3,4â€Methylenedioxymethamphetamine increases inte in rat brain: studies on the relationship with acute hype

Journal of Neurochemistry 89, 1445-1453 DOI: 10.1111/j.1471-4159.2004.02443.x

Citation Report

#	Article	IF	CITATIONS
1	A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. European Journal of Pharmacology, 2004, 500, 3-13.	3.5	170
2	Serotonin neurotoxins — past and present. Neurotoxicity Research, 2004, 6, 589-614.	2.7	41
4	A comparative study on the acute and long-term effects of MDMA and 3,4-dihydroxymethamphetamine (HHMA) on brain monoamine levels after i.p. or striatal administration in mice. British Journal of Pharmacology, 2005, 144, 231-241.	5.4	58
5	Cyclooxygenase-2 Is an Obligatory Factor in Methamphetamine-Induced Neurotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 870-876.	2.5	54
6	3,4-Methylenedioxymethamphetamine increases pro-interleukin-1β production and caspase-1 protease activity in frontal cortex, but not in hypothalamus, of Dark Agouti rats: Role of interleukin-1β in neurotoxicity. Neuroscience, 2005, 135, 1095-1105.	2.3	21
7	MDMAâ€induced neurotoxicity: longâ€term effects on 5â€HT biosynthesis and the influence of ambient temperature. British Journal of Pharmacology, 2006, 148, 778-785.	5.4	48
8	Dopamine Quinones Activate Microglia and Induce a Neurotoxic Gene Expression Profile: Relationship to Methamphetamine-Induced Nerve Ending Damage. Annals of the New York Academy of Sciences, 2006, 1074, 31-41.	3.8	97
9	Binge ethanol administration enhances the MDMA-induced long-term 5-HT neurotoxicity in rat brain. Psychopharmacology, 2006, 189, 459-470.	3.1	39
10	Protective effects of minocycline on 3,4-methylenedioxymethamphetamine-induced neurotoxicity in serotonergic and dopaminergic neurons of mouse brain. European Journal of Pharmacology, 2006, 544, 1-9.	3.5	62
11	Damage of serotonergic axons and immunolocalization of Hsp27, Hsp72, and Hsp90 molecular chaperones after a single dose of MDMA administration in Dark Agouti rat: Temporal, spatial, and cellular patterns. Journal of Comparative Neurology, 2006, 497, 251-269.	1.6	38
12	Loss of Serotonin Transporter Protein after MDMA and Other Ring-Substituted Amphetamines. Neuropsychopharmacology, 2006, 31, 2639-2651.	5.4	77
13	Effects of amphetamine and cocaine on the development of acute experimental allergic encephalomyelitis in Lewis rats. Human and Experimental Toxicology, 2007, 26, 637-643.	2.2	7
15	The effect of amphetamine analogs on cleaved microtubule-associated protein-tau formation in the rat brain. Neuroscience, 2007, 144, 223-231.	2.3	25
16	Evidence for a role of Hsp70 in the neuroprotection induced by heat shock pre-treatment against 3,4-methylenedioxymethamphetamine toxicity in rat brain. Journal of Neurochemistry, 2007, 101, 1272-1283.	3.9	17
17	The Role of Oxidative Stress, Metabolic Compromise, and Inflammation in Neuronal Injury Produced by Amphetamine-Related Drugs of Abuse. Journal of NeuroImmune Pharmacology, 2008, 3, 203-217.	4.1	139
18	Role of nonsynaptic communication in regulating the immune response. Neurochemistry International, 2008, 52, 52-59.	3.8	16
19	Memantine protects against amphetamine derivatives-induced neurotoxic damage in rodents. Neuropharmacology, 2008, 54, 1254-1263.	4.1	49
20	Neuropeptide Y protects retinal neural cells against cell death induced by ecstasy. Neuroscience, 2008, 152, 97-105.	2.3	39

