CITATION REPORT List of articles citing

The physical properties of star-forming galaxies in the low-redshift Universe

DOI: 10.1111/j.1365-2966.2004.07881.x Monthly Notices of the Royal Astronomical Society, 2004, 351, 1151-1179.

Source: https://exaly.com/paper-pdf/36770613/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
2337	Spectroscopic study of blue compact galaxies. 2004 , 425, 417-427		27
2336	The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey. 2004 , 613, 898-913		2426
2335	The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2004 , 353, 713-731	4.3	947
2334	A panoramic H´imaging survey of the z= 0.4 cluster Cl 0024.0+1652 with Subaru. <i>Monthly Notices of the Royal Astronomical Society</i> , 2004 , 354, 1103-1119	4.3	92
2333	Tracing the cosmological assembly of stars and supermassive black holes in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2004 , 354, L37-L42	4.3	111
2332	The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment. 2004 , 615, L101-L	104	493
2331	Present-Day Growth of Black Holes and Bulges: The Sloan Digital Sky Survey Perspective. 2004 , 613, 109	9-118	619
2330	Star Formation Properties of a Large Sample of Irregular Galaxies. 2004 , 128, 2170-2205		214
2329	Distributions of Galaxy Spectral Types in the Sloan Digital Sky Survey. 2004 , 128, 585-609		124
2328	The formation of bulges and black holes: lessons from a census of active galaxies in the SDSS. 2005 , 363, 621-43; discussion 642-3		15
2327	The Star Formation Rate Function of the Local Universe. 2005 , 619, L59-L62		74
2326	Spitzer and Hubble Space Telescope Constraints on the Physical Properties of the z \sim 7 Galaxy Strongly Lensed by A2218. 2005 , 618, L5-L8		80
2325	Cosmic Star Formation History and Its Dependence on Galaxy Stellar Mass. 2005 , 619, L135-L138		283
2324	CAIRNS: The Cluster and Infall Region Nearby Survey. III. Environmental Dependence of HH Properties of Galaxies. 2005 , 130, 1482-1501		83
2323	The GALEX -VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate. 2005 , 619, L47-L50		262
2322	The Gemini Deep Deep Survey. VII. The Redshift Evolution of the Mass-Metallicity Relation. 2005 , 635, 260-279		380
2321	Morphological Dependence of Star Formation Properties for the Galaxies in the Merging Galaxy Cluster A2255. 2005 , 130, 2559-2565		14

(2005-2005)

2320	Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by theChandra X-Ray Observatoryin SDSS DR2. 2005 , 129, 86-103		51
2319	Empirical Modeling of the Stellar Spectrum of Galaxies. 2005 , 129, 669-681		32
2318	Specific Star Formation Rates to Redshift 1.5. 2005 , 621, L89-L92		105
2317	The Relationship of Hard X-Ray and Optical Line Emission in Low-Redshift Active Galactic Nuclei. 2005 , 634, 161-168		208
2316	TheHubble Space TelescopeACS Grism Parallel Survey. II. First Results and a Catalog of Faint Emission-Line Galaxies atz 🗈 .6. 2005 , 130, 1324-1336		13
2315	New Constraints on the Star Formation Histories and Dust Attenuation of Galaxies in the Local Universe from GALEX. 2005 , 619, L39-L42		152
2314	Specific Star Formation Rates to Redshift 5 from the FORS Deep Field and the GOODS-S Field. 2005 , 633, L9-L12		127
2313	The Properties of Ultraviolet-luminous Galaxies at the Current Epoch. 2005 , 619, L35-L38		135
2312	Systematics of the Ultraviolet Rising Flux in a GALEX /SDSS Sample of Early-Type Galaxies. 2005 , 619, L107-L110		73
2311	Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate. 2005 , 625, 23-36		392
2310	A Comparison of Stellar and Gaseous Kinematics in the Nuclei of Active Galaxies. 2005, 627, 721-732		215
2309	A Census of Object Types and Redshift Estimates in the SDSS Photometric Catalog from a Trained Decision Tree Classifier. 2005 , 130, 2439-2452		36
2308	Active Galactic Nuclei in the Sloan Digital Sky Survey. II. Emission-Line Luminosity Function. 2005 , 129, 1795-1808		161
2307	The Temperature Distribution of Dense Molecular Gas in the Center of NGC 253. 2005 , 629, 767-780		66
2306	TheB-Band Luminosity Function of Red and Blue Galaxies up toz= 3.5. 2005 , 622, 116-128		80
2305	Semianalytical Model of Galaxy Formation with High-ResolutionN-Body Simulations. 2005 , 631, 21-40		173
2304	Evolutionary stellar population synthesis at high spectral resolution: optical wavelengths. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 357, 945-960	4.3	234
2303	Galaxy groups at 0.3 团0.55 - I. Group properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 358, 71-87	4.3	80

2302	Galaxy groups at 0.3 📶 0.55 - II. Evolution toz~ 0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 358, 88-100	4.3	58
2301	Semi-empirical analysis of Sloan Digital Sky Survey galaxies - I. Spectral synthesis method. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 358, 363-378	4.3	843
2300	Near-infrared imaging of 222 nearby H´-strong galaxies from the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 360, 587-609	4.3	48
2299	A sample of radio-loud active galactic nuclei in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 362, 9-24	4.3	201
2298	The excess far-infrared emission of active galactic nuclei in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 361, 1121-1130	4.3	16
2297	The ages and metallicities of galaxies in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 362, 41-58	4.3	748
2296	The cross-correlation between galaxies and groups: probing the galaxy distribution in and around dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 362, 711-726	4.3	80
2295	Spitzer imaging of i?-drop galaxies: old stars at zlb. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 364, 443-454	4.3	104
2294	Slit observations and empirical calculations for H ii regions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2005 , 364, 674-682	4.3	5
2293	The connection between star formation and stellar mass: specific star formation rates to redshift one. 2005 , 358, L1-L5		21
2292	Metallicity dependent calibrations of flux based SFR tracers. 2005 , 443, L19-L23		19
2291	Aperture Effects on Star Formation Rate, Metallicity, and Reddening. 2005, 117, 227-244		193
2290	Astrophysics in 2004. 2005 , 117, 311-394		5
2289	Ultraviolet through Far-Infrared Spatially Resolved Analysis of the Recent Star Formation in M81 (NGC 3031). 2006 , 648, 987-1006		111
2288	The Effect of Star Formation History on the Inferred Stellar Initial Mass Function. 2006 , 636, 149-157		45
2287	Integrated specific star formation rates of galaxies, groups, and clusters: a continuous upper limit with stellar mass?. 2006 , 451, L13-L16		12
2286	Spectrophotometric properties of galaxies at intermediate redshifts (z ~ 0.2🗓.0). 2006 , 448, 907-919		29
2285	Measuring the Average Evolution of Luminous Galaxies atz2006, 650, 624-643		88

(2006-2006)

2284	The AGN fraction delocity dispersion relation in clusters of galaxies. 2006 , 460, L23-L26	53
2283	Gas metallicity diagnostics in star-forming galaxies. 2006 , 459, 85-101	255
2282	Velocity-metallicity correlation for high-z DLA galaxies: evidence of a mass-metallicity relation?. 2006 , 457, 71-78	191
2281	The Evolution of the Star Formation Activity in Galaxies and Its Dependence on Environment. 2006 , 642, 188-215	234
2280	A Survey of Galaxy Kinematics toz~1 in the TKRS/GOODS-N Field. II. Evolution in the Tully-Fisher Relation. 2006 , 653, 1049-1069	97
2279	Star Formation in Satellite Galaxies. 2006 , 132, 596-607	4
2278	The Survey for Ionization in Neutral Gas Galaxies. I. Description and Initial Results. 2006, 165, 307-337	159
2277	SFR Relation with Galaxy Environment and Colour at z between 0.03 and 0.1. 2006 , 2, 234-235	
2276	The evolution of the mass-metallicity relation up to z0.9 from the VIMOS/VLT Deep Survey. 2006, 2, 408-411	1
2275	The History of Cosmological Star Formation: Three Independent Approaches and a Critical Test Using the Extragalactic Background Light. 2006 , 653, 881-893	97
2274	Gemini Deep Deep Survey. VI. Massive HEstrong Galaxies atz? 1. 2006 , 642, 48-62	44
2273	Modeling the PanBpectral Energy Distribution of Starburst Galaxies. II. Control of the HiiRegion Parameters. 2006 , 647, 244-255	104
2272	Optical Star Formation Rate Indicators. 2006 , 642, 775-796	230
2271	An Integrated Spectrophotometric Survey of Nearby Star-forming Galaxies. 2006 , 164, 81-98	248
2270	Metallicity and Nuclear Star Formation in Nearby Galaxy Pairs: Evidence for Tidally Induced Gas Flows. 2006 , 131, 2004-2017	168
2269	HEObservations of a Large Sample of Galaxies atz~ 2: Implications for Star Formation in High-Redshift Galaxies. 2006 , 647, 128-139	323
2268	Dissecting Galaxy Colors with GALEX , SDSS, and Spitzer. 2006 , 644, L109-L112	20
2267	The Oxygen Abundance Calibrations and N/O Abundance Ratios of ~40,000 SDSS Star-forming Galaxies. 2006 , 652, 257-269	84

2266	The Survey for Ionization in Neutral Gas Galaxies. II. The Star Formation Rate Density of the Local Universe. 2006 , 649, 150-162		59
2265	Spectrophotometric properties of galaxies at intermediate redshifts (z ~ 0.2¶.0). 2006 , 448, 893-906		29
2264	Soft gamma repeaters outside the Local Group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 365, 885-890	4.3	41
2263	Extracting star formation histories from medium-resolution galaxy spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 365, 385-400	4.3	34
2262	Effects of galaxy interactions in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 367, 1029-1038	4.3	67
2261	Gas infall and stochastic star formation in galaxies in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 367, 1394-1408	4.3	81
2260	The dependence of clustering on galaxy properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 368, 21-36	4.3	207
2259	The Millennium Galaxy Catalogue: a census of local compact galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 369, 1547-1565	4.3	9
2258	Breaking the hierarchy of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 645-655	4.3	1810
2257	Ages and metallicities of early-type galaxies in the Sloan Digital Sky Survey: new insight into the physical origin of the colour-magnitude and the Mg2-IV relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 1106-1124	4.3	287
2256	Semi-empirical analysis of Sloan Digital Sky Survey galaxies - II. The bimodality of the galaxy population revisited. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 721-737	4.3	161
2255	Panchromatic properties of 99 000 galaxies detected by SDSS, and (some by) ROSAT, GALEX, 2MASS, IRAS, GB6, FIRST, NVSS and WENSS surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 370, 1677-1698	4.3	48
2254	Properties of galaxies in Sloan Digital Sky Survey quasar environments at z Monthly Notices of the Royal Astronomical Society, 2006 , 371, 786-792	4.3	37
2253	Semi-empirical analysis of Sloan Digital Sky Survey galaxies - III. How to distinguish AGN hosts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 371, 972-982	4.3	232
2252	Optical and infrared diagnostics of SDSS galaxies in the SWIRE survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 371, 1113-1124	4.3	22
2251	The evolution of the bimodal colour distribution of galaxies in Sloan Digital Sky Survey groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 372, 253-258	4.3	15
2250	The properties of galaxies in voids. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 372, 1710-1	7429	77
2249	The clustering of narrow-line AGN in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 373, 457-468	4.3	104

2248	The host galaxies of AGN in the Sloan Digital Sky Survey. 2006 , 50, 677-684	23
2247	Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies. 2006 , 648, 868-883	387
2246	Constraints on galaxy structure and evolution from the light of nearby systems. 2007 , 70, 1177-1258	5
2245	Extinction-corrected Star Formation Rates Empirically Derived from Ultraviolet Dptical Colors. 2007 , 173, 256-266	45
2244	The Luminosity Function and Star Formation Rate between Redshifts of 0.07 and 1.47 for Narrowband Emitters in the Subaru Deep Field. 2007 , 657, 738-759	151
2243	UV to IR SEDs of UV-Selected Galaxies in the ELAIS Fields: Evolution of Dust Attenuation and Star Formation Activity fromz= 0.7 to 0.2. 2007 , 670, 279-294	66
2242	The Local Universe as Seen in the Far-Infrared and Far-Ultraviolet: A Global Point of View of the Local Recent Star Formation. 2007 , 173, 404-414	74
2241	Ongoing Formation of Bulges and Black Holes in the Local Universe: New Insights from GALEX. 2007 , 173, 357-376	89
2240	Star Formation in AEGIS Field Galaxies since $z=1.1$: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies. 2007 , 660, L43-L46	1355
2239	Star Formation in Low Radio Luminosity Active Galactic Nuclei from the Sloan Digital Sky Survey. 2007 , 134, 457-465	22
2238	SDSS J121811.0+465501.2: A New Low Surface Brightness Galaxy with Low Metallicity. 2007 , 134, 759-765	5
2237	The Young and the Dustless: Interpreting Radio Observations of Ultraviolet-Luminous Galaxies. 2007 , 173, 457-470	40
2236	Ultraviolet, Optical, and Infrared Constraints on Models of Stellar Populations and Dust Attenuation. 2007 , 173, 377-391	46
2235	Ultraviolet through Infrared Spectral Energy Distributions from 1000 SDSS Galaxies: Dust Attenuation. 2007 , 173, 392-403	65
2234	The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence. 2007 , 173, 315-341	244
2233	The Color-Magnitude Distribution of Field Galaxies toz~3: The Evolution and Modeling of the Blue Sequence. 2007 , 665, 944-972	41
2232	Morphological Dependence of Mid-Infrared Properties of SDSS Galaxies in theSpitzerSWIRE Survey. 2007 , 134, 1315-1329	22
2231	The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties. 2007 , 173, 293-314	303

2230	NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size atz~ 2.5. 2007 , 656, 66-72	159
2229	A Statistical Study of Multiply Imaged Systems in the Lensing Cluster Abell 68. 2007 , 662, 781-796	33
2228	The Star Formation Demographics of Galaxies in the Local Volume. 2007 , 671, L113-L116	73
2227	The Dependence of the Mass Assembly History of Cold Dark Matter Halos on Environment. 2007 , 654, 53-65	89
2226	The Dependence of Star Formation on Galaxy Stellar Mass. 2007 , 661, L41-L44	142
2225	The Evolution of the Field and Cluster Morphology-Density Relation for Mass-Selected Samples of Galaxies. 2007 , 670, 206-220	72
2224	The UV-Optical Galaxy Color-Magnitude Diagram. III. Constraints on Evolution from the Blue to the Red Sequence. 2007 , 173, 342-356	225
2223	Formation ofz~6 Quasars from Hierarchical Galaxy Mergers. 2007 , 665, 187-208	237
2222	Radio AGNs in 13,240 Galaxy Clusters from the Sloan Digital Sky Survey. 2007 , 667, L13-L16	23
2221	The Metallicity of Galaxy Disks: Infall versus Outflow. 2007 , 658, 941-959	176
	The Metallicity of Galaxy Disks: Infall versus Outflow. 2007 , 658, 941-959 RASS-SDSS galaxy cluster survey. 2007 , 461, 411-421	176 34
2220	RASS-SDSS galaxy cluster survey. 2007 , 461, 411-421 Empirical strong-line oxygen abundance calibrations from galaxies with electron-temperature	34
2220	RASS-SDSS galaxy cluster survey. 2007 , 461, 411-421 Empirical strong-line oxygen abundance calibrations from galaxies with electron-temperature measurements. 2007 , 462, 535-546	34 8 ₅
2220 2219 2218	RASS-SDSS galaxy cluster survey. 2007, 461, 411-421 Empirical strong-line oxygen abundance calibrations from galaxies with electron-temperature measurements. 2007, 462, 535-546 The VIMOS VLT Deep Survey. 2007, 474, 443-459 The direct oxygen abundances of metal-rich galaxies derived from electron temperature. 2007,	34 85 193
2220 2219 2218 2217	RASS-SDSS galaxy cluster survey. 2007, 461, 411-421 Empirical strong-line oxygen abundance calibrations from galaxies with electron-temperature measurements. 2007, 462, 535-546 The VIMOS VLT Deep Survey. 2007, 474, 443-459 The direct oxygen abundances of metal-rich galaxies derived from electron temperature. 2007, 473, 411-421	34 85 193 34
2220 2219 2218 2217 2216	RASS-SDSS galaxy cluster survey. 2007, 461, 411-421 Empirical strong-line oxygen abundance calibrations from galaxies with electron-temperature measurements. 2007, 462, 535-546 The VIMOS VLT Deep Survey. 2007, 474, 443-459 The direct oxygen abundances of metal-rich galaxies derived from electron temperature. 2007, 473, 411-421 The reversal of the star formation-density relation in the distant universe. 2007, 468, 33-48 Checking the reliability of equivalent width R23 for estimating the metallicities of galaxies. 2007, 474, 807-814	34 85 193 34 1113

2212 Calibrating oxygen abundances for star-forming galaxies. **2007**, 40, 620-624

2211	The stellar mass density at z´6 from Spitzer imaging of i'-drop galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 374, 910-930	4.3	108
2210	Forming disc galaxies in ´CDM simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 374, 1479-1494	4.3	481
2209	A possible origin of the mass-metallicity relation of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 375, 673-684	4.3	126
2208	Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 375, 931-950	4.3	258
2207	Active galactic nuclei and galaxy interactions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 375, 1017-1024	4.3	86
2206	Numerical counterparts of GRB host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 376, 1375-1384	4.3	13
2205	Simulations of Cosmic Chemical Enrichment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 376, 1465-1479	4.3	158
2204	Properties of luminous red galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 787-805	4.3	12
2203	Modelling and interpreting the dependence of clustering on the spectral energy distributions of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 1419-1430	4.3	71
2202	The Munich Near-Infrared Cluster Survey - IX. Galaxy evolution to z´2 from optically selected catalogues. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 378, 429-448	4.3	9
2201	The star formation histories of galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 378, 1550-1564	4.3	223
2200	How special are brightest group and cluster galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 379, 867-893	4.3	264
2199	The host galaxies of strong Ca II quasar absorption systems at z Monthly Notices of the Royal Astronomical Society, 2007 , 379, 1409-1422	4.3	18
2198	The different physical mechanisms that drive the star formation histories of giant and dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 381, 7-32	4.3	100
2197	The history of star-forming galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 381, 263-279	4.3	190
2196	Bursty stellar populations and obscured active galactic nuclei in galaxy bulges. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 381, 543-572	4.3	142
2195	Recovering galaxy star formation and metallicity histories from spectra using VESPA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 381, 1252-1266	4.3	170

2194	The environmental dependence of the chemical properties of star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 382, 801-808	4.3	62
2193	On the morphologies, gas fractions, and star formation rates of small galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 382, 1187-1195	4.3	48
2192	The UV properties of E+A galaxies: constraints on feedback-driven quenching of star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 382, 960-970	4.3	96
2191	Are galaxies with active galactic nuclei a transition population?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 382, 1541-1551	4.3	15
2190	The DEEP2 Galaxy Redshift Survey: the role of galaxy environment in the cosmic star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 383, 1058-1078	4.3	204
2189	A census of metals and baryons in stars in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 383, 1439-1458	4.3	117
2188	Uncovering the chemical enrichment and mass-assembly histories of star-forming galaxies. 2007 , 375, L16-L20		79
2187	Toward an unbiased sample of X-ray selected normal galaxies outside the local Universe. 2008 , 329, 17	4-177	2
2186	Physical interpretation of the near-infrared colours of low-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 384, 930-942	4.3	40
2185	Radio jets in galaxies with actively accreting black holes: new insights from the SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 384, 953-971	4.3	94
2184	New insights into the stellar content and physical conditions of star-forming galaxies at $z=2B$ from spectral modelling. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 769-782	4.3	182
2183	The SDSS-GALEX viewpoint of the truncated red sequence in field environments at $z \sim 0$. Monthly Notices of the Royal Astronomical Society, 2008 , 385, 1201-1210	4.3	54
2182	Interaction-induced star formation in a complete sample of 105nearby star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 1903-1914	4.3	123
2181	Interactions, star formation and AGN activity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 1915-1922	4.3	99
2180	Exploring star formation using the filaments in the Sloan Digital Sky Survey Data Release Five. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 767-771	4.3	19
2179	Consequences of dark matter self-annihilation for galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 388, 1652-1666	4.3	8
2178	A simple model to interpret the ultraviolet, optical and infrared emission from galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 388, 1595-1617	4.3	802
2177	A close relationship atz~ 2: submillimetre galaxies and BzK-selected galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 389, 775-786	4.3	7

(2008-2008)

2176	The colours of satellite galaxies in groups and clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 389, 1619-1629	4.3	243
2175	The role of environment in the mass-metallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 390, 245-256	4.3	101
2174	Scaling relations and the fundamental line of the local group dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 ,	4.3	67
2173	A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 391, 481-506	4.3	792
2172	Infrared Galaxies in the Nearby Universe. 2008 , 8, 643-652		5
2171	Clustering Property of Wolf-Rayet Galaxies in the SDSS. 2008 , 8, 211-218		1
2170	Gaseous versus Stellar Velocity Dispersion in Emission-Line Galaxies. 2008, 8, 25-38		5
2169	Evidence for a Nonuniversal Stellar Initial Mass Function from the Integrated Properties of SDSS Galaxies. 2008 , 675, 163-187		125
2168	The North Galactic Pole +30° Zone Galaxies. I. A Comparative Study of Galaxies with Different Nuclear Activity. 2008 , 175, 86-96		6
2167	The H⊞ased Star Formation Rate Density of the Universe atz= 0.84. 2008 , 677, 169-185		79
2166	THE WYOMING SURVEY FOR H⊞. INITIAL RESULTS ATz~ 0.16 AND 0.24. 2008 , 135, 1412-1420		7
2165	Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals. 2008 , 673, 999-1008		169
2164	Unveiling the Important Role of Groups in the Evolution of Massive Galaxies: Insights from an Infrared Passive Sequence at Intermediate Redshift. 2008 , 680, 1009-1021		38
2163	Galaxy Bulges and their Black Holes: a Requirement for the Quenching of Star Formation. 2008 , 682, 355-360		74
2162	An H⊞maging Survey of Galaxies in the Local 11 Mpc Volume. 2008 , 178, 247-279		337
2161	A New Method to Separate Star-forming from AGN Galaxies at Intermediate Redshift: The Submillijansky Radio Population in the VLA-COSMOS Survey. 2008 , 177, 14-38		111
2160	RADIO DETECTION OF RADIO-QUIET GALAXIES. 2008, 136, 1097-1109		26

2158	The Contribution of Star Formation and Merging to Stellar Mass Buildup in Galaxies. 2008 , 680, 41-53	89
2157	The Relation between Star Formation, Morphology, and Local Density in High-Redshift Clusters and Groups. 2008 , 684, 888-904	122
2156	Outliers from the Mass-Metallicity Relation. I. A Sample of Metal-Rich Dwarf Galaxies from SDSS. 2008 , 685, 904-914	35
2155	MMT EXTREMELY METAL-POOR GALAXY SURVEY. I. AN EFFICIENT TECHNIQUE FOR IDENTIFYING METAL-POOR GALAXIES. 2008 , 135, 92-98	31
2154	Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size. 2008 , 672, L107-L110	217
2153	The Dependence of Galaxy Morphology and Structure on Environment and Stellar Mass. 2008, 675, L13-L16	85
2152	An Integrated Picture of Star Formation, Metallicity Evolution, and Galactic Stellar Mass Assembly. 2008 , 686, 72-116	126
2151	IFU observations of the GRB 980425/SN 1998bw host galaxy: emission line ratios in GRB regions. 2008 , 490, 45-59	76
2150	Galaxies with Wolf-Rayet signatures in the low-redshift Universe. 2008, 485, 657-677	147
2149	Star formation history of galaxies fromz= 0 toz= 0.7. 2008 , 483, 107-119	44
2148	The HEGalaxy survey. 2008 , 484, 703-709	17
2147	The H\$mathsf{alpha}\$ Galaxy survey. 2008 , 482, 507-516	34
2146	PROBING THE BALANCE OF AGN AND STAR-FORMING ACTIVITY IN THE LOCAL UNIVERSE WITH ChaMP. 2009 , 705, 1336-1355	72
2146 2145		7 ²
	ChaMP. 2009 , 705, 1336-1355 THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TOz~ 1: A STEEP FAINT	
2145	ChaMP. 2009, 705, 1336-1355 THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TOz~ 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY. 2009, 707, 1595-1609 THE TRUE DURATIONS OF STARBURSTS:HUBBLE SPACE TELESCOPEOBSERVATIONS OF THREE	114
2145	ChaMP. 2009, 705, 1336-1355 THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TOZ~ 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY. 2009, 707, 1595-1609 THE TRUE DURATIONS OF STARBURSTS:HUBBLE SPACE TELESCOPEOBSERVATIONS OF THREE NEARBY DWARF STARBURST GALAXIES. 2009, 695, 561-573	114

(2009-2009)

2140	MORPHOLOGY. 2009 , 707, 1691-1706	46
2139	RELATION BETWEEN STELLAR MASS AND STAR-FORMATION ACTIVITY IN GALAXIES. 2009 , 690, 1074-1083	36
2138	THE LOPSIDEDNESS OF PRESENT-DAY GALAXIES: CONNECTIONS TO THE FORMATION OF STARS, THE CHEMICAL EVOLUTION OF GALAXIES, AND THE GROWTH OF BLACK HOLES. 2009 , 691, 1005-1020	63
2137	DWARF GALAXY STARBURST STATISTICS IN THE LOCAL VOLUME. 2009 , 692, 1305-1320	139
2136	THE RISE OF MASSIVE RED GALAXIES: THE COLOR-MAGNITUDE AND COLOR-STELLAR MASS DIAGRAMS FORzphot? 2 FROM THE MULTIWAVELENGTH SURVEY BY YALE-CHILE. 2009 , 694, 1171-1199	65
2135	AEGIS: THE NATURE OF THE HOST GALAXIES OF LOW-IONIZATION OUTFLOWS ATz2009, 696, 214-232	58
2134	ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI. 2009 , 696, 396-410	186
2133	GLOBAL STAR FORMATION RATE DENSITY OVER 0.7 . 2009 , 696, 785-796	41
2132	THE GALACTIC ENVIRONMENT OF THE Ne VIII ABSORBER TOWARD HE0226 [4110. 2009, 698, L46-L50	17
2131	MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES ATz2009, 700, 161-182	117
2130	SERENDIPITOUS DISCOVERY OF AN OVERDENSITY OF LyÆMITTERS ATz~ 4.8 IN THE CL1604 SUPERCLUSTER FIELD. 2009 , 700, 20-48	38
2129	THE DEPENDENCE OF STAR FORMATION RATES ON STELLAR MASS AND ENVIRONMENT AT z \sim 0.8. 2009 , 705, L67-L70	112
2128	XMM-NEWTONOBSERVATIONS OF A COMPLETE SAMPLE OF OPTICALLY SELECTED TYPE 2 SEYFERT GALAXIES. 2009 , 705, 568-586	51
2127	The evolution of the mass-metallicity relation in galaxies of different morphological types. 2009 , 504, 373-388	82
2126	The zCOSMOS redshift survey: the three-dimensional classification cube and bimodality in galaxy physical properties. 2009 , 493, 39-49	38
2125	Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey. 2009 , 495, 53-72	76
2124	THE STELLAR DISK OF M81. 2009 , 697, 1439-1456	12
2123	POLYCYCLIC AROMATIC HYDROCARBONS IN GALAXIES ATz~ 0.1: THE EFFECT OF STAR FORMATION AND ACTIVE GALACTIC NUCLEI. 2009 , 705, 885-898	56

