behavioral and Brain Sciences, 2007, 30, 319-320.	0.4	1
46	Storing events to retell them. Behavioral and Brain Sciences, 2007, 30, 321-322.	0.4	51
47	Mental time travel sickness and a Bayesian remedy. Behavioral and Brain Sciences, 2007, 30, 323-324.	0.4	10
48	Past and future, human and nonhuman, semantic/procedural and episodic. Behavioral and Brain Sciences, 2007, 30, 324-325.	0.4	0
49	Prospection or projection: Neurobiological basis of stimulus-independent mental traveling. Behavioral and Brain Sciences, 2007, 30, 328-329.	0.4	4
50	What are the evolutionary causes of mental time travel?. Behavioral and Brain Sciences, 2007, 30, 329-330.	0.4	1
51	Empirical evaluation of mental time travel. Behavioral and Brain Sciences, 2007, 30, 330-331.	0.4	10
52	Studying mental states is not a research program for comparative cognition. Behavioral and Brain Sciences, 2007, 30, 332-333.	0.4	8
53	First test, then judge future-oriented behaviour in animals. Behavioral and Brain Sciences, 2007, 30, 333-334.	0.4	5
54	Developing past and future selves for time travel narratives. Behavioral and Brain Sciences, 2007, 30, 327-328.	0.4	5
55	The medium and the message of mental time travel. Behavioral and Brain Sciences, 2007, 30, 334-335.	0.4	18

	Сітаті	on Report	
#	Article	IF	CITATIONS
56	Emotional aspects of mental time travel. Behavioral and Brain Sciences, 2007, 30, 320-321.	0.4	27
57	Maintenance of Visual Stability in the Human Posterior Parietal Cortex. Journal of Cognitive Neuroscience, 2007, 19, 266-274.	1.1	21
58	The evolution of foresight: What is mental time travel, and is it unique to humans?. Behavioral and Brain Sciences, 2007, 30, 299-313.	0.4	1,751
59	Foresight has to pay off in the present moment. Behavioral and Brain Sciences, 2007, 30, 313-314.	0.4	73
60	Visual Scene Processing in Familiar and Unfamiliar Environments. Journal of Neurophysiology, 2007, 97, 3670-3683.	0.9	132
61	The neural basis of scene preferences. NeuroReport, 2007, 18, 525-529.	0.6	82
62	The proactive brain: using analogies and associations to generate predictions. Trends in Cognitive Sciences, 2007, 11, 280-289.	4.0	1,086
63	The role of context in object recognition. Trends in Cognitive Sciences, 2007, 11, 520-527.	4.0	770
64	Beyond the Edges of a View: Boundary Extension in Human Scene-Selective Visual Cortex. Neuron, 2007, 54, 335-342.	3.8	99
65	Top-down predictions in the cognitive brain. Brain and Cognition, 2007, 65, 145-168.	0.8	407
66	Perception, memory and aesthetics of indeterminate art. Brain Research Bulletin, 2007, 73, 319-324.	1.4	60
67	Context effects on familiarity are familiarity effects of context — An electrophysiological study. International Journal of Psychophysiology, 2007, 64, 146-156.	0.5	61
68	The Parahippocampal Cortex Mediates Spatial and Nonspatial Associations. Cerebral Cortex, 2007, 17, 1493-1503.	1.6	351
69	Object Categorization Robust to Surface Markings using Entropy-guided Codebook. Proceedings IEEE Workshop on Applications of Computer Vision, 2007, , .	0.0	6
70	Attention in hierarchical models of object recognition. Progress in Brain Research, 2007, 165, 57-78.	0.9	51
71	Contextual Interaction of GABAergic Circuitry With Dynamic Synapses. Journal of Neurophysiology, 2007, 97, 2802-2811.	0.9	15
72	The units of thought. Hippocampus, 2007, 17, 420-428.	0.9	188
73	The effect of scene context on episodic object recognition: Parahippocampal cortex mediates memory encoding and retrieval success. Hippocampus, 2007, 17, 873-889.	0.9	131

#	Article	IF	CITATIONS
74	Robust model-based scene interpretation by multilayered context information. Computer Vision and Image Understanding, 2007, 105, 167-187.	3.0	7
75	Development of a view-invariant representation of the human head. Cognition, 2007, 102, 261-288.	1.1	51
76	Processing scene context: Fast categorization and object interference. Vision Research, 2007, 47, 3286-3297.	0.7	210
77	Consistency effects between objects in scenes. Memory and Cognition, 2007, 35, 393-401.	0.9	126
78	Memory for scenes: Refixations reflect retrieval. Memory and Cognition, 2007, 35, 1664-1674.	0.9	39
79	Natural scene categorization with minimal attention: Evidence from negative priming. Perception & Psychophysics, 2007, 69, 1126-1139.	2.3	16
80	Nontarget objects can influence perceptual processes during object recognition. Psychonomic Bulletin and Review, 2007, 14, 332-337.	1.4	58
81	Cortical activation to indoor versus outdoor scenes: an fMRI study. Experimental Brain Research, 2007, 179, 75-84.	0.7	39
82	Local and global affordances and manual planning. Experimental Brain Research, 2007, 179, 583-594.	0.7	8
83	The proactive brain: using rudimentary information to make predictive judgments. Journal of Consumer Behaviour, 2008, 7, 319-330.	2.6	35
84	Recognition of facial expressions is influenced by emotional scene gist. Cognitive, Affective and Behavioral Neuroscience, 2008, 8, 264-272.	1.0	169
85	Top-down effects of semantic knowledge in visual search are modulated by cognitive but not perceptual load. Perception & Psychophysics, 2008, 70, 1444-1458.	2.3	80
86	A decomposition of electrocortical activity as a function of spatial frequency: A weighted multidimensional scaling analysis. Brain Research, 2008, 1214, 116-126.	1.1	2
87	Disruption of the prefrontal cortex function by rTMS produces a category-specific enhancement of the reaction times during visual object identification. Brain Stimulation, 2008, 1, 318-319.	0.7	1
88	fMRI evidence for word association and situated simulation in conceptual processing. Journal of Physiology (Paris), 2008, 102, 106-119.	2.1	131
89	Disruption of the prefrontal cortex function by rTMS produces a category-specific enhancement of the reaction times during visual object identification. Neuropsychologia, 2008, 46, 2725-2731.	0.7	20
90	Integrated Contextual Representation for Objects' Identities and Their Locations. Journal of Cognitive Neuroscience, 2008, 20, 371-388.	1.1	93
91	A Neural Representation of Prior Information during Perceptual Inference. Neuron, 2008, 59, 336-347.	3.8	288

#	Article	IF	CITATIONS
92	Time course of visual perception: Coarse-to-fine processing and beyond. Progress in Neurobiology, 2008, 84, 405-439.	2.8	252
93	Trans-saccadic perception. Trends in Cognitive Sciences, 2008, 12, 466-473.	4.0	511
94	Full Scenes produce more activation than Close-up Scenes and Scene-Diagnostic Objects in parahippocampal and retrosplenial cortex: An fMRI study. Brain and Cognition, 2008, 66, 40-49.	0.8	74
95	Neuroanatomical distinctions within the semantic system during sentence comprehension: Evidence from functional magnetic resonance imaging. NeuroImage, 2008, 40, 367-388.	2.1	101
96	Crinkling and crumpling: An auditory fMRI study of material properties. NeuroImage, 2008, 43, 368-378.	2.1	46
97	Neural correlates of object indeterminacy in art compositions. Consciousness and Cognition, 2008, 17, 923-932.	0.8	102
98	Brain mechanisms of persuasion: how â€~expert power' modulates memory and attitudes. Social Cognitive and Affective Neuroscience, 2008, 3, 353-366.	1.5	154
99	Social Relevance Boosts Context Processing in Williams Syndrome. Developmental Neuropsychology, 2008, 33, 553-564.	1.0	5
100	Pre-attentive discrimination of interestingness in images. , 2008, , .		10
101	Rapid influence of emotional scenes on encoding of facial expressions: an ERP study. Social Cognitive and Affective Neuroscience, 2008, 3, 270-278.	1.5	204
102	Famous Faces Activate Contextual Associations in the Parahippocampal Cortex. Cerebral Cortex, 2008, 18, 1233-1238.	1.6	90
103	Organization of Human Visual Cortex. , 2008, , 595-614.		3
104	Scenes Unseen: The Parahippocampal Cortex Intrinsically Subserves Contextual Associations, Not Scenes or Places Per Se. Journal of Neuroscience, 2008, 28, 8539-8544.	1.7	221
106	Does context or color improve object recognition in patients with low vision?. Visual Neuroscience, 2008, 25, 685-691.	0.5	36
107	Seeing Sounds and Hearing Sights: The Influence of Prior Learning on Current Perception. Journal of Cognitive Neuroscience, 2008, 20, 1030-1042.	1.1	13
108	The Cortical Underpinnings of Context-based Memory Distortion. Journal of Cognitive Neuroscience, 2008, 20, 2226-2237.	1.1	46
109	Scene understanding with discriminative structured prediction. , 2008, , .		2
110	Speed limits: Orientation and semantic context interactions constrain natural scene discrimination dynamics Journal of Experimental Psychology: Human Perception and Performance, 2008, 34, 56-76.	0.7	21

ARTICLE IF CITATIONS Vestibular Nuclei and Cerebellum Put Visual Gravitational Motion in Context. Journal of 0.9 76 Neurophysiology, 2008, 99, 1969-1982. Detecting and remembering pictures with and without visual noise. Journal of Vision, 2008, 8, 7-7. 0.1 Early interference of context congruence on object processing in rapid visual categorization of 0.1 78 natural scenes. Journal of Vision, 2008, 8, 11-11. Episodic Memory: An Evolving Concept., 2008, , 491-509. On What It Means to See, and WhatWe Can Do About It., 0,, 69-86. 1 The Proactive Brain: Using Memory-Based Predictions in Visual Recognition., 0,, 384-400. Sensory Contributions to Impaired Emotion Processing in Schizophrenia. Schizophrenia Bulletin, 2.3 123 2009, 35, 1095-1107. Effects of ageing on associative memory for related and unrelated pictures. European Journal of 1.3 24 Cognitive Psychology, 2009, 21, 235-254. What is the spatial extent of an object?., 2009, , . 26 Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and 0.1 64 increasing phase noise. Journal of Vision, 2009, 9, 2-2. TOWARDS GRASP-ORIENTED VISUAL PERCEPTION FOR HUMANOID ROBOTS. International Journal of 0.6 15 Humanoid Robotics, 2009, 06, 387-434. See it with feeling: affective predictions during object perception. Philosophical Transactions of the 1.8 426 Royal Society B: Biological Sciences, 2009, 364, 1325-1334. The proactive brain: memory for predictions. Philosophical Transactions of the Royal Society B: 1.8 510 Biological Sciences, 2009, 364, 1235-1243. Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain. Journal of Neuroscience, 2009, 29, 10573-10581. 1.7 314 Learning contextual rules for priming object categories in images., 2009, , . 2 Unconscious Learning versus Visual Perception: Dissociable Roles for Gamma Oscillations Revealed in MEG. Journal of Cognitive Neuroscience, 2009, 21, 2287-2299. Exposure to extreme stress impairs contextual odour discrimination in an animal model of PTSD. 1.0 40 International Journal of Neuropsychopharmacology, 2009, 12, 291.

CITATION REPORT

129	An effect of referential scene constraint on search implies scene segmentation. Visual Cognition, 2009, 17, 1004-1028.	0.9	36
-----	--	-----	----

#

111

113

114

115

117

118

119

121

123

124

126

#	Article	IF	Citations
130	The Operating Regime of Local Computations in Primary Visual Cortex. Cerebral Cortex, 2009, 19, 2166-2180.	1.6	36
131	The Medial Prefrontal Cortex and Integration in Autism. Neuroscientist, 2009, 15, 589-598.	2.6	72
132	Context-based object recognition. , 2009, , .		0
133	Modelling search for people in 900 scenes: A combined source model of eye guidance. Visual Cognition, 2009, 17, 945-978.	0.9	271
134	Visual streams and shifting attention. Progress in Brain Research, 2009, 176, 47-63.	0.9	17
135	Contextual Processing in Episodic Future Thought. Cerebral Cortex, 2009, 19, 1539-1548.	1.6	103
136	Transsaccadic identification of highly similar artificial shapes. Journal of Vision, 2009, 9, 28-28.	0.1	45
137	ARTSCENE: A neural system for natural scene classification. Journal of Vision, 2009, 9, 6-6.	0.1	45
138	How many pixels make an image?. Visual Neuroscience, 2009, 26, 123-131.	0.5	99
139	Smaller Global and Regional Cortical Volume in Combat-Related Posttraumatic Stress Disorder. Archives of General Psychiatry, 2009, 66, 1373.	13.8	86
140	Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognitive Psychology, 2009, 58, 137-176.	0.9	377
141	Decoding Neuronal Ensembles in the Human Hippocampus. Current Biology, 2009, 19, 546-554.	1.8	197
142	Unconscious contextual memory affects early responses in the anterior temporal lobe. Brain Research, 2009, 1285, 77-87.	1.1	21
143	A cortical framework for invariant object categorization and recognition. Cognitive Processing, 2009, 10, 243-261.	0.7	13
144	Mumford-Shah Regularizer with Contextual Feedback. Journal of Mathematical Imaging and Vision, 2009, 33, 67-84.	0.8	20
145	What does the retrosplenial cortex do?. Nature Reviews Neuroscience, 2009, 10, 792-802.	4.9	1,170
146	Simultaneous place and object recognition using collaborative context information. Image and Vision Computing, 2009, 27, 824-833.	2.7	4
147	Multi-scale lines and edges in V1 and beyond: Brightness, object categorization and recognition, and consciousness. BioSystems, 2009, 95, 206-226.	0.9	21

#	Article	IF	CITATIONS
148	How action and context priming influence categorization: A developmental study. British Journal of Developmental Psychology, 2009, 27, 717-730.	0.9	24
149	Situational information contributes to object categorization and inference. Acta Psychologica, 2009, 130, 81-94.	0.7	28
150	The effect of visual context on the identification of ambiguous environmental sounds. Acta Psychologica, 2009, 131, 110-119.	0.7	21
151	A multistream model of visual word recognition. Attention, Perception, and Psychophysics, 2009, 71, 281-296.	0.7	36
152	Direct versus indirect processing changes the influence of color in natural scene categorization. Attention, Perception, and Psychophysics, 2009, 71, 1588-1597.	0.7	4
153	Holistic context modeling using semantic co-occurrences. , 2009, , .		31
154	Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 2009, 13, 403-409.	4.0	749
155	A cognitive neuroscience hypothesis of mood and depression. Trends in Cognitive Sciences, 2009, 13, 456-463.	4.0	170
156	Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 2009, 13, 532-540.	4.0	474
157	Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1281-1289.	1.8	669
158	The importance of low spatial frequency information for recognising fearful facial expressions. Connection Science, 2009, 21, 75-83.	1.8	43
159	A complementary analytic approach to examining medial temporal lobe sources using magnetoencephalography. NeuroImage, 2009, 45, 627-642.	2.1	65
160	Dissecting medial temporal lobe contributions to item and associative memory formation. NeuroImage, 2009, 46, 874-881.	2.1	46
161	Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. NeuroImage, 2009, 47, 1747-1756.	2.1	194
162	Neural correlates of processing situational relationships between a part and the whole: An fMRI study. NeuroImage, 2009, 48, 486-496.	2.1	9
163	Begriff und Erkenntnis: Eine Analyse von Objektwahrnehmung im Rahmen einer reprÄ s entationalen Theorie. , 0, , .		2
164	Compression in visual working memory: Using statistical regularities to form more efficient memory representations Journal of Experimental Psychology: General, 2009, 138, 487-502.	1.5	246
166	The Obligatory Nature of Holistic Processing of Faces in Social Judgments. Perception, 2010, 39, 514-532.	0.5	60

		CITATION RE	PORT	
#	Article		IF	CITATIONS
167	Prediction, cognition and the brain. Frontiers in Human Neuroscience, 2010, 4, 25.		1.0	360
168	The relative contribution of scene context and target features to visual search in scene Perception, and Psychophysics, 2010, 72, 1283-1297.	es. Attention,	0.7	89
169	Function and context affect spatial information packaging at multiple levels. Psychono and Review, 2010, 17, 575-580.	omic Bulletin	1.4	59
170	Social context influences recognition of bodily expressions. Experimental Brain Resear 169-180.	ch, 2010, 203,	0.7	79
171	A framework for visual-context-aware object detection in still images. Computer Visior Understanding, 2010, 114, 700-711.	1 and Image	3.0	22
172	Spotting animals in natural scenes: efficiency of humans and monkeys at very low con Cognition, 2010, 13, 405-418.	trasts. Animal	0.9	27
173	ERP evidence for context congruity effects during simultaneous object–scene proce Neuropsychologia, 2010, 48, 507-517.	ssing.	0.7	135
174	Differential engagement of brain regions within a â€~core' network during scene c Neuropsychologia, 2010, 48, 1501-1509.	onstruction.	0.7	125
175	Patients with schizophrenia are biased toward low spatial frequency to decode facial e glance. Neuropsychologia, 2010, 48, 4164-4168.	expression at a	0.7	34
176	Interactions dominate the dynamics of visual cognition. Cognition, 2010, 115, 154-16	5.	1.1	59
177	Sentence context affects the brain response to masked words. Brain and Language, 20	010, 113, 149-155.	0.8	9
178	The contribution of scene context on change detection performance. Vision Research, 2062-2068.	2010, 50,	0.7	11
179	Time course of the integration of spatial frequency-based information in natural scene Research, 2010, 50, 2158-2162.	s. Vision	0.7	53
180	A unified framework for the functional organization of the medial temporal lobes and phenomenology of episodic memory. Hippocampus, 2010, 20, 1263-1290.	the	0.9	309
181	Remembering perceptual features unequally bound in object and episodic tokens: Neu and their electrophysiological correlates. Neuroscience and Biobehavioral Reviews, 20 1066-1079.	ıral mechanisms 10, 34,	2.9	72
182	Recognition of attentive objects with a concept association network for image annota Recognition, 2010, 43, 3539-3547.	ition. Pattern	5.1	10
183	How do children learn to follow gaze, share joint attention, imitate their teachers, and during social interactions?. Neural Networks, 2010, 23, 940-965.	use tools	3.3	34
184	Comparing compact codebooks for visual categorization. Computer Vision and Image 2010, 114, 450-462.	Understanding,	3.0	44

#	Article	IF	CITATIONS
185	Context based object categorization: A critical survey. Computer Vision and Image Understanding, 2010, 114, 712-722.	3.0	259
186	Electrophysiological Signals of Familiarity and Recency in the Infant Brain. Infancy, 2010, 15, 487-516.	0.9	18
187	Evidence for intact memoryâ€guided attention in schoolâ€aged children. Developmental Science, 2010, 13, 161-169.	1.3	45
188	Training facilitates object recognition in cubist paintings. Frontiers in Human Neuroscience, 2010, 4, 11.	1.0	18
189	Category-Specific Visual Responses: An Intracranial Study Comparing Gamma, Beta, Alpha, and ERP Response Selectivity. Frontiers in Human Neuroscience, 2010, 4, 195.	1.0	105
190	Rapidly learned stimulus expectations alter perception of motion. Journal of Vision, 2010, 10, 2-2.	0.1	97
191	Rethinking Scene Perception. Psychology of Learning and Motivation - Advances in Research and Theory, 2010, 52, 231-264.	0.5	43
192	Perceptual learning of parametric face categories leads to the integration of high-level class-based information but not to high-level pop-out. Journal of Vision, 2010, 10, 20-20.	0.1	3
193	Modulation of Face Processing by Emotional Expression and Gaze Direction during Intracranial Recordings in Right Fusiform Cortex. Journal of Cognitive Neuroscience, 2010, 22, 2086-2107.	1.1	56
194	Key visual features for rapid categorization of animals in natural scenes. Frontiers in Psychology, 2010, 1, 21.	1.1	42
195	Rapid categorization of faces and objects in a patient with impaired object recognition. Neurocase, 2010, 16, 157-168.	0.2	7
196	A Bayesian image annotation framework integrating search and context. , 2010, , .		0
197	Are Coarse Scales Sufficient for Fast Detection of Visual Threat?. Psychological Science, 2010, 21, 1429-1437.	1.8	48
198	Perceptual Expectation Evokes Category-Selective Cortical Activity. Cerebral Cortex, 2010, 20, 1245-1253.	1.6	165
199	Does it matter where we meet? The role of emotional context in evaluative first impressions Canadian Journal of Experimental Psychology, 2010, 64, 107-116.	0.7	15
200	High-resolution fMRI of Content-sensitive Subsequent Memory Responses in Human Medial Temporal Lobe. Journal of Cognitive Neuroscience, 2010, 22, 156-173.	1.1	114
201	Refreshing and Integrating Visual Scenes in Scene-selective Cortex. Journal of Cognitive Neuroscience, 2010, 22, 2813-2822.	1.1	21
202	Nonstimulated early visual areas carry information about surrounding context. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20099-20103.	3.3	165