CITATION REPORT

#	Article	IF	CITATIONS
21	Methamphetamine Causes Microglial Activation in the Brains of Human Abusers. Journal of Neuroscience, 2008, 28, 5756-5761.	3.6	332
22	Microarray Analysis of Differentially Expressed Genes in the Brains of Tubby Mice. Korean Journal of Physiology and Pharmacology, 2009, 13, 91.	1.2	9
23	Characterization of Phenytoin, Carbamazepine, Vinpocetine and Clorgyline Simultaneous Effects on Sodium Channels and Catecholamine Metabolism in Rat Striatal Nerve Endings. Neurochemical Research, 2009, 34, 470-479.	3.3	5
24	Molecular and Cellular Mechanisms of Ecstasy-Induced Neurotoxicity: An Overview. Molecular Neurobiology, 2009, 39, 210-271.	4.0	251
25	A Study on the Mechanisms by Which Minocycline Protects Against MDMA (†Ecstasy')-Induced Neurotoxicity of 5-HT Cortical Neurons. Neurotoxicity Research, 2010, 18, 187-199.	2.7	36
26	Methylenedioxymethamphetamine (†Ecstasy')â€induced immunosuppression: a cause for concern?. British Journal of Pharmacology, 2010, 161, 17-32.	5.4	37
27	Evidence that MDMA (â€~ecstasy') increases cannabinoid CB2 receptor expression in microglial cells: role in the neuroinflammatory response in rat brain. Journal of Neurochemistry, 2010, 113, 67-78.	3.9	38
28	Amphetamine toxicities. Annals of the New York Academy of Sciences, 2010, 1187, 101-121.	3.8	232
29	Low ambient temperature reveals distinct mechanisms for MDMA-induced serotonergic toxicity and astroglial Hsp27 heat shock response in rat brain. Neurochemistry International, 2011, 59, 695-705.	3.8	5
30	Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA. Journal of Neuroinflammation, 2011, 8, 165.	7.2	7
31	Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat. Psychopharmacology, 2011, 213, 377-391.	3.1	21
32	Neuroimmune Pharmacology from a Neuroscience Perspective. Journal of NeuroImmune Pharmacology, 2011, 6, 10-19.	4.1	14
33	Changes in interleukin-1 signal modulators induced by 3,4-methylenedioxymethamphetamine (MDMA): regulation by CB2 receptors and implications for neurotoxicity. Journal of Neuroinflammation, 2011, 8, 53.	7.2	23
34	Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity. ILAR Journal, 2011, 52, 352-365.	1.8	15
35	The Effects of Psychostimulant Drugs on Blood Brain Barrier Function and Neuroinflammation. Frontiers in Pharmacology, 2012, 3, 121.	3.5	146
36	Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-11² mRNA expression in the hypothalamus. European Journal of Pharmacology, 2012, 691, 103-109.	3.5	17
37	MDMA produces a delayed and sustained increase in the extracellular concentration of glutamate in the rat hippocampus. Neuropharmacology, 2012, 63, 1022-1027.	4.1	31
38	Pharmacokinetics and pharmacodynamics of 3,4-methylenedioxymethamphetamine (MDMA): interindividual differences due to polymorphisms and drug–drug interactions. Critical Reviews in Toxicology, 2012, 42, 854-876.	3.9	41