2122	STAR FORMATION AND DUST OBSCURATION AT z D: GALAXIES AT THE DAWN OF DOWNSIZING. 2009 , 698, L116-L120	295
2121	Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample. 2009 , 507, 1793-1813	459
2120	DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. I. COMBINATIONS OF HEAND INFRARED TRACERS. 2009 , 703, 1672-1695	421
2119	THE EVOLUTION OF THE SPECIFIC STAR FORMATION RATE OF MASSIVE GALAXIES TOz~ 1.8 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH. 2009 , 690, 937-943	117
2118	CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME. 2009 , 696, 620-635	383
2117	ENHANCED DENSE GAS FRACTION IN ULTRALUMINOUS INFRARED GALAXIES. 2009 , 707, 1217-1232	90
2116	OUTLIERS FROM THE MASS-METALLICITY RELATION. II. A SAMPLE OF MASSIVE METAL-POOR GALAXIES FROM SDSS. 2009 , 695, 259-267	57
2115	EVIDENCE FOR A NONUNIFORM INITIAL MASS FUNCTION IN THE LOCAL UNIVERSE. 2009 , 695, 765-780	200
2114	HISTORY OF GALAXY INTERACTIONS AND THEIR IMPACT ON STAR FORMATION OVER THE LAST 7 Gyr FROM GEMS. 2009 , 697, 1971-1992	187
2113	Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey. 2009 , 495, 73-81	40
2112	MOIRCS DEEP SURVEY. IV. EVOLUTION OF GALAXY STELLAR MASS FUNCTION BACK TOz~ 3. 2009 , 702, 1393-1412	91
2111	THE DEPENDENCE OF STAR FORMATION ACTIVITY ON STELLAR MASS SURFACE DENSITY AND SERSIC INDEX IN zCOSMOS GALAXIES AT 0.5 . 2009 , 694, 1099-1114	35
2110	H I-SELECTED GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. II. THE COLORS OF GAS-RICH GALAXIES. 2009 , 138, 796-807	21
2109	FAINT, EVOLVING RADIO ACTIVE GALACTIC NUCLEI IN SDSS LUMINOUS RED GALAXIES. 2009 , 138, 900-910	15
2108	THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OFz~ 2 STAR-FORMING GALAXIES. 2009 , 706, 1364-1428	804
2107	EMISSION-LINE GALAXIES FROM THEHUBBLE SPACE TELESCOPEPROBING EVOLUTION AND REIONIZATION SPECTROSCOPICALLY (PEARS) GRISM SURVEY. I. THE SOUTH FIELDS. 2009 , 138, 1022-1031	35
2106	The star formation history of K-selected galaxies. Monthly Notices of the Royal Astronomical Society, 2009 , 394, 3-20	134
2105	Evaluating and improving semi-analytic modelling of dust in galaxies based on radiative transfer calculations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 392, 553-569	49

(2009-2009)

2104	The rise and fall of galaxy activity in dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 38-50	4.3	67
2103	Constraints on the star formation histories of galaxies fromz~ 1 to 0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 393, 406-418	4.3	43
2102	An ultraviolet study of nearby luminous infrared galaxies: star formation histories and the role of AGN. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 1167-1181	4.3	20
2101	The near-IR luminosity function and bimodal surface brightness distributions of Virgo cluster galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 2022-2042	4.3	33
2100	Post-starburst galaxies: more than just an interesting curiosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 144-159	4.3	133
2099	Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 535-547	4.3	68
2098	The mass-metallicity relation in galaxy clusters: the relative importance of cluster membership versus local environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 1257-1272	4.3	81
2097	Evolution of theu-band luminosity function from redshift 1.2 to 0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 90-102	4.3	23
2096	Feast and Famine: regulation of black hole growth in low-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 135-147	4.3	226
2095	Building a control sample for galaxy pairs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 748-756	4.3	26
2094	Estimating the H i gas fractions of galaxies in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 1243-1253	4.3	78
2093	The many manifestations of downsizing: hierarchical galaxy formation models confront observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 1776-1790	4.3	288
2092	Temperature and abundance profiles of hot gas in galaxy groups - II. Implications for feedback and ICM enrichment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 399, 239-263	4.3	57
2091	Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 399, 1191-1205	4.3	355
2090	Radio and optical orientations of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 399, 1888-1900	4.3	24
2089	Accretion and star formation rates in low-redshift type II active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 399, 1907-1920	4.3	180
2088	On the interstellar medium and star formation demographics of galaxies in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 154-167	4.3	78
2087	Red star-forming and blue passive galaxies in clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 687-698	4.3	30

	verse - II. Observable properties and constraints on feedback. ronomical Society, 2009 , 396, 2332-2344	4.3	155
Dichotomy in host environments 2085 Royal Astronomical Society, 2009	s and signs of recycled active galactic nuclei. <i>Monthly Notices of the</i> 9 , 399, 88-96	4.3	11
Galaxy Zoo: disentangling the er Notices of the Royal Astronomica	nvironmental dependence of morphology and colour. <i>Monthly al Society</i> , 2009 , 399, 966-982	4.3	173
Accurate parameter estimation 2083 Notices of the Royal Astronomica	for star formation history in galaxies using SDSS spectra. <i>Monthly</i> al Society, 2009 , 399, 1044-1057	4.3	22
Global environmental effects ve Society, 2009 , 399, 1157-1166	rsus galaxy interactions. Monthly Notices of the Royal Astronomical	4.3	34
Highly ionized gas on galaxy scal 393, L45-L49	les: mapping the interacting Seyfert galaxy LEDA 135736. 2009 ,		3
2080 A spectroscopic measure of the	star formation rate density in dwarf galaxies atz~ 1. 2009 , 395, L76-L80	١	6
2079 A different approach to galaxy e	evolution. 2009 , 398, L58-L62		70
The unusual interacting pair of g spectroscopic analysis. 2009 , 14,	galaxies IC 3481 and IC 3481A: An optical-NIR photometric and , 556-566		2
2077 Star Formation Properties of the	e Galaxy Cluster Abell 2199. 2009 , 33, 1-8		
2076 Physical Properties and Environ	ments of Nearby Galaxies. 2009 , 47, 159-210		319
	R MASSES, STAR FORMATION AND METALLICITY HISTORIES, AND AN DIGITAL SKY SURVEY USING VESPA. 2009 , 185, 1-19		81
COMPARISON OF HEAND UV STA 2074 DISCREPANCIES FOR DWARF GA	AR FORMATION RATES IN THE LOCAL VOLUME: SYSTEMATIC ALAXIES. 2009 , 706, 599-613		372
2073 Spectrum Fitting Code for LAMC	OST ExtraGAlactic Surveys (LEGAS). 2009 , 5, 295-298		
2072 The Co-Evolution of Galaxies and	d Black Holes: Current Status and Future Prospects. 2009 , 5, 3-14		2
2071 X-Ray Selected Type 2 QSOs and	Their Host Galaxies. 2009 , 5, 80-84		
2070 Black Hole Demographics: Statis	stical Characteristics of Accreting Black Holes. 2009 , 5, 213-222		
RADIAL DISTRIBUTION OF STAR PROPERTIES. 2009 , 701, 1965-19	S, GAS, AND DUST IN SINGS GALAXIES. II. DERIVED DUST 991		174

(2010-2009)

2068	THE STAR FORMATION AND NUCLEAR ACCRETION HISTORIES OF NORMAL GALAXIES IN THE AGES SURVEY. 2009 , 696, 2206-2219	10
2067	RADIO SOURCE FEEDBACK IN GALAXY EVOLUTION. 2009 , 699, 525-538	28
2066	THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. I. THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE INITIAL MASS FUNCTION TO THE DERIVED PHYSICAL PROPERTIES OF GALAXIES. 2009 , 699, 486-506	949
2065	THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS. 2009 , 691, 182-211	327
2064	Booms and Busts: the Burstiness of Star Formation in Nearby Dwarf Galaxies. 2010 , 27, 234-241	7
2063	UGC8802: A MASSIVE DISK GALAXY IN FORMATION. 2010 , 720, 1126-1135	18
2062	GALAXY FORMATION WITH COLD GAS ACCRETION AND EVOLVING STELLAR INITIAL MASS FUNCTION. 2010 , 713, 1301-1309	11
2061	THE WYOMING SURVEY FOR H⊞II. HŒUMINOSITY FUNCTIONS AT z Ѿ.16, 0.24, 0.32, AND 0.40. 2010 , 712, L189-L193	28
2060	DUST OBSCURATION AND METALLICITY AT HIGH REDSHIFT: NEW INFERENCES FROM UV, H日AND 8 由 OBSERVATIONS OFz~ 2 STAR-FORMING GALAXIES. 2010 , 712, 1070-1091	277
2059	REVISITING THE SCALE LENGTH® PLANE AND THE FREEMAN LAW IN THE LOCAL UNIVERSE. 2010 , 722, L120-L125	18
2058	WHAT DETERMINES THE INCIDENCE AND EXTENT OF Mg II ABSORBING GAS AROUND GALAXIES?. 2010 , 724, L176-L182	86
2057	GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES. 2010 , 711, 284-302	152
2056	Cosmic evolution of submillimeter galaxies and their contribution to stellar mass assembly. 2010 , 514, A67	190
2055	MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES. 2010 , 719, 1191-1211	39
2054	COMPARING THE RELATION BETWEEN STAR FORMATION AND GALAXY MASS IN DIFFERENT ENVIRONMENTS. 2010 , 710, L1-L6	108
2053	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND ZCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION. 2010 , 721, 193-221	1214
2052	THE NATURE OF STARBURSTS. I. THE STAR FORMATION HISTORIES OF EIGHTEEN NEARBY STARBURST DWARF GALAXIES. 2010 , 721, 297-317	135
2051	DUST EMISSION AND STAR FORMATION IN STEPHAN'S QUINTET. 2010 , 725, 955-984	24

2050 zCOSMOS 🗈 0k-bright spectroscopic sample. 2010 , 523, A13	297
STAR FORMATION AND FEEDBACK IN SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS. II. RESOLUTION EFFECTS. 2010 , 717, 121-132	22
LOCAL BENCHMARKS FOR THE EVOLUTION OF MAJOR-MERGER GALAXIESBPITZEROBSERVATIONS OF AK-BAND SELECTED SAMPLE. 2010 , 713, 330-355	26
2047 ON THE POPULATIONS OF RADIO GALAXIES WITH EXTENDED MORPHOLOGY ATz2010, 723, 1119-1138	39
ANISOTROPIC LOCATIONS OF SATELLITE GALAXIES: CLUES TO THE ORIENTATIONS OF GALAXIES WITHIN THEIR DARK MATTER HALOS. 2010 , 709, 1321-1336	62
2045 STAR FORMATION SIGNATURES IN OPTICALLY QUIESCENT EARLY-TYPE GALAXIES. 2010 , 714, L290-L29	90
2044 ON THE MASSES OF GALAXIES IN THE LOCAL UNIVERSE. 2010 , 722, 1-19	77
FORMATION EPOCHS, STAR FORMATION HISTORIES, AND SIZES OF MASSIVE EARLY-TYPE 2043 GALAXIES IN CLUSTER AND FIELD ENVIRONMENTS ATz= 1.2: INSIGHTS FROM THE REST-FRAME ULTRAVIOLET. 2010 , 709, 512-524	96
DUST ATTENUATION IN DISK-DOMINATED GALAXIES: EVIDENCE FOR THE 2175 IDUST FEATURE. 2042 2010 , 718, 184-198	66
A WIDE AREA SURVEY FOR HIGH-REDSHIFT MASSIVE GALAXIES. II. NEAR-INFRARED SPECTROSCOPY OFBzK-SELECTED MASSIVE STAR-FORMING GALAXIES. 2010 , 715, 385-405	26
2040 Radio-induced activity in galaxy pairs. 2010 , 54, 97-111	1
2039 Application of Weighted Correlation Functions to Semi-analytic Models and SDSS Data. 2010 , 34, 255-26	54
Dust attenuation in starburst galaxies determined by measuring the dependence of the optical color indices on galaxy inclination. 2010 , 331, 753-761	
2037 A Study of the [OII]B727/Hælux Ratio of Emission Line Galaxies. 2010 , 34, 234-244	1
2036 The Effect of Bar on Star-forming Activities in Nuclear Regions of Nearby Spiral Galaxies. 2010 , 34, 132-	141
2035 Constraints on intragroup stellar mass from hostless Type Ia supernovae. 2010 , 403, L79-L83	46
The evolution of M*/MBH between $z = 2$ and $z = 0$. 2010 , no-no	9
2033 Tracing the history of recent bulge star formation in Active Galactic Nuclei. 2010 , no-no	1

(2010-2010)

2032	Galaxy pairs in the Sloan Digital Sky Survey III. The effect of environment on interactions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 1514-1528	4.3	116	
2031	The GALEX Arecibo SDSS Survey - II. The star formation efficiency of massive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 919-934	4.3	94	
2030	A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 2115-2127	4.3	743	
2029	Bars in early- and late-type discs in COSMOS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 409, 346-354	4.3	51	
2028	Predicting dust extinction from the stellar mass of a galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 409, 421-432	4.3	200	
2027	The accretion of gas on to galaxies as traced by their satellites. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 409, 491-499	4.3	38	
2026	Optical versus infrared studies of dusty galaxies and active galactic nuclei - I. Nebular emission lines. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	16	
2025	Smoothly rising star formation histories during the reionization epoch. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	65	
2024	Abundance determination in H ii regions from spectra without the [O ii]B727+B729 line. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	15	
2023	The Imperial IRAS-FSC Redshift Catalogue: luminosity functions, evolution and galaxy bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 35-46	4.3	17	
2022	Galaxy Zoo: the properties of merging galaxies in the nearby Universe - local environments, colours, masses, star formation rates and AGN activity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 1552-1563	4.3	135	
2021	Two phase galaxy formation: the gas content of normal galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 941-955	4.3	19	
2020	Alternative diagnostic diagrams and the forgotten population of weak line galaxies in the SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 403, 1036-1053	4.3	261	
2019	New insight into the relation between star formation activity and dust content in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 403, 1894-1908	4.3	123	
2018	Can galaxy outflows and re-accretion produce a downsizing in the specific star-formation rate of late-type galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	9	
2017	Star formation and AGN activity in SDSS cluster galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	82	
2016	The active and passive populations of extremely red objects. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	2	
2015	Timing the starburstAGN connection. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	71	

2014	The Redshift One LDSS-3 Emission line Survey (ROLES): survey method and z~ 1 mass-dependent star formation rate density. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	7
2013	Spectroscopic identifications of SWIRE sources in ELAIS-N1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	4
2012	The local star formation rate density: assessing calibrations using [O ii], H and UV luminosities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	40
2011	Specific star formation and the relation to stellar mass from 0 . <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	42
2010	Scalelength of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2010, no-no	4.3	19
2009	Cluster galaxies die hard. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2249-2266	4.3	112
2008	A large sample of low surface brightness disc galaxies from the SDSS - II. Metallicities in surface brightness bins. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 409, 213-225	4.3	16
2007	High star formation rates as the origin of turbulence in early and modern disk galaxies. 2010 , 467, 684-6	;	89
2006	Obscured star formation atz= 0.84 with HiZELS: the relationship between star formation rate and HBor ultraviolet dust extinction. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 2017-2030	4.3	77
2005	Star formation rates and masses of $z\sim 2$ galaxies from multicolour photometry. Monthly Notices of the Royal Astronomical Society, 2010 , 407, 830-845	4.3	220
2004	Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared. 2010 , 523, A78		76
2003	THE REDSHIFT EVOLUTION OF OXYGEN AND NITROGEN ABUNDANCES IN EMISSION-LINE SDSS GALAXIES. 2010 , 712, 1029-1048		35
2002	THE FIRST MID-INFRARED VIEW OF THE STAR-FORMING PROPERTIES OF NEARBY GALAXY GROUPS. 2010 , 713, 637-650		23
2001	Stellar mass and velocity functions of galaxies. 2010 , 522, A18		17
2000	THE MASS-DEPENDENT STAR FORMATION HISTORIES OF DISK GALAXIES: INFALL MODEL VERSUS OBSERVATIONS. 2010 , 722, 380-387		11
1999	Comparing six evolutionary population synthesis models by performing spectral synthesis for galaxies. 2010 , 515, A101		33
1998	THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS. 2010 , 718, 1001-1018		411
1997	ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION RATE AND THE SPECIFIC STAR FORMATION RATE AT FIXED MORPHOLOGY. 2010 , 721, 809-814		27

1996	Metallicity of high stellar mass galaxies with signs of merger events. 2010 , 514, A57	20
1995	The zCOSMOS 10k-sample: the role of galaxy stellar mass in the colour-density relation up toz \sim 1. 2010 , 524, A2	54
1994	SHAKEN, NOT STIRRED: THE DISRUPTED DISK OF THE STARBURST GALAXY NGC 253. 2010 , 725, 1342-1365	26
1993	THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS. 2010 , 140, 2052-2069	2
1992	OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER /SINGS GALAXIES. 2010 , 190, 233-266	387
1991	GALEXULTRAVIOLET IMAGING OF DWARF GALAXIES AND STAR FORMATION RATES. 2010 , 139, 447-475	111
1990	ABSORPTION-LINE PROBES OF THE PREVALENCE AND PROPERTIES OF OUTFLOWS IN PRESENT-DAY STAR-FORMING GALAXIES. 2010 , 140, 445-461	145
1989	GENERATING ON-THE-FLY LARGE SAMPLES OF THEORETICAL SPECTRA THROUGH ANN-DIMENSIONAL GRID. 2010 , 139, 342-347	2
1988	A CATALOG OF DETAILED VISUAL MORPHOLOGICAL CLASSIFICATIONS FOR 14,034 GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. 2010 , 186, 427-456	282
1987	MORE GALAXIES IN THE LOCAL VOLUME IMAGED IN HE2010, 140, 1241-1253	33
,	MORE GALAXIES IN THE LOCAL VOLUME IMAGED IN HE2010, 140, 1241-1253 Physical Properties of Galaxies fromz= 24. 2011, 49, 525-580	33 109
1986		
1986	Physical Properties of Galaxies fromz= 24. 2011 , 49, 525-580	109
1986 1985	Physical Properties of Galaxies fromz= 2\textsuperscript{\mathcal{B}}\). 2011 , 49, 525-580 FUEL EFFICIENT GALAXIES: SUSTAINING STAR FORMATION WITH STELLAR MASS LOSS. 2011 , 734, 48 GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROMz~ 2.5 TOz~	109
1986 1985 1984	Physical Properties of Galaxies fromz= 2\(\textit{L}\). 2011 , 49, 525-580 FUEL EFFICIENT GALAXIES: SUSTAINING STAR FORMATION WITH STELLAR MASS LOSS. 2011 , 734, 48 GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROMz~ 2.5 TOz~ 0.1. 2011 , 742, 96 GOODS-Herschel: the impact of galaxy-galaxy interactions on the far-infrared properties of	109 121 508
1986 1985 1984 1983	Physical Properties of Galaxies fromz= 2월. 2011, 49, 525-580 FUEL EFFICIENT GALAXIES: SUSTAINING STAR FORMATION WITH STELLAR MASS LOSS. 2011, 734, 48 GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROMz~ 2.5 TOz~ 0.1. 2011, 742, 96 GOODS-Herschel: the impact of galaxy-galaxy interactions on the far-infrared properties of galaxies. 2011, 535, A60	10912150837
1986 1985 1984 1983 1982	Physical Properties of Galaxies fromz= 2\text{B}. 2011, 49, 525-580 FUEL EFFICIENT GALAXIES: SUSTAINING STAR FORMATION WITH STELLAR MASS LOSS. 2011, 734, 48 GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROMz~ 2.5 TOz~ 0.1. 2011, 742, 96 GOODS-Herschel: the impact of galaxy-galaxy interactions on the far-infrared properties of galaxies. 2011, 535, A60 HEAND 4000 (BREAK MEASUREMENTS FOR ~3500 K-SELECTED GALAXIES AT 0.5 2011, 743, 168	1091215083749

1978	Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS. 2011, 535, A80	72
1977	STAR FORMATION RATES AND STELLAR MASSES OF HESELECTED STAR-FORMING GALAXIES ATZ= 0.84: A QUANTIFICATION OF THE DOWNSIZING. 2011 , 740, 47	14
1976	THE RELATIVE ABUNDANCE OF COMPACT AND NORMAL MASSIVE EARLY-TYPE GALAXIES AND ITS EVOLUTION FROM REDSHIFTz~ 2 TO THE PRESENT. 2011 , 743, 96	114
1975	ENVIRONMENTALLY DRIVEN GLOBAL EVOLUTION OF GALAXIES. 2011 , 741, 99	45
1974	DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. II. COMBINATIONS OF ULTRAVIOLET AND INFRARED TRACERS. 2011 , 741, 124	372
1973	Panchromatic properties of galaxies in wide-field optical spectroscopic and photometric surveys. 2011 , 7, 268-278	
1972	Revisiting Metallicity of Long Gamma-Ray Burst Host Galaxies: The Role of Chemical Inhomogeneities in Galaxies. 2011 , 7, 369-370	
1971	A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FORZ~ 7 LYMAN-BREAK GALAXIES:SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203. 2011 , 741, 58	21
1970	MORPHOLOGICAL EVOLUTION OF GALAXIES FROM ULTRA-DEEP HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 IMAGING: THE HUBBLE SEQUENCE AT z \sim 2. 2011 , 735, L22	64
1969	GOODS- HERSCHEL : GAS-TO-DUST MASS RATIOS AND CO-TO-H 2 CONVERSION FACTORS IN NORMAL AND STARBURSTING GALAXIES AT HIGH- z. 2011 , 740, L15	120
1968	MERGING GALAXY CLUSTER A2255 IN MID-INFRARED. 2011 , 727, 14	19
1967	THE STAR-FORMATION-RATE-DENSITY RELATION AT 0.6 . 2011 , 735, 53	76
1966	THE zCOSMOS-SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS. 2011 , 743, 86	80
1965	THE CONTRIBUTION OF X-RAY BINARIES TO THE EVOLUTION OF LATE-TYPE GALAXIES: EVOLUTIONARY POPULATION SYNTHESIS SIMULATIONS. 2011 , 733, 5	8
1964	SPECTROSCOPIC PROPERTIES OF STAR-FORMING HOST GALAXIES AND TYPE Ia SUPERNOVA HUBBLE RESIDUALS IN A NEARLY UNBIASED SAMPLE. 2011 , 743, 172	62
1963	ON THE ORIGIN OF THE MASSIMETALLICITY RELATION FOR GAMMA-RAY BURST HOST GALAXIES. 2011 , 735, L8	39
1962	REDSHIFT EVOLUTION OF THE GALAXY VELOCITY DISPERSION FUNCTION. 2011 , 737, L31	67
1961	THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD. 2011 , 730, 61	471

1960	THE DIRT ON DRY MERGERS. 2011 , 730, 130		3
1959	AEGIS: THE MORPHOLOGIES OF GREEN GALAXIES AT 0.4 . 2011 , 736, 110		81
1958	THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS FRACTION OF LOW-MASS CENTRAL GALAXIES IN COSMOLOGICAL SIMULATIONS. 2011 , 736, 134		29
1957	EXTENDED SCHMIDT LAW: ROLE OF EXISTING STARS IN CURRENT STAR FORMATION. 2011 , 733, 87		99
1956	The properties of SN Ib/c locations. 2011 , 530, A95		67
1955	INTERPRETING THE EVOLUTION OF THE SIZE-LUMINOSITY RELATION FOR DISK GALAXIES FROM REDSHIFT 1 TO THE PRESENT. 2011 , 728, 51		80
1954	GOODS-Herschel: a population of 24´ Th dropout sources atz´. 2011 , 534, A15		41
1953	SSGSS: THESPITZERBDSSCALEXSPECTROSCOPIC SURVEY. 2011 , 741, 79		12
1952	VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES,. 2011 , 743, 121		155
1951	ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. I. THE FREQUENCY ON ~5-100 kpc SCALES. 2011 , 737, 101		86
1950	THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2. 2011 , 739, L40		590
1949	GOODSHerschel: an infrared main sequence for star-forming galaxies. 2011 , 533, A119		788
1948	RE-EXAMINING HIGH ABUNDANCE SLOAN DIGITAL SKY SURVEY MASS-METALLICITY OUTLIERS: HIGH N/O, EVOLVED WOLF-RAYET GALAXIES?. 2011 , 738, 2		22
1947	ALFALFA H i data stacking - I. Does the bulge quench ongoing star formation in early-type galaxies?. <i>Monthly Notices of the Royal Astronomical Society,</i> 2011 , 411, 993-1012	4.3	77
1946	Colour gradients within SDSS DR7 galaxies: hints of recent evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 411, 1151-1166	4.3	28
1945	Integral field spectroscopy of local LCBGs: NGC 7673, a case study. Physical properties of star-forming regions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 411, 1819-1832	4.3	3
1944	Backsplash galaxies in isolated clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 411, 2637-2643	4.3	33
1943	ACCESS - III. The nature of star formation in the Shapley supercluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 145-160	4.3	15

1942	ACCESS - II. A complete census of star formation in the Shapley supercluster - UV and IR luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 127-144	4.3	24
1941	Galaxy stellar mass functions of different morphological types in clusters, and their evolution between z= 0.8 and 0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 246-268	4.3	84
1940	Which haloes host Herschel-ATLAS galaxies in the local Universe?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 2277-2285	4.3	13
1939	The evolution of early-type galaxies in clusters from $z\sim0.8$ to $z\sim0$: the ellipticity distribution and the morphological mix. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 921-941	4.3	22
1938	The dependence of AGN activity on stellar and halo mass in semi-analytic models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 957-970	4.3	28
1937	The Dawn of the Red: star formation histories of group galaxies over the past 5 billion years. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 996-1012	4.3	121
1936	Nearby supernova rates from the Lick Observatory Supernova Search - I. The methods and data base. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 1419-1440	4.3	125
1935	Galaxy and Mass Assembly (GAMA): galaxies at the faint end of the H\(\text{H}\)uminosity function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 1236-1243	4.3	28
1934	Probing star formation across cosmic time with absorption-line systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 801-811	4.3	76
1933	UGC 4599: a photometric study of the nearest Hoag-type ring galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 2621-2632	4.3	8
1932	A survey of 286 Virgo cluster galaxies at optical griz and near-IR H band: surface brightness profiles and bulge-disc decompositions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 2055-2068	34.3	40
1931	Galaxy evolution in cosmological simulations with outflows - I. Stellar masses and star formation rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 11-31	4.3	267
1930	The star formation rate distribution function of the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 1815-1826	4.3	53
1929	2XMM ultraluminous X-ray source candidates in nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 1844-1861	4.3	104
1928	The impact of gas inflows on star formation rates and metallicities in barred galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 2182-2192	4.3	117
1927	The velocity modulation of galaxy properties in and near clusters: quantifying the decrease in star formation in backsplash galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 2882-290	0 2 .3	94
1926	The evolution of quiescent galaxies at high redshifts (z[1].4). <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 900-915	4.3	49
1925	Environmental dependence of star formation rate, specific star formation rate and stellar mass for blue and red galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 453-457	4.3	18