#	Article	IF	CITATIONS
203	Mechanisms and neural basis of object and pattern recognition: A study with chess experts Journal of Experimental Psychology: General, 2010, 139, 728-742.	1.5	99
204	Learning Visual Object Categories and Their Composition Based on a Probabilistic Latent Variable Model. Lecture Notes in Computer Science, 2010, , 247-254.	1.0	1
205	Basic Abnormalities in Visual Processing Affect Face Processing at an Early Age in Autism Spectrum Disorder. Biological Psychiatry, 2010, 68, 1107-1113.	0.7	109
206	Transcranial magnetic stimulation-induced †visual echoes' are generated in early visual cortex. Neuroscience Letters, 2010, 484, 178-181.	1.0	11
207	Cultural differences in the lateral occipital complex while viewing incongruent scenes. Social Cognitive and Affective Neuroscience, 2010, 5, 236-241.	1.5	116
208	Object appearance and picture-specific viewpoint are not integrated in long-term memory. Quarterly Journal of Experimental Psychology, 2010, 63, 1181-1200.	0.6	4
209	How Reliable Are Visual Context Effects in the Parahippocampal Place Area?. Cerebral Cortex, 2010, 20, 294-303.	1.6	88
210	Animal detection in natural scenes: Critical features revisited. Journal of Vision, 2010, 10, 1-27.	0.1	95
211	Spatio-temporal sequence learning of visual place cells for robotic navigation. , 2010, , .		3
212	The perception and categorisation of emotional stimuli: A review. Cognition and Emotion, 2010, 24, 377-400.	1.2	220
213	Emotion recognition based on texture analysis of facial expression. , 2011, , .		7
214	Why does vantage point affect boundary extension?. Visual Cognition, 2011, 19, 234-257.	0.9	10
215	Integration Without Awareness. Psychological Science, 2011, 22, 764-770.	1.8	220
216	Brain dynamics of upstream perceptual processes leading to visual object recognition: A high density ERP topographic mapping study. Neurolmage, 2011, 55, 1227-1241.	2.1	28
217	The effect of emotional context on facial emotion ratings in schizophrenia. Schizophrenia Research, 2011, 131, 235-241.	1.1	27
218	Center–surround interaction with adaptive inhibition: A computational model for contour detection. NeuroImage, 2011, 55, 49-66.	2.1	84
219	Security and Surveillance. , 2011, , 455-472.		40
220	Real-World Scene Representations in High-Level Visual Cortex: It's the Spaces More Than the Places. Journal of Neuroscience, 2011, 31, 7322-7333.	1.7	257

	CITATION	Report	
#	Article	IF	Citations
221	Where Do Objects Become Scenes?. Cerebral Cortex, 2011, 21, 1738-1746.	1.6	80
222	Visual search in scenes involves selective and nonselective pathways. Trends in Cognitive Sciences, 2011, 15, 77-84.	4.0	431
223	Memory: Enduring Traces of Perceptual and Reflective Attention. Neuron, 2011, 72, 520-535.	3.8	159
224	Making a scene in the brain. , 0, , 255-279.		7
225	Representing, perceiving, and remembering the shape of visual space. , 2011, , 308-340.		10
226	Fixations on low-resolution images. Journal of Vision, 2011, 11, 14-14.	0.1	64
227	A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 2011, 11, 4-4.	0.1	342
228	Contraintes perceptives et temporelles dans l'exploration du modèle de Ledoux. Annee Psychologique, 2011, 111, 465-479.	0.2	4
229	Object co-occurrence serves as a contextual cue to guide and facilitate visual search in a natural viewing environment. Journal of Vision, 2011, 11, 9-9.	0.1	83
230	Visual Processing in Rapid-Chase Systems: Image Processing, Attention, and Awareness. Frontiers in Psychology, 2011, 2, 169.	1.1	28
231	The characteristics and limits of rapid visual categorization. Frontiers in Psychology, 2011, 2, 243.	1.1	135
232	The role of semantic interference in limiting memory for the details of visual scenes. Frontiers in Psychology, 2011, 2, 262.	1.1	7
233	What are the visual features underlying rapid object recognition?. Frontiers in Psychology, 2011, 2, 326.	1.1	41
234	Music Alters Visual Perception. PLoS ONE, 2011, 6, e18861.	1.1	38
235	Visual Exploration and Object Recognition by Lattice Deformation. PLoS ONE, 2011, 6, e22831.	1.1	23
236	Cross-Modal Prediction in Speech Perception. PLoS ONE, 2011, 6, e25198.	1.1	22
237	How Doctors Generate Diagnostic Hypotheses: A Study of Radiological Diagnosis with Functional Magnetic Resonance Imaging. PLoS ONE, 2011, 6, e28752.	1.1	42
238	Robust Object Categorization and Segmentation Motivated by Visual Contexts in the Human Visual System. Eurasip Journal on Advances in Signal Processing, 2011, 2011, .	1.0	1

#	Article	IF	CITATIONS
239	Toward a neurobiology of auditory object perception: What can we learn from the songbird forebrain?. Environmental Epigenetics, 2011, 57, 671-683.	0.9	5
240	Perception of object–context relations: Eye-movement analyses in infants and adults Developmental Psychology, 2011, 47, 364-375.	1.2	14
241	Beyond extrastriate body area (EBA) and fusiform body area (FBA): context integration in the meaning of actions. Frontiers in Human Neuroscience, 2011, 5, 124.	1.0	44
242	Acquiring Contextualized Concepts: A Connectionist Approach. Cognitive Science, 2011, 35, 1162-1189.	0.8	9
243	Contour detection based on a non-classical receptive field model with butterfly-shaped inhibition subregions. Neurocomputing, 2011, 74, 1527-1534.	3.5	73
244	Grounding emotion in situated conceptualization. Neuropsychologia, 2011, 49, 1105-1127.	0.7	386
245	Tracking real-time neural activation of conceptual knowledge using single-trial event-related potentials. Neuropsychologia, 2011, 49, 970-983.	0.7	66
246	Looking to the future: Automatic regulation of attention between current performance and future plans. Neuropsychologia, 2011, 49, 2258-2271.	0.7	27
247	Visual cognition. Vision Research, 2011, 51, 1538-1551.	0.7	103
248	The neural basis for shape preferences. Vision Research, 2011, 51, 2198-2206.	0.7	34
249	Olfactory Neuroscience: Beyond theÂBulb. Current Biology, 2011, 21, R438-R440.	1.8	36
250	Cognitive Neuroscience: Scene Layout from Vision and Touch. Current Biology, 2011, 21, R437-R438.	1.8	17
251	How vision is shaped by language comprehension — Top-down feedback based on low-spatial frequencies. Brain Research, 2011, 1377, 78-83.	1.1	12
252	Contextual influences on rapid object categorization in natural scenes. Brain Research, 2011, 1398, 40-54.	1.1	25
253	A Taxonomy of External and Internal Attention. Annual Review of Psychology, 2011, 62, 73-101.	9.9	1,027
254	Priming global and local processing of composite faces: revisiting the processing-bias effect on face perception. Attention, Perception, and Psychophysics, 2011, 73, 1477-1486.	0.7	68
255	Visual search for arbitrary objects in real scenes. Attention, Perception, and Psychophysics, 2011, 73, 1650-1671.	0.7	129
256	Two (or three) is one too many: testing the flexibility of contextual cueing with multiple target locations. Attention, Perception, and Psychophysics, 2011, 73, 2065-2076.	0.7	34

ARTICLE IF CITATIONS # Scene context influences without scene gist: Eye movements guided by spatial associations in visual 257 1.4 88 search. Psychonomic Bulletin and Review, 2011, 18, 890-896. Global and local vision in natural scene identification. Psychonomic Bulletin and Review, 2011, 18, 1.4 840-847. Context modeling in computer vision: techniques, implications, and applications. Multimedia Tools 259 2.6 26 and Applications, 2011, 51, 303-339. Variable-Source Shading Analysis. International Journal of Computer Vision, 2011, 91, 280-302. 10.9 The Recognition of Facial Emotions in Spinocerebellar Ataxia Patients. Cerebellum, 2011, 10, 600-610. 261 1.4 87 Top-down effects on early visual processing in humans: A predictive coding framework. Neuroscience and Biobehavioral Reviews, 2011, 35, 1237-1253. Semantic Congruence Enhances Memory of Episodic Associations: Role of Theta Oscillations. Journal 263 1.1 38 of Cognitive Neuroscience, 2011, 23, 75-90. Functions of parahippocampal place area and retrosplenial cortex in real-world scene analysis: An 264 20 fMRI study. Visual Cognition, 2011, 19, 910-927. 265 Image saliency: From intrinsic to extrinsic context., 2011,,. 64 Formation and activation of feature hierarchies under reinforcement., 2011, , . Prior Expectation Modulates the Interaction between Sensory and Prefrontal Regions in the Human 267 113 1.7 Brain. Journal of Neuroscience, 2011, 31, 10741-10748. Early onset of neural synchronization in the contextual associations network. Proceedings of the 3.3 130 National Academy of Ściences of the United States of America, 2011, 108, 3389-3394. Neuroimaging social emotional processing in women: fMRI study of script-driven imagery. Social 269 1.5 40 Cognitive and Affective Neuroscience, 2011, 6, 375-392. Feedforward and feedback in speech perception: Revisiting analysis by synthesis. Language and 270 2.3 Cognitive Processes, 2011, 26, 935-951. 271 Why do we see what's not there?. Communicative and Integrative Biology, 2011, 4, 764-767. 0.6 6 Scene Identification and Emotional Response: Which Spatial Frequencies Are Critical?. Journal of Neuroscience, 2011, 31, 17052-17057. 273 Biasing Perception by Spatial Long-Term Memory. Journal of Neuroscience, 2011, 31, 14952-14960. 1.7 45 A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the 274 3.3

National Academy of Sciences of the United States of America, 2011, 108, 12125-12130.

#	Article	IF	CITATIONS
275	Limitations of perceptual segmentation on contextual cueing in visual search. Visual Cognition, 2011, 19, 203-233.	0.9	25
276	Effects of Perceptual and Contextual Enrichment on Visual Confrontation Naming in Adult Aging. Journal of Speech, Language, and Hearing Research, 2011, 54, 1349-1360.	0.7	10
277	Canonical visual size for real-world objects Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 23-37.	0.7	84
278	A New Role for the Parahippocampal Cortex in Representing Space. Journal of Neuroscience, 2011, 31, 7441-7449.	1.7	172
279	Coarse-to-fine encoding of spatial frequency information into visual short-term memory for faces but impartial decay Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1051-1064.	0.7	33
280	Emotion Perception in Schizophrenia: Context Matters. Emotion Review, 2012, 4, 182-186.	2.1	14
281	Eye movements during scene recollection have a functional role, but they are not reinstatements of those produced during encoding Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1289-1314.	0.7	101
282	Contextual encoding by ensembles of medial prefrontal cortex neurons. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5086-5091.	3.3	193
283	Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology, 2012, 78, 1354-1362.	1.5	278
284	The Neural Bases of Grapheme–Color Synesthesia Are Not Localized in Real Color-Sensitive Areas. Cerebral Cortex, 2012, 22, 1622-1633.	1.6	83
285	Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking. Journal of Vision, 2012, 12, 24-24.	0.1	21
286	Image and Emotion: From Outcomes to Brain Behavior. Herd, 2012, 5, 40-59.	0.9	14
287	The Rapid Extraction of Gist—Early Neural Correlates of High-level Visual Processing. Journal of Cognitive Neuroscience, 2012, 24, 521-529.	1.1	22
288	Overlap between the Neural Correlates of Cued Recall and Source Memory: Evidence for a Generic Recollection Network?. Journal of Cognitive Neuroscience, 2012, 24, 1127-1137.	1.1	84
289	Learning feature hierarchies under reinforcement. , 2012, , .		3
290	When less is more: Line drawings lead to greater boundary extension than do colour photographs. Visual Cognition, 2012, 20, 815-824.	0.9	14
291	Exploiting and modeling local 3D structure for predicting object locations. , 2012, , .		14
292	Ad Gist: Ad Communication in a Single Eye Fixation. Marketing Science, 2012, 31, 59-73.	2.7	48

#	Article	IF	CITATIONS
294	Category-Selective Background Connectivity in Ventral Visual Cortex. Cerebral Cortex, 2012, 22, 391-402.	1.6	105
295	Exploring the parahippocampal cortex response to high and low spatial frequency spaces. NeuroReport, 2012, 23, 503-507.	0.6	38
296	Emotions in context: Pictorial influences on affective attributions Emotion, 2012, 12, 371-375.	1.5	8
297	A Visual Search Inspired Computational Model for Ship Detection in Optical Satellite Images. IEEE Geoscience and Remote Sensing Letters, 2012, 9, 749-753.	1.4	106
298	Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex. Neuron, 2012, 75, 265-270.	3.8	654
299	The episodic engram transformed: Time reduces retrieval-related brain activity but correlates it with memory accuracy. Learning and Memory, 2012, 19, 575-587.	0.5	52
300	The Context–Object–Manipulation Triad: Cross Talk during Action Perception Revealed by fMRI. Journal of Cognitive Neuroscience, 2012, 24, 1548-1559.	1.1	27
301	The Default Mode Network and Recurrent Depression: A Neurobiological Model of Cognitive Risk Factors. Neuropsychology Review, 2012, 22, 229-251.	2.5	246
302	Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function. Neuroscience and Biobehavioral Reviews, 2012, 36, 1579-1596.	2.9	278
303	Neurocognitive networks: Findings, models, and theory. Neuroscience and Biobehavioral Reviews, 2012, 36, 2232-2247.	2.9	66
304	Influence of the amount of context learned for improving object classification when simultaneously learning object and contextual cues. Visual Cognition, 2012, 20, 580-602.	0.9	2
305	Taxonomy-Based Glyph Design—with a Case Study on Visualizing Workflows of Biological Experiments. IEEE Transactions on Visualization and Computer Graphics, 2012, 18, 2603-2612.	2.9	51
306	Simulated phosphene model for visual prosthesis. , 2012, , .		0
307	Effects of Stereo and Screen Size on the Legibility of Three-Dimensional Streamtube Visualization. IEEE Transactions on Visualization and Computer Graphics, 2012, 18, 2130-2139.	2.9	29
308	The image quality in the measurement of atmospheric visibility from contrast indices and edges. , 2012, , .		1
309	Topological spatial relations for active visual search. Robotics and Autonomous Systems, 2012, 60, 1093-1107.	3.0	25
310	A Real-World Size Organization of Object Responses in Occipitotemporal Cortex. Neuron, 2012, 74, 1114-1124.	3.8	364
311	Two cortical systems for memory-guided behaviour. Nature Reviews Neuroscience, 2012, 13, 713-726.	4.9	1,058

#	Article	IF	CITATIONS
312	A challenging, unpredictable world for people with Autism Spectrum Disorder. International Journal of Psychophysiology, 2012, 83, 240-247.	0.5	123
313	Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN) Tj ETQq1 1	0.784314 0.5	rgBT /Overlo 202
314	Journal of Psychophysiology, 2012, 83, 132-143. Visual prediction and perceptual expertise. International Journal of Psychophysiology, 2012, 83, 156-163.	0.5	29
315	One hand, two objects: Emergence of affordance in contexts. Brain and Cognition, 2012, 80, 64-73.	0.8	83
316	Cortical 3D Face and Object Recognition Using 2D Projections. International Journal of Creative Interfaces and Computer Graphics, 2012, 3, 45-62.	0.1	4
317	Temporal context in speech processing and attentional stream selection: A behavioral and neural perspective. Brain and Language, 2012, 122, 151-161.	0.8	138
318	A functional architecture of the human brain: emerging insights from the science of emotion. Trends in Cognitive Sciences, 2012, 16, 533-540.	4.0	409
319	Squeezing lemons in the bathroom: Contextual information modulates action recognition. NeuroImage, 2012, 59, 1551-1559.	2.1	57
320	States of mind: Emotions, body feelings, and thoughts share distributed neural networks. NeuroImage, 2012, 62, 2110-2128.	2.1	131
321	Hot cognition en social vision: de interactie tussen sociaal-affectieve processen en inferentie in visuele waarneming. Neuropraxis, 2012, 16, 73-78.	0.1	1
322	Neuromarketing: Marketing through Science. , 2012, , .		10
323	The combined effect of subthalamic nuclei deep brain stimulation and l-dopa increases emotion recognition in Parkinson's disease. Neuropsychologia, 2012, 50, 2869-2879.	0.7	22
324	Valence-Specific Modulation in the Accumulation of Perceptual Evidence Prior to Visual Scene Recognition. PLoS ONE, 2012, 7, e38064.	1.1	7
325	Implicit Learning of Viewpoint-Independent Spatial Layouts. Frontiers in Psychology, 2012, 3, 207.	1.1	16
326	Spatial Frequency Integration During Active Perception: Perceptual Hysteresis When an Object Recedes. Frontiers in Psychology, 2012, 3, 462.	1.1	19
327	Faces in Context: A Review and Systematization of Contextual Influences on Affective Face Processing. Frontiers in Psychology, 2012, 3, 471.	1.1	280
328	How Prediction Errors Shape Perception, Attention, and Motivation. Frontiers in Psychology, 2012, 3, 548.	1.1	341
329	Modeling invariant object processing based on tight integration of simulated and empirical data in a Common Brain Space. Frontiers in Computational Neuroscience, 2012, 6, 12.	1.2	5