		CITATION REPORT	
#	Article	IF	CITATIONS
39	Implications of central immune signaling caused by drugs of abuse: Mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. , 2012, 134, 219-245.		173
40	Antagonism of Adenosine A1 or A2A Receptors Amplifies the Effects of MDMA on Glial Activation in the Mouse Brain: Relevance to Caffeine–MDMA Interactions. Journal of Caffeine Research, 2014, 4, 41-47.	0.9	2
41	Sexâ€dependent longâ€ŧerm effects of adolescent exposure to <scp>THC</scp> and/or <scp>MDMA</scp> on neuroinflammation and serotoninergic and cannabinoid systems in rats. British Journal of Pharmacology, 2014, 171, 1435-1447.	5.4	44
42	3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier integrity through a mechanism involving P2X7 receptors. International Journal of Neuropsychopharmacology, 2014, 17, 1243-1255.	2.1	21
43	Effects of MDMA on the Human Nervous System. , 2014, , 475-497.		7
44	Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sciences, 2014, 97, 37-44.	4.3	167
45	MDMA administration during adolescence exacerbates MPTP-induced cognitive impairment and neuroinflammation in the hippocampus and prefrontal cortex. Psychopharmacology, 2014, 231, 4007-4018.	3.1	40
46	3,4-Methylenedioxymethamphetamine enhances kainic acid convulsive susceptibility. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 54, 231-242.	4.8	9
47	Interleukin-1β (187–207)-Induced Hyperthermia is Inhibited by Interleukin-1β (193–195) in Rats. Neurochemical Research, 2014, 39, 254-258.	3.3	0
48	Psychostimulants and brain dysfunction: A review of the relevant neurotoxic effects. Neuropharmacology, 2014, 87, 135-149.	4.1	59
49	Current preclinical studies on neuroinflammation and changes in blood–brain barrier integrity by MDMA and methamphetamine. Neuropharmacology, 2014, 87, 125-134.	4.1	36
50	Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone. Toxicology and Applied Pharmacology, 2015, 286, 27-35.	2.8	49
51	MDMA and Glutamate. , 2016, , 406-414.		0
52	Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain. NeuroToxicology, 2016, 56, 127-138.	3.0	15
53	3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) produces edema due to BBB disruption induced by MMP-9 activation in rat hippocampus. Neuropharmacology, 2017, 118, 157-166.	4.1	23
54	Human Metabolome Changes after a Single Dose of 3,4-Methylenedioxymethamphetamine (MDMA) with Special Focus on Steroid Metabolism and Inflammation Processes. Journal of Proteome Research, 2018, 17, 2900-2907.	3.7	19
55	Minocycline attenuates 3,4-methylenedioxymethamphetamine-induced hyperthermia in the rat brain. European Journal of Pharmacology, 2019, 858, 172495.	3.5	2
56	Concurrent Inhibition of Vesicular Monoamine Transporter 2 Does Not Protect Against 3,4-Methylenedioxymethamphetamine (Ecstasy) Induced Neurotoxicity. Toxicological Sciences, 2019, 170, 157-166.	3.1	2

#	Article	IF	CITATIONS
57	Increased kynurenine concentration attenuates serotonergic neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA) in rats through activation of aryl hydrocarbon receptor. Neuropharmacology, 2021, 187, 108490.	4.1	5
58	THC Prevents MDMA Neurotoxicity in Mice. PLoS ONE, 2010, 5, e9143.	2.5	48
59	Reduced Contextual Discrimination following Alcohol Consumption or MDMA Administration in Mice. PLoS ONE, 2015, 10, e0142978.	2.5	11
60	Attenuating Glial Activation with Minocycline Reduces the Hyperthermic Response to 3, 4-Methylenedioxymethamphetamine (MDMA) In the Rat. The Open Addiction Journal, 2011, 4, 4-5.	0.5	1
61	Neurotoxicity of MDMA: Main effects and mechanisms. Experimental Neurology, 2022, 347, 113894.	4.1	28
62	Neurotoxicity in Psychostimulant and Opiate Addiction. , 2014, , 455-512.		2
63	Longitudinal Examination of Learning and Memory in Rats Following Adolescent Exposure to 3,4-Methylenedioxymethamphetamine or 5-Methoxy-N,N-Diisopropyltryptamine. Journal of Behavioral and Brain Science, 2017, 07, 371-398.	0.5	1
64	Neurotoxicity in Psychostimulant and Opiate Addiction. , 2022, , 1-49.		0
65	Effects of Repeated Administration of 3,4-methylenedioxymethamphetamine (MDMA) on Avoidance Memory and Cell Density in Rats' Hippocampus. Basic and Clinical Neuroscience, 2013, 4, 57-63.	0.6	3
66	Laminin as a Biomarker of Blood–Brain Barrier Disruption under Neuroinflammation: A Systematic Review. International Journal of Molecular Sciences, 2022, 23, 6788.	4.1	8
68	Role of Microglia in Psychostimulant Addiction. Current Neuropharmacology, 2023, 21, 235-259.	2.9	1
69	Neurotoxicity in Psychostimulant and Opiate Addiction. , 2022, , 1273-1322.		0