1924	Resolved opticallinfrared spectral energy distributions of galaxies: universal relations and their break-down on local scales. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 812-834	4.3	12	
1923	Revisiting the metallicity of long-duration gamma-ray burst host galaxies: the role of chemical inhomogeneity within galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 567-572	4.3	31	
1922	Empirical determination of the shape of dust attenuation curves in star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 1760-1786	4.3	137	
1921	Calibrated Tully-Fisher relations for improved estimates of disc rotation velocities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 2347-2386	4.3	83	
1920	Constraints on star formation driven galaxy winds from the mass-metallicity relation at z= 0. <i>Monthly Notices of the Royal Astronomical Society,</i> 2011 , 417, 2962-2981	4.3	150	
1919	Galaxy And Mass Assembly (GAMA): stellar mass estimates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 418, 1587-1620	4.3	405	
1918	A robust sample of galaxies at redshifts 6.0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 418, 2074-2105	4.3	156	
1917	Discovery of a possibly old galaxy at z= 6.027, multiply imaged by the massive cluster Abell 383. 2011 , 414, L31-L35		74	
1916	A comprehensive classification of galaxies in the Sloan Digital Sky Survey: how to tell true from fake AGN?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 1687-1699	4.3	317	
1915	A spectroscopic measurement of galaxy formation time-scales with the Redshift One LDSS3 Emission line Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 304-320	4.3	39	
1914	The rates and modes of gas accretion on to galaxies and their gaseous haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 2458-2478	4.3	232	
1913	Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 1647-1662	4.3	149	
1912	COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 61-76	4.3	273	
1911	On the impact of empirical and theoretical star formation laws on galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 1566-1584	4.3	132	
1910	Three-dimensional spectroscopy of local luminous compact blue galaxies: kinematic maps of a sample of 22 objects. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 418, 2350-2366	4.3	10	
1909	Fitting the integrated spectral energy distributions of galaxies. 2011 , 331, 1-51		209	
1908	Comparisons of u -, g -, r -, i -, and z -band luminosity distributions between galaxy members of compact groups and isolated galaxies. 2011 , 332, 202-207		9	
1907	Infrared Spectral Energy Distribution of Galaxies in the AKARI All Sky Survey: Correlations with Galaxy Properties, and Their Physical Origin. 2011 , 63, 1181-1206		9	

1906	THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III. 2011 , 193, 29	1063
1905	THE DIAGNOSTICS AND POSSIBLE EVOLUTION IN ACTIVE GALACTIC NUCLEI ASSOCIATED WITH STARBURST GALAXIES. 2011 , 195, 17	13
1904	VII Zw 403: H I STRUCTURE IN A BLUE COMPACT DWARF GALAXY. 2011 , 142, 82	13
1903	THE OUTER DISKS OF DWARF IRREGULAR GALAXIES. 2011 , 142, 121	32
1902	AN ULTRAVIOLET SPECTROSCOPIC ATLAS OF LOCAL STARBURSTS AND STAR-FORMING GALAXIES: THE LEGACY OF FOS AND GHRS. 2011 , 141, 37	76
1901	A GALEX ULTRAVIOLET IMAGING SURVEY OF GALAXIES IN THE LOCAL VOLUME. 2011 , 192, 6	169
1900	CORRELATIONS BETWEEN NEBULAR EMISSION AND THE CONTINUUM SPECTRAL SHAPE IN SDSS GALAXIES. 2011 , 141, 133	6
1899	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. 2011 , 197, 35	1279
1898	GALAXY DOWNSIZING AND THE REDSHIFT EVOLUTION OF OXYGEN AND NITROGEN ABUNDANCES: ORIGIN OF THE SCATTER IN THE N/HD/H DIAGRAM. 2011 , 726, L23	21
1897	MOIRCS Deep Survey. X. Evolution of Quiescent Galaxies as a Function of Stellar Mass at 0.5 z 2.5. 2011 , 63, S403-S414	17
1896	THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE. 2011 , 738, 154	166
1895	MOIRCS Deep Survey. VII. NIR Morphologies of Star-Forming Galaxies at Redshift z 1. 2011 , 63, S363-S377	7
1894	Galaxy pairs in the Sloan Digital Sky Survey - V. Tracing changes in star formation rate and metallicity out to separations of 80 kpc. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 549-565	150
1893	The properties of a large volume-limited sample of face-on low surface brightness disk galaxies. 2012 , 12, 1486-1498	2
1892	Peculiar early-type galaxies with central star formation. 2012 , 12, 485-499	2
1891	A DEEP, WIDE-FIELD HBURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA. 2012 , 199, 36	7
1890	SPECTRAL CLASSIFICATION OF GALAXIES AT 0.5 ?z? 1 IN THE CDFS: THE ARTIFICIAL NEURAL NETWORK APPROACH. 2012 , 144, 172	9
1889	Appendix A: The atomic physics of oxygen. 2012 , 54, 319-335	3

(2012-2012)

1888	2012, 1-11	
1887	Environmental Dependence of Stellar Mass, Star Formation Rate, Specific Star Formation Rate, and AGN Activity for an Apparent Magnitude Limited Main Galaxy Sample of the SDSS DR7. 2012 , 64, 93	13
1886	GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES. 2012 , 143, 133	86
1885	THE COS-HALOS SURVEY: KECK LRIS AND MAGELLAN MagE OPTICAL SPECTROSCOPY. 2012 , 198, 3	70
1884	SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. 2012 , 144, 144	425
1883	THE UVJ SELECTION OF QUIESCENT AND STAR-FORMING GALAXIES: SEPARATING EARLY- AND LATE-TYPE GALAXIES AND ISOLATING EDGE-ON SPIRALS , ,. 2012 , 748, L27	69
1882	Type 1 AGN at lowz. I. Emission properties. 2012 , 372, 012010	
1881	CALIFA, the Calar Alto Legacy Integral Field Area survey. 2012 , 538, A8	745
1880	Far-infrared colours of nearby late-type galaxies in theHerschelReference Survey. 2012, 540, A54	72
1879	THE SDSS-II SUPERNOVA SURVEY: PARAMETERIZING THE TYPE Ia SUPERNOVA RATE AS A FUNCTION OF HOST GALAXY PROPERTIES. 2012 , 755, 61	67
1878	CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS. 2012 , 759, 107	124
1877	Dust temperature and CO ´->´H2conversion factor variations in the SFR-M*plane. 2012 , 548, A22	113
1876	GOODS-HERSCHELAND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES ATz~ 2. 2012 , 757, 23	135
1875	CHARACTERIZING THE FORMATION HISTORY OF MILKY WAY LIKE STELLAR HALOS WITH MODEL EMULATORS. 2012 , 760, 112	34
1874	THE SLOW DEATH (OR REBIRTH?) OF EXTENDED STAR FORMATION INz~ 0.1 GREEN VALLEY EARLY-TYPE GALAXIES. 2012 , 761, 23	57
1873	A journey from the outskirts to the cores of groups. 2012 , 539, A55	32
1872	GOODS-Herschel: ultra-deepXMM-Newtonobservations reveal AGN/star-formation connection. 2012 , 546, A58	82
1871	AVERAGE METALLICITY AND STAR FORMATION RATE OF LyEMITTERS PROBED BY A TRIPLE NARROWBAND SURVEY. 2012 , 745, 12	91

1870	DEEP ULTRAVIOLET LUMINOSITY FUNCTIONS AT THE INFALL REGION OF THE COMA CLUSTER. 2012 , 745, 177	6
1869	CALIBRATING THE STAR FORMATION RATE ATz~ 1 FROM OPTICAL DATA. 2012 , 746, 124	22
1868	THE RELATION BETWEEN GALAXY MORPHOLOGY AND ENVIRONMENT IN THE LOCAL UNIVERSE: AN RC3-SDSS PICTURE. 2012 , 746, 160	42
1867	THE MOLECULAR GAS CONTENT OF $z=3$ LYMAN BREAK GALAXIES: EVIDENCE OF A NON-EVOLVING GAS FRACTION IN MAIN-SEQUENCE GALAXIES AT $z>2$. 2012 , 758, L9	83
1866	METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES. 2012 , 753, 16	137
1865	A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS. 2012 , 757, 54	116
1864	A DIRECT MEASUREMENT OF THE BARYONIC MASS FUNCTION OF GALAXIES AND IMPLICATIONS FOR THE GALACTIC BARYON FRACTION. 2012 , 759, 138	128
1863	DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES. 2012 , 754, 98	205
1862	EXPLORING THE CONNECTION BETWEEN STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN THE LOCAL UNIVERSE. 2012 , 758, 1	59
1861	SINGLE PARAMETER GALAXY CLASSIFICATION: THE PRINCIPAL CURVE THROUGH THE MULTI-DIMENSIONAL SPACE OF GALAXY PROPERTIES. 2012 , 755, 143	6
1860	Evolution of the most massive galaxies to z \sim 0.6. 2012 , 8, 133-136	
1859	Obscured quasars: the link between star-formation and black hole activity. 2012 , 8, 181-183	
1858	Star Formation & Molecular Gas over Cosmic Time. 2012 , 8, 64-73	1
1857	SHELS: OPTICAL SPECTRAL PROPERTIES OFWISE22 th SELECTED GALAXIES. 2012 , 758, 25	23
1856	AKARINEAR-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES. 2012 , 756, 95	28
1855	THE RELATIONSHIP BETWEEN BLACK HOLE GROWTH AND STAR FORMATION IN SEYFERT GALAXIES. 2012 , 746, 168	130
1854	GALAXY-SCALE STAR FORMATION ON THE RED SEQUENCE: THE CONTINUED GROWTH OF S0s AND THE QUIESCENCE OF ELLIPTICALS. 2012 , 755, 105	78
1853	SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY. 2012 , 756, 184	41

STELLAR POPULATIONS OF ULTRAVIOLET-SELECTED ACTIVE GALACTIC NUCLEI HOST GALAXIES ATz~ 2B. 2012 , 760, 74		30
DO BARS TRIGGER ACTIVITY IN GALACTIC NUCLEI?. 2012 , 750, 141		46
ON THE ORIGINS OF THE DIFFUSE HŒMISSION: IONIZED GAS OR DUST-SCATTERED HŒHALOS?. 2012 , 758, 109		36
THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCEz= 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS. 2012 , 760, 6		354
THE SPATIAL DISTRIBUTION OF DUST AND STELLAR EMISSION OF THE MAGELLANIC CLOUDS. 2012 , 761, 42		35
THE CONTRIBUTION OF STARBURSTS AND NORMAL GALAXIES TO INFRARED LUMINOSITY FUNCTIONS AT z 2012, 747, L31		195
A SPECTROSCOPIC STUDY OF TYPE Ibc SUPERNOVA HOST GALAXIES FROM UNTARGETED SURVEYS. 2012 , 758, 132		90
THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 ?z2012, 760, 131		167
THE ASSEMBLY OF THE RED SEQUENCE ATz~ 1: THE COLOR AND SPECTRAL PROPERTIES OF GALAXIES IN THE Cl1604 SUPERCLUSTER. 2012 , 745, 106		55
FIRST SCIENCE WITH SAMI: A SERENDIPITOUSLY DISCOVERED GALACTIC WIND IN ESO 185-G031. 2012 , 761, 169		38
THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTSz~ 2-7. 2012 , 754, 25		230
PASSIVE AND STAR-FORMING GALAXIES AT 1.4 ?z? 2.5 IN THE AEGIS FIELD. 2012 , 751, 109		17
WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCEz~ 2 FROM CANDELS. 2012 , 753, 167		222
THE REDSHIFT EVOLUTION OF THE RELATION BETWEEN STELLAR MASS, STAR FORMATION RATE, AND GAS METALLICITY OF GALAXIES. 2012 , 761, 126		13
The slowly evolving role of environment in a spectroscopic survey of star formation in M* > 5 \square 08 M? galaxies since z ~ 1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 1738-1752	4.3	4
Comparison of star formation rates from Hand infrared luminosity as seen byHerschel. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 330-341	4.3	23
The role of stellar mass and environment for cluster blue fraction, AGN fraction and star formation indicators from a targeted analysis of Abell 1691. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 1632-1646	4.3	16
A Dual-Narrowband Survey for HŒmitters at Redshift of 2.2: Demonstration of the Technique and Constraints on the H£uminosity Function1. 2012 , 124, 782-797		43
	DO BARS TRIGGER ACTIVITY IN GALACTIC NUCLEI?. 2012, 750, 141 ON THE ORIGINS OF THE DIFFUSE HEMISSION: IONIZED GAS OR DUST-SCATTERED HHALOS?. 2012, 758, 109 THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCEZ= 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS. 2012, 760, 6 THE SPATIAL DISTRIBUTION OF DUST AND STELLAR EMISSION OF THE MAGELLANIC CLOUDS. 2012, 761, 42 THE CONTRIBUTION OF STARBURSTS AND NORMAL GALAXIES TO INFRARED LUMINOSITY FUNCTIONS AT z 2012, 747, L31 A SPECTROSCOPIC STUDY OF TYPE Ibc SUPERNOVA HOST GALAXIES FROM UNTARGETED SURVEYS. 2012, 758, 132 THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 722012, 760, 131 THE ASSEMBLY OF THE RED SEQUENCE ATz~ 1: THE COLOR AND SPECTRAL PROPERTIES OF GALAXIES IN THE CI1604 SUPERCLUSTER. 2012, 745, 106 FIRST SCIENCE WITH SAMI: A SERENDIPITOUSLY DISCOVERED GALACTIC WIND IN ESO 185-G031. 2012, 761, 169 THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTSZ~ 2-7. 2012, 754, 25 PASSIVE AND STAR-FORMING GALAXIES AT 1.4 727 2.5 IN THE AEGIS FIELD. 2012, 751, 109 WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCEZ~ 2 FROM CANDELS. 2012, 753, 167 THE REDSHIFT EVOLUTION OF THE RELATION BETWEEN STELLAR MASS, STAR FORMATION RATE, AND GAS METALLICITY OF GALAXIES. 2012, 761, 126 The slowly evolving role of environment in a spectroscopic survey of star formation in M* > 51108 M? galaxies since z~ 1. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1738-1752 Comparison of star formation rates from Hiland infrared luminosity as seen byHerschel. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1738-1752 Comparison of star formation rates from Hiland infrared luminosity as seen byHerschel. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1738-1752 Comparison of star formation rates from Hiland infrared luminosity as seen byHerschel. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1632-1646 A Dual-Narrow	ATZ- 28. 2012, 760, 74 DO BARS TRIGGER ACTIVITY IN GALACTIC NUCLEIP. 2012, 750, 141 ON THE ORIGINS OF THE DIFFUSE HÆMISSION: IONIZED GAS OR DUST-SCATTERED HÆHALOS?. 2012, 758, 109 THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCEz= 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS. 2012, 760, 6 THE SPATIAL DISTRIBUTION OF DUST AND STELLAR EMISSION OF THE MAGELLANIC CLOUDS. 2012, 761, 42 THE CONTRIBUTION OF STARBURSTS AND NORMAL GALAXIES TO INFRARED LUMINOSITY FUNCTIONS AT z 2012, 747, L31 A SPECTROSCOPIC STUDY OF TYPE Ibc SUPERNOVA HOST GALAXIES FROM UNTARGETED SURVEYS. 2012, 758, 132 THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 ?22012, 760, 131 THE ASSEMBLY OF THE RED SEQUENCE ATZ- 1: THE COLOR AND SPECTRAL PROPERTIES OF GALAXIES IN THE C11604 SUPERCLUSTER. 2012, 745, 106 FIRST SCIENCE WITH SAMI: A SERENDIPITOUSLY DISCOVERED GALACTIC WIND IN ESO 185-G031. 2012, 761, 169 THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTSZ- 2-7. 2012, 754, 25 PASSIVE AND STAR-FORMING GALAXIES AT 1.4 ?2? 2.5 IN THE AEGIS FIELD. 2012, 751, 109 WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCEz- 2 FROM CANDELS. 2012, 753, 167 THE REDSHIFT EVOLUTION OF THE RELATION BETWEEN STELLAR MASS, STAR FORMATION RATE, AND GAS METALLICITY OF GALAXIES. 2012, 761, 126 The slowly evolving role of environment in a spectroscopic survey of star formation in M* > 5 II 08 M? galaxies since z ~ 1. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1738-1752 4-3 The role of stellar mass and environment for cluster blue fraction, AGN fraction and star formation indicators from a Largeted analysis of Abell 1691. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1632-1646 A Dual-Narrowband Survey for HÆmilters at Redshift of 2.2: Demonstration of the Technique and

1834	Eliminating error in the chemical abundance scale for extragalactic H iiregions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 2630-2651	4.3	131
1833	Estimating gas accretion in disc galaxies using the KennicuttBchmidt law. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 2166-2177	4.3	42
1832	Observed versus modelledu-,g-,r-,i-,z-band photometry of local galaxies Levaluation of model performance. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 2376-2391	4.3	12
1831	The delay-time distribution of Type Ia supernovae from Sloan II. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 3282-3294	4.3	176
1830	A fundamental problem in our understanding of low-mass galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 2797-2812	4.3	134
1829	Plunging fireworks: Why do infalling galaxies light up on the outskirts of clusters?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 1252-1265	4.3	44
1828	ALFALFA H i data stacking III. Comparison of environmental trends in H i gas mass fraction and specific star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 2841-2851	4.3	50
1827	Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 3103-3133	4.3	178
1826	ON THE LAST 10 BILLION YEARS OF STELLAR MASS GROWTH IN STAR-FORMING GALAXIES. 2012 , 745, 149		119
1825	THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. 2012 , 203, 21		1029
			1029
1824	FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. 2012 , 203, 21		
1824	FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. 2012 , 203, 21 Star Formation in the Milky Way and Nearby Galaxies. 2012 , 50, 531-608		1531
1824	FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. 2012, 203, 21 Star Formation in the Milky Way and Nearby Galaxies. 2012, 50, 531-608 Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release. 2012, 33, 213-220 THE DWARF STARBURST HOST GALAXY OF A TYPE Ia SUPERNOVA ATz= 1.55 FROM CANDELS.		1531
1824 1823 1822	Star Formation in the Milky Way and Nearby Galaxies. 2012, 50, 531-608 Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release. 2012, 33, 213-220 THE DWARF STARBURST HOST GALAXY OF A TYPE Ia SUPERNOVA ATz= 1.55 FROM CANDELS. 2012, 760, 125 THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR		1531 4
1824 1823 1822	Star Formation in the Milky Way and Nearby Galaxies. 2012, 50, 531-608 Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release. 2012, 33, 213-220 THE DWARF STARBURST HOST GALAXY OF A TYPE Ia SUPERNOVA ATz= 1.55 FROM CANDELS. 2012, 760, 125 THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES. 2012, 745, 182		1531 4 10 81
1824 1823 1822 1821 1820	Star Formation in the Milky Way and Nearby Galaxies. 2012, 50, 531-608 Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release. 2012, 33, 213-220 THE DWARF STARBURST HOST GALAXY OF A TYPE Ia SUPERNOVA ATz= 1.55 FROM CANDELS. 2012, 760, 125 THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES. 2012, 745, 182 THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5. 2012, 754, L29 A CONSTANT LIMITING MASS SCALE FOR FLAT EARLY-TYPE GALAXIES FROMz~ 1 TOz= 0: DENSITY		1531 4 10 81 617

(2012-2012)

1816	ORIGIN OF 12 th EMISSION ACROSS GALAXY POPULATIONS FROMWISEAND SDSS SURVEYS. 2012 , 748, 80	67
1815	ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION RATE, SPECIFIC STAR FORMATION RATE, AND THE PRESENCE OF ACTIVE GALACTIC NUCLEI FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES. 2012 , 753, 166	7
1814	THEGALEXARECIBO SDSS SURVEY. V. THE RELATION BETWEEN THE H I CONTENT OF GALAXIES AND METAL ENRICHMENT AT THEIR OUTSKIRTS. 2012 , 745, 66	85
1813	ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION. 2012 , 745, 94	57
1812	STAR FORMATION RATE DISTRIBUTIONS: INADEQUACY OF THE SCHECHTER FUNCTION. 2012 , 758, 134	19
1811	DISSECTING THE STELLAR-MASS-SFR CORRELATION IN $z=1$ STAR-FORMING DISK GALAXIES. 2012 , 754, L14	85
1810	3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT $z=1.847$. 2012 , 758, L17	58
1809	In the neighbourhood of Tame Monsters. 2012 , 542, A72	O
1808	THE STAR FORMATION HISTORY AND METAL CONTENT OF THE GREEN PEAS. NEW DETAILED GTC-OSIRIS SPECTROPHOTOMETRY OF THREE GALAXIES. 2012 , 749, 185	78
1807	ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS. 2012 , 749, 133	21
1806	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. II. THE QUENCHING OF SATELLITE GALAXIES AS THE ORIGIN OF ENVIRONMENTAL EFFECTS. 2012 , 757, 4	282
1805	Environments of galaxies in groups within the supercluster-void network. 2012 , 545, A104	40
1804	An investigation of star formation and dust attenuation in major mergers using ultraviolet and infrared data. 2012 , 548, A117	15
1803	SOME PROPERTIES OF ACTIVE GALACTIC NUCLEI IN THE VOLUME-LIMITED MAIN GALAXY SAMPLES OF SDSS DR8. 2012 , 754, 82	4
1802	Environmental dependence of stellar mass, SFR, and SSFR for the Luminous Red Galaxy (LRG) sample of the SDSS DR7. 2012 , 333, 644-647	5
1801	SDSS galaxies with double-peaked emission lines: double starbursts or active galactic nuclei?. Monthly Notices of the Royal Astronomical Society, 2012, 419, 490-502 4-3	11
1800	The environments of local luminous infrared galaxies: star formation rates increase with density. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1176-1186 4-3	6
1799	The Balmer decrement of Sloan Digital Sky Survey galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 1402-1412	57

1798	Star formation at z=1.47 from HiZELS: an H⊞[O ii] double-blind study?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 1926-1945	4.3	172
1797	CFHT Legacy Ultraviolet Extension (CLUE): witnessing galaxy transformations up to 7 Mpc from rich cluster cores. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 126-140	4.3	29
1796	Beyond the fibre: resolved properties of Sloan Digital Sky Survey galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 197-215	4.3	16
1795	A high-resolution atlas of composite Sloan Digital Sky Survey galaxy spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 1217-1238	4.3	27
1794	Evolution of the most massive galaxies to $z=0.6\mathrm{II}$. A new method for physical parameter estimation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , no-no	4.3	71
1793	Dust reddening in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2012, no-no	4.3	21
1792	Binary interactions on the calibrations of star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , no-no	4.3	2
1791	Relative merits of different types of rest-frame optical observations to constrain galaxy physical parameters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 2002-2024	4.3	92
1790	Strongly star forming galaxies in the local Universe with nebular He ii 4686 emission. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 1043-1063	4.3	117
1789	What shapes the galaxy mass function? Exploring the roles of supernova-driven winds and active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 2816-2840	4.3	113
1788	A modified star formation law as a solution to open problems in galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 3450-3463	4.3	37
1787	The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 215-231	4.3	162
1786	Galaxy Zoo: dust lane early-type galaxies are tracers of recent, gas-rich minor mergers?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 59-67	4.3	44
1785	Polar ring galaxies in the Galaxy Zoo. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2386	-4398	10
1784	A combined optical and X-ray study of unobscured type 1 active galactic nuclei - II. Relation between X-ray emission and optical spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 3268-3284	4.3	48
1783	Type 1 AGN at low z- I. Emission properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 600-631	4.3	79
1782	The environmental history of group and cluster galaxies in a Itold dark matter universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 1277-1292	4.3	211
1781	The evolution of massive black holes and their spins in their galactic hosts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 2533-2557	4.3	140

1780	The dependence of galaxy group star formation rates and metallicities on large-scale environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 2690-2704	4.3	34
1779	Quantifying the role of bars in the build-up of central mass concentrations in disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 3486-3501	4.3	59
1778	Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 232-243	4.3	318
1777	The gas-phase metallicity of central and satellite galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 273-286	4.3	37
1776	The Tully-Fisher relation for 25 000 Sloan Digital Sky Survey galaxies as a function of environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 296-310	4.3	26
1775	Paired galaxies with different activity levels and their supernovae. 2013 , 347, 365-374		7
1774	Correlations between morphology and other galaxy parameters at different environmental density levels. 2013 , 347, 183-191		
1773	Modeling the Panchromatic Spectral Energy Distributions of Galaxies. 2013 , 51, 393-455		447
1772	Star formation in nearby isolated galaxies. 2013 , 68, 243-252		9
1771	Dependence of the clustering properties of galaxies on star formation rate and specific star formation rate. 2013 , 91, 12-18		6
1770	High inematics of 11 starburst galaxies selected from the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 1958-1983	4.3	7
1769	HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. 2013 , 770, 107		52
1768	A comparison of the star formation rate and the specific star formation rate distributions between paired galaxies and isolated ones. 2013 , 91, 337-342		
1767	GALAXY ZOO: OBSERVING SECULAR EVOLUTION THROUGH BARS. 2013 , 779, 162		106
1766	A Comparison of Star Formation Rate Indicators for Galaxies. 2013 , 37, 126-138		1
1765	Star Formation in Galaxies. 2013 , 141-181		8
1764	SEARCHING FOR COOLING SIGNATURES IN STRONG LENSING GALAXY CLUSTERS: EVIDENCE AGAINST BARYONS SHAPING THE MATTER DISTRIBUTION IN CLUSTER CORES. 2013 , 772, 24		7
1763	THE FAR-INFRARED, UV, AND MOLECULAR GAS RELATION IN GALAXIES UP TOz= 2.5. 2013 , 762, 125		39

1762	WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3. 2013 , 764, 176		87
1761	Evolution of the most massive galaxies to $z \sim 0.6$ III. The link between radio AGN activity and star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 2643-2654	4.3	13
1760	Uncertainties in the calibrations of star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 1039-1053	4.3	5
1759	Estimating gas masses and dust-to-gas ratios from optical spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 2112-2140	4.3	44
1758	Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 2061-2091	4.3	75
1757	The merger rates and sizes of galaxies across the peak epoch of star formation from the HiZELS survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 1158-1170	4.3	48
1756	The stellar masses of galaxies from the 3.4 h band of the WISE All-Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 2946-2957	4.3	53
1755	Effects of superstructure environment on galaxy groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 1367-1374	4.3	14
1754	Galaxy And Mass Assembly (GAMA): the connection between metals, specific SFR and H i gas in galaxies: the ZBSFR relation. 2013 , 433, L35-L39		34
1753	Choirs, H i galaxy groups: catalogue and detection of star-forming dwarf group members. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 543-559	4.3	8
1752	Galaxy pairs in the Sloan Digital Sky Survey IVI. The orbital extent of enhanced star formation in interacting galaxies. 2013 , 433, L59-L63		135
1751	Non-parametric cell-based photometric proxies for galaxy morphology: methodology and application to the morphologically defined star formationEtellar mass relation of spiral galaxies in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 437, 3883-3917	4.3	8
1750	Investigating emission-line galaxy surveys with the Sloan Digital Sky Survey infrastructure. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 1498-1517	4.3	40
1749	Dust and star formation properties of a complete sample of local galaxies drawn from the Planck Early Release Compact Source Catalogue. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 695-711	4.3	75
1748	A re-examination of galactic conformity and a comparison with semi-analytic models of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 1447-1456	4.3	113
1747	Herschel reveals the obscured star formation in HiZELS H'emitters at $z = 1.47$. Monthly Notices of the Royal Astronomical Society, 2013 , 434, 3218-3235	4.3	49
1746	Galaxy pairs in the Sloan Digital Sky Survey IVIII. The observational properties of post-merger galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 3627-3638	4.3	144
1745	Galaxy And Mass Assembly (GAMA): spectroscopic analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 2047-2066	4.3	145

(2013-2013)