	CITATION	REPORT	
#	Article	IF	CITATIONS
330	Renewing the respect for similarity. Frontiers in Computational Neuroscience, 2012, 6, 45.	1.2	24
331	Contextual impairments in schizophrenia and the FN400. Frontiers in Human Neuroscience, 2012, 6, 191.	1.0	11
332	The social-sensory interface: category interactions in person perception. Frontiers in Integrative Neuroscience, 2012, 6, 81.	1.0	23
333	Rethinking visual scene perception. Wiley Interdisciplinary Reviews: Cognitive Science, 2012, 3, 117-127.	1.4	43
334	Hemispheric Asymmetry of Visual Scene Processing in the Human Brain: Evidence from Repetition Priming and Intrinsic Activity. Cerebral Cortex, 2012, 22, 1935-1949.	1.6	54
335	The influence of flankers on race categorization of faces. Attention, Perception, and Psychophysics, 2012, 74, 1654-1667.	0.7	8
336	Seeing with the eyes shut: Neural basis of enhanced imagery following ayahuasca ingestion. Human Brain Mapping, 2012, 33, 2550-2560.	1.9	156
337	Expertise modulates the neural basis of context dependent recognition of objects and their relations. Human Brain Mapping, 2012, 33, 2728-2740.	1.9	52
338	Intuitive Expertise and Perceptual Templates. Minds and Machines, 2012, 22, 167-182.	2.7	4
339	A Pool of Pairs of Related Objects (POPORO) for Investigating Visual Semantic Integration: Behavioral and Electrophysiological Validation. Brain Topography, 2012, 25, 272-284.	0.8	51
340	Measuring Internal Representations from Behavioral and Brain Data. Current Biology, 2012, 22, 191-196.	1.8	76
341	Predictive coding as a model of the V1 saliency map hypothesis. Neural Networks, 2012, 26, 7-28.	3.3	42
342	Neural responses to visual scenes reveals inconsistencies between fMRI adaptation and multivoxel pattern analysis. Neuropsychologia, 2012, 50, 530-543.	0.7	60
343	ERP correlates of spatially incongruent object identification during scene viewing: Contextual expectancy versus simultaneous processing. Neuropsychologia, 2012, 50, 1271-1285.	0.7	46
344	Attention-free integration of spatial frequency-based information in natural scenes. Vision Research, 2012, 65, 38-44.	0.7	4
345	Holistic Context Models for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34, 902-917.	9.7	61
346	Dissociating hippocampal and striatal contributions to sequential prediction learning. European Journal of Neuroscience, 2012, 35, 1011-1023.	1.2	98
347	The Visual Extent of an Object. International Journal of Computer Vision, 2012, 96, 46-63.	10.9	19

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
348	Learning Behavioural Context. International Journal of Computer Vision, 2012, 97, 276-	304.	10.9	43
349	Timing of posterior parahippocampal gyrus activity reveals multiple scene processing st Brain Mapping, 2013, 34, 1357-1370.	ages. Human	1.9	41
350	Evaluating Word in Phrase: The Modulation Effect of Emotional Context on Word Com Journal of Psycholinguistic Research, 2013, 42, 379-391.	prehension.	0.7	5
351	Affective value and associative processing share a cortical substrate. Cognitive, Affectiv Behavioral Neuroscience, 2013, 13, 46-59.	re and	1.0	46
352	An on-line, real-time learning method for detecting anomalies in videos using spatio-ten compositions. Computer Vision and Image Understanding, 2013, 117, 1436-1452.	ıporal	3.0	132
353	Seeing absence. Philosophical Studies, 2013, 166, 429-454.		0.5	65
354	Global processing during the Müller-Lyer illusion is distinctively affected by the degre traits in the typical population. Experimental Brain Research, 2013, 230, 219-231.	e of autistic	0.7	48
355	Spatial frequencies and emotional perception. Reviews in the Neurosciences, 2013, 24,	89-104.	1.4	45
356	Assessing the mechanism of response in the retrosplenial cortex of good and poor navi Cortex, 2013, 49, 2904-2913.	gators.	1.1	76
357	The Alliance between Semantic Memory, Priming, and Episodic Memory. Procedia, Socia Sciences, 2013, 82, 562-566.	al and Behavioral	0.5	1
358	Semantic versus perceptual interactions in neural processing of speech-in-noise. Neurol 52-61.	mage, 2013, 79,	2.1	56
359	Distinguishing the effects of action relations and scene context on object perception. V Cognition, 2013, 21, 1033-1052.	/isual	0.9	1
360	Semantic relations differentially impact associative recognition memory: Electrophysiol evidence. Brain and Cognition, 2013, 83, 93-103.	ogical	0.8	49
361	Understanding the human parental brain: A critical role of the orbitofrontal cortex. Soci Neuroscience, 2013, 8, 525-543.	al	0.7	78
362	Multiple synergistic effects of emotion and memory on proactive processes leading to s recognition. Neurolmage, 2013, 81, 81-95.	scene	2.1	10
363	A distributed computational cognitive model for object recognition. Science China Info Sciences, 2013, 56, 1-13.	rmation	2.7	4
364	Lessons from neuroscience: form follows function, emotions follow form. Intelligent Bu International, 2013, 5, 61-78.	ildings	1.3	45
365	FrameBreak: Dramatic Image Extrapolation by Guided Shift-Maps. , 2013, , .			59

#	Article	IF	CITATIONS
367	Memory modulated saliency: A computational model of the incremental learning of target locations in visual search. Visual Cognition, 2013, 21, 277-305.	0.9	1
368	The epistemic impact of the etiology of experience. Philosophical Studies, 2013, 162, 697-722.	0.5	69
369	Exploring the role of space-defining objects in constructing and maintaining imagined scenes. Brain and Cognition, 2013, 82, 100-107.	0.8	52
371	Differential connectivity within the Parahippocampal Place Area. NeuroImage, 2013, 75, 228-237.	2.1	137
372	Behavioral assessment of emotional and motivational appraisal during visual processing of emotional scenes depending on spatial frequencies. Brain and Cognition, 2013, 83, 104-113.	0.8	7
373	The powerful size others down: The link between power and estimates of others' size. Journal of Experimental Social Psychology, 2013, 49, 591-594.	1.3	48
374	Children with autism spectrum disorder spontaneously use scene knowledge to modulate visual object processing. Research in Autism Spectrum Disorders, 2013, 7, 913-922.	0.8	3
375	Holistic processing of impossible objects: Evidence from Garner's speeded-classification task. Vision Research, 2013, 93, 10-18.	0.7	11
376	The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 2013, 17, 379-390.	4.0	598
377	Selectivity for large nonmanipulable objects in scene-selective visual cortex does not require visual experience. Neurolmage, 2013, 79, 1-9.	2.1	100
378	Neural Representations of Contextual Guidance in Visual Search of Real-World Scenes. Journal of Neuroscience, 2013, 33, 7846-7855.	1.7	60
379	Putting an object in context and acting on it: neural mechanisms of goal-directed response to contextual object. Reviews in the Neurosciences, 2013, 24, 27-49.	1.4	13
380	Representations of Facial Identity Information in the Ventral Visual Stream Investigated with Multivoxel Pattern Analyses. Journal of Neuroscience, 2013, 33, 8549-8558.	1.7	74
381	Representation of Contextually Related Multiple Objects in the Human Ventral Visual Pathway. Journal of Cognitive Neuroscience, 2013, 25, 1261-1269.	1.1	22
382	Temporal Components in the Parahippocampal Place Area Revealed by Human Intracerebral Recordings. Journal of Neuroscience, 2013, 33, 10123-10131.	1.7	44
383	Preparatory patterns of neural activity predict visual category search speed. NeuroImage, 2013, 66, 215-222.	2.1	17
384	Category-selective neural substrates for person- and place-related concepts. Cortex, 2013, 49, 2748-2757.	1.1	37
385	Research on Spatial Frequency Motivated Gray Level Image Fusion Based on Improved PCNN. , 2013, , .		2

#	Article	IF	Citations
386	Contextual Processing of Abstract Concepts Reveals Neural Representations of Nonlinguistic Semantic Content. Journal of Cognitive Neuroscience, 2013, 25, 920-935.	1.1	99
387	Binding of intrinsic and extrinsic features in working memory Journal of Experimental Psychology: General, 2013, 142, 218-234.	1.5	62
388	Statistical learning in the past modulates contextual cueing in the future. Journal of Vision, 2013, 13, 19-19.	0.1	15
389	Fixating picture boundaries does not eliminate boundary extension: Implications for scene representation. Quarterly Journal of Experimental Psychology, 2013, 66, 2161-2186.	0.6	13
390	Functional Subdomains within Human FFA. Journal of Neuroscience, 2013, 33, 16748-16766.	1.7	62
391	Seeing the Expected, the Desired, and the Feared: Influences on Perceptual Interpretation and Directed Attention. Social and Personality Psychology Compass, 2013, 7, 401-414.	2.0	14
392	Seeing Absence or Absence of Seeing?. Thought, 2013, 2, 117-125.	0.3	15
393	Attention Sharpens the Distinction between Expected and Unexpected Percepts in the Visual Brain. Journal of Neuroscience, 2013, 33, 18438-18447.	1.7	111
394	Consecutive TMS-fMRI Reveals an Inverse Relationship in BOLD Signal between Object and Scene Processing. Journal of Neuroscience, 2013, 33, 19243-19249.	1.7	27
395	CogniciÃ ³ n social contexto-dependiente y redes frontotemporo-insulares. Revista De Psicologia Social, 2013, 28, 299-315.	0.3	2
396	Visual statistical learning based on the perceptual and semantic information of objects Journal of Experimental Psychology: Learning Memory and Cognition, 2013, 39, 196-207.	0.7	19
397	The effect of transparency on recognition of overlapping objects Journal of Experimental Psychology: Applied, 2013, 19, 158-170.	0.9	7
399	Perceptual Disorders. , 2013, , .		0
400	Concurrent Repetition Enhancement and Suppression Responses in Extrastriate Visual Cortex. Cerebral Cortex, 2013, 23, 2235-2244.	1.6	78
401	Emotion categorization does not depend on explicit face categorization. Journal of Vision, 2013, 13, 12-12.	0.1	6
402	Visual Perception of Objects. , 2013, , 947-968.		0
403	Implicit Processing of Scene Context in Macular Degeneration. , 2013, 54, 1950.		17
405	Here Today, Gone Tomorrow – Adaptation to Change in Memory-Guided Visual Search. PLoS ONE, 2013, 8, e59466.	1.1	31

		CITATION R	EPORT	
#	Article		IF	Citations
406	Early Spatial Frequency Processing of Natural Images: An ERP Study. PLoS ONE, 2013,	8, e65103.	1.1	28
407	Are We Afraid of Different Categories of Stimuli in Identical Ways? Evidence from Skin Responses. PLoS ONE, 2013, 8, e73165.	Conductance	1.1	2
408	No Effect of Ambient Odor on the Affective Appraisal of a Desktop Virtual Environmen Disorder. PLoS ONE, 2013, 8, e78721.	t with Signs of	1.1	5
409	Neural substrates of perceptual integration during bistable object perception. Journal o 13, 17-17.	of Vision, 2013,	0.1	18
410	Predictive Feedback and Conscious Visual Experience. Frontiers in Psychology, 2012, 3	, 620.	1.1	106
411	Low Spatial Frequency Bias in Schizophrenia is Not Face Specific: When the Integration Fine Information Fails. Frontiers in Psychology, 2013, 4, 248.	n of Coarse and	1.1	21
412	The coherent organization of mental life depends on mechanisms for context-sensitive that are impaired in schizophrenia. Frontiers in Psychology, 2013, 4, 307.	gain-control	1.1	47
413	The influence of scene context on object recognition is independent of attentional foc in Psychology, 2013, 4, 552.	us. Frontiers	1.1	47
414	Statistics of high-level scene context. Frontiers in Psychology, 2013, 4, 777.		1.1	56
415	Multi-stable perception balances stability and sensitivity. Frontiers in Computational N 2013, 7, 17.	euroscience,	1.2	45
416	Description-based reappraisal regulate the emotion induced by erotic and neutral imag population. Frontiers in Human Neuroscience, 2013, 6, 355.	;es in a Chinese	1.0	7
417	N400 ERPs for actions: building meaning in context. Frontiers in Human Neuroscience,	2013, 7, 57.	1.0	88
418	Rapid Presentation of Emotional Expressions Reveals New Emotional Impairments in To Syndrome. Frontiers in Human Neuroscience, 2013, 7, 149.	ourette's	1.0	9
419	Disambiguation of ambiguous figures in the brain. Frontiers in Human Neuroscience, 2	013, 7, 501.	1.0	4
420	Learning what to expect (in visual perception). Frontiers in Human Neuroscience, 2013	3, 7, 668.	1.0	128
421	Situating emotional experience. Frontiers in Human Neuroscience, 2013, 7, 764.		1.0	59
422	What makes the dorsomedial frontal cortex active during reading the mental states of Frontiers in Neuroscience, 2013, 7, 232.	others?.	1.4	58
423	Using the Virtual Reality-Cognitive Rehabilitation Approach to Improve Contextual Pro Children with Autism. Scientific World Journal, The, 2013, 2013, 1-9.	cessing in	0.8	35

#	Article	IF	CITATIONS
425	Incidental Memory of Younger and Older Adults for Objects Encountered in a Real World Context. PLoS ONE, 2014, 9, e99051.	1.1	5
426	Auditory Conflict Resolution Correlates with Medial–Lateral Frontal Theta/Alpha Phase Synchrony. PLoS ONE, 2014, 9, e110989.	1.1	10
427	Dopamine Replacement Therapy and Deep Brain Stimulation of the Subthalamic Nuclei Induce Modulation of Emotional Processes at Different Spatial Frequencies in Parkinson's Disease. Journal of Parkinson's Disease, 2014, 4, 97-110.	1.5	9
428	Guidance of visual attention by semantic information in real-world scenes. Frontiers in Psychology, 2014, 5, 54.	1.1	99
429	A conceptual framework of computations in mid-level vision. Frontiers in Computational Neuroscience, 2014, 8, 158.	1.2	22
430	Are visual impairments responsible for emotion decoding deficits in alcohol-dependence?. Frontiers in Human Neuroscience, 2014, 8, 128.	1.0	15
431	Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Frontiers in Human Neuroscience, 2014, 8, 586.	1.0	140
432	The neural bases of spatial frequency processing during scene perception. Frontiers in Integrative Neuroscience, 2014, 8, 37.	1.0	146
433	Differential processing of natural scenes in posterior cortical atrophy and in Alzheimerââ,¬â"¢s disease, as measured with a saccade choice task. Frontiers in Integrative Neuroscience, 2014, 8, 60.	1.0	17
434	Associating peripheral and foveal visual input across saccades: A default mode of the human visual system?. Journal of Vision, 2014, 14, 7-7.	0.1	23
435	Evidence for participation by object-selective visual cortex in scene category judgments. Journal of Vision, 2014, 14, 19-19.	0.1	15
436	Attention and Decision-Making. , 2014, , .		2
437	Recognizing object affordances in terms of spatio-temporal object-object relationships. , 2014, , .		7
438	Nonaccidental Properties Underlie Human Categorization of Complex Natural Scenes. Psychological Science, 2014, 25, 851-860.	1.8	68
439	The roles of scene priming and location priming in object-scene consistency effects. Frontiers in Psychology, 2014, 5, 520.	1.1	3
440	Visual Predictions in the Orbitofrontal Cortex Rely on Associative Content. Cerebral Cortex, 2014, 24, 2899-2907.	1.6	86
441	Hysteresis in the dynamic perception of scenes and objects Journal of Experimental Psychology: General, 2014, 143, 1875-1892.	1.5	18
442	Prior Expectations Evoke Stimulus Templates in the Primary Visual Cortex. Journal of Cognitive Neuroscience, 2014, 26, 1546-1554.	1.1	199

# 443	ARTICLE Affective and contextual values modulate spatial frequency use in object recognition. Frontiers in Psychology, 2014, 5, 512.	IF 1.1	Citations
444	Stable statistical representations facilitate visual search Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1915-1925.	0.7	28
445	Avoiding robot faux pas. , 2014, , .		6
446	The Contextual Association Network Activates More for Remembered than for Imagined Events. Cerebral Cortex, 2016, 26, bhu223.	1.6	33
447	Remembering Things Without Context: Development Matters. Child Development, 2014, 85, 1491-1502.	1.7	30
448	Semantic Control of Feature Extraction from Natural Scenes. Journal of Neuroscience, 2014, 34, 2374-2388.	1.7	42
449	Recognition of Objects in Simulated Irregular Phosphene Maps for an Epiretinal Prosthesis. Artificial Organs, 2014, 38, E10-20.	1.0	14
450	Unsupervised object exploration using context. , 2014, , .		5
451	Coarse and fine learning in deep networks. , 2014, , .		0
452	How context information and target information guide the eyes from the first epoch of search in real-world scenes. Journal of Vision, 2014, 14, 7-7.	0.1	28
453	Familiar trajectories facilitate the interpretation of physical forces when intercepting a moving target. Experimental Brain Research, 2014, 232, 3803-3811.	0.7	9
454	Visual predictive architecture for biologically inspired object recognition. , 2014, , .		1
455	Synchronous contextual irregularities affect early scene processing: Replication and extension. Neuropsychologia, 2014, 56, 447-458.	0.7	63
456	Region level annotation by fuzzy based contextual cueing label propagation. Multimedia Tools and Applications, 2014, 70, 625-645.	2.6	1
457	Empathy and contextual social cognition. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 407-425.	1.0	91
458	Contextual integration of visual objects necessitates attention. Attention, Perception, and Psychophysics, 2014, 76, 695-714.	0.7	25
459	Characterizing ensemble statistics: mean size is represented across multiple frames of reference. Attention, Perception, and Psychophysics, 2014, 76, 746-758.	0.7	34
460	Attention in the real world: toward understanding its neural basis. Trends in Cognitive Sciences, 2014, 18, 242-250.	4.0	161

		CITATION REP	PORT	
#	Article		IF	CITATIONS
461	Multiple Object Properties Drive Scene-Selective Regions. Cerebral Cortex, 2014, 24, 88	3-897.	1.6	110
462	Repetition Probability Effects Depend on Prior Experiences. Journal of Neuroscience, 201 6640-6646.	.4, 34,	1.7	81
463	Contextual Object Detection With Spatial Context Prototypes. IEEE Transactions on Mu 1-1.	ltimedia, 2014, ,	5.2	9
464	Quantifying the role of context in visual object recognition. Visual Cognition, 2014, 22,	30-56.	0.9	21
465	Interactive Activation and Mutual Constraint Satisfaction in Perception and Cognition. C Science, 2014, 38, 1139-1189.	Cognitive	0.8	68
466	An Analysis of Object Appearance Information and Context Based Classification. 3D Res	earch, 2014, 5, 1.	1.8	3
467	Object grouping based on real-world regularities facilitates perception by reducing comp interactions in visual cortex. Proceedings of the National Academy of Sciences of the Un America, 2014, 111, 11217-11222.		3.3	68
468	Multisensory context portends object memory. Current Biology, 2014, 24, R734-R735.		1.8	43
469	How affective information from faces and scenes interacts in the brain. Social Cognitive Neuroscience, 2014, 9, 1481-1488.	and Affective	1.5	43
470	Expectation in perceptual decision making: neural and computational mechanisms. Natu Neuroscience, 2014, 15, 745-756.	ıre Reviews	4.9	595
471	Act-In: An integrated view of memory mechanisms. Journal of Cognitive Psychology, 201	4, 26, 280-306.	0.4	77
472	Development of spatial coarse-to-fine processing in the visual pathway. Journal of Comp Neuroscience, 2014, 36, 401-414.	utational	0.6	9
473	Toward ecologically realistic theories in visual short-term memory research. Attention, Pa and Psychophysics, 2014, 76, 2158-2170.	erception,	0.7	28
474	The resilience of object predictions: Early recognition across viewpoints and exemplars. I Bulletin and Review, 2014, 21, 682-688.	Psychonomic	1.4	11
475	Does the semantic content of verbal categories influence categorical perception? An ER and Cognition, 2014, 91, 1-10.	⁹ study. Brain	0.8	26
476	Incongruent object/context relationships in visual scenes: Where are they processed in t Brain and Cognition, 2014, 84, 34-43.	he brain?.	0.8	37
477	Hallucinators find meaning in noises: Pareidolic illusions in dementia with Lewy bodies. Neuropsychologia, 2014, 56, 245-254.		0.7	93
478	Situating person memory: The role of the visual context on memory for behavioral inforr Journal of Experimental Social Psychology, 2014, 52, 32-43.	nation.	1.3	2

-			~	
	ITATI	ON	DED	ODT
	пап		NLP	ORI

#	Article	IF	CITATIONS
479	Coarse-to-fine Categorization of Visual Scenes in Scene-selective Cortex. Journal of Cognitive Neuroscience, 2014, 26, 2287-2297.	1.1	34
480	Information integration without awareness. Trends in Cognitive Sciences, 2014, 18, 488-496.	4.0	208
481	Primary empathy deficits in frontotemporal dementia. Frontiers in Aging Neuroscience, 2014, 6, 262.	1.7	133
482	Primed for intuition?. Neuroscience of Decision Making, 2014, 1, .	1.3	6
483	Objects Influence the Shape of Remembered Views: Examining Global and Local Aspects of Boundary Extension. Perception, 2014, 43, 731-753.	0.5	2
484	Integrating spatial concepts into a probabilistic concept web. , 2015, , .		2
485	Acute undernutrition reduces polar visual contrast sensitivity in children Psychology and Neuroscience, 2015, 8, 193-202.	0.5	0
486	Contextual consistency facilitates long-term memory of perceptual detail in barely seen images Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 1095-1111.	0.7	17
487	Perceptual and Emotional Embodiment. , 0, , .		25
488	Social context perception for mobile robots. , 2015, , .		21
488 489	Social context perception for mobile robots. , 2015, , . Interactive Whiteboards and Digital Teaching Book to Secondary School Teachers and Contextual Affordances. Journal of Educational Technology Systems, 2015, 43, 266-288.	3.6	21
	Interactive Whiteboards and Digital Teaching Book to Secondary School Teachers and Contextual	3.6 1.8	
489	Interactive Whiteboards and Digital Teaching Book to Secondary School Teachers and Contextual Affordances. Journal of Educational Technology Systems, 2015, 43, 266-288. Prediction, context, and competition in visual recognition. Annals of the New York Academy of		1
489 490	Interactive Whiteboards and Digital Teaching Book to Secondary School Teachers and Contextual Affordances. Journal of Educational Technology Systems, 2015, 43, 266-288. Prediction, context, and competition in visual recognition. Annals of the New York Academy of Sciences, 2015, 1339, 190-198. The role of spatial frequency information in the recognition of facial expressions of pain. Pain, 2015,	1.8	1 86
489 490 491	Interactive Whiteboards and Digital Teaching Book to Secondary School Teachers and Contextual Affordances. Journal of Educational Technology Systems, 2015, 43, 266-288. Prediction, context, and competition in visual recognition. Annals of the New York Academy of Sciences, 2015, 1339, 190-198. The role of spatial frequency information in the recognition of facial expressions of pain. Pain, 2015, 156, 1670-1682. Dissociation of salience-driven and content-driven spatial attention to scene category with predictive	1.8 2.0	1 86 9
489 490 491 492	Interactive Whiteboards and Digital Teaching Book to Secondary School Teachers and Contextual Affordances. Journal of Educational Technology Systems, 2015, 43, 266-288. Prediction, context, and competition in visual recognition. Annals of the New York Academy of Sciences, 2015, 1339, 190-198. The role of spatial frequency information in the recognition of facial expressions of pain. Pain, 2015, 156, 1670-1682. Dissociation of salience-driven and content-driven spatial attention to scene category with predictive decoding of gaze patterns. Journal of Vision, 2015, 15, 20.	1.8 2.0 0.1	1 86 9 16
489 490 491 492 493	Interactive Whiteboards and Digital Teaching Book to Secondary School Teachers and Contextual Affordances. Journal of Educational Technology Systems, 2015, 43, 266-288. Prediction, context, and competition in visual recognition. Annals of the New York Academy of Sciences, 2015, 1339, 190-198. The role of spatial frequency information in the recognition of facial expressions of pain. Pain, 2015, 156, 1670-1682. Dissociation of salience-driven and content-driven spatial attention to scene category with predictive decoding of gaze patterns. Journal of Vision, 2015, 15, 20. Interobject grouping facilitates visual awareness. Journal of Vision, 2015, 15, 10. Modulation of early ERPs by accurate categorization of objects in scenes. Journal of Vision, 2015, 15, 15,	1.8 2.0 0.1 0.1	1 86 9 16 24

#	Article	IF	CITATIONS
497	Understanding visual consciousness in autism spectrum disorders. Frontiers in Human Neuroscience, 2015, 9, 204.	1.0	0
498	Structural Connectivity of the Developing Human Amygdala. PLoS ONE, 2015, 10, e0125170.	1.1	34
499	Contextual Congruency Effect in Natural Scene Categorization: Different Strategies in Humans and Monkeys (Macaca mulatta). PLoS ONE, 2015, 10, e0133721.	1.1	3
500	Semantic Wavelet-Induced Frequency-Tagging (SWIFT) Periodically Activates Category Selective Areas While Steadily Activating Early Visual Areas. PLoS ONE, 2015, 10, e0144858.	1.1	12
501	Electroencephalographic Correlates of Sensorimotor Integration and Embodiment during the Appreciation of Virtual Architectural Environments. Frontiers in Psychology, 2015, 6, 1944.	1.1	57
502	Human preferences are biased towards associative information. Cognition and Emotion, 2015, 29, 1054-1068.	1.2	17
503	Visual, haptic and bimodal scene perception: Evidence for a unitary representation. Cognition, 2015, 138, 132-147.	1.1	20
504	Predictive Coding in Sensory Cortex. , 2015, , 221-244.		47
505	Intrinsic and contextual features in object recognition. Journal of Vision, 2015, 15, 28-28.	0.1	6
506	Small object detection in forward-looking infrared images with sea clutter using context-driven Bayesian saliency model. Infrared Physics and Technology, 2015, 73, 175-183.	1.3	5
507	The Neural Basis of Contextual Influences on Face Categorization. Cerebral Cortex, 2015, 25, 415-422.	1.6	30
508	Detecting social context: A method for social event classification using naturalistic multimodal data. , 2015, , .		11
509	Computational model of visual hallucination in dementia with Lewy bodies. Neural Networks, 2015, 62, 73-82.	3.3	12
510	The effects of visual context and individual differences on perception and evaluation of modern art and graffiti art. Acta Psychologica, 2015, 156, 64-76.	0.7	29
511	Context Dependent Encoding Using Convolutional Dynamic Networks. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26, 1992-2004.	7.2	7
512	The highs and lows of object impossibility: effects of spatial frequency on holistic processing of impossible objects. Psychonomic Bulletin and Review, 2015, 22, 297-306.	1.4	6
513	Does object view influence the scene consistency effect?. Attention, Perception, and Psychophysics, 2015, 77, 856-866.	0.7	11
514	Contextual Alignment of Cognitive and Neural Dynamics. Journal of Cognitive Neuroscience, 2015, 27, 655-664.	1.1	54

#	Article	IF	CITATIONS
515	The dynamics of categorization: Unraveling rapid categorization Journal of Experimental Psychology: General, 2015, 144, 551-569.	1.5	44
516	In the white cube: Museum context enhances the valuation and memory of art. Acta Psychologica, 2015, 154, 36-42.	0.7	90
517	Eyes on words: A fixation-related fMRI study of the left occipito-temporal cortex during self-paced silent reading of words and pseudowords. Scientific Reports, 2015, 5, 12686.	1.6	30
518	Encoding-Stage Crosstalk Between Object- and Spatial Property-Based Scene Processing Pathways. Cerebral Cortex, 2015, 25, 2267-2281.	1.6	16
519	Prediction and Expectation. , 2015, , 295-302.		8
520	Melodic sound enhances visual awareness of congruent musical notes, but only if you can read music. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8493-8498.	3.3	13
521	Proto-object categorisation and local gist vision using low-level spatial features. BioSystems, 2015, 135, 35-49.	0.9	2
522	The neural basis of perceiving person interactions. Cortex, 2015, 70, 5-20.	1.1	50
523	Effects of contextual information and stimulus ambiguity on overt visual sampling behavior. Vision Research, 2015, 110, 76-86.	0.7	16
524	Real-world spatial regularities affect visual working memory for objects. Psychonomic Bulletin and Review, 2015, 22, 1784-1790.	1.4	33
525	Extending Gurwitsch's field theory of consciousness. Consciousness and Cognition, 2015, 34, 104-123.	0.8	16
526	Spatial frequency processing in scene-selective cortical regions. NeuroImage, 2015, 112, 86-95.	2.1	61
527	Phantom perception: voluntary and involuntary nonretinal vision. Trends in Cognitive Sciences, 2015, 19, 278-284.	4.0	69
528	Effective structure restoration for image completion using internet resources. Visual Computer, 2015, 31, 1113-1122.	2.5	3
529	On the functions, mechanisms, and malfunctions of intracortical contextual modulation. Neuroscience and Biobehavioral Reviews, 2015, 52, 1-20.	2.9	90
530	The Role of Context in Understanding Similarities and Differences in Remembering and Episodic Future Thinking. Psychology of Learning and Motivation - Advances in Research and Theory, 2015, 63, 45-76.	0.5	7
532	ERP evidence for the influence of scene context on the recognition of ambiguous and unambiguous objects. Neuropsychologia, 2015, 72, 43-51.	0.7	24
533	The Processing Speed of Scene Categorization at Multiple Levels of Description: The Superordinate Advantage Revisited. Perception, 2015, 44, 269-288.	0.5	12

#	Article	IF	CITATIONS
534	Does Language Do More Than Communicate Emotion?. Current Directions in Psychological Science, 2015, 24, 99-108.	2.8	163
535	Emotion Recognition as Pattern Recognition: The Relevance of Perception. Mind and Language, 2015, 30, 187-208.	1.2	52
536	Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex. Journal of Neuroscience, 2015, 35, 14661-14680.	1.7	51
537	Introduction to <i>Competitive Visual Processing Across Space and Time: Attention, Memory, and Prediction</i> . Annals of the New York Academy of Sciences, 2015, 1339, v-viii.	1.8	1
538	Whole-agent selectivity within the macaque face-processing system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14717-14722.	3.3	43
539	Retrieval Goal Modulates Memory for Context. Journal of Cognitive Neuroscience, 2015, 27, 2529-2540.	1.1	12
540	The more the merrier: Analysing the affect of a group of people in images. , 2015, , .		55
541	Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain and Language, 2015, 148, 1-22.	0.8	68
542	The Buffer Effect: The Role of Color When Advertising Exposures Are Brief and Blurred. Marketing Science, 2015, 34, 134-143.	2.7	40
543	Direction of magnetoencephalography sources associated with feedback and feedforward contributions in a visual object recognition task. Neuroscience Letters, 2015, 585, 149-154.	1.0	23
544	Semisupervised online learning of hierarchical structures for visual object classification. Multimedia Tools and Applications, 2015, 74, 1805-1822.	2.6	0
545	What you know can influence what you are going to know (especially for older adults). Psychonomic Bulletin and Review, 2015, 22, 141-146.	1.4	16
546	Perception of Absence and Penetration from Expectation. Review of Philosophy and Psychology, 2015, 6, 621-640.	1.0	3
547	Reinstatement of Individual Past Events Revealed by the Similarity of Distributed Activation Patterns during Encoding and Retrieval. Journal of Cognitive Neuroscience, 2015, 27, 679-691.	1.1	139
548	Differential effects of visual uncertainty and contextual guidance on perceptual decisions: Evidence from eye and mouse tracking in visual search. Journal of Vision, 2016, 16, 28.	0.1	20
549	A comparison of form processing involved in the perception of biological and nonbiological movements. Journal of Vision, 2016, 16, 1.	0.1	1
550	Contrast sensitivity revealed by spontaneous eyeblinks: Evidence for a common mechanism of oculomotor inhibition. Journal of Vision, 2016, 16, 1.	0.1	26
551	Boundary extension: Insights from signal detection theory. Journal of Vision, 2016, 16, 7.	0.1	3

#	Article	IF	CITATIONS
552	The Parahippocampal Cortex Mediates Contextual Associative Memory: Evidence from an fMRI Study. BioMed Research International, 2016, 2016, 1-11.	0.9	13
553	The Neuroscience of Social Vision. , 2016, , 139-157.		6
554	Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder. Frontiers in Computational Neuroscience, 2016, 10, 92.	1.2	23
555	Investigating Emotional Top Down Modulation of Ambiguous Faces by Single Pulse TMS on Early Visual Cortices. Frontiers in Neuroscience, 2016, 10, 305.	1.4	1
556	When neutral turns significant: brain dynamics of rapidly formed associations between neutral stimuli and emotional contexts. European Journal of Neuroscience, 2016, 44, 2176-2183.	1.2	26
557	The developmental trajectory of contrast sensitivity in autism spectrum disorder. Autism Research, 2016, 9, 866-878.	2.1	18
558	Video Extrapolation Method Based on Time-Varying Energy Optimization and CIP. IEEE Transactions on Image Processing, 2016, 25, 4103-4115.	6.0	4
559	Models of visual categorization. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 197-213.	1.4	14
560	Prefrontal Cortex Activation Reflects Efficient Exploitation of Higher-order Statistical Structure. Journal of Cognitive Neuroscience, 2016, 28, 1909-1922.	1.1	3
561	Memory colours affect colour appearance. Behavioral and Brain Sciences, 2016, 39, e262.	0.4	8
562	Perception, as you make it. Behavioral and Brain Sciences, 2016, 39, e260.	0.4	8
563	Many important language universals are not reducible to processing or cognition. Behavioral and Brain Sciences, 2016, 39, e86.	0.4	5
564	Natural language processing and the Now-or-Never bottleneck. Behavioral and Brain Sciences, 2016, 39, e74.	0.4	1
565	Convergent evidence for top-down effects from the "predictive brain― Behavioral and Brain Sciences, 2016, 39, e254.	0.4	9
566	Tweaking the concepts of perception and cognition. Behavioral and Brain Sciences, 2016, 39, e232.	0.4	33
567	The distinction between perception and judgment, if there is one, is not clear and intuitive. Behavioral and Brain Sciences, 2016, 39, e249.	0.4	3
568	On the generalizability of the Chunk-and-Pass processing approach: Perspectives from language acquisition and music. Behavioral and Brain Sciences, 2016, 39, e80.	0.4	0
569	Representation of affect in sensory cortex. Behavioral and Brain Sciences, 2016, 39, e252.	0.4	3

#	Article	IF	CITATIONS
570	Seeing and thinking: Foundational issues and empirical horizons. Behavioral and Brain Sciences, 2016, 39, e264.	0.4	13
571	Oh the irony: Perceptual stability is important for action. Behavioral and Brain Sciences, 2016, 39, e239.	0.4	Ο
572	Hallucinations and mental imagery demonstrate top-down effects on visual perception. Behavioral and Brain Sciences, 2016, 39, e248.	0.4	5
573	The folly of boxology. Behavioral and Brain Sciences, 2016, 39, e231.	0.4	1
574	Gaining knowledge mediates changes in perception (without differences in attention): A case for perceptual learning. Behavioral and Brain Sciences, 2016, 39, e240.	0.4	2
575	An action-specific effect on perception that avoids all pitfalls. Behavioral and Brain Sciences, 2016, 39, e261.	0.4	14
576	Attention and memory-driven effects in action studies. Behavioral and Brain Sciences, 2016, 39, e259.	0.4	0
577	How cognition affects perception: Brain activity modelling to unravel top-down dynamics. Behavioral and Brain Sciences, 2016, 39, e238.	0.4	1
578	Combining local and global visual information in context-based neurorobotic navigation. , 2016, , .		3
579	Is Now-or-Never language processing good enough?. Behavioral and Brain Sciences, 2016, 39, e72.	0.4	2
580	Linguistic structure emerges through the interaction of memory constraints and communicative pressures. Behavioral and Brain Sciences, 2016, 39, e82.	0.4	2
581	Squeezing through the Now-or-Never bottleneck: Reconnecting language processing, acquisition, change, and structure. Behavioral and Brain Sciences, 2016, 39, e91.	0.4	3
582	Language acquisition is model-based rather than model-free. Behavioral and Brain Sciences, 2016, 39, e89.	0.4	0
583	How long is now? The multiple timescales of language processing. Behavioral and Brain Sciences, 2016, 39, e77.	0.4	1
584	"Process and perish―or multiple buffers with push-down stacks?. Behavioral and Brain Sciences, 2016, 39, e81.	0.4	1
585	The ideomotor recycling theory for language. Behavioral and Brain Sciences, 2016, 39, e63.	0.4	0
586	Imagining through Sound: An experimental analysis of narrativity in electronic music. Organised Sound, 2016, 21, 179-191.	0.1	2
587	Mechanisms for interaction: Syntax as procedures for online interactive meaning building. Behavioral and Brain Sciences, 2016, 39, e79.	0.4	0

ARTICLE IF CITATIONS # What gets passed in "Chunk-and-Pass―processing? A predictive processing solution to the 588 0.4 0 Now-or-Never bottleneck. Behavioral and Brain Sciences, 2016, 39, e90. Exploring some edges: Chunk-and-Pass processing at the very beginning, across representations, and 589 0.4 on to action. Behavioral and Brain Sciences, 2016, 39, e85. Better late than Now-or-Never: The case of interactive repair phenomena. Behavioral and Brain 590 0.4 0 Sciences, 2016, 39, e76. Neural constraints and flexibility in language processing. Behavioral and Brain Sciences, 2016, 39, e78. 591 0.4 The "proactive―model of learning: Integrative framework for model-free and model-based 592 reinforcement learning utilizing the associative learning-based proactive brain concept.. Behavioral 0.6 15 Neuroscience, 2016, 130, 6-18. Beyond perceptual judgment: Categorization and emotion shape what we see. Behavioral and Brain Sciences, 2016, 39, e253. 0.4 Cognition can affect perception: Restating the evidence of a top-down effect. Behavioral and Brain 594 0.4 2 Sciences, 2016, 39, e250. Crossmodal processing and sensory substitution: Is "seeing―with sound and touch a form of 0.4 perception or cognition?. Behavioral and Brain Sciences, 2016, 39, e241. 596 Expectations in Interaction. Perspectives in Pragmatics, Philosophy and Psychology, 2016, , 493-503. 0.2 3 Biologically-inspired object recognition system for recognizing natural scene categories., 2016, , . Graded Mirror Self-Recognition by Clark's Nutcrackers. Scientific Reports, 2016, 6, 36459. 598 51 1.6 More Than Meets the Eye: Split-Second Social Perception. Trends in Cognitive Sciences, 2016, 20, 599 4.0 134 362-374. How You Use It Matters. Psychological Science, 2016, 27, 606-621. 600 1.8 54 Cumulative semantic interference for associative relations in language production. Cognition, 2016, 1.1 28 152, 20-31. Believing is Seeing: A Perspective on Perceiving Images of Objects on the Shroud of Turin. Archive for 602 0.5 0 the Psychology of Religion, 2016, 38, 232-251. Object representations in visual working memory change according to the task context. Cortex, 2016, 81, 1-13. 1.1 Linking person perception and person knowledge in the human brain. Social Cognitive and Affective 604 1.525 Neuroscience, 2016, 11, 641-651. Contextual modulation of motor resonance during the observation of everyday actions. NeuroImage, 2.1 2016, 134, 74-84.