1744	quenched galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 2212-2227	4.3	57
1743	The hierarchical origins of observed galaxy morphology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 2986-3004	4.3	38
1742	The slow flow model of dust efflux in local star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 1852-1866	4.3	7
1741	Single-colour diagnostics of the mass-to-light ratio I . Predictions from galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 430-439	4.3	15
1740	Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 336-358	4.3	367
1739	The impact of global environment on galaxy mass functions at low redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 3141-3152	4.3	31
1738	Quantified H I morphology - VII. Star formation and tidal influence on local dwarf H I morphology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 1020-1036	4.3	8
1737	Galaxy pairs in the Sloan Digital Sky Survey LVII. The mergerLuminous infrared galaxy connection. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 3128-3141	4.3	70
1736	Herschel-ATLAS/GAMA: a difference between star formation rates in strong-line and weak-line radio galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 2407-2424	4.3	48
1735	Type 1 AGN at low z III. The optical narrow-line ratios. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 836-857	4.3	46
1734	Comparison of H i and optical redshifts of galaxies the impact of redshift uncertainties on spectral line stacking. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 2613-2625	4.3	10
1733	On the evolution and environmental dependence of the star formation rate versus stellar mass relation since z´~ 2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 423-436	4.3	128
1732	Galaxy And Mass Assembly: resolving the role of environment in galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 2903-2917	4.3	67
1731	A fundamental relation between the metallicity, gas content and stellar mass of local galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 1425-1435	4.3	112
1730	Stellar velocity dispersions and emission line properties of SDSS-III/BOSS galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 1383-1397	4.3	148
1729	Galaxy And Mass Assembly (GAMA): a deeper view of the mass, metallicity and SFR relationships. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 451-470	4.3	77
1728	Statistical properties of mass, star formation, chemical content and rotational patterns in early z ? 9 structures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 1621-1638	4.3	20
1727	An empirical prediction for stellar metallicity distributions in nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 1766-1773	4.3	17

1726	Uncovering obscured luminous AGN with WISE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 941-955	4.3	71
1725	THE IMPACT OF STARBURSTS ON THE CIRCUMGALACTIC MEDIUM. 2013 , 768, 18		63
1724	AN ARCHIVALChandraANDXMM-NewtonSURVEY OF TYPE 2 QUASARS. 2013 , 777, 27		28
1723	HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. 2013 , 770, 108		99
1722	Galaxy And Mass Assembly: evolution of the H\(\text{H}\)uminosity function and star formation rate density up to z Monthly Notices of the Royal Astronomical Society, 2013 , 433, 2764-2789	4.3	83
1721	THE IMACS CLUSTER BUILDING SURVEY. III. THE STAR FORMATION HISTORIES OF FIELD GALAXIES. 2013 , 770, 63		23
1720	A KINEMATIC APPROACH TO ASSESSING ENVIRONMENTAL EFFECTS: STAR-FORMING GALAXIES IN Az \sim 0.9 Sparcs cluster using spitzer24 h observations. 2013 , 768, 118		36
1719	INSIGHT INTO ACTIVE GALACTIC NUCLEUS AND HOST GALAXY CO-EVOLUTION FROM HARD X-RAY EMISSION. 2013 , 768, 176		7
1718	THE METAL AVERSION OF LONG-DURATION GAMMA-RAY BURSTS. 2013 , 774, 119		103
1717	THE ZURICH ENVIRONMENTAL STUDY OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. III. GALAXY PHOTOMETRIC MEASUREMENTS AND THE SPATIALLY RESOLVED COLOR PROPERTIES OF EARLY- AND LATE-TYPE SATELLITES IN DIVERSE ENVIRONMENTS. 2013 , 777, 116		31
1716	THE GALEX ARECIBO SDSS SURVEY. VII. THE BIVARIATE NEUTRAL HYDROGEN-STELLAR MASS FUNCTION FOR MASSIVE GALAXIES. 2013 , 776, 74		14
1715	LINE EMISSION FROM RADIATION-PRESSURIZED H II REGIONS. II. DYNAMICS AND POPULATION SYNTHESIS. 2013 , 769, 12		17
1714	THE MID-INFRARED EMISSION OF NARROW-LINE ACTIVE GALACTIC NUCLEI: STAR FORMATION, NUCLEAR ACTIVITY, AND TWO POPULATIONS REVEALED BYWISE. 2013 , 778, 94		26
1713	A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION. 2013 , 778, 128		139
1712	THE VIRUS-P EXPLORATION OF NEARBY GALAXIES (VENGA): SURVEY DESIGN, DATA PROCESSING, AND SPECTRAL ANALYSIS METHODS. 2013 , 145, 138		56
1711	ON THE STAR FORMATION-AGN CONNECTION AT z ? 0.3. 2013 , 765, L33		38
1710	LINE EMISSION FROM RADIATION-PRESSURIZED H II REGIONS. I. INTERNAL STRUCTURE AND LINE RATIOS. 2013 , 769, 11		19
1709	CONSTRAINING THE STAR FORMATION HISTORIES IN DARK MATTER HALOS. I. CENTRAL GALAXIES. 2013 , 770, 115		41

1708	TRACING GALAXIES THROUGH COSMIC TIME WITH NUMBER DENSITY SELECTION. 2013 , 766, 33		71
1707	A tool for the morphological classification of galaxies: the concentration index. 2013 , 13, 651-661		13
1706	USING COLORS TO IMPROVE PHOTOMETRIC METALLICITY ESTIMATES FOR GALAXIES. 2013 , 775, 125		13
1705	NO EVIDENCE FOR A DEPENDENCE OF THE MASS-SIZE RELATION OF EARLY-TYPE GALAXIES ON ENVIRONMENT IN THE LOCAL UNIVERSE. 2013 , 779, 29		52
1704	PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS INZ~ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES. 2013 , 768, 74		660
1703	THE IMPACT OF BARS ON DISK BREAKS AS PROBED BY S4G IMAGING. 2013 , 771, 59		79
1702	THE EGNOG SURVEY: MOLECULAR GAS IN INTERMEDIATE-REDSHIFT STAR-FORMING GALAXIES. 2013 , 768, 132		57
1701	ON THE ROBUSTNESS OFz= 0-1 GALAXY SIZE MEASUREMENTS THROUGH MODEL AND NON-PARAMETRIC FITS. 2013 , 777, 117		51
1700	THE EVOLUTION OF GALAXIES RESOLVED IN SPACE AND TIME: A VIEW OF INSIDE-OUT GROWTH FROM THE CALIFA SURVEY. 2013 , 764, L1		161
1699	THE STRUCTURAL EVOLUTION OF MILKY-WAY-LIKE STAR-FORMING GALAXIES SINCEz~ 1.3. 2013 , 778, 115		41
1698	PROBING THE LOW-REDSHIFT STAR FORMATION RATE AS A FUNCTION OF METALLICITY THROUGH THE LOCAL ENVIRONMENTS OF TYPE II SUPERNOVAE. 2013 , 773, 12		26
1697	WISETF: A MID-INFRARED, 3.4 th EXTENSION OF THE TULLY-FISHER RELATION USINGWISEPHOTOMETRY. 2013 , 771, 88		24
1696	NEBULAR ATTENUATION IN H⊞ELECTED STAR-FORMING GALAXIES ATz= 0.8 FROM THE NewH⊟ SURVEY. 2013 , 145, 47		39
1695	STAR-FORMING GALAXY EVOLUTION IN NEARBY RICH CLUSTERS. 2013 , 773, 86		18
1694	STELLAR MASS-GAP AS A PROBE OF HALO ASSEMBLY HISTORY AND CONCENTRATION: YOUTH HIDDEN AMONG OLD FOSSILS. 2013 , 777, 154		22
1693	MEASURING GALAXY STAR FORMATION RATES FROM INTEGRATED PHOTOMETRY: INSIGHTS FROM COLOR-MAGNITUDE DIAGRAMS OF RESOLVED STARS. 2013 , 772, 8		38
1692	THE ROLE OF GALAXY INTERACTION IN THE SFR-M*RELATION: CHARACTERIZING MORPHOLOGICAL PROPERTIES OFHerschel-SELECTED GALAXIES AT 0.2 . 2013 , 778, 129		41
1691	Do group dynamics play a role in the evolution of member galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 1715-1726	4.3	20

1690	Efficient satellite quenching at z~1 from the GEEC2 spectroscopic survey of galaxy groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 1090-1106	1.3	47
1689	Modelling the narrow-line regions of active galaxies in the Sloan Digital Sky Survey []. Sample selection and physical conditions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 2605-262	 -3	18
1688	Galaxy triplets in Sloan Digital Sky Survey Data Release 7 - II. A connection with compact groups?. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3547-3558	1.3	12
1687	CORRELATIONS BETWEEN SDSS TYPE Ia SUPERNOVA RATES AND HOST GALAXY PROPERTIES. 2013 , 145, 83		8
1686	PS1-12sk IS A PECULIAR SUPERNOVA FROM A He-RICH PROGENITOR SYSTEM IN A BRIGHTEST CLUSTER GALAXY ENVIRONMENT. 2013 , 769, 39		40
1685	THE CALIBRATION OF STAR FORMATION RATE INDICATORS FORWISE22 th-SELECTED GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. 2013 , 774, 62		60
1684	THE INTRINSIC SCATTER ALONG THE MAIN SEQUENCE OF STAR-FORMING GALAXIES ATz~ 0.7. 2013 , 778, 23		51
1683	Far-Infrared and submillimeter properties of SDSS galaxies in theHerschelATLAS science demonstration phase field. 2013 , 13, 179-196		5
1682	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z \sim 1.6. I. HBASED STAR FORMATION RATES AND DUST EXTINCTION. 2013 , 777, L8		158
1681	The metallicityfiedshift relations for emission-line SDSS galaxies: examination of the dependence on the star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 1217-1230	1.3	24
1680	Shape Index Descriptors Applied to Texture-Based Galaxy Analysis. 2013,		8
1679	Nearest neighbour regression outperforms model-based prediction of specific star formation rate. 2013 ,		6
1678	STAR FORMATION IN TWO LUMINOUS SPIRAL GALAXIES. 2013 , 146, 92		15
1677	TIGHT CORRELATIONS BETWEEN MASSIVE GALAXY STRUCTURAL PROPERTIES AND DYNAMICS: THE MASS FUNDAMENTAL PLANE WAS IN PLACE BY z \sim 2. 2013 , 779, L21		50
1676	CHARACTERIZING THE MID-INFRARED EXTRAGALACTIC SKY WITHWISEAND SDSS. 2013 , 145, 55		130
1675	DEMOGRAPHICS OF SLOAN DIGITAL SKY SURVEY GALAXIES ALONG THE HUBBLE SEQUENCE. 2013 , 146, 151		6
1674	PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 . 2013 , 771, 7		6
1673	FINE-STRUCTURE Fe II* EMISSION AND RESONANT Mg II EMISSION INZ~ 1 STAR-FORMING GALAXIES. 2013 , 774, 50		31

1	672	PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROMz= 0-1. 2013 , 767, 50	375	5
1	671	Dependence of galaxy quenching on halo mass and distance from its centre. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 3306-3326	143	3
1	670	DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 ?z? 1.5 WITHHUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY. 2013 , 763, 145	142	2
1	669	Encoding of the infrared excess in the NUVrK color diagram for star-forming galaxies. 2013, 558, A67	100	O
1	668	THE BALDWIN EFFECT IN THE NARROW EMISSION LINES OF ACTIVE GALACTIC NUCLEI. 2013 , 762, 51	26	
1	667	Spot the difference. 2013 , 558, A61	60	
1	666	A Virtual Observatory Census to Address Dwarfs Origins (AVOCADO). 2013 , 554, A20	12	
1	665	THE STELLAR MASS STRUCTURE OF MASSIVE GALAXIES FROMz= 0 TOz= 2.5: SURFACE DENSITY PROFILES AND HALF-MASS RADII. 2013 , 763, 73	81	
1	664	DISSECTION OF HEMITTERS: LOW-zANALOGS OFz> 4 STAR-FORMING GALAXIES. 2013, 765, 26	16	
1	663	THE EGNoG SURVEY: GAS EXCITATION IN NORMAL GALAXIES ATZD.3. 2013, 763, 64	21	
1	662	THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES. 2013 , 763, 92	55	
1	661	COMPARING HEAND H I SURVEYS AS MEANS TO A COMPLETE LOCAL GALAXY CATALOG IN THE ADVANCED LIGO/VIRGO ERA. 2013 , 764, 149	10	
1	660	THE MASS-METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES. 2013 , 765, 140	311	ſ
1	659	STELLAR KINEMATICS OF $z\sim 2$ GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES,. 2013 , 771, 85	158	8
1	658	The cosmic evolution of oxygen and nitrogen abundances in star-forming galaxies over the past 10 Gyr. 2013 , 549, A25	69	
1	657	A method for quantifying the gamma-ray burst bias. Application in the redshift range of 01.1. 2013, 557, A34	23	
1	656	THE FUNDAMENTAL METALLICITY RELATION REDUCES TYPE Ia SN HUBBLE RESIDUALS MORE THAN HOST MASS ALONE. 2013 , 764, 191	46	
1	655	THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 2013, 762, L15	62	

1654	Mass-metallicity relation explored with CALIFA. 2013 , 554, A58	177
1653	Multi-wavelength landscape of the young galaxy cluster RX J1257.2+4738 atz= 0.866. 2013 , 558, A100	17
1652	Probing AGN triggering mechanisms through the starburstiness of the host galaxies. 2013 , 559, A56	17
1651	Effect of bars in AGN host galaxies and black hole activity. 2013 , 549, A141	23
1650	Integrated spectroscopy of theHerschelReference Survey. 2013 , 550, A114	40
1649	ON THE THREE-DIMENSIONAL STRUCTURE OF THE MASS, METALLICITY, AND STAR FORMATION RATE SPACE FOR STAR-FORMING GALAXIES. 2013 , 764, 178	29
1648	Fueling the central engine of radio galaxies. 2013 , 549, A58	17
1647	Aperture corrections for disk galaxy properties derived from the CALIFA survey. 2013 , 553, L7	33
1646	Hidden starbursts and active galactic nuclei at 0 . 2014 , 572, A90	27
1645	Cold gas properties of theHerschelReference Survey. 2014 , 564, A66	124
	Cold gas properties of theHerschelReference Survey. 2014 , 564, A66 A new sample of X-ray selected narrow emission-line galaxies. 2014 , 568, A108	124
1644	A new sample of X-ray selected narrow emission-line galaxies. 2014 , 568, A108 OFFSET ACTIVE GALACTIC NUCLEI AS TRACERS OF GALAXY MERGERS AND SUPERMASSIVE BLACK	19
1644	A new sample of X-ray selected narrow emission-line galaxies. 2014 , 568, A108 OFFSET ACTIVE GALACTIC NUCLEI AS TRACERS OF GALAXY MERGERS AND SUPERMASSIVE BLACK HOLE GROWTH. 2014 , 789, 112	19 52
1644 1643 1642	A new sample of X-ray selected narrow emission-line galaxies. 2014, 568, A108 OFFSET ACTIVE GALACTIC NUCLEI AS TRACERS OF GALAXY MERGERS AND SUPERMASSIVE BLACK HOLE GROWTH. 2014, 789, 112 The broad wing of the [O III] \$\mathbb{B}\$007 emission line in active galactic nuclei. 2014, 14, 913-922 Relations between stellar mass and electron temperature-based metallicity for star-forming	19 52
1644 1643 1642	A new sample of X-ray selected narrow emission-line galaxies. 2014, 568, A108 OFFSET ACTIVE GALACTIC NUCLEI AS TRACERS OF GALAXY MERGERS AND SUPERMASSIVE BLACK HOLE GROWTH. 2014, 789, 112 The broad wing of the [O III] B007 emission line in active galactic nuclei. 2014, 14, 913-922 Relations between stellar mass and electron temperature-based metallicity for star-forming galaxies in a wide mass range. 2014, 14, 875-890 A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING MAIN	19 52 5
1644 1643 1642 1641	A new sample of X-ray selected narrow emission-line galaxies. 2014, 568, A108 OFFSET ACTIVE GALACTIC NUCLEI AS TRACERS OF GALAXY MERGERS AND SUPERMASSIVE BLACK HOLE GROWTH. 2014, 789, 112 The broad wing of the [O III] B007 emission line in active galactic nuclei. 2014, 14, 913-922 Relations between stellar mass and electron temperature-based metallicity for star-forming galaxies in a wide mass range. 2014, 14, 875-890 A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING MAIN SEQUENCEIFROM z ~ 0-6. 2014, 214, 15 Comparison of some properties of star forming galaxies and active galactic nuclei between two	19 52 5

1636	AN ENVIRONMENTAL STUDY OF THE ULTRALUMINOUS X-RAY SOURCE POPULATION IN EARLY-TYPE GALAXIES. 2014 , 780, 6		11
1635	THE LYMAN ALPHA REFERENCE SAMPLE. III. PROPERTIES OF THE NEUTRAL ISM FROM GBT AND VLA OBSERVATIONS. 2014 , 794, 101		28
1634	HighMass-High H I MASS, H I-RICH GALAXIES ATz~ 0 SAMPLE DEFINITION, OPTICAL AND H \oplus IMAGING, AND STAR FORMATION PROPERTIES. 2014 , 793, 40		27
1633	GALAXY EMISSION LINE CLASSIFICATION USING THREE-DIMENSIONAL LINE RATIO DIAGRAMS. 2014 , 793, 127		21
1632	A RARE ENCOUNTER WITH VERY MASSIVE STARS IN NGC 3125-A1. 2014 , 781, 122		19
1631	The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 889-907	4.3	381
1630	Herschel-ATLAS/GAMA: How does the far-IR luminosity function depend on galaxy group properties?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 2253-2270	4.3	8
1629	Molecular gas content of H i monsters and implications to cold gas content evolution in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 1363-1379	4.3	10
1628	Dissecting the red sequence: the bulge and disc colours of early-type galaxies in the Coma cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 1690-1711	4.3	36
1627	Interacting galaxies: corotating and counter-rotating systems with tidal tails. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 1784-1793	4.3	15
1626	ALLSMOG: an APEX Low-redshift Legacy Survey for MOlecular Gas II. Molecular gas scaling relations, and the effect of the CO/H2 conversion factor. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 2599-2620	4.3	65
1625	The significant contribution of minor mergers to the cosmic star formation budget. 2014 , 437, L41-L45		70
1624	The dependence of the galaxy mass-metallicity relation on environment and the implied metallicity of the IGM. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 262-270	4.3	56
1623	A multiple dry merger at $z = 0.18$: witnessing the assembly of a massive elliptical galaxy. Monthly Notices of the Royal Astronomical Society, 2014 , 443, 288-298	4.3	2
1622	Interpreting high [O iii]/H I atios with maturing starbursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 3466-3472	4.3	47
1621	Herschel far-IR counterparts of SDSS galaxies: analysis of commonly used star formation rate estimates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 2-23	4.3	18
1620	Bulge mass is king: the dominant role of the bulge in determining the fraction of passive galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 599-629	4.3	155
1619	Galaxy And Mass Assembly (GAMA): the wavelength-dependent sizes and profiles of galaxies revealed by MegaMorph. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 1340-1362	4.3	55

1618	The violent youth of bright and massive cluster galaxies and their maturation over 7 billion years. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 589-615	4.3	26
1617	The evolution of the star-forming sequence in hierarchical galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 2637-2664	4.3	46
1616	DYNAMO II. A sample of HHuminous galaxies with resolved kinematics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 1070-1095	4.3	94
1615	The importance of minor-merger-driven star formation and black hole growth in disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2944-2952	4.3	103
1614	The main sequence of star-forming galaxies at $z \sim 0.6$: reinstating major mergers. 2014 , 443, L49-L53		17
1613	On the origin of the fundamental metallicity relation and the scatter in galaxy scaling relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 168-185	4.3	60
1612	Spitzer Local Volume Legacy (LVL) SEDs and physical properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 899-912	4.3	47
1611	Theoretical modelling of emission-line galaxies: new classification parameters for mid-infrared and optical spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 1358-1369	4.3	17
1610	A multiwavelength consensus on the main sequence of star-forming galaxies at z´~ ´2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 19-30	4.3	91
1609	Kiso Supernova Survey (KISS): Survey strategy. 2014 , 66, 114		32
1609 1608	Kiso Supernova Survey (KISS): Survey strategy. 2014, 66, 114 The MaGICC volume: reproducing statistical properties of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3529-3539	4.3	3 ²
1608	The MaGICC volume: reproducing statistical properties of high-redshift galaxies. <i>Monthly Notices of</i>	4.3	
1608	The MaGICC volume: reproducing statistical properties of high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3529-3539	4.3	49
1608 1607	The MaGICC volume: reproducing statistical properties of high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3529-3539 Reproducing cosmic evolution of galaxy population from z = 4 to 0. 2014 , 66, 70 The physical nature of the 8 o'clock arc based on near-IR IFU spectroscopy with SINFONI?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2201-2221		49
1608 1607 1606	The MaGICC volume: reproducing statistical properties of high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3529-3539 Reproducing cosmic evolution of galaxy population from z = 4 to 0. 2014 , 66, 70 The physical nature of the 8 o'clock arc based on near-IR IFU spectroscopy with SINFONI?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2201-2221 Building a predictive model of galaxy formation []. Phenomenological model constrained to the z = 0 stellar mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 2599-2636	4.3	49 28 18
1608 1607 1606	The MaGICC volume: reproducing statistical properties of high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3529-3539 Reproducing cosmic evolution of galaxy population from z = 4 to 0. 2014 , 66, 70 The physical nature of the 8 o'clock arc based on near-IR IFU spectroscopy with SINFONI?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2201-2221 Building a predictive model of galaxy formation []. Phenomenological model constrained to the z = 0 stellar mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 2599-2636 The evolution of star formation activity in galaxy groups. <i>Monthly Notices of the Royal Astronomical</i>	4.3	49 28 18 37
1608 1607 1606 1605	The MaGICC volume: reproducing statistical properties of high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3529-3539 Reproducing cosmic evolution of galaxy population from z = 4 to 0. 2014 , 66, 70 The physical nature of the 8 o'clock arc based on near-IR IFU spectroscopy with SINFONI?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2201-2221 Building a predictive model of galaxy formation []. Phenomenological model constrained to the z = 0 stellar mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 2599-2636 The evolution of star formation activity in galaxy groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 2725-2745	4·3 4·3	49 28 18 37

1600	From voids to Coma: the prevalence of pre-processing in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 3564-3586	4.3	45	
1599	Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 3986-4010	4.3	15	
1598	The connection between galaxy structure and quenching efficiency. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 843-858	4.3	78	
1597	Integral field spectroscopy of nearby QSOs []. ENLR size[]uminosity relation, ongoing star formation and resolved gas-phase metallicities?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 755-783	4.3	54	
1596	Dynamics and metallicity of far-infrared selected galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 3780-3794	4.3	11	
1595	How typical is the Coma cluster?. Monthly Notices of the Royal Astronomical Society, 2014 , 438, 3049-305	54 .3	15	
1594	Brightest cluster galaxies in cosmological simulations with adaptive mesh refinement: successes and failures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 1500-1508	4.3	29	
1593	GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at $z = 0.09$. Monthly Notices of the Royal Astronomical Society, 2014 , 446, 3911-3925	4.3	34	
1592	A study of selection methods for Hæmitting galaxies atz~ 1.3 for the Subaru/FMOS galaxy redshift survey for cosmology (FastSound). 2014 , 66, 43		5	
1591	CENTRAL GALAXIES IN DIFFERENT ENVIRONMENTS: DO THEY HAVE SIMILAR PROPERTIES?. 2014 , 788, 29		24	
1590	STARS WERE BORN IN SIGNIFICANTLY DENSER REGIONS IN THE EARLY UNIVERSE. 2014 , 787, 120		69	
1589	THE ENVIRONMENTAL IMPACTS ON THE STAR FORMATION MAIN SEQUENCE: AN HISTUDY OF THE NEWLY DISCOVERED RICH CLUSTER ATz= 1.52. 2014 , 789, 18		35	
1588	TRACING RAM-PRESSURE STRIPPING WITH WARM MOLECULAR HYDROGEN EMISSION. 2014 , 796, 89		18	
1587	THE MASS-METALLICITY AND FUNDAMENTAL METALLICITY RELATIONS ATz> 2 USING VERY LARGE TELESCOPE AND SUBARU NEAR-INFRARED SPECTROSCOPY OF ZCOSMOS GALAXIES. 2014 , 792, 3		70	
1586	THE ENVIRONMENT OF BARRED GALAXIES IN THE LOW-REDSHIFT UNIVERSE. 2014 , 796, 98		21	
1585	THE FUNDAMENTAL PLANE OF MASSIVE QUIESCENT GALAXIES OUT TO z \sim 2. 2014 , 793, L31		24	
1584	STAR FORMATION AND SUBSTRUCTURE IN GALAXY CLUSTERS. 2014 , 783, 136		20	
1583	CANNIBALIZATION AND REBIRTH IN THE NGC 5387 SYSTEM. I. THE STELLAR STREAM AND STAR-FORMING REGION. 2014 , 790, 117		9	

1582	A CRITICAL LOOK AT THE MASS-METALLICITY-STAR FORMATION RATE RELATION IN THE LOCAL UNIVERSE. I. AN IMPROVED ANALYSIS FRAMEWORK AND CONFOUNDING SYSTEMATICS. 2014 , 797, 126		84
1581	REGULARITY UNDERLYING COMPLEXITY: A REDSHIFT-INDEPENDENT DESCRIPTION OF THE CONTINUOUS VARIATION OF GALAXY-SCALE MOLECULAR GAS PROPERTIES IN THE MASS-STAR FORMATION RATE PLANE. 2014 , 793, 19		210
1580	COMPARING THE HOST GALAXIES OF TYPE Ia, TYPE II, AND TYPE Ibc SUPERNOVAE. 2014 , 791, 57		6
1579	DENSE CORES IN GALAXIES OUT TOz= 2.5 IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS. 2014 , 791, 45		96
1578	TRACING THE EVOLUTION OF ACTIVE GALACTIC NUCLEI HOST GALAXIES OVER THE LAST 9 Gyr OF COSMIC TIME. 2014 , 783, 40		34
1577	ULTRALUMINOUS INFRARED GALAXIES IN THEAKARIALL-SKY SURVEY. 2014 , 797, 54		26
1576	DIRECT METHOD GAS-PHASE OXYGEN ABUNDANCES OF FOUR LYMAN BREAK ANALOGS. 2014 , 792, 140		6
1575	The main sequence and the fundamental metallicity relation in MaGICC Galaxies: evolution and scatter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 1794-1804	4.3	31
1574	Star formation and AGN activity in interacting galaxies: a near-UV perspective. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 2137-2145	4.3	21
1573	On the relation between Seyfert 2 accretion rate and environment at z > 0.1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 1199-1207	4.3	10
1572	Dilution in elliptical galaxies: implications for the relation between metallicity, stellar mass and star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 3817-3834	4.3	23
1571	The pre-processing of subhaloes in SDSS groups and clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 406-418	4.3	43
1570	The host galaxies of Type Ia supernovae discovered by the Palomar Transient Factory. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 1391-1416	4.3	72
1569	The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 3675-3702	4.3	91
1568	DIRECT MEASUREMENTS OF DUST ATTENUATION INz~ 1.5 STAR-FORMING GALAXIES FROM 3D-HST: IMPLICATIONS FOR DUST GEOMETRY AND STAR FORMATION RATES. 2014 , 788, 86		121
1567	THE PROPERTIES OF HEMISSION-LINE GALAXIES ATz= 2.24. 2014 , 784, 152		19
1566	THE MASS-INDEPENDENCE OF SPECIFIC STAR FORMATION RATES IN GALACTIC DISKS. 2014 , 785, L36		90
1565	STAR FORMATION TRENDS IN THE UNRELAXED, POST-MERGER CLUSTER A2255. 2014 , 794, 31		5