#	Article	IF	CITATIONS
606	Revisiting the Role of the Fusiform Face Area in Expertise. Journal of Cognitive Neuroscience, 2016, 28, 1345-1357.	1.1	47
607	The Social Context Network Model in Psychiatric and Neurological Diseases. Current Topics in Behavioral Neurosciences, 2016, 30, 379-396.	0.8	58
608	Impaired context processing during irony comprehension in schizotypy: An ERPs study. International Journal of Psychophysiology, 2016, 105, 17-25.	0.5	15
609	A touch with words: Dynamic synergies between manual actions and language. Neuroscience and Biobehavioral Reviews, 2016, 68, 59-95.	2.9	99
610	Modulation of scene consistency and task demand on language-driven eye movements for audio-visual integration. Acta Psychologica, 2016, 171, 1-16.	0.7	7
611	Gist perception in adolescents with and without ASD: Ultra-rapid categorization of meaningful real-life scenes. Research in Autism Spectrum Disorders, 2016, 29-30, 30-47.	0.8	5
612	Functional Subdomains within Scene-Selective Cortex: Parahippocampal Place Area, Retrosplenial Complex, and Occipital Place Area. Journal of Neuroscience, 2016, 36, 10257-10273.	1.7	35
613	Steadyâ€state visual evoked potentials as a research tool in social affective neuroscience. Psychophysiology, 2016, 53, 1763-1775.	1.2	71
614	Structural and functional neural correlates of spatial navigation: a combined voxelâ€based morphometry and functional connectivity study. Brain and Behavior, 2016, 6, e00572.	1.0	29
615	Linking major depression and the neural substrates of associative processing. Cognitive, Affective and Behavioral Neuroscience, 2016, 16, 1017-1026.	1.0	23
616	Top-down and bottom-up factors in threat-related perception and attention in anxiety. Biological Psychology, 2016, 121, 160-172.	1.1	92
617	Unconscious emotion: A cognitive neuroscientific perspective. Neuroscience and Biobehavioral Reviews, 2016, 69, 216-238.	2.9	68
618	Intrusive effects of semantic information on visual selective attention. Attention, Perception, and Psychophysics, 2016, 78, 2066-2078.	0.7	30
619	Memory limitations and chunking are variable and cannot explain language structure. Behavioral and Brain Sciences, 2016, 39, e84.	0.4	1
620	Gist in time: Scene semantics and structure enhance recall of searched objects. Acta Psychologica, 2016, 169, 100-108.	0.7	22
621	Exploiting coarse-to-fine mechanism for fine-grained recognition. , 2016, , .		0
622	Tracking the Time Course of Top-Down Contextual Effects on Motor Responses during Action Comprehension. Journal of Neuroscience, 2016, 36, 11590-11600.	1.7	49
623	Visual Prediction Error Spreads Across Object Features in Human Visual Cortex. Journal of Neuroscience, 2016, 36, 12746-12763.	1.7	22

#	Article	IF	CITATIONS
624	Visual scenes are categorized by function Journal of Experimental Psychology: General, 2016, 145, 82-94.	1.5	60
625	It's all in the anticipation: How perception of threat is enhanced in anxiety Emotion, 2016, 16, 320-327.	1.5	42
626	Functional and Temporal Considerations for Top-Down Influences in Social Perception. Psychological Inquiry, 2016, 27, 352-357.	0.4	7
627	Action valence and affective perception. Behavioral and Brain Sciences, 2016, 39, e243.	0.4	4
628	Gestalt-like representations hijack Chunk-and-Pass processing. Behavioral and Brain Sciences, 2016, 39, e69.	0.4	1
629	Reservoir computing and the Sooner-is-Better bottleneck. Behavioral and Brain Sciences, 2016, 39, e73.	0.4	0
630	Carving nature at its joints or cutting its effective loops? On the dangers of trying to disentangle intertwined mental processes. Behavioral and Brain Sciences, 2016, 39, e244.	0.4	1
631	The myth of pure perception. Behavioral and Brain Sciences, 2016, 39, e235.	0.4	5
632	Realizing the Now-or-Never bottleneck and Chunk-and-Pass processing with Item-Order-Rank working memories and masking field chunking networks. Behavioral and Brain Sciences, 2016, 39, e75.	0.4	0
633	Firestone & Scholl conflate two distinct issues. Behavioral and Brain Sciences, 2016, 39, e255.	0.4	0
634	Task demand not so damning: Improved techniques that mitigate demand in studies that support top-down effects. Behavioral and Brain Sciences, 2016, 39, e230.	0.4	0
635	The Time-Course of Ultrarapid Categorization: The Influence of Scene Congruency and Top-Down Processing. I-Perception, 2016, 7, 204166951667338.	0.8	14
636	The anatomical and physiological properties of the visual cortex argue against cognitive penetration. Behavioral and Brain Sciences, 2016, 39, e245.	0.4	3
637	â€~Proactive' use of cue-context congruence for building reinforcement learning's reward function. BMC Neuroscience, 2016, 17, 70.	0.8	11
638	Studies on cognitively driven attention suggest that late vision is cognitively penetrated, whereas early vision is not. Behavioral and Brain Sciences, 2016, 39, e256.	0.4	2
639	Bottoms up! How top-down pitfalls ensnare speech perception researchers, too. Behavioral and Brain Sciences, 2016, 39, e236.	0.4	3
640	Pro and con: Internal speech and the evolution of complex language. Behavioral and Brain Sciences, 2016, 39, e65.	0.4	0
641	Rapid apprehension of the coherence of action scenes. Psychonomic Bulletin and Review, 2016, 23, 1566-1575.	1.4	23

#	Article	IF	CITATIONS
642	The portion size effect on food intake is robust to contextual size information. Appetite, 2016, 105, 439-448.	1.8	20
643	Perceived egocentric distance sensitivity and invariance across scene-selective cortex. Cortex, 2016, 77, 155-163.	1.1	56
644	Electrophysiological correlates of top-down effects facilitating natural image categorization are disrupted by the attenuation of low spatial frequency information. International Journal of Psychophysiology, 2016, 100, 19-27.	0.5	10
645	Estimations of object frequency are frequently overestimated. Cognition, 2016, 149, 6-10.	1.1	13
646	Husserlian Phenomenology. SpringerBriefs in Philosophy, 2016, , .	0.4	16
647	Thin Slice Impressions: How Advertising Evaluation Depends on Exposure Duration. Journal of Marketing Research, 2016, 53, 563-579.	3.0	23
648	The context-contingent nature of cross-modal activations of the visual cortex. Neurolmage, 2016, 125, 996-1004.	2.1	32
649	The Faces in Radiological Images: Fusiform Face Area Supports Radiological Expertise. Cerebral Cortex, 2016, 26, 1004-1014.	1.6	66
650	Visual information representation and rapid-scene categorization are simultaneous across cortex: An MEG study. NeuroImage, 2016, 134, 295-304.	2.1	19
651	The COGs (context, object, and goals) in multisensory processing. Experimental Brain Research, 2016, 234, 1307-1323.	0.7	51
652	Learning Context on a Humanoid Robot using Incremental Latent Dirichlet Allocation. IEEE Transactions on Cognitive and Developmental Systems, 2016, 8, 42-59.	2.6	16
653	Parahippocampal Cortex Processes the Nonspatial Context of an Event. Cerebral Cortex, 2017, 27, bhw014.	1.6	13
654	Conflict in the kitchen: Contextual modulation of responsiveness to affordances. Consciousness and Cognition, 2016, 40, 141-146.	0.8	22
655	Learning Warps Object Representations in the Ventral Temporal Cortex. Journal of Cognitive Neuroscience, 2016, 28, 1010-1023.	1.1	25
656	Introducing context-dependent and spatially-variant viewing biases in saccadic models. Vision Research, 2016, 121, 72-84.	0.7	53
657	Cortical Integration of Contextual Information across Objects. Journal of Cognitive Neuroscience, 2016, 28, 948-958.	1.1	19
658	The Processing of Attended and Predicted Sounds in Time. Journal of Cognitive Neuroscience, 2016, 28, 158-165.	1.1	15
659	Orbitofrontal and limbic signatures of empathic concern and intentional harm in the behavioral variant frontotemporal dementia. Cortex, 2016, 75, 20-32.	1.1	73

		CITATION RE	PORT	
#	Article		IF	CITATIONS
660	The Neural Mechanisms of Prediction in Visual Search. Cerebral Cortex, 2016, 26, 4327-4	336.	1.6	22
661	Large-scale intrinsic functional network organization along the long axis of the human mo temporal lobe. Brain Structure and Function, 2016, 221, 3237-3258.	edial	1.2	68
662	Default network connectivity decodes brain states with simulated microgravity. Cognitive Neurodynamics, 2016, 10, 113-120.	2	2.3	11
663	Multisensory integration and cross-modal learning in synaesthesia: A unifying model. Neuropsychologia, 2016, 88, 140-150.		0.7	28
664	The Now-or-Never bottleneck: A fundamental constraint on language. Behavioral and Brai 2016, 39, e62.	n Sciences,	0.4	379
665	A context-aware semantic modeling framework for efficient image retrieval. International Machine Learning and Cybernetics, 2017, 8, 1259-1285.	Journal of	2.3	9
666	Predicting criminal incidents on the basis of non-verbal behaviour: The role of experience. Journal, 2017, 30, 703-716.	Security	1.0	3
667	Differentiating Patients with Parkinson's Disease from Normal Controls Using Gray M Cerebellum. Cerebellum, 2017, 16, 151-157.	atter in the	1.4	29
668	Predictions penetrate perception: Converging insights from brain, behaviour and disorder Consciousness and Cognition, 2017, 47, 63-74.		0.8	126
669	What's she doing in the kitchen? Context helps when actions are hard to recognize. I Bulletin and Review, 2017, 24, 503-509.	Psychonomic	1.4	29
670	Disentangling stimulus plausibility and contextual congruency: Electro-physiological evide differential cognitive dynamics. Neuropsychologia, 2017, 96, 150-163.	ence for	0.7	16
671	Understanding natural scenes: Contributions of image statistics. Neuroscience and Biobe Reviews, 2017, 74, 44-57.	havioral	2.9	30
672	Associated Information Increases Subjective Perception of Duration. Perception, 2017, 40	5, 1000-1007.	0.5	8
673	Affective response to architecture – investigating human reaction to spaces with differ Architectural Science Review, 2017, 60, 116-125.	ent geometry.	1.1	68
674	The Hippocampus from Cells to Systems. , 2017, , .			18
675	How Hippocampal Memory Shapes, and Is Shaped by, Attention. , 2017, , 369-403.			47
676	What does semantic tiling of the cortex tell us about semantics?. Neuropsychologia, 201	7, 105, 18-38.	0.7	35
677	Arousal-related adjustments of perceptual biases optimize perception in dynamic environ Human Behaviour, 2017, 1, .	ments. Nature	6.2	67

#	Article	IF	CITATIONS
678	Auditory object perception: A neurobiological model and prospective review. Neuropsychologia, 2017, 105, 223-242.	0.7	29
679	Typical integration of emotion cues from bodies and faces in Autism Spectrum Disorder. Cognition, 2017, 165, 82-87.	1.1	15
680	Perceiving a part and the whole of narrative scenes with interactive processing between character and surroundings. Visual Cognition, 2017, 25, 715-739.	0.9	0
681	Consistent Neural Activity Patterns Represent Personally Familiar People. Journal of Cognitive Neuroscience, 2017, 29, 1583-1594.	1.1	30
682	The probability of object–scene co-occurrence influences object identification processes. Experimental Brain Research, 2017, 235, 2167-2179.	0.7	8
683	Social Vision: Applying a Social-Functional Approach to Face and Expression Perception. Current Directions in Psychological Science, 2017, 26, 243-248.	2.8	34
684	Revealing the mechanisms of human face perception using dynamic apertures. Cognition, 2017, 169, 25-35.	1.1	24
685	Communicative Success in Spatial Dialogue: The Impact of Functional Features and Dialogue Strategies. Language and Speech, 2017, 60, 318-329.	0.6	19
686	Proficient use of low spatial frequencies facilitates face memory but shows protracted maturation throughout adolescence. Acta Psychologica, 2017, 179, 61-67.	0.7	2
687	Two areas for familiar face recognition in the primate brain. Science, 2017, 357, 591-595.	6.0	98
688	Self-construal differences in neural responses to negative social cues. Biological Psychology, 2017, 129, 62-72.	1.1	9
689	The role of spatial frequency information in the decoding of facial expressions of pain: a novel hybrid task. Pain, 2017, 158, 2233-2242.	2.0	9
690	Scene grammar shapes the way we interact with objects, strengthens memories, and speeds search. Scientific Reports, 2017, 7, 16471.	1.6	63
691	Familiar But Unexpected: Effects of Sound Context Statistics on Auditory Responses in the Songbird Forebrain. Journal of Neuroscience, 2017, 37, 12006-12017.	1.7	24
692	How do targets, nontargets, and scene context influence real-world object detection?. Attention, Perception, and Psychophysics, 2017, 79, 2021-2036.	0.7	13
693	Interaction between Scene and Object Processing Revealed by Human fMRI and MEG Decoding. Journal of Neuroscience, 2017, 37, 7700-7710.	1.7	114
694	Neural mechanisms underlying valence inferences to sound: The role of the right angular gyrus. Neuropsychologia, 2017, 102, 144-162.	0.7	6
695	Context learning for threat detection. Cognition and Emotion, 2017, 31, 1525-1542.	1.2	9

#	Article	IF	Citations
696	Two scenes or not two scenes: The effects of stimulus repetition and view-similarity on scene categorization from brief displays. Memory and Cognition, 2017, 45, 49-62.	0.9	3
697	Anticipatory scene representation in preschool children's recall and recognition memory. Developmental Science, 2017, 20, e12444.	1.3	7
698	Of Kith and Kin: Perceptual Enrichment, Expectancy, and Reciprocity in Face Perception. Personality and Social Psychology Review, 2017, 21, 336-360.	3.4	21
699	What versus Where: Investigating how Autobiographical Memory Retrieval Differs when Accessed with Thematic versus Spatial Information. Quarterly Journal of Experimental Psychology, 2017, 70, 1909-1921.	0.6	24
700	Orientation Histogram-Based Center-Surround Interaction: An Integration Approach for Contour Detection. Neural Computation, 2017, 29, 171-193.	1.3	7
701	A review and an approach for object detection in images. International Journal of Computational Vision and Robotics, 2017, 7, 196.	0.2	39
702	Spatial Memory for Context Reasoning in Object Detection. , 2017, , .		115
703	Seeing What is Not There: Learning Context to Determine Where Objects are Missing. , 2017, , .		26
704	Non-parametric spatial context structure learning for autonomous understanding of human environments. , 2017, , .		0
705	Fast on-line kernel density estimation for active object localization. , 2017, , .		5
706	No Evidence of Narrowly Defined Cognitive Penetrability in Unambiguous Vision. Frontiers in Psychology, 2017, 8, 852.	1.1	3
707	The Effect of Consistency on Short-Term Memory for Scenes. Frontiers in Psychology, 2017, 8, 1712.	1.1	0
708	Facial Expressions in Context: Electrophysiological Correlates of the Emotional Congruency of Facial Expressions and Background Scenes. Frontiers in Psychology, 2017, 8, 2175.	1.1	26
709	Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1400.	0.8	122
710	Modes of Effective Connectivity within Cortical Pathways Are Distinguished for Different Categories of Visual Context: An fMRI Study. Frontiers in Behavioral Neuroscience, 2017, 11, 64.	1.0	4
711	Lost in Time and Space: States of High Arousal Disrupt Implicit Acquisition of Spatial and Sequential Context Information. Frontiers in Behavioral Neuroscience, 2017, 11, 206.	1.0	20
712	Heightened Responses of the Parahippocampal and Retrosplenial Cortices during Contextualized Recognition of Congruent Objects. Frontiers in Behavioral Neuroscience, 2017, 11, 232.	1.0	5
713	Commentary: Neural substrates of embodied natural beauty and social endowed beauty: An fMRI study. Frontiers in Human Neuroscience, 2017, 11, 596.	1.0	6

щ		IF	CITATION
# 714	ARTICLE Prototype analysis of different object recognition techniques in image processing. , 2017, , .	IF	CITATIONS
715	Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex. PLoS ONE, 2017, 12, e0189828.	1.1	31
716	Anticipatory smooth pursuit eye movements evoked by probabilistic cues. Journal of Vision, 2017, 17, 13.	0.1	16
717	The role of context on boundary extension. Visual Cognition, 2018, 26, 115-130.	0.9	2
718	Intrinsic Neural Linkage between Primary Visual Area and Default Mode Network in Human Brain: Evidence from Visual Mental Imagery. Neuroscience, 2018, 379, 13-21.	1.1	12
719	Revealing the neural time-course of direct gaze processing via spatial frequency manipulation of faces. Biological Psychology, 2018, 135, 76-83.	1.1	9
722	Revealing Detail along the Visual Hierarchy: Neural Clustering Preserves Acuity from V1 to V4. Neuron, 2018, 98, 417-428.e3.	3.8	68
723	Toward an Integrative Theory of Thalamic Function. Annual Review of Neuroscience, 2018, 41, 163-183.	5.0	117
724	The influence of spatial frequency content on facial expression processing: An ERP study using rapid serial visual presentation. Scientific Reports, 2018, 8, 2383.	1.6	16
725	Beyond the face: how context modulates emotion processing in frontotemporal dementia subtypes. Brain, 2018, 141, 1172-1185.	3.7	67
726	Time Course of Cultural Differences in Spatial Frequency Use for Face Identification. Scientific Reports, 2018, 8, 1816.	1.6	16
727	Dynamic Interactions between Top–Down Expectations and Conscious Awareness. Journal of Neuroscience, 2018, 38, 2318-2327.	1.7	42
728	Hippocampal subfield volume changes in subtypes of attention deficit hyperactivity disorder. Brain Research, 2018, 1685, 1-8.	1.1	41
729	Shades of Awareness on the Mechanisms Underlying the Quality of Conscious Representations: A Commentary to Fazekas and Overgaard (). Cognitive Science, 2018, 42, 2095-2100.	0.8	5
730	The female gaze: Content composition and slot position in personalized banner ads, and how they influence visual attention in online shoppers. Computers in Human Behavior, 2018, 82, 1-15.	5.1	29
731	Evidence for Implicit—But Not Unconscious—Processing of Object-Scene Relations. Psychological Science, 2018, 29, 266-277.	1.8	27
732	Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Review of Medical Devices, 2018, 15, 107-117.	1.4	263
733	Neural Integration of Stimulus History Underlies Prediction for Naturalistically Evolving Sequences. Journal of Neuroscience, 2018, 38, 1541-1557.	1.7	14

#	Article	IF	CITATIONS
734	Transformation from independent to integrative coding of multi-object arrangements in human visual cortex. NeuroImage, 2018, 169, 334-341.	2.1	40
735	Solving the puzzle: The effects of contextual information and feedback on the interpretation of a crime scene. Journal of Investigative Psychology and Offender Profiling, 2018, 15, 109-123.	0.4	3
736	Distributed and opposing effects of incidental learning in the human brain. NeuroImage, 2018, 173, 351-360.	2.1	4
737	Using context from insideâ€out vision for improved activity recognition. IET Computer Vision, 2018, 12, 276-287.	1.3	6
738	Social neuroscience: undoing the schism between neurology and psychiatry. Social Neuroscience, 2018, 13, 1-39.	0.7	41
739	The influence of scene context on parafoveal processing of objects. Quarterly Journal of Experimental Psychology, 2018, 71, 229-240.	0.6	8
740	Does It Matter Who Communicates? The Effect of Source Labels in Nuclear Preâ€Crisis Communication in Televised News. Journal of Contingencies and Crisis Management, 2018, 26, 99-112.	1.6	11
741	The visual influence of ostracism. European Journal of Social Psychology, 2018, 48, O182.	1.5	7
742	Differential Contributions of Default and Dorsal Attention Networks to Remembering Thoughts and External Stimuli From Real-Life Events. Cerebral Cortex, 2018, 28, 4023-4035.	1.6	18
743	Cortical feedback signals generalise across different spatial frequencies of feedforward inputs. NeuroImage, 2018, 180, 280-290.	2.1	31
744	The company objects keep: Linking referents together during cross-situational word learning. Journal of Memory and Language, 2018, 99, 62-73.	1.1	15
745	Making sense of objects lying around: How contextual objects shape brain activity during action observation. NeuroImage, 2018, 167, 429-437.	2.1	16
746	Intuitive physics ability in systemizers relies on differential use of the internalizing system and long-term spatial representations. Neuropsychologia, 2018, 109, 10-18.	0.7	3
747	Attention to distinguishing features in object recognition: An interactive-iterative framework. Cognition, 2018, 170, 228-244.	1.1	1
748	Tracking changes in spatial frequency sensitivity during natural image processing in school age: an event-related potential study. Journal of Experimental Child Psychology, 2018, 166, 664-678.	0.7	3
749	Meaning in learning: Contextual cueing relies on objects' visual features and not on objects' meaning. Memory and Cognition, 2018, 46, 58-67.	0.9	12
751	Scene Grammar in Human and Machine Recognition of Objects and Scenes. , 2018, , .		7
752	Feedback-Prop: Convolutional Neural Network Inference Under Partial Evidence. , 2018, , .		6