1564	THE ZURICH ENVIRONMENTAL STUDY (ZENS) OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. V. PROPERTIES AND FREQUENCY OF MERGING SATELLITES AND CENTRALS IN DIFFERENT ENVIRONMENTS. 2014 , 797, 127		11	
1563	THE SECOND-GENERATIONz(REDSHIFT) AND EARLY UNIVERSE SPECTROMETER. I. FIRST-LIGHT OBSERVATION OF A HIGHLY LENSED LOCAL-ULIRG ANALOG AT HIGH-z. 2014 , 780, 142		18	
1562	The Frequency of Anomalously Red Galaxies in SDSS Clusters. 2014 , 31,			
1561	RESOLVED STAR FORMATION ON SUB-GALACTIC SCALES IN A MERGER ATz= 1.7. 2014 , 790, 143		20	
1560	THE LyREFERENCE SAMPLE. I. SURVEY OUTLINE AND FIRST RESULTS FOR MARKARIAN 259. 2014 , 797, 11		78	
1559	GEOMETRY OF STAR-FORMING GALAXIES FROM SDSS, 3D-HST, AND CANDELS. 2014 , 792, L6		89	
1558	A CATALOG OF BULGE, DISK, AND TOTAL STELLAR MASS ESTIMATES FOR THE SLOAN DIGITAL SKY SURVEY. 2014 , 210, 3		141	
1557	Comparing infrared star formation rate indicators with optically derived quantities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 2711-2721	4.3	3	
1556	ACTIVE GALACTIC NUCLEI EMISSION LINE DIAGNOSTICS AND THE MASS-METALLICITY RELATION UP TO REDSHIFTz~ 2: THE IMPACT OF SELECTION EFFECTS AND EVOLUTION. 2014 , 788, 88		109	
1555	THE SHOCK-INDUCED STAR FORMATION SEQUENCE RESULTING FROM A CONSTANT SPIRAL PATTERN SPEED. 2014 , 790, 118		7	
1554	3D-HST EMISSION LINE GALAXIES ATz \sim 2: DISCREPANCIES IN THE OPTICAL/UV STAR FORMATION RATES. 2014 , 790, 113		16	
1553	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES ATz \sim 1.6. II. THE MASS-METALLICITY RELATION AND THE DEPENDENCE ON STAR FORMATION RATE AND DUST EXTINCTION. 2014 , 792, 75		120	
1552	A FAR-IR VIEW OF THE STARBURST-DRIVEN SUPERWIND IN NGC 2146. 2014 , 790, 26		17	
1551	FROM STARBURST TO QUIESCENCE: TESTING ACTIVE GALACTIC NUCLEUS FEEDBACK IN RAPIDLY QUENCHING POST-STARBURST GALAXIES. 2014 , 792, 84		76	
1550	THE PAN-STARRS1 MEDIUM-DEEP SURVEY: THE ROLE OF GALAXY GROUP ENVIRONMENT IN THE STAR FORMATION RATE VERSUS STELLAR MASS RELATION AND QUIESCENT FRACTION OUT TOz~ 0.8. 2014 , 782, 33		60	
1549	Constraints on the galaxy Thain sequence Lat z'>'5: the stellar mass of HDF850.1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 3118-3126	4.3	3	
1548	Optically selected BLR-less active galactic nuclei from the SDSS Stripe82 Database []. The sample. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 557-572	4.3	8	
1547	Ionization state of inter-stellar medium in galaxies: evolution, SFRM*I dependence, and ionizing photon escape. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 900-916	4.3	212	

1546	Galaxy evolution near groups and clusters: ejected satellites and the spatial extent of environmental quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 2687-2700	4.3	103
1545	A dichotomy in satellite quenching around L* galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 1930-1941	4.3	47
1544	The influence of the environmental history on quenching star formation in a Itold dark matter universe. <i>Monthly Notices of the Royal Astronomical Society,</i> 2014 , 444, 2938-2959	4.3	74
1543	MOLECULAR HYDROGEN REGULATED STAR FORMATION IN COSMOLOGICAL SMOOTHED PARTICLE HYDRODYNAMICS SIMULATIONS. 2014 , 780, 145		39
1542	SELECTION AND MID-INFRARED SPECTROSCOPY OF ULTRALUMINOUS STAR-FORMING GALAXIES ATz~ 2. 2014 , 781, 63		5
1541	History of Star Formation of the Galaxy Cluster Abell 85. 2014 , 38, 117-126		1
1540	Which galaxies dominate the neutral gas content of the Universe?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 920-941	4.3	69
1539	The stellar IMF in early-type galaxies from a non-degenerate set of optical line indices. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 1483-1499	4.3	119
1538	COSMIC WEB AND STAR FORMATION ACTIVITY IN GALAXIES ATz~ 1. 2014 , 796, 51		74
1537	A UNIFORM HISTORY FOR GALAXY EVOLUTION. 2014 , 796, 25		16
1536	CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 . 2014 , 795, 104		516
1535	AN ALMA SURVEY OF SUB-MILLIMETER GALAXIES IN THE EXTENDEDCHANDRADEEP FIELD SOUTH: SUB-MILLIMETER PROPERTIES OF COLOR-SELECTED GALAXIES. 2014 , 780, 115		14
1534	The star formation activity in cosmic voids. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 4045-4054	4.3	27
1533	The total infrared luminosity may significantly overestimate the star formation rate of quenching and recently quenched galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 1598-160	44.3	94
1532	A SIMPLE MODEL LINKING GALAXY AND DARK MATTER EVOLUTION. 2014 , 793, 12		34
1531	Far-Infrared Surveys of Galaxy Evolution. 2014 , 52, 373-414		62
1530	Cosmic Star-Formation History. 2014 , 52, 415-486		1949
1529	Close Neighbors of Markarian Galaxies. II. Statistics and Discussions. 2014 , 57, 14-29		4

1528	CONNECTIONS BETWEEN GALAXY MERGERS AND STARBURST: EVIDENCE FROM THE LOCAL UNIVERSE. 2014 , 789, L16	18
1527	LONG GRBs ARE METALLICITY-BIASED TRACERS OF STAR FORMATION: EVIDENCE FROM HOST GALAXIES AND REDSHIFT DISTRIBUTION. 2014 , 213, 15	22
1526	FIRST RESULTS FROM THE DRAGONFLY TELEPHOTO ARRAY: THE APPARENT LACK OF A STELLAR HALO IN THE MASSIVE SPIRAL GALAXY M101. 2014 , 782, L24	97
1525	Quantitative constraints on starburst cycles in galaxies with stellar masses in the range 108-1010 M'. Monthly Notices of the Royal Astronomical Society, 2014 , 441, 2717-2724 4-3	52
1524	What Regulates Galaxy Evolution? Open questions in our understanding of galaxy formation and evolution. 2014 , 62-63, 1-14	11
1523	The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. 2014 , 52, 589-660	600
1522	HUBBLE SPACE TELESCOPEGRISM SPECTROSCOPY OF EXTREME STARBURSTS ACROSS COSMIC TIME: THE ROLE OF DWARF GALAXIES IN THE STAR FORMATION HISTORY OF THE UNIVERSE. 2014 , 789, 96	43
1521	VIMOS Ultra-Deep Survey (VUDS): Witnessing the assembly of a massive cluster atz~ 3.3. 2014 , 572, A41	42
1520	AGN spiral galaxies in groups: effects of bars. 2014 , 572, A86	12
1519	Nearby supernova host galaxies from the CALIFA Survey. 2014 , 572, A38	68
1518	Properties of star forming galaxies in AKARI Deep Field-South. 2014 , 562, A15	10
1517	The star formation history of CALIFA galaxies: Radial structures. 2014 , 562, A47	118
1516	The evolution of the dust and gas content in galaxies. 2014 , 562, A30	189
1515	Ultraviolet to infrared emission ofz> 1 galaxies: Can we derive reliable star formation rates and stellar masses?. 2014 , 561, A39	49
1514	The Mice at play in the CALIFA survey. 2014 , 567, A132	34
1513	SDSS superclusters: morphology and galaxy content. 2014 , 562, A87	47
1512	TheHerschelExploitation of Local Galaxy Andromeda (HELGA). 2014 , 567, A71	44
1511	The evolution of the dust temperatures of galaxies in the SFRM*plane up toz´~´2. 2014 , 561, A86	158

1510	A new population of recently quenched elliptical galaxies in the SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 533-557	4.3	41
1509	Physical properties of UDF12 galaxies in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 731-745	4.3	32
1508	Herschel-ATLAS: the connection between star formation and AGN activity in radio-loud and radio-quiet active galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 3776-3794	4.3	43
1507	Biases and systematics in the observational derivation of galaxy properties: comparing different techniques on synthetic observations of simulated galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 2381-2400	4.3	18
1506	Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 917-932	4.3	145
1505	A unified explanation for the supernova rate-galaxy mass dependence based on supernovae detected in Sloan galaxy spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 905-925	4.3	39
1504	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: POST-STARBURST SIGNATURES IN QUASAR HOST GALAXIES ATz2015, 811, 91		28
1503	LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS. 2015 , 810, L15		58
1502	UNVEILING THE MILKY WAY: A NEW TECHNIQUE FOR DETERMINING THE OPTICAL COLOR AND LUMINOSITY OF OUR GALAXY. 2015 , 809, 96		33
1501	THE GAS PHASE MASS METALLICITY RELATION FOR DWARF GALAXIES: DEPENDENCE ON STAR FORMATION RATE AND HI GAS MASS. 2015 , 812, 98		18
1500	DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS. 2015 , 812, 104		17
1499	SHARDS: A GLOBAL VIEW OF THE STAR FORMATION ACTIVITY ATz~ 0.84 andz~ 1.23. 2015 , 812, 155		12
1498	STAR FORMATION ACTIVITY IN CLASH BRIGHTEST CLUSTER GALAXIES. 2015 , 813, 117		33
1497	LEO P: AN UNQUENCHED VERY LOW-MASS GALAXY. 2015 , 812, 158		72
1496	FROM OUTSIDE-IN TO INSIDE-OUT: GALAXY ASSEMBLY MODE DEPENDS ON STELLAR MASS. 2015 , 804, L42		33
1495	GALAXY STRUCTURE AS A DRIVER OF THE STAR FORMATION SEQUENCE SLOPE AND SCATTER. 2015 , 811, L12		90
1494	The far-infrared/radio correlation and radio spectral index of galaxies in the SFRM*plane up toz~2. 2015 , 573, A45		94
1493	SPECTROSCOPIC STUDY OF STAR-FORMING GALAXIES IN FILAMENTS AND THE FIELD ATz~ 0.5: EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF ELECTRON DENSITY. 2015 , 814, 84		40

1492	HB: an HHmaging survey of HI selected galaxies from ALFALFA. 2015 , 580, A116		88	
1491	Dust attenuation up toz? 2 in the AKARI North Ecliptic Pole Deep Field. 2015 , 577, A141		28	
1490	HB: an HHmaging survey of HI selected galaxies from ALFALFA. 2015 , 576, A16		13	
1489	MAJOR MERGERS WITH SMALL GALAXIES: THE DISCOVERY OF A MAGELLANIC-TYPE GALAXY ATz= 0.12. 2015 , 815, 105		3	
1488	THE MOSDEF SURVEY: DISSECTING THE STAR FORMATION RATE VERSUS STELLAR MASS RELATION USING HAND HEMISSION LINES ATz~ 2. 2015 , 815, 98		76	
1487	Retired galaxies: not to be forgotten in the quest of the star formation IAGN connection. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 559-573	4.3	33	
1486	Understanding chemical evolution in resolved galaxies []. The local star fraction the tallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 2126-2134	4.3	28	
1485	Star formation properties of Hickson Compact Groups based on deep H\(\textrm{H}\)maging. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2793-2813	4.3	9	
1484	Decreased specific star formation rates in AGN host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1841-1860	4.3	55	
1483	Predicting dust extinction properties of star-forming galaxies from H#UV ratio. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 879-892	4:3	28	
1482	P-MaNGA Galaxies: emission-lines properties has ionization and chemical abundances from prototype observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 867-900	4.3	63	
1481	Radio-AGN feedback: when the little ones were monsters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 1538-1545	4.3	18	
1480	Studying the evolution of galaxies in compact groups over the past 3 Gyr []. Nuclear activity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 3114-3126	4.3	12	
1479	Galaxy pairs in the Sloan Digital Sky Survey IXII. The fuelling mechanism of low-excitation radio-loud AGN. 2015 , 451, L35-L39		45	
1478	Physical conditions of the interstellar medium in star-forming galaxies atz ~ 1.5. 2015 , 67, 80		26	
1477	Physical properties of distant red galaxies in the COSMOS/UltraVISTA field. 2015 , 67, 91		1	
1476	DUST IN THE CIRCUMGALACTIC MEDIUM OF LOW-REDSHIFT GALAXIES. 2015 , 813, 7		50	
1475	The composite nature of Dust-Obscured Galaxies (DOGs) atz ~ 2B in the COSMOS field II. A far-infrared view. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 470-485	4.3	17	

1474	The triggering of local AGN and their role in regulating star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 774-783	4.3	27
1473	Physical origin of the large-scale conformity in the specific star formation rates of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1840-1847	4.3	26
1472	Galaxy Zoo: the dependence of the star formation stellar mass relation on spiral disc morphology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 820-827	4.3	51
1471	The evolution of disc galaxies with and without classical bulges since $z \sim 1$. Monthly Notices of the Royal Astronomical Society, 2015 , 451, 2-16	4.3	13
1470	Spectral classification indicators of emission-line galaxies from the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 629-633	4.3	1
1469	Star formation properties of galaxy cluster A1767. 2015 , 15, 1773-1783		2
1468	TheHerschelview of the dominant mode of galaxy growth fromz= 4 to the present day. 2015 , 575, A74		422
1467	Hæmaging of theHerschelReference Survey. 2015 , 579, A102		61
1466	The resolved star-formation relation in nearby active galactic nuclei. 2015 , 577, A135		32
1465	GOODS-Herschel: identification of the individual galaxies responsible for the 80🛭90 th cosmic infrared background. 2015 , 579, A93		12
1464	Unusual A2142 supercluster with a collapsing core: distribution of light and mass. 2015 , 580, A69		22
1463	Satellite content and quenching of star formation in galaxy groups atz~ 1.8. 2015 , 581, A56		10
1462	Abundance patterns in early-type galaxies: is there a kineelin the [Fe/H] vs. [#Fe] relation?. 2015 , 582, A46		34
1461	Galaxy morphologies in the era of big-data surveys. 2015 , 11, 118-125		
1460	Evolution of the ISM in main-sequence versus starburst galaxies: A motivation for molecular deep fields. 2015 , 11, 228-235		
1459	The star formation rate cookbook at 1′. 2015 , 582, A80		14
1458	Comparing galaxy populations in compact and loose groups of galaxies. 2015 , 573, A96		9
1457	Star formation in the local Universe from the CALIFA sample. 2015 , 584, A87		78

1456	MATCHING THE EVOLUTION OF THE STELLAR MASS FUNCTION USING LOG-NORMAL STAR FORMATION HISTORIES. 2015 , 801, L12		27	
1455	THE STAR FORMATION MAIN SEQUENCE: THE DEPENDENCE OF SPECIFIC STAR FORMATION RATE AND ITS DISPERSION ON GALAXY STELLAR MASS. 2015 , 808, L49		28	
1454	Galaxy stellar mass assembly: the difficulty matching observations and semi-analytical predictions. 2015 , 575, A32		18	
1453	Mass-metallicity relation of zCOSMOS galaxies atzl 0.7, its dependence on star formation rate, and the existence of massive low-metallicity galaxies. 2015 , 577, A14		29	
1452	Molecular depletion times and the CO-to-H2conversion factor in metal-poor galaxies. 2015 , 583, A114		63	
1451	SPECTRAL PROPERTIES OF GALAXIES IN VOID REGIONS. 2015 , 810, 165		9	
1450	Looking for the least luminous BL Lacertae objects. 2015 , 580, A73		13	
1449	The evolving star formation rate:M?relation and sSFR sincez? 5 from the VUDS spectroscopic survey. 2015 , 581, A54		111	
1448	Predicting galaxy star formation rates via the co-evolution of galaxies and haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 651-662	4.3	40	
1447	EVIDENCE FOR (AND AGAINST) PROGENITOR BIAS IN THE SIZE GROWTH OF COMPACT RED GALAXIES. 2015 , 798, 26		17	
1446	Variation of galactic cold gas reservoirs with stellar mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 1610-1617	4.3	56	
1445	The mass dependence of satellite quenching in Milky Way-like haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 698-710	4.3	21	
1444	Star formation quenching in simulated group and cluster galaxies: when, how, and why?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 969-992	4.3	88	
1443	MC2: boosted AGN and star formation activity in CIZA J2242.8+5301, a massive post-merger cluster at z = 0.19. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 630-645	4.3	49	
1442	Consequences of bursty star formation on galaxy observables at high redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 839-848	4.3	43	
1441	Gas-phase metallicity profiles of the Bluedisk galaxies: Is metallicity in a local star formation regulated equilibrium?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 210-235	4.3	24	
1440	A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 122-127	4.3	8	
1439	Nature or nurture? Clues from the distribution of specific star formation rates in SDSS galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 888-903	4.3	20	

1438	Galaxy Zoo: evidence for diverse star formation histories through the green valley. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 435-453	4.3	91
1437	How environment drives galaxy evolution: Lessons learnt from satellite galaxies. 2015 , 336, 505-510		6
1436	Evolution of star formation in the UKIDSS Ultra Deep Survey Field [II. Star formation as a function of stellar mass betweenz´=´1.46 and 0.63. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 2015-2025	4.3	6
1435	Galaxy pairs in the Sloan Digital Sky Survey IX. Does gas content alter star formation rate enhancement in galaxy interactions?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 3719	9 -3 740	29
1434	The link between mass distribution and starbursts in dwarf galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 3886-3892	4.3	12
1433	Radio AGN in spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1595-1604	4.3	22
1432	Redshift evolution of stellar mass versus gas fraction relation in 0 . <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 3792-3804	4.3	15
1431	Galaxy And Mass Assembly (GAMA): end of survey report and data release 2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 2087-2126	4.3	329
1430	Quenching and morphological transformation in semi-analytic models and CANDELS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2933-2956	4.3	46
1429	THE MOSDEF SURVEY: MASS, METALLICITY, AND STAR-FORMATION RATE ATz~ 2.3. 2015 , 799, 138		179
1428	ONE PLANE FOR ALL: MASSIVE STAR-FORMING AND QUIESCENT GALAXIES LIE ON THE SAME MASS FUNDAMENTAL PLANE ATz~ 0 ANDz~ 0.7. 2015 , 799, 148		28
1427	CONNECTING DARK MATTER HALOS WITH THE GALAXY CENTER AND THE SUPERMASSIVE BLACK HOLE. 2015 , 800, 124		31
1426	UNDERSTANDING BLACK HOLE MASS ASSEMBLY VIA ACCRETION AND MERGERS AT LATE TIMES IN COSMOLOGICAL SIMULATIONS. 2015 , 799, 178		42
1425	GALAXY EVOLUTION IN THE MID-INFRARED GREEN VALLEY: A CASE OF THE A2199 SUPERCLUSTER. 2015 , 800, 80		23
1424	THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY. 2015 , 800, 120		37
1423	CONTINUOUS MID-INFRARED STAR FORMATION RATE INDICATORS: DIAGNOSTICS FOR 0 . 2015 , 800, 143		15
1422	IZI: INFERRING THE GAS PHASE METALLICITY (Z) AND IONIZATION PARAMETER (q) OF IONIZED NEBULAE USING BAYESIAN STATISTICS. 2015 , 798, 99		96
1421	COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS. 2015 , 800, 20		395

1420	THE STELLAR-TO-HALO MASS RELATION OF LOCAL GALAXIES SEGREGATES BY COLOR. 2015 , 799, 130		85
1419	FROM BLUE STAR-FORMING TO RED PASSIVE: GALAXIES IN TRANSITION IN DIFFERENT ENVIRONMENTS. 2015 , 798, 52		40
1418	QUENCHING OF STAR FORMATION IN SLOAN DIGITAL SKY SURVEY GROUPS: CENTRALS, SATELLITES, AND GALACTIC CONFORMITY. 2015 , 800, 24		78
1417	DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES. 2015 , 799, 96		73
1416	RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION. 2015 , 798, 115		52
1415	THE RELATION BETWEEN DYNAMICAL MASS-TO-LIGHT RATIO AND COLOR FOR MASSIVE QUIESCENT GALAXIES OUT TOz \sim 2 AND COMPARISON WITH STELLAR POPULATION SYNTHESIS MODELS. 2015 , 799, 125		14
1414	Should we believe the results of ultraviolethillimetre galaxy spectral energy distribution modelling?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 1512-1535	3	75
1413	Galaxy formation in the Planck cosmology II. Matching the observed evolution of star formation rates, colours and stellar masses. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2663-2680	_r .3	371
1412	An early phase of environmental effects on galaxy properties unveiled by near-infrared spectroscopy of protocluster galaxies at z'>'2. Monthly Notices of the Royal Astronomical Society, 2015, 448, 666-680	3	46
1411	Brightest group galaxies and the large-scale environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 1483-1493	3	13
1410	GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIRRADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TOz? 4. 2015 , 807, 141		148
1409	DARK MATTER HALOS OF BARRED DISK GALAXIES. 2015 , 807, 111		11
1408	Using galaxy pairs to probe star formation during major halo mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 1546-1564	3	19
1407	HIGHz: a survey of the most H i-massive galaxies at z ~ 0.2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 3526-3544	3	55
1406	The massmetallicity relation of Lyman-break analogues and its dependence on galaxy properties. Monthly Notices of the Royal Astronomical Society, 2015 , 446, 1449-1457	3	27
1405	The creation and persistence of a misaligned gas disc in a simulated early-type galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 3269-3277	3	54
1404	On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7'. Monthly Notices of the Royal Astronomical Society, 2015 , 447, 786-805	3	47
1403	Looking below the floor: constraints on the AGN radio luminosity functions at low power. 2015 , 449, L128-L131		4

1402	Triggering optical AGN: the need for cold gas, and the indirect roles of galaxy environment and interactions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 110-116	4.3	34
1401	The evolution of the cold interstellar medium in galaxies following a starburst?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 258-279	4.3	48
1400	Two conditions for galaxy quenching: compact centres and massive haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 237-251	4.3	97
1399	Physical Models of Galaxy Formation in a Cosmological Framework. 2015 , 53, 51-113		667
1398	Galaxy evolution. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang. 2015 , 348, 314-7		170
1397	AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES. 2015 , 801, L29		198
1396	AN OPTICALLY OBSCURED AGN IN A LOW MASS, IRREGULAR DWARF GALAXY: A MULTI-WAVELENGTH ANALYSIS OF J1329+3234. 2015 , 798, 38		34
1395	THE RELATIONSHIP BETWEEN STELLAR MASS, GAS METALLICITY, AND STAR FORMATION RATE FOR HESELECTED GALAXIES ATZID.8 FROM THE NewHEURVEY. 2015 , 149, 79		36
1394	Strangulation as the primary mechanism for shutting down star formation in galaxies. 2015 , 521, 192-5		298
1393	The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 3548-3563	4.3	159
1392	The star formation history of galaxies: the role of galaxy mass, morphology and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 2749-2763	4.3	42
1391	DISCOVERY OF LARGE MOLECULAR GAS RESERVOIRS IN POST-STARBURST GALAXIES. 2015 , 801, 1		74
1390	(ALMOST) DARK HI SOURCES IN THE ALFALFA SURVEY: THE INTRIGUING CASE OF HI1232+20. 2015 , 801, 96		49
1389	SPECTRUM OF THE SUPERNOVA RELIC NEUTRINO BACKGROUND AND METALLICITY EVOLUTION OF GALAXIES. 2015 , 804, 75		30
1388	P-Manga: Gradients in recent star formation histories as diagnostics for Galaxy Growth and Death. 2015 , 804, 125		55
1387	ON THE DIFFUSE LyHALO AROUND LyEMITTING GALAXIES. 2015, 806, 46		35
1386	THE STAR FORMATION RATE AND METALLICITY OF THE HOST GALAXY OF THE DARK GRB 080325 ATz= 1.78. 2015 , 806, 250		14
1385	THE AGES, METALLICITIES, AND ELEMENT ABUNDANCE RATIOS OF MASSIVE QUENCHED GALAXIES AT \$zsimeq 1.6\$. 2015 , 808, 161		70

(2015-2015)

1384	MORPHOLOGIES OF ~190,000 GALAXIES AT $z = 0110$ REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION. 2015 , 219, 15	214
1383	COMPARING NARROW- AND BROAD-LINE AGNs IN A NEW DIAGNOSTIC DIAGRAM FOR EMISSION-LINE GALAXIES BASED ONWISEDATA. 2015 , 149, 192	10
1382	A PHYSICAL APPROACH TO THE IDENTIFICATION OF HIGH-ZMERGERS: MORPHOLOGICAL CLASSIFICATION IN THE STELLAR MASS DOMAIN. 2015 , 805, 181	28
1381	ON THE MASSIMETALLICITY STAR FORMATION RATE RELATION FOR GALAXIES ATz~2. 2015 , 808, 25	53
1380	CO emissions from optically selected galaxies at $\sim 0.1 \ D.2$: Tight anti-correlation between molecular gas fraction and 4000 [break strength. 2015 , 67, 36	4
1379	The search for active black holes in nearby low-mass galaxies using optical and mid-IR data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 3722-3742	62
1378	Morphology and structure of BzK-selected galaxies atz~ 2 in the CANDELS-COSMOS field. 2015 , 15, 819-827	2
1377	CFHTLenS: co-evolution of galaxies and their dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 298-314	108
1376	CHARACTERIZING THE STAR FORMATION OF THE LOW-MASS SHIELD GALAXIES FROMHUBBLE SPACE TELESCOPEIMAGING. 2015 , 802, 66	16
1375	STELLAR MASSES AND STAR FORMATION RATES FOR 1 M GALAXIES FROM SDSS+ WISE. 2015 , 219, 8	160
1374	FAR-INFRARED AND ACCRETION LUMINOSITIES OF THE PRESENT-DAY ACTIVE GALACTIC NUCLEI. 2015 , 807, 28	19
1373	THE RELATION BETWEEN LUMINOUS AGNs AND STAR FORMATION IN THEIR HOST GALAXIES. 2015 , 808, 159	39
1372	TINY TITANS: THE ROLE OF DWARFDWARF INTERACTIONS IN LOW-MASS GALAXY EVOLUTION. 2015 , 805, 2	65
1371	IMPROVED ESTIMATES OF THE MILKY WAYS STELLAR MASS AND STAR FORMATION RATE FROM HIERARCHICAL BAYESIAN META-ANALYSIS. 2015 , 806, 96	236
1370	FROM H i TO STARS: H I DEPLETION IN STARBURSTS AND STAR-FORMING GALAXIES IN THE ALFALFA HBURVEY. 2015 , 808, 66	20
1369	NEARBY CLUMPY, GAS RICH, STAR-FORMING GALAXIES: LOCAL ANALOGS OF HIGH-REDSHIFT CLUMPY GALAXIES. 2015 , 807, 134	22
1368	THE PANCHROMATIC STARBURST IRREGULAR DWARF SURVEY (STARBIRDS): OBSERVATIONS AND DATA ARCHIVE. 2015 , 218, 29	8
1367	THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S 4 G): STELLAR MASSES, SIZES, AND RADIAL PROFILES FOR 2352 NEARBY GALAXIES. 2015 , 219, 3	87