ARTICLE IF CITATIONS # Modeling Contextual Modulation of Memory Associations in the Hippocampus. Frontiers in Human 753 1.0 11 Neuroscience, 2018, 12, 442. Neural Mechanisms of Highâ€Level Vision. , 2018, 8, 903-953. 754 755 Context-Aware U-Net for Biomedical Image Segmentation., 2018,,. 12 Individual differences in response precision correlate with adaptation bias. Journal of Vision, 2018, 18, 0.1 Cross-task perceptual learning of object recognition in simulated retinal implant perception. Journal 757 0.1 6 of Vision, 2018, 18, 22. Im2Pano3D: Extrapolating 360° Structure and Semantics Beyond the Field of View., 2018, , . 759 Context Learning Network for Object Detection., 2018,,. 4 Mogu li kognicija i emocije utjecati na vid?. Psihologijske Teme, 2018, 27, 311-338. 0.1 760 761 Looking Beyond a Clever Narrative., 2018,,. 7 Functional Imaging of Visuospatial Attention in Complex and Naturalistic Conditions. Current Topics 0.8 in Behavioral Neurosciences, 2018, 41, 279-302. Predicting eye movement patterns from fMRI responses to natural scenes. Nature Communications, 763 5.8 27 2018, 9, 5159. Neural reactivation in parietal cortex enhances memory for episodically linked information. 764 3.3 Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11084-11089. No evidence from MVPA for different processes underlying the N300 and N400 incongruity effects in 765 0.7 45 object-scene processing. Neuropsychologia, 2018, 120, 9-17. Two visual systems in Molyneux subjects. Phenomenology and the Cognitive Sciences, 2018, 17, 643-679. 1.1 767 The role of scene summary statistics in object recognition. Scientific Reports, 2018, 8, 14666. 1.6 24 Influence of emotional contexts on facial emotion attribution in schizophrenia. Psychiatry Research, 768 2018, 270, 554-559. Reference-point centering and range-adaptation enhance human reinforcement learning at the cost of 769 5.8 54 irrational preferences. Nature Communications, 2018, 9, 4503. 770 Action sharpens sensory representations of expected outcomes. Nature Communications, 2018, 9, 4288. 5.8

	CITATION	LEPUKI	
#	Article	IF	Citations
771	A two-level hierarchical framework of visual short-term memory. Journal of Vision, 2018, 18, 2.	0.1	3
772	Implicit updating of object representation via temporal associations. Cognition, 2018, 181, 127-134.	1.1	5
773	Context as aÂDeterminant of Interpersonal Processes: The Social Context Network Model. SpringerBriefs in Psychology, 2018, , 7-27.	0.1	1
774	Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream. ELife, 2018, 7, .	2.8	145
775	Learning Coexistence Discriminative Features for Multi-Class Object Detection. IEEE Access, 2018, 6, 37676-37684.	2.6	18
776	Representational differences between line drawings and photographs of natural scenes: A dissociation between multi-voxel pattern analysis and repetition suppression. Neuropsychologia, 2018, 117, 513-519.	0.7	4
777	How Do Expectations Shape Perception?. Trends in Cognitive Sciences, 2018, 22, 764-779.	4.0	577
778	How Does Social Context Influence Our Brain and Behavior?. Frontiers for Young Minds, 0, 6, .	0.8	8
779	Prior object-knowledge sharpens properties of early visual feature-detectors. Scientific Reports, 2018, 8, 10853.	1.6	55
780	Typical visual-field locations enhance processing in object-selective channels of human occipital cortex. Journal of Neurophysiology, 2018, 120, 848-853.	0.9	23
781	Typical visual-field locations facilitate access to awareness for everyday objects. Cognition, 2018, 180, 118-122.	1.1	11
782	Evidence of Rapid Modulation by Social Information of Subjective, Physiological, and Neural Responses to Emotional Expressions. Frontiers in Behavioral Neuroscience, 2018, 11, 231.	1.0	6
783	Rolling Motion Along an Incline: Visual Sensitivity to the Relation Between Acceleration and Slope. Frontiers in Neuroscience, 2018, 12, 406.	1.4	18
784	Effect of contextual knowledge on spatial layout extrapolation. Attention, Perception, and Psychophysics, 2018, 80, 1932-1945.	0.7	1
785	Spatial representations of the viewer's surroundings. Scientific Reports, 2018, 8, 7171.	1.6	9
786	Typical retinotopic locations impact the time course of object coding. NeuroImage, 2018, 176, 372-379.	2.1	19
787	Representation of multiple objects in macaque category-selective areas. Nature Communications, 2018, 9, 1774.	5.8	33
788	The neural correlates of trustworthiness evaluations of faces and brands: Implications for behavioral and consumer neuroscience. European Journal of Neuroscience, 2018, 48, 2322-2332.	1.2	2

#	Article	IF	CITATIONS
789	Observation of an action with a congruent contextual background facilitates corticospinal excitability: A combined TMS and eye-tracking experiment. Neuropsychologia, 2018, 119, 157-164.	0.7	21
790	Parametric and nonparametric context models: A unified approach to scene parsing. Pattern Recognition, 2018, 84, 165-181.	5.1	9
791	Are incongruent objects harder to identify? The functional significance of the N300 component. Neuropsychologia, 2018, 117, 222-232.	0.7	38
792	Learning of goal-relevant and -irrelevant complex visual sequences in human V1. NeuroImage, 2018, 179, 215-224.	2.1	10
793	Cognitive penetration of early vision in face perception. Consciousness and Cognition, 2018, 63, 254-266.	0.8	2
794	Neural Integration in Body Perception. Journal of Cognitive Neuroscience, 2018, 30, 1442-1451.	1.1	22
795	Memory for dangers past: threat contexts produce more consistent learning than do non-threatening contexts. Cognition and Emotion, 2019, 33, 1031-1040.	1.2	6
796	Perceptual Prediction: Rapidly Making Sense ofÂaÂNoisy World. Current Biology, 2019, 29, R751-R753.	1.8	20
797	CAD-Net: A Context-Aware Detection Network for Objects in Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 10015-10024.	2.7	299
798	Spatial layout extrapolation in aging: underlying cognitive and executive mechanisms. Visual Cognition, 2019, 27, 668-686.	0.9	1
799	Finding the "odd one out― Memory color effects and the logic of appearance. Cognition, 2019, 191, 103934.	1.1	22
800	Evolution: The Flowering of Land Plant Evolution. Current Biology, 2019, 29, R753-R756.	1.8	12
801	Parsing rooms: the role of the PPA and RSC in perceiving object relations and spatial layout. Brain Structure and Function, 2019, 224, 2505-2524.	1.2	18
802	Infants use knowledge of emotions to augment face perception: Evidence of top-down modulation of perception early in life. Cognition, 2019, 193, 104019.	1.1	9
803	Understanding associative vs. abstract pictorial relations: An ERP study. Neuropsychologia, 2019, 133, 107127.	0.7	5
804	Exploring the role of expectations and stimulus relevance on stimulus-specific neural representations and conscious report. Neuroscience of Consciousness, 2019, 2019, niz011.	1.4	11
805	Premembering Experience: A Hierarchy of Time-Scales for Proactive Attention. Neuron, 2019, 104, 132-146.	3.8	84
806	Scene Representations Conveyed by Cortical Feedback to Early Visual Cortex Can Be Described by Line Drawings. Journal of Neuroscience, 2019, 39, 9410-9423.	1.7	18

#	Article	IF	CITATIONS
808	Scenes Modulate Object Processing Before Interacting With Memory Templates. Psychological Science, 2019, 30, 1497-1509.	1.8	7
809	Sound Induces Change in Orientation Preference of V1 Neurons: Audio-Visual Cross-Influence. Neuroscience, 2019, 404, 48-61.	1.1	13
810	A mosaic of Chu spaces and Channel Theory II: applications to object identification and mereological complexity. Journal of Experimental and Theoretical Artificial Intelligence, 2019, 31, 237-265.	1.8	12
811	A Context-Aware Capsule Network for Multi-label Classification. Lecture Notes in Computer Science, 2019, , 546-554.	1.0	6
812	Stop stereotyping. Attention, Perception, and Psychophysics, 2019, 81, 1228-1235.	0.7	1
813	The Role of Low-Spatial Frequency Components in the Processing of Deceptive Faces: A Study Using Artificial Face Models. Frontiers in Psychology, 2019, 10, 1468.	1.1	6
814	Multimodal Language Processing in Human Communication. Trends in Cognitive Sciences, 2019, 23, 639-652.	4.0	177
815	Scene Perception in the Human Brain. Annual Review of Vision Science, 2019, 5, 373-397.	2.3	173
816	Representation of human spatial navigation responding to input spatial information and output navigational strategies: An ALE meta-analysis. Neuroscience and Biobehavioral Reviews, 2019, 103, 60-72.	2.9	16
817	Neural dynamics of visual and semantic object processing. Psychology of Learning and Motivation - Advances in Research and Theory, 2019, , 71-95.	0.5	9
818	Ultra-rapid object categorization in real-world scenes with top-down manipulations. PLoS ONE, 2019, 14, e0214444.	1.1	8
819	Sustained effects of corrupted feedback on perceptual inference. Scientific Reports, 2019, 9, 5537.	1.6	4
820	Echo-Imaging Exploits an Environmental High-Pass Filter to Access Spatial Information with a Non-Spatial Sensor. IScience, 2019, 14, 335-344.	1.9	3
821	Toward an integrative science of social vision in intergroup bias. Neuroscience and Biobehavioral Reviews, 2019, 102, 318-326.	2.9	23
822	Predictably confirmatory: The influence of stereotypes during decisional processing. Quarterly Journal of Experimental Psychology, 2019, 72, 2437-2451.	0.6	9
823	Semantic processing during language production: an update of the swinging lexical network. Language, Cognition and Neuroscience, 2019, 34, 1176-1192.	0.7	35
824	Humans can decipher adversarial images. Nature Communications, 2019, 10, 1334.	5.8	50
825	Attention promotes the neural encoding of prediction errors. PLoS Biology, 2019, 17, e2006812.	2.6	61

ARTICLE IF CITATIONS # Does picture background matter? People's evaluation of pigs in different farm settings. PLoS ONE, 2019, 826 1.1 14 14, e0211256. Familiarity revealed by involuntary eye movements on the fringe of awareness. Scientific Reports, 2019, 1.6 9, 3029. 828 Information integration for motor generation. Current Opinion in Physiology, 2019, 8, 116-120. 0.9 2 Imaging object-scene relations processing in visible and invisible natural scenes. Scientific Reports, 2019, 9, 4567. Machine vision benefits from human contextual expectations. Scientific Reports, 2019, 9, 2112. 830 1.6 9 Learning Propagation for Arbitrarily-Structured Data., 2019, , . 832 Learning to Compose Dynamic Tree Structures for Visual Contexts., 2019,,. 251 Tell Me Where I Am: Object-Level Scene Context Prediction., 2019,,. 10 An investigation of far and near transfer in a gamified visual learning paradigm. PLoS ONE, 2019, 14, 834 1.1 2 e0227000. The influence of sequential predictions on scene-gist recognition. Journal of Vision, 2019, 19, 14. 0.1 Color improves edge classification in human vision. PLoS Computational Biology, 2019, 15, e1007398. 837 1.5 11 Category selectivity for animals and man-made objects: Beyond low- and mid-level visual features. 0.1 Journal óf Vision, 2019, 19, 22. Domain-Specific Diaschisis: Lesions to Parietal Action Areas Modulate Neural Responses to Tools in 839 1.6 31 the Ventral Stream. Cerebral Cortex, 2019, 29, 3168-3181. Neuroaesthetics and art's diversity and universality. Wiley Interdisciplinary Reviews: Cognitive 840 1.4 Unfolding meaning in context: The dynamics of conceptual similarity. Cognition, 2019, 183, 19-43. 841 1.1 5 Attention scales according to inferred real-world object size. Nature Human Behaviour, 2019, 3, 40-47. 842 24 Top-down modulation of shape and roughness discrimination in active touch by covert attention. 843 0.7 6 Attention, Perception, and Psychophysics, 2019, 81, 462-475. The importance of recurrent top-down synaptic connections for the anticipation of dynamic 844 3.3 emotions. Neural Networks, 2019, 109, 19-30.

#	Article	IF	Citations
845	An epistemic argument for liberalism about perceptual content. Philosophical Psychology, 2019, 32, 143-159.	0.5	0
846	Change detection and schematic processing in music. Psychology of Music, 2019, 47, 173-193.	0.9	3
847	Neuroimaging of person perception: A social-visual interface. Neuroscience Letters, 2019, 693, 40-43.	1.0	10
848	Against a "mindless―account of perceptual expertise. Phenomenology and the Cognitive Sciences, 2019, 18, 509-531.	1.1	1
849	Signposts in the Fog: Objects Facilitate Scene Representations in Left Scene-selective Cortex. Journal of Cognitive Neuroscience, 2019, 31, 390-400.	1.1	21
851	Small Object Detection in Unmanned Aerial Vehicle Images Using Feature Fusion and Scaling-Based Single Shot Detector With Spatial Context Analysis. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 1758-1770.	5.6	124
852	The Acquisition of Person Knowledge. Annual Review of Psychology, 2020, 71, 613-634.	9.9	10
853	Resonance transmission of multiple independent signals in cortical networks. Neurocomputing, 2020, 377, 130-144.	3.5	6
854	Conflict and Territoriality: An Archaeological Study of Ancestral Northern Coast Salish-Tla'amin Defensiveness in the Salish Sea Region of Southwestern British Columbia. Journal of Island and Coastal Archaeology, 2020, 15, 179-203.	0.6	2
856	Age-related differences during visual search: the role of contextual expectations and cognitive control mechanisms. Aging, Neuropsychology, and Cognition, 2020, 27, 489-516.	0.7	17
857	Deep Learning for Generic Object Detection: A Survey. International Journal of Computer Vision, 2020, 128, 261-318.	10.9	1,565
858	Age-related differences in the neural correlates of vivid remembering. NeuroImage, 2020, 206, 116336.	2.1	35
859	Hippocampal and Prefrontal Theta-Band Mechanisms Underpin Implicit Spatial Context Learning. Journal of Neuroscience, 2020, 40, 191-202.	1.7	22
860	Dynamic interactive theory as a domain-general account of social perception. Advances in Experimental Social Psychology, 2020, 61, 237-287.	2.0	29
861	A new conception of visual aesthetic sensitivity. British Journal of Psychology, 2020, 111, 630-658.	1.2	43
862	Predictive Impact of Contextual Objects during Action Observation: Evidence from Functional Magnetic Resonance Imaging. Journal of Cognitive Neuroscience, 2020, 32, 326-337.	1.1	10
863	Vision at a glance: The role of attention in processing object-to-object categorical relations. Attention, Perception, and Psychophysics, 2020, 82, 671-688.	0.7	7
864	Age effects on the neural processing of object-context associations in briefly flashed natural scenes. Neuropsychologia, 2020, 136, 107264.	0.7	9

#	Article	IF	CITATIONS
865	Developmental duration as an organizer of the evolving mammalian brain: scaling, adaptations, and exceptions. Evolution & Development, 2020, 22, 181-195.	1.1	8
866	Exploring Structural Knowledge for Automated Visual Inspection of Moving Trains. IEEE Transactions on Cybernetics, 2022, 52, 1233-1246.	6.2	6
867	Prior Experience Alters the Appearance of Blurry Object Borders. Scientific Reports, 2020, 10, 5821.	1.6	3
868	The influence of scene and object orientation on the scene consistency effect. Behavioural Brain Research, 2020, 394, 112812.	1.2	16
869	What Does Dorsal Cortex Contribute to Perception?. Open Mind, 2020, 4, 40-56.	0.6	24
870	Biologically Inspired Visual System Architecture for Object Recognition in Autonomous Systems. Algorithms, 2020, 13, 167.	1.2	6
871	Autistic Traits Differently Account for Context-Based Predictions of Physical and Social Events. Brain Sciences, 2020, 10, 418.	1.1	12
872	(Not so) Great Expectations: Listening to Foreign-Accented Speech Reduces the Brain's Anticipatory Processes. Frontiers in Psychology, 2020, 11, 2143.	1.1	9
873	Contextual and Spatial Associations Between Objects Interactively Modulate Visual Processing. Cerebral Cortex, 2020, 30, 6391-6404.	1.6	18
874	GAR: Graph Assisted Reasoning for Object Detection. , 2020, , .		12
875	Naltrexone modulates contextual processing in depression. Neuropsychopharmacology, 2020, 45, 2070-2078.	2.8	3
876	Getting to Know Someone: Familiarity, Person Recognition, and Identification in the Human Brain. Journal of Cognitive Neuroscience, 2020, 32, 2205-2225.	1.1	38
877	High-Frequency Component Helps Explain the Generalization of Convolutional Neural Networks. , 2020, , .		210
878	A Neural Network Model With Gap Junction for Topological Detection. Frontiers in Computational Neuroscience, 2020, 14, 571982.	1.2	0
879	A review of interactions between peripheral and foveal vision. Journal of Vision, 2020, 20, 2.	0.1	61
880	What Experts Appreciate in Patterns: Art Expertise Modulates Preference for Asymmetric and Face-Like Patterns. Symmetry, 2020, 12, 707.	1.1	11
881	B or 13? Unconscious Top-Down Contextual Effects at the Categorical but Not the Lexical Level. Psychological Science, 2020, 31, 663-677.	1.8	11
882	Using eye-tracking to parse object recognition: Priming activates primarily a parts-based but also a late-emerging features-based representation. Attention, Perception, and Psychophysics, 2020, 82, 3096-3111.	0.7	5

#	Article	IF	CITATIONS
883	Rapid contextualization of fragmented scene information in the human visual system. Neurolmage, 2020, 219, 117045.	2.1	12
884	Real-world structure facilitates the rapid emergence of scene category information in visual brain signals. Journal of Neurophysiology, 2020, 124, 145-151.	0.9	16
885	Episodic mindreading: Mentalizing guided by scene construction of imagined and remembered events. Cognition, 2020, 203, 104325.	1.1	13
886	Rethinking Space: A Review of Perception, Attention, and Memory in Scene Processing. Annual Review of Vision Science, 2020, 6, 563-586.	2.3	18
887	Examining the Neural Basis of Congruent and Incongruent Configural Contexts during Associative Retrieval. Journal of Cognitive Neuroscience, 2020, 32, 1796-1812.	1.1	3
888	Real-world expectations and their affective value modulate object processing. NeuroImage, 2020, 213, 116736.	2.1	8
889	Object responses are highly malleable, rather than invariant, with changes in object appearance. Scientific Reports, 2020, 10, 4654.	1.6	11
890	Left Prefrontal Cortex Supports the Recognition of Meaningful Patterns in Ambiguous Stimuli. Frontiers in Neuroscience, 2020, 14, 152.	1.4	5
891	Forms of prediction in the nervousÂsystem. Nature Reviews Neuroscience, 2020, 21, 231-242.	4.9	82
892	Automatic Attention Capture by Threatening, But Not by Semantically Incongruent Natural Scene Images. Cerebral Cortex, 2020, 30, 4158-4168.	1.6	11
893	Medial temporal lobe regions mediate complex visual discriminations for both objects and scenes: A processâ€based view. Hippocampus, 2020, 30, 879-891.	0.9	11
894	When context is and isn't helpful: A corpus study of naturalistic speech. Psychonomic Bulletin and Review, 2020, 27, 640-676.	1.4	9
895	The impact of top-down factors on threat perception biases in health and anxiety. , 2020, , 215-241.		3
896	Electrophysiological correlates of gist perception: a steady-state visually evoked potentials study. Experimental Brain Research, 2020, 238, 1399-1410.	0.7	5
897	Effects of Spatial Frequency Filtering Choices on the Perception of Filtered Images. Vision (Switzerland), 2020, 4, 29.	0.5	17
898	A biological foundation for spatial–numerical associations: the brain's asymmetric frequency tuning. Annals of the New York Academy of Sciences, 2020, 1477, 44-53.	1.8	22
899	Cortical Thickness and Natural Scene Recognition in the Child's Brain. Brain Sciences, 2020, 10, 329.	1,1	0
900	Ventral stream hierarchy underlying perceptual organization in adolescents with autism. NeuroImage: Clinical, 2020, 25, 102197.	1.4	4

#	Article	IF	CITATIONS
901	Does valence influence perceptual bias towards incongruence during binocular rivalry?. Cognitive Processing, 2020, 21, 239-251.	0.7	4
902	Emergent features break the rules of crowding. Scientific Reports, 2020, 10, 406.	1.6	12
903	Towards the interpretation of complex visual hallucinations in terms of self-reorganization of neural networks. Neuroscience Research, 2020, 156, 147-158.	1.0	2
904	Neural Signatures of Learning Novel Object–Scene Associations. Journal of Cognitive Neuroscience, 2020, 32, 783-803.	1.1	2
905	Word contexts enhance the neural representation of individual letters in early visual cortex. Nature Communications, 2020, 11, 321.	5.8	31
906	Social Semantics: The role of conceptual knowledge and cognitive control in a neurobiological model of the social brain. Neuroscience and Biobehavioral Reviews, 2020, 112, 28-38.	2.9	50
907	Combined expectancies: the role of expectations for the coding of salient bottom-up signals. Experimental Brain Research, 2020, 238, 381-393.	0.7	1
908	Looking to recognise: the pre-eminence of semantic over sensorimotor processing in human tool use. Scientific Reports, 2020, 10, 6157.	1.6	24
909	The Time Course of Facial Expression Recognition Using Spatial Frequency Information: Comparing Pain and Core Emotions. Journal of Pain, 2021, 22, 196-208.	0.7	4
910	Enumerating the forest before the trees: The time courses of estimation-based and individuation-based numerical processing. Attention, Perception, and Psychophysics, 2021, 83, 1215-1229.	0.7	5
911	Time will tell: Object categorization and emotional engagement during processing of degraded natural scenes. Psychophysiology, 2021, 58, e13704.	1.2	5
912	An expanded model for perceptual visual single object recognition system using expectation priming following neuroscientific evidence. Cognitive Systems Research, 2021, 66, 150-161.	1.9	3
913	Investigating holistic face processing within and outside of face-responsive brain regions. NeuroImage, 2021, 226, 117565.	2.1	4
914	A Hybrid Deep Learning Based Framework for Component Defect Detection of Moving Trains. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 3268-3280.	4.7	12
915	Stereotypes bias face perception via orbitofrontal–fusiform cortical interaction. Social Cognitive and Affective Neuroscience, 2021, 16, 302-314.	1.5	5
916	Robot learning through observation via coarse-to-fine grained video summarization. Applied Soft Computing Journal, 2021, 99, 106913.	4.1	3
917	What women want? How contextual product displays influence women's online shopping behavior. Journal of Business Research, 2021, 123, 625-641.	5.8	28
918	Gaussianization of Diffusion MRI Data Using Spatially Adaptive Filtering. Medical Image Analysis, 2021, 68, 101828.	7.0	7

#	Article	IF	CITATIONS
919	Event Representations and Predictive Processing: The Role of the Midline Default Network Core. Topics in Cognitive Science, 2021, 13, 164-186.	1.1	70
920	Transformer-Encoder Detector Module: Using Context to Improve Robustness to Adversarial Attacks on Object Detection. , 2021, , .		4
921	Perceptual decisions are biased toward relevant prior choices. Scientific Reports, 2021, 11, 648.	1.6	18
922	Task-Irrelevant Semantic Properties of Objects Impinge on Sensory Representations within the Early Visual Cortex. Cerebral Cortex Communications, 2021, 2, tgab049.	0.7	2
923	Get Your Guidance Going: Investigating the Activation of Spatial Priors for Efficient Search in Virtual Reality. Brain Sciences, 2021, 11, 44.	1.1	13
924	Goalâ€directed interaction of stimulus and task demand in the parahippocampal region. Hippocampus, 2021, 31, 717-736.	0.9	14
925	Object-level Scene Context Prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, PP, 1-1.	9.7	0
926	Proactive by Default. , 2021, , 467-486.		0
927	Bounding Boxes Are All We Need: Street View Image Classification via Context Encoding of Detected Buildings. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	2.7	4
928	Towards Contextual Learning in Few-shot Object Classification. , 2021, , .		3
929	Windows of Integration Hypothesis Revisited. Frontiers in Human Neuroscience, 2020, 14, 617187.	1.0	9
930	Conceptualising Augmented Reality: From virtual divides to mediated dynamics. Convergence, 2021, 27, 830-846.	1.6	10
932	Visuoperceptive Impairments in Severe Alcohol Use Disorder: A Critical Review of Behavioral Studies. Neuropsychology Review, 2021, 31, 361-384.	2.5	6
933	You won't believe what this guy is doing with the potato: The ObjAct stimulus-set depicting human actions on congruent and incongruent objects. Behavior Research Methods, 2021, 53, 1895-1909.	2.3	4
936	From Objects to Unified Minds. Current Directions in Psychological Science, 2021, 30, 129-137.	2.8	11
937	The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors, 2021, 21, 2193.	2.1	46
938	Why Are Acquired Search-Guiding Context Memories Resistant to Updating?. Frontiers in Psychology, 2021, 12, 650245.	1.1	7
939	Skilled Guidance. Review of Philosophy and Psychology, 2021, 12, 641-667.	1.0	2

		15	C
#	ARTICLE	IF	CITATIONS
940	No exploitation of temporal sequence context during visual search. Royal Society Open Science, 2021, 8, 201565.	1.1	1
941	Mind Meets Machine: Towards a Cognitive Science of Human–Machine Interactions. Trends in Cognitive Sciences, 2021, 25, 200-212.	4.0	52
942	Indirect modulation of human visual memory. Scientific Reports, 2021, 11, 7274.	1.6	0
943	Unmet expectations delay sensory processes. Vision Research, 2021, 181, 1-9.	0.7	9
945	Realize your surroundings: Exploiting context information for small object detection. Neurocomputing, 2021, 433, 287-299.	3.5	41
947	The meaning and structure of scenes. Vision Research, 2021, 181, 10-20.	0.7	48
948	Functional Context Affects Scene Processing. Journal of Cognitive Neuroscience, 2021, 33, 933-945.	1.1	4
949	Attentional bias towards interpersonal aggression in depression – an eye movement study. Scandinavian Journal of Psychology, 2021, 62, 639-647.	0.8	3
950	How context changes the neural basis of perception and language. IScience, 2021, 24, 102392.	1.9	19
951	Effects of age on goal-dependent modulation of episodic memory retrieval. Neurobiology of Aging, 2021, 102, 73-88.	1.5	7
952	The transverse occipital sulcus and intraparietal sulcus show neural selectivity to object-scene size relationships. Communications Biology, 2021, 4, 768.	2.0	6
953	Frontal activation as a key for deciphering context congruity and valence during visual perception: An electrical neuroimaging study. Brain and Cognition, 2021, 150, 105711.	0.8	1
954	Semantically predictable input streams impede gaze-orientation to surprising locations. Cortex, 2021, 139, 222-239.	1.1	1
955	Context augmentation for object detection. Applied Intelligence, 2022, 52, 2621-2633.	3.3	7
959	"l Spy with my Little Eye, Something that is a Face…― A Brain Network for Illusory Face Detection. Cerebral Cortex, 2021, 32, 137-157.	1.6	6
960	Object representations in the human brain reflect the co-occurrence statistics of vision and language. Nature Communications, 2021, 12, 4081.	5.8	41
961	Flexible time course of spatial frequency use during scene categorization. Scientific Reports, 2021, 11, 14079.	1.6	3
964	Context-guided feature enhancement network for automatic check-out. Neural Computing and Applications, 2022, 34, 593-606.	3.2	2

# 966	ARTICLE Causal neural mechanisms of context-based object recognition. ELife, 2021, 10, .	IF 2.8	Citations
967	Meta-analytic evidence of differential prefrontal and early sensory cortex activity during non-social sensory perception in autism. Neuroscience and Biobehavioral Reviews, 2021, 127, 146-157.	2.9	17
968	Temporal prediction elicits rhythmic preactivation of relevant sensory cortices. European Journal of Neuroscience, 2022, 55, 3324-3339.	1.2	7
969	Reinstatement of item-specific contextual details during retrieval supports recombination-related false memories. NeuroImage, 2021, 236, 118033.	2.1	16
970	The nature of perception and emotion in aesthetic appreciation: A response to Makin's challenge to empirical aesthetics Psychology of Aesthetics, Creativity, and the Arts, 2021, 15, 470-483.	1.0	17
971	Parallel hippocampal-parietal circuits for self- and goal-oriented processing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
973	To Grasp the World at a Glance: The Role of Attention in Visual and Semantic Associative Processing. Journal of Imaging, 2021, 7, 191.	1.7	3
974	VCANet: Vanishing-Point-Guided Context-Aware Network for Small Road Object Detection. Automotive Innovation, 2021, 4, 400-412.	3.1	23
977	Preliminary Evaluation of the Clinical Benefit of a Novel Visual Rehabilitation Program in Patients Implanted with Trifocal Diffractive Intraocular Lenses: A Blinded Randomized Placebo-Controlled Clinical Trial. Brain Sciences, 2021, 11, 1181.	1.1	1
978	Coherent natural scene structure facilitates the extraction of task-relevant object information in visual cortex. NeuroImage, 2021, 240, 118365.	2.1	4
979	"Scene―from inside: The representation of Observer's space in high-level visual cortex. Neuropsychologia, 2021, 161, 108010.	0.7	1
980	The Effects of Review Presentation Formats on Consumers' Purchase Intention. Journal of Global Information Management, 2021, 29, 1-20.	1.4	6
981	Information redundancy across spatial scales modulates early visual cortical processing. NeuroImage, 2021, 244, 118613.	2.1	6
982	Predictive processing models and affective neuroscience. Neuroscience and Biobehavioral Reviews, 2021, 131, 211-228.	2.9	11
983	Traitements sémantiques et émotionnels des scènes visuelles complexesÂ: une synthèse critique de l'état actuel des connaissances. Annee Psychologique, 2021, Vol. 121, 101-139.	0.2	0
984	Stimulus-driven updating of long-term context memories in visual search. Psychological Research, 2022, 86, 252-267.	1.0	1
985	Human Visual Neurobiology. , 2021, , 3935-3944.		0
987	Early-Stage Visual Processing Deficits in Schizophrenia. , 2009, , 331-352.		2

#	Article	IF	CITATIONS
988	\$\$mathcal {ALC({mathbf {F}}})\$\$: A New Description Logic for Spatial Reasoning in Images. Lecture Notes in Computer Science, 2015, , 370-384.	1.0	5
989	The Use of Temporal Information in Food Image Analysis. Lecture Notes in Computer Science, 2015, 9281, 317-325.	1.0	9
990	Attention and Neurodynamical Correlates of Natural Vision. , 2009, , 67-82.		3
991	The Role of Neural Context in Large-Scale Neurocognitive Network Operations. Understanding Complex Systems, 2007, , 403-419.	0.3	35
992	Large-Scale Network Dynamics in Neurocognitive Function. , 2008, , 183-204.		5
993	Context Driven Focus of Attention for Object Detection. Lecture Notes in Computer Science, 2007, , 216-233.	1.0	9
995	Predictions and Incongruency in Object Recognition: A Cognitive Neuroscience Perspective. Studies in Computational Intelligence, 2012, , 139-153.	0.7	6
996	Biologically Motivated Local Contextual Modulation Improves Low-Level Visual Feature Representations. Lecture Notes in Computer Science, 2012, , 79-88.	1.0	1
997	Large-Scale Network Dynamics in Neurocognitive Function. , 2007, , 337-358.		2
998	Deep Learning for Generic Object Detection: A Survey. , 2020, 128, 261.		1
999	Transsaccadic recognition in scene exploration. , 2007, , 165-191.		3
1000	Search superiority: Goal-directed attentional allocation creates more reliable incidental identity and location memory than explicit encoding in naturalistic virtual environments. Cognition, 2020, 196, 104147.	1.1	35
1001	Age-related changes in the neural dynamics of bottom-up and top-down processing during visual object recognition: an electrophysiological investigation. Neurobiology of Aging, 2020, 94, 38-49.	1.5	6
1003	An ERP Investigation of Object-Scene Incongruity. Journal of Psychophysiology, 2018, 32, 20-29.	0.3	6
1004	Conceptual coherence affects phonological activation of context objects during object naming Journal of Experimental Psychology: Learning Memory and Cognition, 2008, 34, 587-601.	0.7	26
1005	Action at its place: Contextual settings enhance action recognition in 4- to 8-year-old children Developmental Psychology, 2017, 53, 662-670.	1.2	12
1006	Context facilitates performance on a classic cross-cultural emotion perception task Emotion, 2019, 19, 1292-1313.	1.5	24

#	Article	IF	CITATIONS
1008	Predicted action consequences are perceptually facilitated before cancellation Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 1073-1083.	0.7	36
1009	Global ensemble texture representations are critical to rapid scene perception Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 1160-1176.	0.7	54
1010	Scene priming provides clues about target appearance that improve attentional guidance during categorical search Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 220-230.	0.7	5
1011	Affordance matching predictively shapes the perceptual representation of others' ongoing actions Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 847-859.	0.7	14
1012	Perceptual effects of fast and automatic visual ensemble statistics from faces in individuals with typical development and autism spectrum conditions. Scientific Reports, 2020, 10, 2169.	1.6	8
1013	Reciprocal semantic predictions drive categorization of scene contexts and objects even when they are separate. Scientific Reports, 2020, 10, 8447.	1.6	10
1020	Memory at Play: Examining Relations Between Episodic and Semantic Memory in a Children's Museum. Child Development, 2021, 92, e270-e284.	1.7	6
1021	Impact of ageâ€related macular degeneration on object searches in realistic panoramic scenes. Australasian journal of optometry, The, 2018, 101, 372-379.	0.6	7
1022	ConVeS. , 2009, , .		1
1024	Quantifying the role of context in visual object recognition. Journal of Vision, 2010, 9, 800-800.	0.1	2
1025	Examining the effects of passive and active strategies on behavior during hybrid visual memory search: evidence from eye tracking. Cognitive Research: Principles and Implications, 2019, 4, 39.	1.1	11
1026	Object segmentation controls image reconstruction from natural scenes. PLoS Biology, 2017, 15, e1002611.	2.6	31
1027	Directed Cortical Information Flow during Human Object Recognition: Analyzing Induced EEG Gamma-Band Responses in Brain's Source Space. PLoS ONE, 2007, 2, e684.	1.1	127
1028	The Neural Basis of Object-Context Relationships on Aesthetic Judgment. PLoS ONE, 2008, 3, e3754.	1.1	49
1029	The Time-Course of Visual Categorizations: You Spot the Animal Faster than the Bird. PLoS ONE, 2009, 4, e5927.	1.1	121
1030	Animal Detection Precedes Access to Scene Category. PLoS ONE, 2012, 7, e51471.	1.1	43
1031	Is Attention Based on Spatial Contextual Memory Preferentially Guided by Low Spatial Frequency Signals?. PLoS ONE, 2013, 8, e65601.	1.1	9
1032	Do Simultaneously Viewed Objects Influence Scene Recognition Individually or as Groups? Two Perceptual Studies. PLoS ONE, 2014, 9, e102819.	1.1	5

#	Article	IF	CITATIONS
1033	Distributed Patterns of Event-Related Potentials Predict Subsequent Ratings of Abstract Stimulus Attributes. PLoS ONE, 2014, 9, e109070.	1.1	23
1034	The Effects of Prediction on the Perception for Own-Race and Other-Race Faces. PLoS ONE, 2014, 9, e114011.	1.1	21
1035	Stochastic Process Underlying Emergent Recognition of Visual Objects Hidden in Degraded Images. PLoS ONE, 2014, 9, e115658.	1.1	14
1036	Reappraising Abstract Paintings after Exposure to Background Information. PLoS ONE, 2015, 10, e0124159.	1.1	7
1037	Expectation Suppression in Early Visual Cortex Depends on Task Set. PLoS ONE, 2015, 10, e0131172.	1.1	34
1038	Towards a Dynamic Exploration of Vision, Cognition and Emotion in Alcohol-Use Disorders. Current Neuropharmacology, 2019, 17, 492-506.	1.4	10
1040	The functional role of cue-driven feature-based feedback in object recognition. , 2018, , .		2
1041	Context-Aware Superpixel and Bilateral Entropy—Image Coherence Induces Less Entropy. Entropy, 2020, 22, 20.	1.1	2
1042	Scene Consistency Effect and Its Mechanisms*. Progress in Biochemistry and Biophysics, 2011, 38, 694-701.	0.3	3
1043	Contrast sensitivity function of sine-wave gratings in children with acute malnutrition Psychology and Neuroscience, 2009, 2, 11-15.	0.5	5
1045	The Study of Job Stress in Occupational Therapist. Journal of the Ergonomics Society of Korea, 2007, 26, 1-9.	0.1	11
1046	Object Localization with Global and Local Context Kernels. , 2009, , .		28
1047	Get the Picture? Goodness of Image Organization Contributes to Image Memorability. Journal of Cognition, 2019, 2, 22.	1.0	9
1048	Neural Systems for Visual Scene Recognition. , 2014, , 105-134.		33
1049	Temporal structure in associative retrieval. ELife, 2015, 4, .	2.8	56
1050	Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval. ELife, 2015, 4, .	2.8	117
1051	Cortical network architecture for context processing in primate brain. ELife, 2015, 4, .	2.8	8
1052	Detecting and representing predictable structure during auditory scene analysis. ELife, 2016, 5, .	2.8	92

#	Article	IF	CITATIONS
1053	The neurons that mistook a hat for a face. ELife, 2020, 9, .	2.8	14
1054	SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network. IEEE Transactions on Image Processing, 2021, 30, 8686-8701.	6.0	17
1056	Thinking probabilistically in the study of intonational speech prosody. Wiley Interdisciplinary Reviews: Cognitive Science, 2021, , e1579.	1.4	2
1057	Trustworthy Multimedia Analysis. , 2021, , .		1
1058	Searching for the Unknown: How Your Surroundings Help You Find Things. Frontiers for Young Minds, 0, 9, .	0.8	0
1060	CORTICAL OBJECT SEGREGATION AND CATEGORIZATION BY MULTI-SCALE LINE AND EDGE CODING. , 2006, , .		0
1061	Scene Interpretation: Unified Modeling of Visual Context by Particle-Based Belief Propagation in Hierarchical Graphical Model. Lecture Notes in Computer Science, 2006, , 963-972.	1.0	2
1062	Invariant Multi-scale Object Categorisation and Recognition. Lecture Notes in Computer Science, 2007, , 459-466.	1.0	1
1063	Attention et perception de scènes visuelles. Annee Psychologique, 2007, 107, 113.	0.2	1
1065	A CORTICAL FRAMEWORK FOR SCENE CATEGORISATION. , 2011, , .		1
1066	OPTICAL FLOW BY MULTI-SCALE ANNOTATED KEYPOINTS - A Biological Approach. , 2011, , .		2
1068	Dissociations in Limbic Lobe and Sub-lobar Contributions to Memory Encoding and Retrieval of Social Statistical Information. Lecture Notes in Computer Science, 2011, , 64-75.	1.0	0
1069	Learning Behavioural Context. , 2011, , 233-249.		1
1070	A Biologically Inspired Model for Occluded Patterns. Lecture Notes in Computer Science, 2011, , 88-96.	1.0	2
1072	Art Compositions Elicit Distributed Activation in the Human Brain. , 2011, , 337-351.		3
1073	An Abstract Deep Network for Image Classification. Lecture Notes in Computer Science, 2012, , 156-169.	1.0	2
1075	Early malnutrition decreases contrast sensitivity to circular concentric gratings Psychology and Neuroscience, 2012, 5, 3-9.	0.5	1
1076	Model-Based Scene Interpretation by Multilayered Context Information. , 2012, , 2310-2312.		0