1366 The Evolution of Star Formation of Galaxies in the COSMOS Field,. **2015**, 39, 307-318

1365	How much dark matter is there inside early-type galaxies??. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 85-103	4.3	6
1364	HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY. 2016 , 830, 13		131
1363	THE MOLECULAR BARYON CYCLE OF M82. 2016 , 830, 72		10
1362	REST-FRAME OPTICAL EMISSION LINES INz~ 3.5 LYMAN-BREAK-SELECTED GALAXIES: THE UBIQUITY OF UNUSUALLY HIGH [O III]/HRATIOS AT 2 Gyr. 2016 , 820, 73		32
1361	VARIATIONS OF THE ISM COMPACTNESS ACROSS THE MAIN SEQUENCE OF STAR FORMING GALAXIES: OBSERVATIONS AND SIMULATIONS. 2016 , 817, 76		5
1360	HERSCHELOBSERVED STRIPE 82 QUASARS AND THEIR HOST GALAXIES: CONNECTIONS BETWEEN AGN ACTIVITY AND HOST GALAXY STAR FORMATION. 2016 , 824, 70		18
1359	THE ROLE OF MAJOR GAS-RICH MERGERS ON THE EVOLUTION OF GALAXIES FROM THE BLUE CLOUD TO THE RED SEQUENCE. 2016 , 826, 30		7
1358	A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW REDSHIFT C iv ABSORBERS. III. THE MASS- AND ENVIRONMENT-DEPENDENT CIRCUMGALACTIC MEDIUM. 2016 , 832, 124		60
1357	BEING WISE II: REDUCING THE INFLUENCE OF STAR FORMATION HISTORY ON THE MASS-TO-LIGHT RATIO OF QUIESCENT GALAXIES. 2016 , 832, 198		15
1356	CONSTRAINING AGN FEEDBACK IN MASSIVE ELLIPTICALS WITH SOUTH POLE TELESCOPE MEASUREMENTS OF THE THERMAL SUNYAEVZELDOVICH EFFECT. 2016 , 819, 128		24
1355	DIFFERENCES IN THE STRUCTURAL PROPERTIES AND STAR FORMATION RATES OF FIELD AND CLUSTER GALAXIES AT Z \sim 1. 2016 , 826, 60		13
1354	SPATIALLY OFFSET ACTIVE GALACTIC NUCLEI. I. SELECTION AND SPECTROSCOPIC PROPERTIES. 2016 , 829, 37		27
1353	MAPPING THE SIMILARITIES OF SPECTRA: GLOBAL AND LOCALLY-BIASED APPROACHES TO SDSS GALAXIES. 2016 , 833, 26		4
1352	OBSCURED AGNs IN BULGELESS HOSTS DISCOVERED BYWISE: THE CASE STUDY OF SDSS J1224+5555. 2016 , 827, 58		6
1351	Local starburst galaxies and their descendants. 2016 , 587, A72		25
1350	Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the past 10 Gyr. 2016 , 589, A35		52
1349	LOCAL ANALOGS FOR HIGH-REDSHIFT GALAXIES: RESEMBLING THE PHYSICAL CONDITIONS OF THE INTERSTELLAR MEDIUM IN HIGH-REDSHIFT GALAXIES. 2016 , 822, 62		32

1348	Properties of galaxies at the faint end of the Haminosity function atz~ 0.62. 2016 , 591, A151		4
1347	THE SFRM*RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 . 2016 , 817, 118		184
1346	The H i content of extremely metal-deficient blue compact dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 4268-4286	4.3	13
1345	An extreme [O III] emitter atz= 3.2: a low metallicity Lyman continuum source. 2016 , 585, A51		122
1344	NIBLES lan HI census of stellar mass selected SDSS galaxies. 2016 , 596, A60		5
1343	NIBLES: an H I census of stellar mass selected SDSS galaxies. 2016 , 595, A118		18
1342	Galaxy And Mass Assembly (GAMA): Improved emission lines measurements in four representative samples at 0.07 . 2016 , 590, A18		2
1341	A new sample of X-ray selected narrow emission-line galaxies. 2016 , 594, A72		3
1340	Observational evidence for the evolution of nuclear metallicity and star formation rate with the merger stage. 2016 , 16, 013		1
1339	TheHerschelVirgo Cluster Survey. 2016 , 589, A11		9
1339	TheHerschelVirgo Cluster Survey. 2016 , 589, A11 Star formation activity in Balmer break galaxies atz2016, 587, A136		9
			9
1338	Star formation activity in Balmer break galaxies atz2016, 587, A136 The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey. 2016,	4.3	
1338	Star formation activity in Balmer break galaxies atz2016, 587, A136 The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey. 2016, 595, A62 The Atacama Cosmology Telescope: dynamical masses for 44 SZ-selected galaxy clusters over 755	4-3	33
1338 1337 1336	Star formation activity in Balmer break galaxies atz2016, 587, A136 The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey. 2016, 595, A62 The Atacama Cosmology Telescope: dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees. Monthly Notices of the Royal Astronomical Society, 2016, 461, 248-270	4-3	33 35
1338 1337 1336	Star formation activity in Balmer break galaxies atz2016, 587, A136 The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey. 2016, 595, A62 The Atacama Cosmology Telescope: dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees. Monthly Notices of the Royal Astronomical Society, 2016, 461, 248-270 Quenching of the star formation activity in cluster galaxies. 2016, 596, A11 A SLIPPERY SLOPE: SYSTEMATIC UNCERTAINTIES IN THE LINE WIDTH BARYONIC TULLY BISHER	4-3	33 35 61
1338 1337 1336 1335	Star formation activity in Balmer break galaxies atz2016, 587, A136 The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey. 2016, 595, A62 The Atacama Cosmology Telescope: dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees. Monthly Notices of the Royal Astronomical Society, 2016, 461, 248-270 Quenching of the star formation activity in cluster galaxies. 2016, 596, A11 A SLIPPERY SLOPE: SYSTEMATIC UNCERTAINTIES IN THE LINE WIDTH BARYONIC TULLY BISHER RELATION. 2016, 832, 11 THE METAL ABUNDANCES ACROSS COSMIC TIME (\${ mathcal M }{ mathcal A }{ mathcal C }{ mathc	4-3	33 35 61 36

1330	The far-infrared emitting region in local galaxies and QSOs: Size and scaling relations. 2016 , 591, A136		56
1329	Testing the blazar sequence with the least luminous BL Lacertae objects. 2016 , 587, A8		13
1328	HIDE-AND-SEEK WITH THE FUNDAMENTAL METALLICITY RELATION. 2016 , 823, L24		30
1327	A NEW STAR FORMATION RATE CALIBRATION FROM POLYCYCLIC AROMATIC HYDROCARBON EMISSION FEATURES AND APPLICATION TO HIGH-REDSHIFT GALAXIES. 2016 , 818, 60		53
1326	SLOW QUENCHING OF STAR FORMATION IN OMEGAWINGS CLUSTERS: GALAXIES IN TRANSITION IN THE LOCAL UNIVERSE. 2016 , 816, L25		61
1325	Coevolution of metallicity and star formation in galaxies toz? 3.7 []. A Fundamental Plane. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2002-2019	4.3	47
1324	Coevolution of metallicity and star formation in galaxies toz? 3.7 [II. A theoretical model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2020-2031	4.3	14
1323	Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2986-2996	4.3	22
1322	THE EFFECTS OF THE LOCAL ENVIRONMENT AND STELLAR MASS ON GALAXY QUENCHING TOz~ 3. 2016 , 825, 113		109
1321	Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust. 2016 , 590, A27		21
1320	SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT. 2016 , 832, 182		7
1319	MEASURING STRUCTURAL PARAMETERS THROUGH STACKING GALAXY IMAGES. 2016 , 152, 201		1
1318	Star formation along the Hubble sequence. 2016 , 590, A44		103
1317	Spectroscopic aperture biases in inside-out evolving early-type galaxies from CALIFA. 2016 , 586, A22		17
1316	Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density the tallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2513-2522	4.3	55
1315	SDSS-IV MaNGA IFS GALAXY SURVEYBURVEY DESIGN, EXECUTION, AND INITIAL DATA QUALITY. 2016 , 152, 197		194
1314	Isolated elliptical galaxies in the local Universe. 2016 , 588, A79		20
1313	CLASH-VLT: Strangulation of cluster galaxies in MACS J0416.1-2403 as seen from their chemical enrichment. 2016 , 590, A108		25

1312	HIGHMASSHIGH H i MASS, H i-RICH GALAXIES ATZ~ 0: COMBINED H i AND H2OBSERVATIONS. 2016 , 152, 225		7	
1311	Sloan Great Wall as a complex of superclusters with collapsing cores. 2016 , 595, A70		19	
1310	HEMAGING OF NEARBY SEYFERT HOST GALAXIES. 2016 , 822, 45		7	
1309	Evolution of galaxy habitability. 2016 , 592, A96		13	
1308	Outflows and complex stellar kinematics in SDSS star-forming galaxies. 2016 , 588, A41		51	
1307	THE INTRINSIC EDDINGTON RATIO DISTRIBUTION OF ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY. 2016 , 826, 12		43	
1306	SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT?. 2016 , 833, 1		98	
1305	THE PROPERTIES OF THE CIRCUMGALACTIC MEDIUM IN RED AND BLUE GALAXIES: RESULTS FROM THE COS-GASS+COS-HALOS SURVEYS. 2016 , 833, 259		47	
1304	Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 2115-2125	4.3	14	
1303	DOES THE MILKY WAY OBEY SPIRAL GALAXY SCALING RELATIONS?. 2016 , 833, 220		12	
1302	THE DRAGONFLY NEARBY GALAXIES SURVEY. I. SUBSTANTIAL VARIATION IN THE DIFFUSE STELLAR HALOS AROUND SPIRAL GALAXIES. 2016 , 830, 62		78	
1301	THE QUENCHING TIMESCALE AND QUENCHING RATE OF GALAXIES. 2016 , 832, 29		11	
1300	CHARACTERIZING DUST ATTENUATION IN LOCAL STAR-FORMING GALAXIES: UV AND OPTICAL REDDENING. 2016 , 818, 13		51	
1299	H-ATLAS: the far-infrared properties of galaxies in and around the Coma cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 582-602	4.3	6	
1298	Resolved Gas Kinematics in a Sample of Low-Redshift High Star-Formation Rate Galaxies. 2016 , 33,		16	
1297	THE KENNICUTTBCHMIDT RELATION IN EXTREMELY METAL-POOR DWARF GALAXIES. 2016 , 820, 109		20	
1296	Stellar and gaseous disc structures in cosmological galaxy equilibrium models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 3168-3180	4.3	11	
1295	Nitrogen and oxygen abundances in the Local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 3466-3477	4.3	65	

1294	An observational proxy of halo assembly time and its correlation with galaxy properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 499-510	4.3	13
1293	THE SPATIALLY RESOLVED NUVECOLOR OF LOCAL STAR-FORMING GALAXIES AND CLUES FOR QUENCHING. 2016 , 819, 91		14
1292	STAR FORMATION IN 3CR RADIO GALAXIES AND QUASARS ATz2016, 151, 120		18
1291	NARROW-LINE X-RAY-SELECTED GALAXIES IN THECHANDRA-COSMOS FIELD. I. OPTICAL SPECTROSCOPIC CATALOG. 2016 , 821, 130		1
1290	The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 2632-2650	4.3	69
1289	Physical properties of local star-forming analogues toz´~´5 Lyman-break galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 2591-2602	4.3	14
1288	Galaxy Formation and Evolution. 2016 , 202, 79-109		3
1287	FOUR DUAL AGN CANDIDATES OBSERVED WITH THE VLBA. 2016 , 826, 106		13
1286	LARGE-SCALE STRUCTURE AROUND Az= 2.1 CLUSTER. 2016 , 826, 130		27
1285	Physical properties of galaxies: towards a consistent comparison between hydrodynamical simulations and SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2046-2062	4.3	12
1284	HELP: star formation as a function of galaxy environment withHerschel. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 277-289	4.3	7
1283	RESOLVING GIANT MOLECULAR CLOUDS IN NGC 300: A FIRST LOOK WITH THE SUBMILLIMETER ARRAY. 2016 , 821, 125		11
1282	THE RELATION BETWEEN $f[rm{O}], rm{III}]/rm{H}$ beta \$ AND SPECIFIC STAR FORMATION RATE IN GALAXIES AT z ~ 2. 2016 , 828, L11		14
1281	Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy. 2016 , 54, 597-665		254
1280	The impact of galactic properties and environment on the quenching of central and satellite galaxies: a comparison between SDSS, Illustris and L-Galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2559-2586	4.3	74
1279	THE METALLICITY EVOLUTION OF BLUE COMPACT DWARF GALAXIES FROM THE INTERMEDIATE REDSHIFT TO THE LOCAL UNIVERSE. 2016 , 819, 73		9
1278	WHERE STARS FORM: INSIDE-OUT GROWTH AND COHERENT STAR FORMATION FROMHSTHMAPS OF 3200 GALAXIES ACROSS THE MAIN SEQUENCE AT 0.7 . 2016 , 828, 27		122
1277	RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN SEQUENCE, AND PERHAPS MUCH MORE. 2016 , 832, 7		51

1276	CONSTRAINTS ON FEEDBACK IN THE LOCAL UNIVERSE: THE RELATION BETWEEN STAR FORMATION AND AGN ACTIVITY IN EARLY-TYPE GALAXIES. 2016 , 818, 182		17
1275	GALEX BDSS WISE LEGACY CATALOG (GSWLC): STAR FORMATION RATES, STELLAR MASSES, AND DUST ATTENUATIONS OF 700,000 LOW-REDSHIFT GALAXIES. 2016 , 227, 2		152
1274	LUMINOSITY DEPENDENCE AND REDSHIFT EVOLUTION OF STRONG EMISSION-LINE DIAGNOSTICS IN STAR-FORMING GALAXIES. 2016 , 817, 57		27
1273	THE ALFALFA HSURVEY. I. PROJECT DESCRIPTION AND THE LOCAL STAR FORMATION RATE DENSITY FROM THE FALL SAMPLE. 2016 , 824, 25		11
1272	The effect of disc inclination on the main sequence of star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2355-2365	4.3	11
1271	A unified multiwavelength model of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 3854-3911	4.3	223
1270	DISTRIBUTION OF QUASAR HOSTS ON THE GALAXY MAIN SEQUENCE PLANE. 2016 , 819, L27		25
1269	Modelling and interpreting spectral energy distributions of galaxies with beagle. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 1415-1443	4.3	129
1268	A robust measurement of the mass outflow rate of the galactic outflow from NGC 6090. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 541-556	4.3	30
1267	SEARCH FOR EXTREMELY METAL-POOR GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. II. HIGH ELECTRON TEMPERATURE OBJECTS. 2016 , 819, 110		42
1266	SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES. 2016 , 821, 115		19
1265	CARBON AND OXYGEN ABUNDANCES IN LOW METALLICITY DWARF GALAXIES. 2016 , 827, 126		85
1264	The star formation rate density from $z = 1$ to 6. Monthly Notices of the Royal Astronomical Society, 2016 , 461, 1100-1111	4.3	64
1263	GAMA/H-ATLAS: a meta-analysis of SFR indicators Leomprehensive measures of the SFRM*relation and cosmic star formation history atz'. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 458-485	4.3	80
1262	GAMA/H-ATLAS: common star formation rate indicators and their dependence on galaxy physical parameters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 1898-1916	4.3	11
1261	NoSOCS in SDSS IV. Red disc and blue bulge galaxies across different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 2559-2579	4.3	10
1260	Modelling the nebular emission from primeval to present-day star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 1757-1774	4.3	126
1259	Zooming in on major mergers: dense, starbursting gas in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2418-2430	4.3	60

1258	Star formation and AGN activity in the most luminous LINERs in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2878-2903	4.3	13
1257	Efficiency of gas cooling and accretion at the discoorona interface. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 4157-4170	4.3	61
1256	The luminosity and stellar mass functions of red W1W2 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 811-819	4.3	5
1255	SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 913-926	4.3	44
1254	The dustier early-type galaxies deviate from late-type galaxies caling relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 2856-2866	4.3	13
1253	Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 3083-3095	4.3	66
1252	STAR FORMATION IN INTERMEDIATE REDSHIFT 0.2 . 2016 , 833, 224		17
1251	THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CONTINUUM NUMBER COUNTS, RESOLVED 1.2 mm EXTRAGALACTIC BACKGROUND, AND PROPERTIES OF THE FAINTEST DUSTY STAR-FORMING GALAXIES. 2016 , 833, 68		96
1250	The early phases of galaxy formation and evolution. 2016,		
1249	THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES ATz2016, 832, 203		45
1248	A TIGHT RELATION BETWEEN N/O RATIO AND GALAXY STELLAR MASS CAN EXPLAIN THE EVOLUTION OF STRONG EMISSION LINE RATIOS WITH REDSHIFT. 2016 , 828, 18		51
1247	On the physical origin of galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 2135-2145	4.3	41
1246	The MAD View on the Outskirts of Disks. 2016 , 11, 163-171		
1245	The build-up of the outskirts of distant star-forming galaxies at $z \sim 2$. 2016 , 11, 327-329		1
1244	THE NUCLEAR ACTIVITIES OF NEARBY SO GALAXIES. 2016 , 831, 63		9
1243	RADIO PROPERTIES OF THE BAT AGNs: THE FIR R ADIO RELATION, THE FUNDAMENTAL PLANE, AND THE MAIN SEQUENCE OF STAR FORMATION. 2016 , 832, 163		19
1242	The SAMI Galaxy Survey: can we trust aperture corrections to predict star formation?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 2826-2838	4.3	27
1241	The MUSE view of QSO PG 1307+085: an elliptical galaxy on theMBHBrelation interacting with its group environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 1905-1918	4.3	24

124 C	Comparing galaxy morphology and star formation properties in X-ray bright and faint groups and clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 3628-3639	4.3	8	
1239	The PEP survey: evidence for intense star-forming activity in the majority of radio-selected AGN atz? 1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 431-447	4.3	12	
1238	The HerMES submillimetre local and low-redshift luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 1999-2023	4.3	30	
1237	Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 3354-3374	4.3	127	
1236	KROSS: mapping the Hemission across the star formation sequence atz[]. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 4533-4541	4.3	27	
1235	Evidence for a change in the dominant satellite galaxy quenching mechanism atz´=´1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 4364-4376	4.3	80	
1234	Towards a comprehensive picture of powerful quasars, their host galaxies and quasar winds atz~0.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 745-763	4.3	24	
1233	Optimizing commensality of radio continuum and spectral line observations in the era of the SKA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 3419-3431	4.3	6	
1232	Galaxy And Mass Assembly (GAMA): understanding the wavelength dependence of galaxy structure with bulge-disc decompositions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 3458-347	14.3	24	
1231	SDSS IV MaNGA Espatially resolved diagnostic diagrams: a proof that many galaxies are LIERs. <i>Monthly Notices of the Royal Astronomical Society,</i> 2016 , 461, 3111-3134	4.3	190	
1230	The void galaxy survey: Star formation properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 394-409	4.3	23	
1229	Enhanced X-ray emission from Lyman break analogues and a possibleLXBFREnetallicity plane. <i>Monthly Notices of the Royal Astronomical Society,</i> 2016 , 457, 4081-4088	4.3	69	
1228	Erratum: the SAMI Galaxy Survey: can we trust aperture corrections to predict star formation?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 1300-1300	4.3	1	
1227	A recalibration of strong-line oxygen abundance diagnostics via the direct method and implications for the high-redshift universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 1529-1547	4.3	39	
1226	The diversity of growth histories of Milky Way-mass galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 1929-1945	4.3	14	
1225	Studying the evolution of galaxies in compact groups over the past 3 Gyr III. The importance of environment in the suppression of star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016, 459, 957-970	4.3	12	
1224	Stellar mass functions: methods, systematics and results for the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 2150-2187	4.3	46	
1223	On the connection between the metal-enriched intergalactic medium and galaxies: an O vigalaxy cross-correlation study atzMonthly Notices of the Royal Astronomical Society, 2016 , 460, 590-616	4.3	14	

1222	The New Numerical Galaxy Catalog (IGC): An updated semi-analytic model of galaxy and active galactic nucleus formation with large cosmologicalN-body simulations. 2016 , 68, 25		29
1221	Galaxies infalling into groups: filaments versus isotropic infall. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 127-135	4.3	32
1220	Non-linearity and environmental dependence of the star-forming galaxies main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 2839-2851	4.3	43
1219	Interpreting the ionization sequence in star-forming galaxy emission-line spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 988-1012	4.3	9
1218	Radio luminosity function of brightest cluster galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 3669-3678	4.3	18
1217	MassEnetallicity relation for local star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2929-2935	4.3	11
1216	Changing physical conditions in star-forming galaxies between redshifts 0'. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 3002-3013	4.3	16
1215	Boxy Hæmission profiles in star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 3861-3867	4.3	O
1214	Characterizing uniform star formation efficiencies with marginally stable galactic discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 1106-1118	4.3	29
1213	Quantifying correlations between galaxy emission lines and stellar continua. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 362-374	4.3	6
1212	The MASSIVE survey [III. Molecular gas and a broken Tully lisher relation in the most massive early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 214-226	4.3	35
1211	Investigating AGN black hole masses and the MBH Brelation for low surface brightness galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 3148-3168	4.3	16
121 0	The most luminous H æmitters atz~ 0.80.23 from HiZELS: evolution of AGN and star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 1739-1752	4.3	28
1209	An artificial neural network approach for ranking quenching parameters in central galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2086-2106	4.3	51
1208	Local SDSS galaxies in the Herschel Stripe 82 survey: a critical assessment of optically derived star formation rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2703-2721	4.3	22
1207	Quenching star formation: insights from the local main sequence. 2016 , 455, L82-L86		44
1206	Modelling galactic conformity with the colourfialo age relation in the Illustris simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 185-198	4.3	31
1205	The regulation of star formation in cool-core clusters: imprints on the stellar populations of brightest cluster galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 1565-1578	4.3	28

1204	How SN Ia host-galaxy properties affect cosmological parameters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 3470-3491	4.3	16	
1203	The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2790-2813	4.3	173	
1202	Molecular gas as the driver of fundamental galactic relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 1156-1170	4.3	50	
1201	Chandrasurvey of nearby highly inclined disk galaxies IIV. New insights into the working of stellar feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 1385-1392	4.3	14	
1200	Beyond spheroids and discs: classifications of CANDELS galaxy structure at 1.4 . <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 963-987	4.3	29	
1199	Pitfalls when observationally characterizing the relative formation rates of stars and stellar clusters in galaxies. 2016 , 457, L24-L28		16	
1198	The star formation rates of active galactic nuclei host galaxies. 2016 , 458, L34-L38		46	
1197	The infrared luminosities of ~332 000 SDSS galaxies predicted from artificial neural networks and theHerschelStripe 82 survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 370-385	4.3	23	
1196	TIDAL DISRUPTION EVENTS PREFER UNUSUAL HOST GALAXIES. 2016, 818, L21		105	
1195	YOUNG, STAR-FORMING GALAXIES AND THEIR LOCAL COUNTERPARTS: THE EVOLVING RELATIONSHIP OF MASSBFRMETALLICITY SINCEz~ 2.1. 2016 , 817, 10		23	
1194	SUPERLUMINOUS SPIRAL GALAXIES. 2016 , 817, 109		28	
1193	CLUSTERING PROPERTIES AND HALO MASSES FOR CENTRAL GALAXIES IN THE LOCAL UNIVERSE. 2016 , 819, 58		1	
1192	SEMI-ANALYTIC GALAXY EVOLUTION (SAGE): MODEL CALIBRATION AND BASIC RESULTS. 2016 , 222, 22		167	
1191	ON DETECTING HALO ASSEMBLY BIAS WITH GALAXY POPULATIONS. 2016 , 819, 119		78	
1190	The abundance and colours of galaxies in high-redshift clusters in the cold dark matter cosmology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 1681-1699	4.3	9	
1189	The Post-starburst Evolution of Tidal Disruption Event Host Galaxies. 2017 , 835, 176		31	
1188	LOSS Revisited. I. Unraveling Correlations between Supernova Rates and Galaxy Properties, as Measured in a Reanalysis of the Lick Observatory Supernova Search. 2017 , 837, 120		49	
1187	Constraints on the Evolution of the Galaxy Stellar Mass Function. I. Role of Star Formation, Mergers, and Stellar Stripping. 2017 , 837, 27		10	

1186	Connection between Stellar Mass Distributions within Galaxies and Quenching Sincez= 2. 2017 , 837, 2		39
1185	Large-scale Environmental Dependence of the Abundance Ratio of Nitrogen to Oxygen in Blue, Star-forming Galaxies Fainter than L *. 2017 , 837, 42		3
1184	RCSEDA Value-added Reference Catalog of Spectral Energy Distributions of 800,299 Galaxies in 11 Ultraviolet, Optical, and Near-infrared Bands: Morphologies, Colors, Ionized Gas, and Stellar Population Properties. 2017 , 228, 14		26
1183	Constraining the Stellar Populations and Star Formation Histories of Blue Compact Dwarf Galaxies with SED Fits. 2017 , 836, 128		8
1182	Log-normal Star Formation Histories in Simulated and Observed Galaxies. 2017, 839, 26		39
1181	Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III 2017 , 839, 120		39
1180	A sample of metal-poor galaxies identified from the LAMOST spectral survey. 2017 , 17, 041		3
1179	Characterizing Dust Attenuation in Local Star-forming Galaxies: Near-infrared Reddening and Normalization. 2017 , 840, 109		25
1178	Star Formation Quenching Timescale of Central Galaxies in a Hierarchical Universe. 2017, 841, 6		19
1177	THE MOSDEF SURVEY: AGN MULTI-WAVELENGTH IDENTIFICATION, SELECTION BIASES, AND HOST GALAXY PROPERTIES. 2017 , 835, 27		56
1176	Far-infrared Properties of Infrared-bright Dust-obscured Galaxies Selected withIRASandAKARIFar-infrared All-sky Survey. 2017 , 840, 21		10
1175	Nebular Continuum and Line Emission in Stellar Population Synthesis Models. 2017 , 840, 44		119
1174	The SAMI Galaxy Survey: asymmetry in gas kinematics and its links to stellar mass and star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 123-148	4.3	19
1173	New fully empirical calibrations of strong-line metallicity indicators in star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 1384-1400	4.3	115
1172	The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 1824-1849	4.3	61
1171	Survival of Massive Star-forming Galaxies in Cluster Cores Drives Gas-phase Metallicity Gradients: The Effects of Ram Pressure Stripping. 2017 , 842, 75		6
1170	A large sample of Kohonen selected E+A (post-starburst) galaxies from the Sloan Digital Sky Survey. 2017 , 597, A134		11
1169	The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. 2017 , 602, A9		47

1168	Velocity Dispersion, Size, Stic Index, and Dn4000: The Scaling of Stellar Mass with Dynamical Mass for Quiescent Galaxies. 2017 , 841, 32		28	
1167	On the Origin of the Fundamental Plane and FaberDackson Relations: Implications for the Star Formation Problem. 2017 , 838, 163		12	
1166	Aperture-free star formation rate of SDSS star-forming galaxies. 2017 , 599, A71		28	
1165	STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES. 2017 , 835, 80		19	
1164	Reconstruction of Galaxy Star Formation Histories through SED Fitting:The Dense Basis Approach. 2017 , 838, 127		42	
1163	Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers. 2017 , 838, 129		17	
1162	Photometric Asymmetry Between Clockwise and Counterclockwise Spiral Galaxies in SDSS. 2017 , 34,		8	
1161	FRICAT: A FIRST catalog of FR I radio galaxies. 2017 , 598, A49		47	
1160	The Limited Impact of Outflows: Integral-field Spectroscopy of 20 Local AGNs. 2017 , 837, 91		43	
1159	Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe. 2017 , 837, 170		176	
1158	LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-mass Galaxies. 2017 , 837, 121		64	
1157	Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5 . 2017 , 838, 19		68	
1156	THE QUENCHED MASS PORTION OF STAR-FORMING GALAXIES AND THE ORIGIN OF THE STAR FORMATION SEQUENCE SLOPE. 2017 , 834, 39		9	
1155	Sacrificing information for the greater good: how to select photometric bands for optimal accuracy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 2577-2596	4.3	12	
1154	Pattern recognition in the ALFALFA.70 and Sloan Digital Sky Surveys: a catalogue of ~500 000 H i gas fraction estimates based on artificial neural networks. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 3796-3811	4.3	14	
1153	Incidence ofWISE-selected obscured AGNs in major mergers and interactions from the SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 3882-3906	4.3	43	
1152	Delayed triggering of radio active galactic nuclei in gas-rich minor mergers in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 4706-4720	4.3	29	
1151	Do the stellar populations of the brightest two group galaxies depend on the magnitude gap?. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4593-4610	4.3	17	