# 1077	ARTICLE Comparing Visual Feature Coding for Learning Disjoint Camera Dependencies. , 2012, , .	IF	CITATIONS 3
1078	Interpreting adjectival passives: Evidence for the activation of contrasting states. , 2012, , 187-206.		1
1079	Computer Vision: Visual Extent of an Object. IOSR Journal of Computer Engineering, 2013, 14, 22-27.	0.1	0
1080	Attention-Guided Organized Perception and Learning of Object Categories Based on Probabilistic Latent Variable Models. Journal of Intelligent Learning Systems and Applications, 2013, 05, 123-133.	0.4	0
1081	Object Categorization in Context Based on Probabilistic Learning of Classification Tree with Boosted Features and Co-occurrence Structure. Lecture Notes in Computer Science, 2013, , 416-426.	1.0	1
1082	Differential Connectivity Within the Parahippocampal Place Area. Journal of Vision, 2013, 13, 1096-1096.	0.1	2
1083	Learning Probabilistic Semantic Network of Object-Oriented Action and Activity. Lecture Notes in Computer Science, 2014, , 1-12.	1.0	1
1084	Face and Object Recognition Using Biological Features and Few Views. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2014, , 58-77.	0.5	0
1085	SALIENT NATURAL SCENE ATTRACTS BOTH YOUNGER AND OLDER ADULTS' ATTENTION. Psychologia, 2014, 5 153-163.	57 _{0.3}	0
1086	Special Issues No.3 : Measurement Technique for Ergonomics, Section 2 : Measurements of Human Response Effected by the Ambient Environment (3). Ningen Kogaku = the Japanese Journal of Ergonomics, 2015, 51, 86-95.	0.0	1
1088	Image Holistic Scene Understanding Based on Global Contextual Features and Bayesian Topic Model. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9, 247-270.	0.2	0
1094	Predicting Eye Movements from Deep Neural Network Activity Decoded from fMRI Responses to Natural Scenes. SSRN Electronic Journal, 0, , .	0.4	0
1095	æfå¢fä¿jæīå⁻¹æ¨j糊èj¨æfè⁻†å^«çš"å½±å"åŠå¶ä½œç"¨æœºå^¶. Advances in Psychological Science, 2018,	266,21961	-1968.
1106	Target Evaluation of Remote Sensing Image Based on Scene Context Guidance. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 425-436.	0.2	0
1107	Executive Control Guided by Context in Colombian Ex-Combatants. , 2019, , 215-238.		0
1113	Influence of artificially generated interocular blur difference on fusion stability under vergence stress. Journal of Eye Movement Research, 2019, 12, .	0.5	1
1114	Object Detection Based on Feature Scale Fusion and Feature Scale Enhancement. , 2019, , .		0
1116	Prehistoric art as a part of the neurophysiological capacities of seeing. Examples from prehistoric rock art and portable art. World Archaeology, 2020, 52, 223-241.	0.5	1

	CITATION RE	FORT	
#	Article	IF	CITATIONS
1120	Our need for associative coherence. Humanities and Social Sciences Communications, 2020, 7, .	1.3	1
1122	Semantic scene-object consistency modulates N300/400 EEG components, but does not automatically facilitate object representations. Cerebral Cortex, 2022, 32, 3553-3567.	1.6	6
1123	Faster Convergence in Deep-Predictive-Coding Networks to Learn Deeper Representations. IEEE Transactions on Neural Networks and Learning Systems, 2021, PP, 1-15.	7.2	2
1124	Human Visual Neurobiology. , 2020, , 1-10.		0
1126	Unsupervised Natural Language Inference via Decoupled Multimodal Contrastive Learning. , 2020, , .		10
1130	The role of contextual materials in object recognition. Scientific Reports, 2021, 11, 21988.	1.6	7
1131	Neuroarchitecture Assessment: An Overview and Bibliometric Analysis. European Journal of Investigation in Health, Psychology and Education, 2021, 11, 1362-1387.	1.1	5
1132	An Editorial Overview. , 2007, , 1-10.		0
1133	Türkiye'deki Bisiklet Kullanıcä±larının Trafikte Görünürlükleri ve Renk DeÄŸiÅŸkeninin Bu Ba İncelenmesi. Trafik Ve Ulaşım Araştırmaları Dergisi, 0, , .	ÄŸlamda 0.3	0
1138	Scene-Aware Context Reasoning for Unsupervised Abnormal Event Detection in Videos. , 2020, , .		38
1140	EXPRESS: Age-related differences when searching in a real environment: The use of semantic contextual guidance and incidental object encoding. Quarterly Journal of Experimental Psychology, 2021, , 174702182110648.	0.6	2
1142	Chapitre 1. L'attention visuelle globale/locale. , 2020, , 12-47.		0
1143	The Ingredients of Scenes that Affect Object Search and Perception. , 2022, , 1-32.		6
1144	Influence of scene-based expectation on facial expression perception: The moderating effect of cognitive load. Biological Psychology, 2022, 168, 108247.	1.1	2
1145	An individualized and adaptive game-based therapy for cerebral visual impairment: Design, development, and evaluation. International Journal of Child-Computer Interaction, 2022, 31, 100437.	2.5	8
1146	The forest, the trees, or both? Hierarchy and interactions between gist and object processing during perception of real-world scenes. Cognition, 2022, 221, 104983.	1.1	12
1147	Scene Context Impairs Perception of Semantically Congruent Objects. Psychological Science, 2022, 33, 299-313.	1.8	14
1148	Spatial and Temporal Context Jointly Modulate the Sensory Response within the Ventral Visual Stream. Journal of Cognitive Neuroscience, 2022, 34, 332-347.	1.1	6

#	Article	IF	CITATIONS
1149	Brain-inspired models for visual object recognition: an overview. Artificial Intelligence Review, 2022, 55, 5263-5311.	9.7	8
1150	That sounds healthy! Audio and visual frequency differences in brand sound logos modify the perception of food healthfulness. Food Quality and Preference, 2022, 99, 104544.	2.3	9
1151	Preparatory attention incorporates contextual expectations. Current Biology, 2022, 32, 687-692.e6.	1.8	16
1152	Context Matters: Recovering Human Semantic Structure from Machine Learning Analysis of Largeâ€Scale Text Corpora. Cognitive Science, 2022, 46, e13085.	0.8	6
1154	An adaptive perspective on visual working memory distortions Journal of Experimental Psychology: General, 2022, 151, 2300-2323.	1.5	21
1155	A bio-inspired contour detection model using multiple cues inhibition in primary visual cortex. Multimedia Tools and Applications, 2022, 81, 11027-11048.	2.6	0
1156	Is there magnocellular facilitation of early neural processes underlying visual word recognition? Evidence from masked repetition priming with ERPs. Neuropsychologia, 2022, 170, 108230.	0.7	3
1157	Perception of semantic relations in scenes: A registered report study of attention hold. Consciousness and Cognition, 2022, 100, 103315.	0.8	2
1158	Face perception: computational insights from phylogeny. Trends in Cognitive Sciences, 2022, 26, 350-363.	4.0	5
1159	Seeking motivation and reward: Roles of dopamine, hippocampus, and supramammillo-septal pathway. Progress in Neurobiology, 2022, 212, 102252.	2.8	11
1160	Contour-guided saliency detection with long-range interactions. Neurocomputing, 2022, 488, 345-358.	3.5	1
1161	Biocomposites: A review of materials and perception. Materials Today Communications, 2022, 31, 103308.	0.9	16
1162	Broad attention uncovers benefits of stimulus uniformity in visual crowding. Scientific Reports, 2021, 11, 23976.	1.6	5
1164	Visual context processing and its development in gamers and nonâ€gamers. Developmental Science, 2023, 26, .	1.3	2
1165	Visual expertise modulates baseline brain activity: a preliminary resting-state fMRI study using expertise model of radiologists. BMC Neuroscience, 2022, 23, 24.	0.8	3
1166	Knowledge-augmented face perception: Prospects for the Bayesian brain-framework to align AI and human vision. Consciousness and Cognition, 2022, 101, 103301.	0.8	7
1214	Updating implicit contextual priors with explicit learning for the prediction of social and physical events. Brain and Cognition, 2022, 160, 105876.	0.8	1
1215	Familiarity mediates apes' attentional biases toward human faces. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212599.	1.2	6

#	Apticie	IF	CITATIONS
#	ARTICLE The interaction of clothing design factors: how to attract consumers' visual attention and enhance	IF 1.5	CITATIONS 8
1210	emotional experience. Journal of Fashion Marketing and Management, 2023, 27, 220-240.	1.5	0
1217	Spatial frequency processing and its modulation by emotional content in severe alcohol use disorder. Psychopharmacology, 2022, , 1.	1.5	Ο
1218	Creativity and change of context: The influence of object-context (in)congruency on cognitive flexibility. Thinking Skills and Creativity, 2022, 45, 101044.	1.9	2
1219	Is Attention Based on Spatial Contextual Memory Preferentially Guided by Low Spatial Frequency Signals?. SSRN Electronic Journal, 0, , .	0.4	0
1221	Context effects on object recognition in real-world environments: A study protocol. Wellcome Open Research, 0, 7, 165.	0.9	0
1222	How much can we differentiate at a brief glance: revealing the truer limit in conscious contents through the massive report paradigm (MRP). Royal Society Open Science, 2022, 9, .	1.1	5
1223	Projection: a mechanism for human-like reasoning in Artificial Intelligence. Journal of Experimental and Theoretical Artificial Intelligence, 2023, 35, 1269-1293.	1.8	2
1224	Social-affective features drive human representations of observed actions. ELife, 0, 11, .	2.8	23
1225	Not all is forgotten: Children's associative matrices for features of a word learning episode. Developmental Science, 2023, 26, .	1.3	1
1226	Twoâ€stage partial imageâ€ŧext clustering (TPITâ€C). IET Computer Vision, 0, , .	1.3	0
1227	Grounding Context in Embodied Cognitive Robotics. Frontiers in Neurorobotics, 0, 16, .	1.6	2
1228	Contextual Expectations Shape Cortical Reinstatement of Sensory Representations. Journal of Neuroscience, 2022, 42, 5956-5965.	1.7	8
1229	The influence of eWOM information structures on consumers' purchase intentions. Electronic Commerce Research, 0, , .	3.0	8
1230	How associative thinking influences scene perception. Consciousness and Cognition, 2022, 103, 103377.	0.8	0
1231	Human peripheral blur is optimal for object recognition. Vision Research, 2022, 200, 108083.	0.7	5
1232	Modeling Eye Movements During Decision Making: A Review. Psychometrika, 2023, 88, 697-729.	1.2	12
1233	An individualized functional magnetic resonance imaging protocol to assess semantic congruency effects on episodic memory in an aging multilingual population. Frontiers in Aging Neuroscience, 0, 14,	1.7	1
1234	An assessment of the acceptance and aesthetics of UAVs and helicopters through an experiment and a survey. Technology in Society, 2022, 71, 102096.	4.8	6

#	Article	IF	CITATIONS
1235	Auxiliary Scene-Context Information Provided by Anchor Objects Guides Attention and Locomotion in Natural Search Behavior. Psychological Science, 2022, 33, 1463-1476.	1.8	12
1236	Following Other People's Footsteps: A Contextual-Attraction Effect Induced by Biological Motion. Psychological Science, 2022, 33, 1522-1531.	1.8	3
1237	A dynamic 1/f noise protocol to assess visual attention without biasing perceptual processing. Behavior Research Methods, 2023, 55, 2583-2594.	2.3	3
1239	Perceptual bias contextualized in visually ambiguous stimuli. Cognition, 2023, 230, 105284.	1.1	1
1240	Pareto Refocusing for Drone-View Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33, 1320-1334.	5.6	12
1241	Real-Time Object Detection and Recognition Using Fixed-Wing LALE VTOL UAV. IEEE Sensors Journal, 2022, 22, 20738-20747.	2.4	11
1242	Learning Semantic Associations for Mirror Detection. , 2022, , .		4
1243	LAMB: A novel algorithm of label collaboration based multi-label learning. Intelligent Data Analysis, 2022, 26, 1229-1245.	0.4	0
1244	Perceptual decision-making in autism as assessed by "spot the difference―visual cognition tasks. Scientific Reports, 2022, 12, .	1.6	0
1246	Context matters during pick-and-place in VR: Impact on search and transport phases. Frontiers in Psychology, 0, 13, .	1.1	1
1247	What You See Is What You Hear: Sounds Alter the Contents of Visual Perception. Psychological Science, 2022, 33, 2109-2122.	1.8	3
1248	Neural response and representation: Facial expressions in scenes. Psychophysiology, 0, , .	1.2	1
1249	Statistical learning of distractor co-occurrences facilitates visual search. Journal of Vision, 2022, 22, 2.	0.1	2
1250	Perceptual Functioning. Current Topics in Behavioral Neurosciences, 2022, , .	0.8	0
1251	Comparing Musicians and Non-musiciansâ \in M Expectations in Music and Vision. , 2022, , .		0
1253	How universal is preference for visual curvature? A systematic review and metaâ€analysis. Annals of the New York Academy of Sciences, 2022, 1518, 151-165.	1.8	7
1255	Advances in deep learning-based image recognition of product packaging. Image and Vision Computing, 2022, 128, 104571.	2.7	5
1256	EXPERIENCE WITH THE CIRCULATION PATH AS A DETERMINANT FACTOR IN EVACUATION EXIT SELECTION. Journal of Asian Architecture and Building Engineering, 0, , .	1.2	0

	CITATION	ation Report	
#	Article	IF	CITATIONS
1257	Sound experts' perspectives on astronomy sonification projects. Nature Astronomy, 2022, 6, 1249-1255.	4.2	6
1259	Enhanced shuffle attention network based on visual working mechanism for high-resolution remote sensing image classification. Geocarto International, 2024, 37, 18731-18766.	1.7	1
1261	Concurrent contextual and time-distant mnemonic information co-exist as feedback in the human visual cortex. NeuroImage, 2023, 265, 119778.	2.1	2
1262	Updating perceptual expectations as certainty diminishes. Cognition, 2023, 232, 105356.	1.1	1
1263	Hierarchical organization of objects in scenes is reflected in mental representations of objects. Scientific Reports, 2022, 12, .	1.6	1
1264	Context reconsidered: Complex signal ensembles, relational meaning, and population thinking in psychological science American Psychologist, 2022, 77, 894-920.	3.8	22
1265	Perceiving Emotions in (and Through) Social Interactions. Cognitio Revista De Filosofia, 2022, 23, .	0.2	0
1266	The impact of context on pattern separation for objects among younger and older apolipoprotein ϵ4 carriers and noncarriers. Journal of the International Neuropsychological Society, 0, , 1-11.	1.2	1
1267	Context effects on object recognition in real-world environments: A study protocol. Wellcome Open Research, 0, 7, 165.	0.9	0
1270	The best game in town: The reemergence of the language-of-thought hypothesis across the cognitive sciences. Behavioral and Brain Sciences, 2023, 46, .	0.4	17
1271	Cancelling cancellation? Sensorimotor control, agency, and prediction. Neuroscience and Biobehavioral Reviews, 2023, 145, 105012.	2.9	9
1272	Global Filter: Augmenting Images to Support Seeing the "Big Picture―for People with Local Interference. ACM Transactions on Computer-Human Interaction, 2023, 30, 1-28.	4.6	1
1273	Altered functional connectivity: A possible reason for reduced performance during visual cognition involving scene incongruence and negative affect. IBRO Neuroscience Reports, 2022, 13, 533-542.	0.7	0
1274	Distraction by deviant sounds is modulated by the environmental context. Scientific Reports, 2022, 12, .	1.6	1
1275	Active visual search in naturalistic environments reflects individual differences in classic visual search performance. Scientific Reports, 2023, 13, .	1.6	4
1276	Interactionally Embedded Gestalt Principles of Multimodal Human Communication. Perspectives on Psychological Science, 2023, 18, 1136-1159.	5.2	5
1277	Continual task learning in natural and artificial agents. Trends in Neurosciences, 2023, 46, 199-210.	4.2	5
1278	A generative adversarial model of intrusive imagery in the human brain. , 2023, 2, .		4

		ATION REPORT	
#	ARTICLE "Left and right prefrontal routes to action comprehension― Cortex, 2023, 163, 1-13.	IF 1.1	Citations
1280	accelent and right prenonital routes to action comprehensionales contex, 2023, 103, 1-13.	1.1	0
1281	Infants use contextual memory to attend and learn in naturalistic scenes. Infancy, 2023, 28, 634-649.	0.9	1
1283	Exploring the Distinctiveness of Early Visual Processing in Human and Illusory Faces: An ERP Study of Spatial Frequency Effects. SSRN Electronic Journal, 0, , .	0.4	0
1284	The effect of subliminal priming on team trust: The mediating role of perceived trustworthiness. Frontiers in Psychology, 0, 14, .	1.1	0
1285	Illusory object recognition is either perceptual or cognitive in origin depending on decision confidence. PLoS Biology, 2023, 21, e3002009.	2.6	4
1286	Visual Representations: Insights from Neural Decoding. Annual Review of Vision Science, 2023, 9, .	2.3	3
1288	Rethinking symbolic and visual context in Referring Expression Generation. Frontiers in Artificial Intelligence, 0, 6, .	2.0	0
1289	Auditory scene context facilitates visual recognition of objects in consistent visual scenes. Attention, Perception, and Psychophysics, 0, , .	0.7	0
1290	Subjective consistency increases trust. Scientific Reports, 2023, 13, .	1.6	0
1292	Disentangling diagnostic object properties for human scene categorization. Scientific Reports, 2023, 13, .	1.6	3
1293	Gazed Pottery: an Archaeometric-Cognitive Approach to Material Culture Visuality. Journal of Archaeological Science, 2023, 154, 105770.	1.2	2
1294	Visual Attention Quality Research for Social Media Applications: A Case Study on Photo Sharing Applications. International Journal of Human-Computer Interaction, 0, , 1-14.	3.3	2
1295	Stubborn Predictions in Primary Visual Cortex. Journal of Cognitive Neuroscience, 2023, 35, 1133-1143	3. 1.1	6
1296	Seeing the forest or the tree depends on personality: Evidence from process communication model during global/local visual search task. PLoS ONE, 2023, 18, e0284596.	1.1	0
1307	Contextually-Rich Human Affect Perception Using Multimodal Scene Information. , 2023, , .		0
1312	TF-IDF based Scene-Object Relations Correlate With Visual Attention. , 2023, , .		0
1315	CueCAn: Cue-driven Contextual Attention for Identifying Missing Traffic Signs on Unconstrained Roads. , 2023, , .		0
1323	Testing cognitive theories with multivariate pattern analysis of neuroimaging data. Nature Human Behaviour, 2023, 7, 1430-1441.	6.2	6

#	Article	IF	CITATIONS
1332	Affordances, the Social Environment, and the Notion of Field: State of the Debate and Methodological Insights. Studies in Brain and Mind, 2023, , 277-305.	0.5	0
1336	Self-Learning Ontology for Natural Hazards. , 2023, , .		0
1339	Predictive processing of scenes and objects. , 2024, 3, 13-26.		1
1340	Progressive Visual Content Understanding Network for Image Emotion Classification. , 2023, , .		0
1344	Visual ScanPath Transformer: Guiding Computers to See the World. , 2023, , .		0
1348	The Hierarchy of Visual Attention in Natural Scenes. , 2024, , 57-84.		ο