1150	The metal enrichment of passive galaxies in cosmological simulations of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 4866-4874	4.3	12
1149	Star-forming galaxies significantly contribute to the isotropic gamma-ray background. 2017 , 96,		24
1148	Star Formation in Galaxies atz~ 45 from the SMUVS Survey: A Clear Starburst/Main-sequence Bimodality for HEmitters on the SFRM* Plane. 2017 , 849, 45		40
1147	Star Formation Activity of Barred Spiral Galaxies. 2017 , 845, 93		21
1146	Spatially Resolved Spectroscopy of Narrow-line Seyfert 1 Host Galaxies. 2017 , 848, 35		2
1145	Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway. 2017 , 845, 145		19
1144	Shocks and Spatially Offset Active Galactic Nuclei Produce Velocity Offsets in Emission Lines. 2017 , 847, 41		7
1143	Galaxy Zoo and sparcfire: constraints on spiral arm formation mechanisms from spiral arm number and pitch angles. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2263-2279	4.3	29
1142	Occurrence of LINER galaxies within the galaxy group environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 3338-3346	4.3	5
1141	Galaxy cluster luminosities and colours, and their dependence on cluster mass and merger state. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 3246-3255	4.3	12
1140	Star formation of far-IR AGN and non-AGN galaxies in the green valley: possible implication of AGN positive feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 3226-3233	4.3	25
1139	The Influence of Large-scale Environments on Galaxy Properties. 2017, 41, 302-317		2
1138	Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate. 2017 , 847, 18		42
1137	CANDELS: Elevated Black Hole Growth in the Progenitors of Compact Quiescent Galaxies atz~ 2. 2017 , 846, 112		47
1136	Galaxy properties from J-PAS narrow-band photometry. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 4722-4746	4.3	6
1135	The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead. 2017 , 844, 45		25
1134	Predicting HCN, HCO+, multi-transition CO, and dust emission of star-forming galaxies. 2017 , 602, A51		12
1133	GASP. I. Gas Stripping Phenomena in Galaxies with MUSE. 2017 , 844, 48		159

1132	PHIBSS: exploring the dependence of the COH2 conversion factor on total mass surface density at z. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 4886-4901	4.3	15
1131	HerschelandHubbleStudy of a Lensed Massive Dusty Starbursting Galaxy atz~ 3. 2017 , 844, 82		10
1130	Separate Ways: The MassMetallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies. 2017 , 844, 80		45
1129	The Properties of the Massive Star-forming Galaxies with an Outside-in Assembly Mode. 2017 , 844, 144		11
1128	Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies. 2017, 844, 170		41
1127	Discovery of a dual active galactic nucleus with ~8 kpc separation. 2017 , 470, L49-L53		27
1126	Ram-pressure feeding of supermassive black holes. 2017 , 548, 304-309		73
1125	The metallicity and star formation activity of long gamma-ray burst hosts for z´. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 4921-4932	4.3	9
1124	The redshift-selected sample of long gamma-ray burst host galaxies: The overall metallicity distribution at z . 2017 , 69,		10
1123	Understanding the scatter in the spatially resolved star formation main sequence of local massive spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 2806-2820	4.3	32
1122	The Peculiar Filamentary H i Structure of NGC 6145. 2017 , 154, 70		
1121	A break in the high-redshift stellar mass Tully Eisher relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 2599-2610	4.3	6
1120	The Grism Lens-Amplified Survey from Space (GLASS). X. Sub-kiloparsec Resolution Gas-phase Metallicity Maps at Cosmic Noon behind the Hubble Frontier Fields Cluster MACS1149.6+2223. 2017 , 837, 89		35
1119	The Star-forming Main Sequence of Dwarf Low Surface Brightness Galaxies. 2017 , 851, 22		31
1118	SDSS IV MaNGA R otation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies. 2017 , 839, 87		17
1117	Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results. 2017 , 34,		386
1116	A model of the cosmic infrared background produced by distant galaxies. 2017 , 43, 644-655		4
1115	SCUSSu-BAND EMISSION AS A STAR-FORMATION-RATE INDICATOR. 2017 , 835, 70		4

1114	OmegaWINGS: The First Complete Census of Post-starburst Galaxies in Clusters in the Local Universe. 2017 , 838, 148		34
1113	Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit Coherent Star Formation. 2017 , 849, L2		13
1112	Galaxy Environment in the 3D-HSTFields: Witnessing the Onset of Satellite Quenching atz~ 12. 2017 , 835, 153		72
1111	A Unique View of AGN-driven Molecular Outflows: The Discovery of a Massive Galaxy Counterpart to aZ= 2.4 High-metallicity Damped Ly&bsorber. 2017 , 843, 98		17
1110	The weirdest SDSS galaxies: results from an outlier detection algorithm. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 4530-4555	4.3	59
1109	Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes. 2017 , 843, 135		22
1108	Impact of supermassive black hole growth on star formation. 2017 , 1,		116
1107	A Controlled Study of Cold Dust Content in Galaxies fromz= 02. 2017, 843, 71		12
1106	On the interdependence of galaxy morphology, star formation and environment in massive galaxies in the nearby Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 2687-2702	4.3	30
1105	Fitting Analysis using Differential evolution Optimization (FADO):. 2017, 603, A63		17
1104	Recovering the Properties of High-redshift Galaxies with Different JWST Broadband Filters. 2017 , 231, 3		7
1103	A test of SDSS aperture corrections using integral-field spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 639-650	4.3	3
1102	Galaxy Zoo: the interplay of quenching mechanisms in the group environment?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 3670-3687	4.3	30
1101	Ultra-flat galaxies selected from RFGC catalog. III. Star formation rate. 2017 , 72, 1-15		4
1100	The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 32-44	4.3	151
1099	The SAMI Galaxy Survey: spatially resolving the environmental quenching of star formation in GAMA galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 121-142	4.3	54
1098	The distribution of local star formation activity as a function of galaxy stellar mass, environment and morphology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 4910-4917	4.3	3

109	Cold gas stripping in satellite galaxies: from pairs to clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 1275-1289	4.3	133
109	(Star)bursts of FIRE: observational signatures of bursty star formation in galaxies. <i>Monthly Notices</i> of the Royal Astronomical Society, 2017 , 466, 88-104	4.3	117
109.	SDSS-IV MaNGA I the spatially resolved transition from star formation to quiescence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 2570-2589	4.3	65
109	Herschelfar-infrared photometry of the Swift Burst Alert Telescope active galactic nuclei sample of the local universe III. Global star-forming properties and the lack of a connection to nuclear activity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 3161-3183	4.3	36
109	Active galactic nuclei from He ii: a more complete census of AGN in SDSS galaxies yields a new population of low-luminosity AGN in highly star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 2879-2887	4.3	9
109	Galaxy Zoo: finding offset discs and bars in SDSS galaxies?. <i>Monthly Notices of the Royal</i> Astronomical Society, 2017 , 469, 3363-3373	4.3	14
109	Optical colours and spectral indices of z´=´0.1 eagle galaxies with the 3D dust radiative transfer code skirt. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 771-799	4.3	114
108	Colours, star formation rates and environments of star-forming and quiescent galaxies at the cosmic noon. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 1050-1072	4.3	45
108	8 UVI colour gradients of 0.4'. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4063-4082	4.3	22
108	Metallicity calibrations of galaxies with low star formation rates: the influence of a stochastic IMF. Monthly Notices of the Royal Astronomical Society, 2017 , 470, 1612-1625	4.3	7
108	OMEGA [DSIRIS Mapping of Emission-line Galaxies in A901/2 [III. Galaxy properties across projected phase space in A901/2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 182-200	4.3	9
108	Dissecting galaxies: separating star formation, shock excitation and AGN activity in the central region of NGC 613. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 4974-4988	4.3	28
108.	Physical drivers of galaxiesLold-gas content: exploring environmental and evolutionary effects with Dark Sage. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 447-462	4.3	36
108	Evidence of pre-processing and a dependence on dynamical state for low-mass satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2017 , 467, 3268-3278	4.3	30
108	The differing relationships between size, mass, metallicity and core velocity dispersion of central and satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 333-345	4.3	12
108	A methodology to select galaxies just after the quenching of star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 3108-3124	4.3	6
108	Observational Constraints on Correlated Star Formation and Active Galactic Nuclei in Late-stage Galaxy Mergers. 2017 , 850, 27		14
107	Evidence of ongoing AGN-driven feedback in a quiescent post-starburst E+A galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 1687-1702	4.3	20

1078	Late-time observations of the relativistic tidal disruption flare candidate Swift J1112.28238. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4469-4479	4.3	11
1077	Evolution of Galactic Outflows at \$zsim 0mbox{}2\$ Revealed with SDSS, DEEP2, and Keck Spectra. 2017 , 850, 51		24
1076	GASP. VIII. Capturing the Birth of a Tidal Dwarf Galaxy in a Merging System atz~ 0.05. 2017 , 850, 163		9
1075	A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21. 2017 , 846, 74		17
1074	The relationship between star formation activity and galaxy structural properties in CANDELS and a semi-analytic model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 619-640	4.3	38
1073	The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2054-2084	4.3	49
1072	Simulating the dust content of galaxies: successes and failures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 1505-1521	4.3	74
1071	SEARCHING FOR FOSSIL EVIDENCE OF AGN FEEDBACK INWISE-SELECTED STRIPE-82 GALAXIES BY MEASURING THE THERMAL SUNYAEVIZELDOVICH EFFECT WITH THE ATACAMA COSMOLOGY TELESCOPE. 2017 , 834, 102		14
1070	Testing the Presence of Multiple Photometric Components in Nearby Early-type Galaxies Using SDSS. 2017 , 836, 115		15
1069	AGNs and Their Host Galaxies in the Local Universe: Two Mass-independent Eddington Ratio Distribution Functions Characterize Black Hole Growth. 2017 , 845, 134		24
1068	Determining the Halo Mass Scale Where Galaxies Lose Their Gas. 2017 , 850, 181		14
1067	Deep CO(1 0) Observations ofz= 1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies. 2017 , 849, 27		40
1066	The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields. 2017, 847, 76		95
1065	Biases in Metallicity Measurements from Global Galaxy Spectra: The Effects of Flux Weighting and Diffuse Ionized Gas Contamination. 2017 , 850, 136		47
1064	Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population. 2017 , 850, 22		46
1063	Morphological Segregation in the Surroundings of Cosmic Voids. 2017 , 846, L4		7
1062	A Comparison of the Most Massive Quiescent Galaxies fromz~ 3 to the Present: Slow Evolution in Size, and spheroid-dominated. 2017 , 839, 127		9
1061	Infrared Selection of Obscured Active Galactic Nuclei in the COSMOS Field. 2017 , 233, 19		33

1060	On the Structure of the AGN Torus through the Fraction of Optically Selected Type 1 AGNs. 2017 , 846, 155		5
1059	Halo histories versus Galaxy properties at $z = 0$ []. The quenching of star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2504-2516	4.3	26
1058	Characterizing Dust Attenuation in Local Star-forming Galaxies: Inclination Effects and the 2175 A Feature. 2017 , 851, 90		27
1057	Morphology of Seyfert galaxies. 2017 , 362, 1		8
1056	A probabilistic approach to emission-line galaxy classification. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2808-2822	4.3	21
1055	Revealing strong bias in common measures of galaxy properties using new inclination-independent structures. 2017 , 468, L31-L35		10
1054	ALMA Resolves the Molecular Gas in a Young Low-metallicity Starburst Galaxy at $z = 1.7$. 2017 , 846, L22		4
1053	Are star formation rates of galaxies bimodal?. 2017 , 470, L59-L63		22
1052	SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence. 2017 , 851, L24		63
1051	NoSOCS in SDSS IVI. The environmental dependence of AGN in clusters and field in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 409-418	4.3	18
1050	Radiative transfer meets Bayesian statistics: where does a galaxy's [C ii] emission come from?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 3315-3330	4.3	20
1049	DYNAMO-HST survey: clumps in nearby massive turbulent discs and the effects of clump clustering on kiloparsec scale measurements of clumps. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 491-507	4.3	53
1048	Exploring the progenitors of brightest cluster galaxies atz´~´2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 1393-1414	4.3	10
1047	H i absorption towards low-luminosity radio-loud active galactic nuclei of different accretion modes andWISEcolours. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 997-1007	4.3	8
1046	Galaxy Zoo: star formation versus spiral arm number. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 1850-1863	4.3	14
1045	The massmetallicity relation revisited with CALIFA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 2121-2140	4.3	77
1044	[Ultra] luminous infrared galaxies selected at 90th in the AKARI deep field: a study of AGN types contributing to their infrared emission. 2017 , 598, A1		9
1043	(Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. 2017 , 597, A5		14

1042	The VIMOS Public Extragalactic Redshift Survey (VIPERS). 2017, 597, A107		24
1041	The VIMOS Public Extragalactic Redshift Survey (VIPERS). 2017 , 605, A4		32
1040	The MUSE Hubble Ultra Deep Field Survey. 2017 , 608, A4		36
1039	The MUSE Hubble Ultra Deep Field Survey. 2017 , 608, A7		21
1038	FRIICAT: A FIRST catalog of FR II radio galaxies. 2017 , 601, A81		48
1037	The spatially resolved star formation history of mergers. 2017 , 607, A70		14
1036	The ALMA Frontier Fields Survey. 2017 , 604, A132		14
1035	THE RELATIVE RATE OF LGRB FORMATION AS A FUNCTION OF METALLICITY. 2017 , 834, 170		23
1034	Bulges and discs in the local Universe. Linking the galaxy structure to star formation activity. 2017 , 597, A97		29
1033	Inferring gas-phase metallicity gradients of galaxies at the seeing limit: a forward modelling approach. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 2140-2163	4.3	16
1032	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES ATz~ 1.6. IV. EXCITATION STATE AND CHEMICAL ENRICHMENT OF THE INTERSTELLAR MEDIUM. 2017 , 835, 88		76
1031	Characterization of star-forming dwarf galaxies at 0.1 ?z ? 0.9 in VUDS: probing the low-mass end of the mass-metallicity relation. 2017 , 601, A95		20
1030	The origin of the enhanced metallicity of satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 508-529	4.3	27
1029	Satellite quenching, Galaxy inner density and the halo environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 1077-1094	4.3	25
1028	The COSMOS-[O ii] survey: evolution of electron density with star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 3220-3234	4.3	38
1027	On the evidence for large-scale galactic conformity in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 1192-1207	4.3	28
1026	The dependence of the massimetallicity relation on large-scale environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 1881-1892	4.3	23
1025	The effect of cosmic web filaments on the properties of groups and their central galaxies. 2017 , 597, A86		35

1024	Evolution of N/O abundance ratios and ionization parameters from $z \sim 0$ to 2 investigated by the direct temperature method. 2017 , 69,		36	
1023	Stellar Population Synthesis of Star-forming Clumps in Galaxy Pairs and Non-interacting Spiral Galaxies. 2018 , 234, 35		5	
1022	Green valley galaxies as a transition population in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 5617-5629	4.3	18	
1021	Deep spectroscopy of nearby galaxy clusters IIV. The quench of the star formation in galaxies in the infall region of Abell 85. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 1921-1934	4.3	4	
1020	Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes. 2018 , 857, 17		18	
1019	SDSS-IV MaNGA: the spatial distribution of star formation and its dependence on mass, structure, and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 580-600	4.3	37	
1018	Spectral classification and composites of galaxies in LAMOST DR4. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 1873-1885	4.3	18	
1017	LOFAR/H-ATLAS: the low-frequency radio luminosityEtar formation rate relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 3010-3028	4.3	52	
1016	The LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap. I. The Spectroscopic Redshift Catalog. 2018 , 234, 5		4	
1015	Diffuse ionized gas in galaxies across the Hubble sequence at the CALIFA resolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 3727-3739	4.3	72	
1014	Probing the Baryon Cycle of Galaxies with SPICA Mid- and Far-Infrared Observations. 2018, 35,		11	
1013	On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons. 2018 , 852, 72		58	
1012	Spatially Resolved Stellar Kinematics from LEGA-C: Increased Rotational Support in z \sim 0.8 Quiscent Galaxies. 2018 , 858, 60		34	
1011	Bimodal Formation Time Distribution for Infall Dark Matter Halos. 2018, 857, 127		4	
1010	High-energy neutrinos from FR0 radio galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 5529-5534	4.3	12	
1009	ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias. 2018 , 852, 31		37	
1008	The Physical Characteristics of Interstellar Medium in NGC 3665 withHerschelObservations. 2018 , 854, 111		3	
1007	The Three Hundred Project: The Influence of Environment on Simulated Galaxy Properties. 2018 , 868, 130		21	

1006	Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos. 2018 , 859, 96		18
1005	Enhanced Rates of Fast Radio Bursts from Galaxy Clusters. 2018 , 863, 132		15
1004	Spatially Offset Active Galactic Nuclei. III. Discovery of Late-stage Galaxy Mergers with the Hubble Space Telescope. 2018 , 869, 154		9
1003	Galaxy Inclination and the IRXIRelation: Effects on UV Star Formation Rate Measurements at Intermediate to High Redshifts. 2018 , 869, 161		15
1002	The Dearth of Difference between Central and Satellite Galaxies. I. Perspectives on Star Formation Quenching and AGN Activities. 2018 , 860, 102		18
1001	Stellar and Nebular Diagnostics in the Ultraviolet for Star-forming Galaxies. 2018 , 863, 14		37
1000	The Effect of Galaxy Interactions on Molecular Gas Properties. 2018 , 868, 132		28
999	The Large Early Galaxy Astrophysics Census (LEGA-C) Data Release 2: Dynamical and Stellar Population Properties of z ? 1 Galaxies in the COSMOS Field. 2018 , 239, 27		37
998	OMEGA IDSIRIS mapping of emission-line galaxies in A901/2 IIV. Extinction of star formation estimators with inclination. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 3788-3799	4.3	5
997	Halo histories versus galaxy properties at $z = 0$ II: large-scale galactic conformity. Monthly Notices of the Royal Astronomical Society, 2018 , 477, 935-945	4.3	28
996	The large-scale effect of environment on galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 3136-3144	4.3	2
995	Analysis of the SFRM* plane at z 2018, 609, A82		22
994	The XXL Survey. 2018 , 620, A15		6
993	The VLA-COSMOS 3 GHz Large Project: Star formation properties and radio luminosity functions of AGN with moderate-to-high radiative luminosities out to $z\sim 6$. 2018 , 620, A192		15
992	On the nature of small galaxy systems. Monthly Notices of the Royal Astronomical Society, 2018 , 481, 24	15 8:3 4(693
991	Influence of the Void Environment on Chemical Abundances in Dwarf Galaxies and Implications for Connecting Star Formation and Halo Mass. 2018 , 864, 144		3
990	The continuous rise of bulges out of galactic disks. 2018 , 614, A48		14
989	Properties and redshift evolution of star-forming galaxies with high [O III]/[O II] ratios with MUSE at 0.28 . 2018 , 618, A40		8

988	The less significant role of large-scale environment than optical AGN in nearby, isolated elliptical galaxies. 2018 , 620, A117		3
987	The Brightest Galaxies in the Dark Ages: GalaxiesIDust Continuum Emission during the Reionization Era. 2018 , 862, 77		62
986	Evolution of spatially resolved star formation main sequence and surface density profiles in massive disc galaxies at 0 ? z ? 1: insideBut stellar mass buildup and quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 5083-5100	4.3	23
985	Supercluster A2142 and collapse in action: infalling and merging groups and galaxy transformations. 2018 , 620, A149		10
984	The XXL Survey. 2018 , 620, A7		10
983	The MUSE Hubble Ultra Deep Field Survey. 2018 , 619, A27		38
982	Nuclear starburst activity induced by elongated bulges in spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 562-569	4.3	5
981	Ultraluminous X-ray source populations in the Chandra Source Catalog 2.0. 2018 , 14, 247-251		
980	Dwarf Galaxies: From the Epoch of Peak Star Formation to the Epoch of Reionization. 2018 , 14, 429-43	86	
979	The Far-Infrared Radio Correlation at low radio frequency with LOFAR/H-ATLAS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 5625-5644	4.3	20
978	The dependence of mass and environment on the secular processes of AGNs in terms of morphology, colour, and specific star-formation rate. 2018 , 620, A113		11
977	The kinematics of cluster galaxies via velocity dispersion profiles. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 1507-1521	4.3	10
976	Spatially resolved star formation and dust attenuation in Mrk 848: Comparison of the integral field spectra and the UV-to-IR SED. 2018 , 613, A13		11
975	Properties of AGNs selected by their mid-IR colours: evidence for a physically distinct mode of black hole growth. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 3201-3214	4.3	5
974	Cosmic evolution of the spatially resolved star formation rate and stellar mass of the CALIFA survey. 2018 , 615, A27		40
973	Dwarf galaxies at low and high redshift. 2018 , 14, 437-445		
972	Small- and large-scale galactic conformity in SDSS DR7. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 2031-2045	4.3	15
971	The Gemini/Hubble Space Telescope Galaxy Cluster Project: Stellar Populations in the Low-redshift Reference Cluster Galaxies. 2018 , 156, 224		5

970	Disclosing the properties of low-redshift dual AGN through XMM-Newton and SDSS spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 1639-1655	4.3	14
969	Relationships between Hi Gas Mass, Stellar Mass, and the Star Formation Rate of HICAT+WISE (Hi-WISE) Galaxies. 2018 , 864, 40		26
968	Shark: introducing an open source, free, and flexible semi-analytic model of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 3573-3603	4.3	97
967	AGN Evolution from the Galaxy Evolution Viewpoint. II 2018 , 867, 148		14
966	Enhanced atomic gas fractions in recently merged galaxies: quenching is not a result of post-merger gas exhaustion. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 3447-3466	4.3	46
965	GALAXY STRUCTURE, STELLAR POPULATIONS, AND STAR FORMATION QUENCHING AT 0.6??1.2. 2018 , 867,		9
964	A population of luminous accreting black holes with hidden mergers. 2018 , 563, 214-216		45
963	The MUSE Hubble Ultra Deep Field Survey. 2018 , 617, A62		20
962	SCUBA-2 Ultra Deep Imaging EAO Survey (STUDIES). II. Structural Properties and Near-infrared Morphologies of Faint Submillimeter Galaxies. 2018 , 865, 103		7
961	Infalling groups and galaxy transformations in the cluster A2142. 2018 , 610, A82		15
960	SDSS-IV MaNGA: spatially resolved star formation histories and the connection to galaxy physical properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 2544-2561	4.3	22
959	Why Are Some Gamma-Ray Bursts Hosted by Oxygen-rich Galaxies?. 2018 , 863, 95		6
958	The MOSDEF Survey: Significant Evolution in the Rest-frame Optical Emission Line Equivalent Widths of Star-forming Galaxies at $z = 1.4B.8$. 2018 , 869, 92		42
957	Revealing H i gas in emission and absorption on pc to kpc scales in a galaxy at $z \sim 0.017$. Monthly Notices of the Royal Astronomical Society, 2018 , 476, 2432-2445	4.3	14
956	A Redshift-independent Efficiency Model: Star Formation and Stellar Masses in Dark Matter Halos at z ? 4. 2018 , 868, 92		88
955	Stellar populations of HII galaxies. 2018 , 615, A55		7
954	On tests of full spectral fitting algorithms. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 4480-4488	4.3	14
953	A Dependence of the Tidal Disruption Event Rate on Global Stellar Surface Mass Density and Stellar Velocity Dispersion. 2018 , 853, 39		35

952	Connecting Compact Star-forming and Extended Star-forming Galaxies at Low Redshift: Implications for Galaxy Compaction and Quenching. 2018 , 865, 49		19	
951	SDSS IV MaNGA ISSFR profiles and the slow quenching of discs in green valley galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 3014-3029	4.3	72	
950	The VIMOS Ultra Deep Survey: Nature, ISM properties, and ionizing spectra of CIII] 1909 emitters at $z = 21$. 2018 , 612, A94		66	
949	History and destiny of an emerging early-type galaxy. 2018 , 614, A32		17	
948	Main sequence of star forming galaxies beyond the Herschel confusion limit. 2018, 615, A146		61	
947	The ionization parameter of star-forming galaxies evolves with the specific star formation rate. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5568-5589	4.3	16	
946	Red Misfits in the Sloan Digital Sky Survey: properties of star-forming red galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 5284-5302	4.3	13	
945	An H i study of the collisional ring galaxy NGC 922. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 5681-5691	4.3	6	
944	A study of the H i and optical properties of Low Surface Brightness galaxies: spirals, dwarfs, and irregulars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 4488-4500	4.3	7	
943	The SINS/zC-SINF Survey of z ~ 2 Galaxy Kinematics: SINFONI Adaptive Optics ssisted Data and Kiloparsec-scale Emission-line Properties. 2018 , 238, 21		95	
942	Emission Line Ratios for the Circumgalactic Medium and the B imodallNature of Galaxies. 2018 , 866, L4		9	
941	Exploring galaxy evolution with generative models. 2018, 616, L16		6	
940	The VIMOS Public Extragalactic Redshift Survey (VIPERS). 2018 , 617, A70		19	
939	Dissecting the roles of mass and environment quenching in galaxy evolution with EAGLE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 864-878	4.3	17	
938	A Deep Ly&urvey in ECDF-S and COSMOS. I. General Properties of LyÆmitters at z ~ 2. 2018 , 864, 145		12	
937	A Catalog of Merging Dwarf Galaxies in the Local Universe. 2018 , 237, 36		23	
936	Probing star formation and ISM properties using galaxy disk inclination. 2018, 615, A7		10	
935	Morphology rather than environment drives the SFRfhass relation in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 3456-3469	4.3	14	

934	The impact of bars and interactions on optically selected AGNs in spiral galaxies. 2018, 618, A149		12
933	The MOSDEF Survey: Stellar Continuum Spectra and Star Formation Histories of Active, Transitional, and Quiescent Galaxies at 1.4 2018, 867, L16		8
932	Halo histories versus galaxy properties at $z=0$ IIII. The properties of star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2018 , 478, 4487-4499	4.3	7
931	Gas and galaxies in filaments between clusters of galaxies. 2018 , 609, A49		29
930	Nuclear versus integrated spectroscopy of galaxies in the Herschel Reference Survey. 2018 , 615, A104		7
929	LINER galaxy properties and the local environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 2457-2464	4.3	1
928	Prediction of Supernova Rates in Known Galaxy Galaxy Strong-lens Systems. 2018, 864, 91		10
927	Probing Star Formation in Galaxies at z 🛽 via a Giant Metrewave Radio Telescope Stacking Analysis. 2018 , 865, 39		8
926	HE mitting Galaxies at $z \sim 0.6$ in the Deep And Wide Narrow-band Survey. 2018 , 858, 96		7
925	The MOSDEF Survey: A Stellar MassBFRMetallicity Relation Exists at z ~ 2.3. 2018 , 858, 99		72
924	JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies []. Survey overview and first results. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 3497-3519	4.3	18
923	Near-identical star formation rate densities from Hand FUVat redshift zero. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 119-133	4.3	7
922	The COS-AGN survey: revealing the nature of circumgalactic gas around hosts of active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 3890-3934	4.3	14
921	Cross-calibration of CO- versus dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 1442-1458	4.3	15
920	CO TullyHisher relation of star-forming galaxies at = 0.050.3. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 3319-3334	4.3	8
919	Local merger rates of double neutron stars. 2018 , 14, 433-443		1
918	A census of radio-selected AGNs on the COSMOS field and of their FIR properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 2493-2505	4.3	10
917	The role of atomic hydrogen in regulating the scatter of the massThetallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1868-1878	4.3	29

916	MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions of a protocluster at z´=´2.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1977-1999	4.3	27	
915	SDSS-IV MaNGA: the different quenching histories of fast and slow rotators. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 2679-2687	4.3	20	
914	Observational signatures of a warped disk associated with cold-flow accretion. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 254-270	4.3	32	
913	Multiple mechanisms quench passive spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 1909-1921	4.3	25	
912	Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 2039-2054	4.3	96	
911	Constraining the CO intensity mapping power spectrum at intermediate redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 1477-1484	4.3	28	
910	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. I. The role of group or cluster environment in star formation quenching from $z = 0.2$ to 1.1. 2018 , 70,		24	
909	VALES IV. Exploring the transition of star formation efficiencies between normal and starburst galaxies using APEX/SEPIA Band-5 and ALMA at low redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 248-256	4.3	8	
908	The dependence of galaxy clustering on stellar mass, star-formation rate and redshift at $z'=0.82.2$, with HiZELS. Monthly Notices of the Royal Astronomical Society, 2018 , 475, 3730-3745	4.3	20	
907	Exploring relations between BCG and cluster properties in the SPectroscopic IDentification of eROSITA Sources survey from 0.05′. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 4952-	4 9 73	11	
906	First gas-phase metallicity gradients of 0.1? z? 0.8 galaxies with MUSE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 4293-4316	4.3	35	
905	LOFAR-Bolles: properties of high- and low-excitation radio galaxies at 0.5′. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 3429-3452	4.3	27	
904	RedIbut Not DeadIActively Star-forming Brightest Cluster Galaxies at Low Redshifts. 2018, 853, 47		6	
903	Stellar Mass and 3.4hm/LRatio Evolution of Brightest Cluster Galaxies in COSMOS sincez~ 1.0. 2018 , 857, 122		4	
902	Bulgeless galaxies in the COSMOS field: environment and star formation evolution at z Monthly Notices of the Royal Astronomical Society, 2018 , 475, 735-747	4.3	6	
901	Star-formation rates of cluster galaxies: nature versus nurture. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 523-531	4.3	9	
900	Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 4424-4433	4.3	5	
899	The SAMI Galaxy Survey: spatially resolving the main sequence of star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 5194-5214	4.3	62	

898	Galaxy evolution in the cluster Abell 85: new insights from the dwarf population. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 4544-4556	4.3	5
897	Metal Abundances of KISS Galaxies. VI. New Metallicity Relations for the KISS Sample of Star-forming Galaxies. 2018 , 155, 82		21
896	Galaxy Zoo: Morphological Classification of Galaxy Images from theIllustrisSimulation. 2018 , 853, 194		12
895	PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions. 2018 , 853, 179		332
894	HST Grism Confirmation of 16 Structures at 1.4 2018, 859, 38		29
893	FR0CAT: a FIRST catalog of FR 0 radio galaxies. 2018 , 609, A1		44
892	Stellar Populations of over 1000z~ 0.8 Galaxies from LEGA-C: Ages and Star Formation Histories from Dn4000 and HD 2018 , 855, 85		34
891	Empirical Modeling of the Redshift Evolution of the \$[{rm{N}},{rm{II}}]\$/H#Ratio for Galaxy Redshift Surveys. 2018 , 855, 132		21
890	SDSS-IV MaNGA: Star Formation Cessation in Low-redshift Galaxies. I. Dependence on Stellar Mass and Structural Properties. 2018 , 856, 137		29
889	Resolving Quiescent Galaxies at z ? 2. I. Search for Gravitationally Lensed Sources and Characterization of Their Structure, Stellar Populations, and Line Emission. 2018 , 862, 125		24
888	The Relation between H I Gas and Star Formation Properties in Nearby Galaxies. 2018, 130, 094101		9
887	The gas-phase metallicities of star-forming galaxies in aperture-matched SDSS samples follow potential rather than mass or average surface density. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 1807-1821	4.3	12
886	Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small-scale galaxy clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 1433-1464	4.3	4
885	Clocking the Evolution of Post-starburst Galaxies: Methods and First Results. 2018 , 862, 2		26
884	On the Transition of the Galaxy Quenching Mode at 0.5 2018, 860, 60		12
883	Validity of abundances derived from spaxel spectra of the MaNGA survey. 2018 , 613, A1		14
882	Dust Attenuation, Bulge Formation, and Inside-out Quenching of Star Formation in Star-forming Main Sequence Galaxies atz~ 2. 2018 , 859, 56		60
881	A catalogue of faint local radio AGN and the properties of their host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 807-816	4.3	6

880	A Uniformly Selected Sample of Low-mass Black Holes in Seyfert 1 Galaxies. II. The SDSS DR7 Sample. 2018 , 235, 40		23	
879	Emission from the Ionized Gaseous Halos of Low-redshift Galaxies and Their Neighbors. 2018 , 861, 34		11	
878	Cosmic CARNage II: the evolution of the galaxy stellar mass function in observations and galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 1197-1210	4.3	11	
877	Stellar Mass Profiles of Quiescent Galaxies in Different Environments at $z \sim 0$. 2018 , 861, 101		7	
876	SHINING, A Survey of Far-infrared Lines in Nearby Galaxies. II. Line-deficit Models, AGN Impact, [C ii]BFR Scaling Relations, and MassMetallicity Relation in (U)LIRGs. 2018 , 861, 95		47	
875	Revisiting the Extended Schmidt Law: The Important Role of Existing Stars in Regulating Star Formation. 2018 , 853, 149		41	
874	The massifietallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 1143-1164	4.3	24	
873	Galaxies in the act of quenching star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 3335-3355	4.3	3	
872	Galaxy pairs in the SDSS IXIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 2591-2604	4.3	29	
871	DirectlGas-phase Metallicity in Local Analogs of High-redshift Galaxies: Empirical Metallicity Calibrations for High-redshift Star-forming Galaxies. 2018, 859, 175		40	
870	The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. 2018 , 235, 42		657	
869	TheSpitzer-IRAC/MIPS Extragalactic Survey (SIMES). II. Enhanced Nuclear Accretion Rate in Galaxy Groups atz~ 0.2. 2018 , 857, 64		3	
868	ALMA + VLT observations of a damped Lyman-habsorbing galaxy: massive, wide CO emission, gas-rich but with very low SFR. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 4039-4055	4.3	19	
867	Re-evaluating old stellar populations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 75-9	934.3	143	
866	The SAMI Galaxy Survey: Gravitational Potential and Surface Density Drive Stellar Populations. I. Early-type Galaxies. 2018 , 856, 64		22	
865	The discrimination habuses also forming and ACN colonies in the character of the LINES.			
_ 005	The discrimination between star-forming and AGN galaxies in the absence of H hand [N ii]: a machine -learning approach. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 3177-3188	4.3	4	
864		4.3	10	

862	Stochastic modelling of star-formation histories I: the scatter of the star-forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3845-3869	4.3	34
861	Black hole mass estimation for active galactic nuclei from a new angle. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3404-3418	4.3	22
860	Star formation quenching imprinted on the internal structure of naked red nuggets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 4939-4950	4.3	9
859	A general approach to quenching and galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 234-252	4.3	3
858	SDSS-IV MaNGA: effects of morphology in the global and local star formation main sequences. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 3929-3948	4.3	39
857	Understanding Galaxy Evolution Through Emission Lines. 2019 , 57, 511-570		121
856	The Evolution of the Interstellar Medium in Post-starburst Galaxies. 2019 , 879, 131		14
855	The Morphological Transformation and the Quenching of Galaxies. 2019 , 878, 69		14
854	Census of the Local Universe (CLU) Narrowband Survey. I. Galaxy Catalogs from Preliminary Fields. 2019 , 880, 7		25
853	On the Effect of Environment on Line Emission from the Circumgalactic Medium. 2019 , 880, 28		6
852	A Catalog of the Most Optically Luminous Galaxies at z 2019, 243, 14		17
851	Star formation in CALIFA early-type galaxies: a matter of discs. 2019 , 488, L80-L84		18
850	The angular scale of homogeneity in the local Universe with the SDSS blue galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 1481-1487	4.3	7
849	The quantity of dark matter in early-type galaxies and its relation to the environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 1320-1331	4.3	3
848	GASP IXX. From the loose spatially resolved to the tight global SFRIhass relation in local spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 1597-1617	4.3	19
847	WALLABY early science [III. An H i study of the spiral galaxy NGC 1566. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 2797-2817	4.3	21
846	Towards a radially resolved semi-analytic model for the evolution of disc galaxies tuned with machine learning. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3581-3606	4.3	18
845	The build-up of pseudo-bulges in a hierarchical universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 609-632	4.3	11

(2019-2019)

844	The dependence of AGN activity on environment in SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 89-98	4.3	16	
843	Fundamental metallicity relation in CALIFA, SDSS-IV MaNGA, and high-z galaxies. 2019 , 627, A42		30	
842	Exploring a new definition of the green valley and its implications. 2019 , 488, L99-L103		9	
841	GASP IXVII. H i imaging of the jellyfish galaxy JO206: gas stripping and enhanced star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 4580-4591	4.3	31	
840	Metallicity of stars formed throughout the cosmic history based on the observational properties of star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 5300-5326	4.3	34	
839	Green Peas in X-Rays. 2019 , 880, 144		10	
838	MAGPHYS+photo-z: Constraining the Physical Properties of Galaxies with Unknown Redshifts. 2019 , 882, 61		28	
837	Constraining scatter in the stellar massfialo mass relation for haloes less massive than the Milky Way. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 4916-4925	4.3	6	
836	Resolved scaling relations and metallicity gradients on sub-kiloparsec scales at z 🗈 . <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 224-240	4.3	11	
835	Smaller stellar disc scale lengths in rich environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 2216-2226	4.3	1	
834	Diffuse ionized gas and its effects on nebular metallicity estimates of star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 4721-4733	4.3	21	
833	Post-starburst galaxies in SDSS-IV MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 5709-5722	4.3	19	
832	The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0′<′z′<′1.3. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 417-439	4.3	37	
831	Oxygen yields as a constraint on feedback processes in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 868-888	4.3	5	
830	The main sequence of star-forming galaxies III. A non-evolving slope at the high-mass end. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5285-5299	4.3	13	
829	Semi-analytic forecasts for JWST III. Physical properties and scaling relations for galaxies at z´=´4IIO. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 2855-2879	4.3	39	
828	On the environment of low surface brightness galaxies at different scales. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 3772-3785	4.3	3	
827	The rotational profiles of cluster galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5017-5032	4.3	2	

826	Self-consistent population spectral synthesis with FADO. 2019 , 622, A56		4
825	Resolved and Integrated Stellar Masses in the SDSS-iv/MaNGA Survey. I. PCA Spectral Fitting and Stellar Mass-to-light Ratio Estimates. 2019 , 883, 82		8
824	Automated Mining of the ALMA Archive in the COSMOS Field (A3COSMOS). I. Robust ALMA Continuum Photometry Catalogs and Stellar Mass and Star Formation Properties for ~700 Galaxies at $z = 0.5$ B. 2019 , 244, 40		29
823	Dust properties and star formation of approximately a thousand local galaxies. 2019 , 631, A38		10
822	J-PLUS: Impact of bars on quenching timescales in nearby green valley disc galaxies. 2019 , 630, A88		3
821	Red and dead CANDELS: massive passive galaxies at the dawn of the Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 3309-3328	4.3	31
820	Kinematics of Cluster Galaxies and Their Relation to Galaxy Evolution. 2019 , 878, 9		9
819	On the Elevation and Suppression of Star Formation within Galaxies. 2019 , 877, 132		25
818	The Fundamental Relation between Halo Mass and Galaxy Group Properties. 2019, 881, 74		8
817	Beyond UVJ: More Efficient Selection of Quiescent Galaxies with Ultraviolet/Mid-infrared Fluxes.		18
01/	2019 , 880, L9		
816	Nearly all Massive Quiescent Disk Galaxies Have a Surprisingly Large Atomic Gas Reservoir. 2019 , 884, L52		25
	Nearly all Massive Quiescent Disk Galaxies Have a Surprisingly Large Atomic Gas Reservoir. 2019 ,	4.3	
816	Nearly all Massive Quiescent Disk Galaxies Have a Surprisingly Large Atomic Gas Reservoir. 2019 , 884, L52 A fast radio burst in the direction of the Virgo Cluster. <i>Monthly Notices of the Royal Astronomical</i>	4-3	
816	Nearly all Massive Quiescent Disk Galaxies Have a Surprisingly Large Atomic Gas Reservoir. 2019, 884, L52 A fast radio burst in the direction of the Virgo Cluster. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1-8 Recalibrating the cosmic star formation history. Monthly Notices of the Royal Astronomical Society,		25
816 815 814	Nearly all Massive Quiescent Disk Galaxies Have a Surprisingly Large Atomic Gas Reservoir. 2019, 884, L52 A fast radio burst in the direction of the Virgo Cluster. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1-8 Recalibrating the cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5359-5365		25 13 18
816 815 814 813	Nearly all Massive Quiescent Disk Galaxies Have a Surprisingly Large Atomic Gas Reservoir. 2019, 884, L52 A fast radio burst in the direction of the Virgo Cluster. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1-8 Recalibrating the cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5359-5365 Gas accretion as fuel for residual star formation in Galaxy Zoo elliptical galaxies. 2019, 489, L108-L113		25 13 18 8
816 815 814 813	Nearly all Massive Quiescent Disk Galaxies Have a Surprisingly Large Atomic Gas Reservoir. 2019, 884, L52 A fast radio burst in the direction of the Virgo Cluster. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1-8 Recalibrating the cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5359-5365 Gas accretion as fuel for residual star formation in Galaxy Zoo elliptical galaxies. 2019, 489, L108-L113 Effect of galaxy mergers on star-formation rates. 2019, 631, A51 Clustering constraints on the relative sizes of central and satellite galaxies. Monthly Notices of the	4-3	25 13 18 8 41

808	xGASS: The impact of photometric bulges on the scatter of HI scaling relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 4060-4079	4.3	16	
807	CO Emission in Infrared-selected Active Galactic Nuclei. 2019 , 879, 41		18	
806	Ionization Mechanisms in Quasar Outflows. 2019 , 881, 31		4	
805	Characterizing the Local Relation between Star Formation Rate and Gas-phase Metallicity in MaNGA Spiral Galaxies. 2019 , 882, 9		13	
804	The Roles of Mass and Environment in the Quenching of Galaxies. 2019 , 882, 167		7	
803	AGN-Driven Outflows in Dwarf Galaxies. 2019 , 884, 54		31	
802	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). II. Physical Properties Derived from the SED Fitting with Optical, Infrared, and Radio Data. 2019 , 243, 15		13	
801	Statistical Stellar Mass Corrections for High-z Galaxies Observed with JWST Broadband Filters Due to Template Degeneracies. 2019 , 243, 27		1	
800	A young galaxy cluster in the old Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 2014-2029	4.3	1	
799	Prediction of galaxy halo masses in SDSS DR7 via a machine learning approach. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 2367-2379	4.3	15	
798	Narrow-band Hamaging of nearby WolfRayet galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 3448-3453	4.3	1	
797	Redshift measurement through star formation. 2019 , 629, A7			
796	The structural properties of classical bulges and discs from z \sim 2. Monthly Notices of the Royal Astronomical Society, 2019 , 489, 4135-4154	4.3	7	
795	Significance of bar quenching in the global quenching of star formation. 2019 , 628, A24		5	
794	Star Formation Stochasticity Measured from the Distribution of Burst Indicators. 2019 , 873, 74		18	
793	UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z´= 0¶0. Monthly Notices of the Royal Astronomical Society, 2019 , 488, 3143-3194	4.3	346	
792	Discovering AGN-driven winds through their infrared emission III. Mass outflow rate and energetics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 4290-4303	4.3	38	
791	What shapes a galaxy? Inraveling the role of mass, environment, and star formation in forming galactic structure. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 666-696	4.3	34	

790	The morphology, kinematics and metallicity of blue-core galaxies. 2019 , 19, 081		1
789	Formation of disc galaxies around z´~´2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 1795-1807	4.3	8
788	The E-MOSAICS project: tracing galaxy formation and assembly with the agefinetallicity distribution of globular clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 3134-3179	g4·3	61
787	Interpreting the Star Formation E xtinction Relation with MaNGA. 2019 , 872, 63		9
786	An Hilmaging Survey of the Low Surface Brightness Galaxies Selected from the Spring Sky Region of the 40% ALFALFA H i Survey. 2019 , 242, 11		6
785	A Characteristic Mass Scale in the MassMetallicity Relation of Galaxies. 2019 , 877, 6		21
784	A Spectroscopic Study of a Rich Cluster at $z = 1.52$ with Subaru and LBT: The Environmental Impacts on the Mass Metallicity Relation. 2019 , 877, 118		2
783	GUNDAM: a toolkit for fast spatial correlation functions in galaxy surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 2824-2835	4.3	О
782	Size distribution of galaxies in SDSS DR7: weak dependence on halo environment. 2019 , 19, 006		8
781	Star formation rates for photometric samples of galaxies using machine learning methods. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1377-1391	4.3	13
780	Discovery of a strong ionized-gas outflow in an AKARI-selected ultra-luminous infrared galaxy at $z = 0.5$. 2019 , 71,		6
779	Morphology-assisted galaxy mass-to-light predictions using deep learning. 2019 , 624, A102		3
778	Radio-loud AGN in the first LoTSS data release. 2019 , 622, A12		61
777	Disentangling the physical parameters of gaseous nebulae and galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1053-1069	4.3	9
776	Optically Faint Massive Balmer Break Galaxies at $z > 3$ in the CANDELS/GOODS Fields. 2019 , 876, 135		19
775	Two growing modes and the morphologyquiescence relation in isolated galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 1927-1945	4.3	23
774	H i 21 cm mapping of the host galaxy of AT2018cow: a fast-evolving luminous transient within a ring of high column density gas. 2019 , 485, L93-L97		11
773	Correlation between SFR Surface Density and Thermal Pressure of Ionized Gas in Local Analogs of High-redshift Galaxies. 2019 , 872, 146		8

Disks. 2019 , 875, 54 ough their infrared emission II. General method and wind oyal Astronomical Society, 2019 , 482, 3915-3932 inematics in star-forming galaxies?. Monthly Notices of the Royal 125-5137	4.3	24
inematics in star-forming galaxies?. <i>Monthly Notices of the Royal</i>	4.3	19
. 25 5 15 1	4.3	24
ism-selected Rest-frame Optical Emission-line Galaxies. 2019,		7
te galaxies in projected phase space. <i>Monthly Notices of the Royal</i> 702-1723	4.3	30
om the CALIFA survey. 2019 , 621, A120		26
observations in the Hubble Ultra Deep Field with Brism[] <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 ,	4.3	17
e of galaxy clusters on segregation phenomena and velocity 1-L126		6
sification of emission-line galaxies. <i>Monthly Notices of the Royal</i> 085-1102	4.3	5
FLOW) II. A study of gas accretion around z 🗓 star-forming Monthly Notices of the Royal Astronomical Society, 2019 , 485, 1961-1	9 8 8	54
I1998bw: a collisional ring galaxy. <i>Monthly Notices of the Royal</i> I11-5422	4.3	9
v-line AGN in the local Universe: Joint dependence on stellar mass Royal Astronomical Society, 2019 , 483, 1452-1467	4.3	5
n the eagle simulation: star formation, metallicity, and stellar es of the Royal Astronomical Society, 2019 , 485, 5715-5732	4.3	27
dels for spectral energy distributions from 0.1		41
naximal star formation efficiency and quenching: the critical role the Royal Astronomical Society, 2019 , 485, 3446-3456	4.3	22
the gas-phase massEnetallicity relation. <i>Monthly Notices of the</i> 184, 3042-3070	4.3	46
ks to predict galaxy metallicity from three-colour images. nomical Society, 2019 , 484, 4683-4694	4.3	12
	ism-selected Rest-frame Optical Emission-line Galaxies. 2019, te galaxies in projected phase space. Monthly Notices of the Royal 702-1723 om the CALIFA survey. 2019, 621, A120 observations in the Hubble Ultra Deep Field with Grism[]Monthly Notices of the Royal Astronomical Society, 2019, e of galaxy clusters on segregation phenomena and velocity 1-L126 sification of emission-line galaxies. Monthly Notices of the Royal 1085-1102 FLOW) II. A study of gas accretion around z [ii] star-forming Monthly Notices of the Royal Astronomical Society, 2019, 485, 1961-1198bw: a collisional ring galaxy. Monthly Notices of the Royal 111-5422 r-line AGN in the local Universe: Joint dependence on stellar mass Royal Astronomical Society, 2019, 483, 1452-1467 In the eagle simulation: star formation, metallicity, and stellar es of the Royal Astronomical Society, 2019, 485, 5715-5732 dels for spectral energy distributions from 0.1 fb to 1 mm of 10, 621, A51 maximal star formation efficiency and quenching: the critical role the Royal Astronomical Society, 2019, 485, 3446-3456 the gas-phase massibetallicity relation. Monthly Notices of the 184, 3042-3070 rks to predict galaxy metallicity from three-colour images.	ism-selected Rest-frame Optical Emission-line Galaxies. 2019, te galaxies in projected phase space. Monthly Notices of the Royal (702-1723) 43 both the CALIFA survey. 2019, 621, A120 bobservations in the Hubble Ultra Deep Field with drismll. Monthly Notices of the Royal Astronomical Society, 2019, 43 e of galaxy clusters on segregation phenomena and velocity (1-L126) sification of emission-line galaxies. Monthly Notices of the Royal (85-1102) FLOW) II. A study of gas accretion around z Till star-forming (80-1102) Monthly Notices of the Royal Astronomical Society, 2019, 485, 1961-1988 All 1998bw: a collisional ring galaxy. Monthly Notices of the Royal (111-5422) All 1998bw: a collisional ring galaxy. Monthly Notices of the Royal (111-5422) All 1998bw: a collisional ring galaxy. Monthly Notices of the Royal (111-5422) All 1998bw: a collisional ring galaxy. Monthly Notices of the Royal (111-5422) All 1998bw: a collisional ring galaxy. Monthly Notices of the Royal (111-5422) All 1998bw: a collisional ring galaxy. Monthly Notices of the Royal (111-5422) All 1998bw: a collisional ring galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5715-5732 43 dels for spectral energy distributions from 0.1 fit to 1 mm of (1, 621, A51) maximal star formation efficiency and quenching: the critical role the Royal Astronomical Society, 2019, 485, 3446-3456 43 the gas-phase massibetallicity relation. Monthly Notices of the 184, 3042-3070 43 cks to predict galaxy metallicity from three-colour images.

754	Widespread star formation inside galactic outflows. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 3409-3429	4.3	53
753	Kiloparsec Scale Properties of Star Formation Driven Outflows at $z\sim 2.3$ in the SINS/zC-SINF AO Survey. 2019 , 873, 122		40
75 ²	The Chemical Evolution of Carbon, Nitrogen, and Oxygen in Metal-poor Dwarf Galaxies*. 2019 , 874, 93		45
75 ¹	The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 4817-4840	4.3	93
750	Emission line luminosity distributions of Seyfert 2 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 3402-3408	4.3	1
749	Early- and late-stage mergers among main sequence and starburst galaxies at 0.2 ½ ½. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 5631-5651	4.3	36
748	Two-face(s): ionized and neutral gas winds in the local Universe. 2019 , 622, A188		18
747	PHIBSS2: survey design and $z = 0.5 \cdot D.8$ results. 2019 , 622, A105		51
746	Dissecting the main sequence: AGN activity and bulge growth in the local Universe. 2019 , 482, L129-L13	3	12
745	IQ-Collaboratory 1.1: The Star-forming Sequence of Simulated Central Galaxies. 2019 , 872, 160		15
744	A Long-duration Luminous Type IIn Supernova KISS15s: Strong Recombination Lines from the Inhomogeneous Ejecta©SM Interaction Region and Hot Dust Emission from Newly Formed Dust. 2019 , 872, 135		6
743	Quenching Low-mass Satellite Galaxies: Evidence for a Threshold ICM Density. 2019 , 873, 42		22
742	The FMOS-COSMOS Survey of Star-forming Galaxies at $z \sim 1.6$. VI. Redshift and Emission-line Catalog and Basic Properties of Star-forming Galaxies. 2019 , 241, 10		36
741	Evolution of dwarf galaxies hosting GW150914-like events. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3219-3232	4.3	14
740	Effect of richness on AGN and star formation activities in SDSS galaxy groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3806-3817	4.3	9
739	Variation of physical properties across the green valley for local galaxies. 2019 , 19, 027		1
738	Atomic gas fractions in active galactic nucleus host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 5694-5703	4.3	14
737	Atomic hydrogen in IllustrisTNG galaxies: the impact of environment parallelled with local 21-cm surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 5334-5354	4.3	47

(2019-2019)

736	The origin of scatter in the star formation rateBtellar mass relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 915-932	4.3	57	
735	The MUSE Atlas of Disks (MAD): resolving star formation rates and gas metallicities on . <i>Monthly Notices of the Royal Astronomical Society,</i> 2019 , 484, 5009-5027	4.3	55	
734	SNITCH: seeking a simple, informative star formation history inference tool. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3590-3603	4.3		
733	Spatially resolved star formation and metallicity profiles in post-merger galaxies from MaNGA. 2019 , 482, L55-L59		39	
732	Direct T e Metallicity Calibration of R23 in Strong Line Emitters. 2019 , 872, 145		7	
731	The Next Generation Fornax Survey (NGFS). V. Discovery of a Dwarf \mathbf{D} warf Galaxy Pair at $z=0.30$ and Its Characterization Using Deep VLT/MUSE Observations. 2019 , 873, 59		6	
730	Role of Environment on Nuclear Activity. 2019 , 874, 140		7	
729	J-PLUS: Measuring Hæmission line fluxes in the nearby universe. 2019 , 622, A180		12	
728	Do Galaxy Morphologies Really Affect the Efficiency of Star Formation During the Phase of Galaxy Transition?. 2019 , 874, 142		11	
727	SDSS-IV MaNGA: The Roles of AGNs and Dynamical Processes in Star Formation Quenching in Nearby Disk Galaxies. 2019 , 870, 19		16	
726	De re metallica: the cosmic chemical evolution of galaxies. 2019 , 27, 1		203	
725	Star formation rates and stellar masses from machine learning. 2019 , 622, A137		17	
724	The relative specific Type Ia supernovae rate from three years of ASAS-SN. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3785-3796	4.3	11	
723	The AGN-galaxy connection: Low-redshift benchmark & mp; lessons learnt. 2019, 15, 144-156			
722	Deep learning for galaxy mergers in the galaxy main sequence. 2019 , 15, 104-108			
721	Evolutionary Population Synthesis model with binary stars I/Yunnan-II model. 2019 , 15, 35-38			
720	Nature and physical properties of gas-mass selected galaxies using integral field spectroscopy. 2019 , 15, 326-330			
719	The Close AGN Reference Survey (CARS). 2019 , 627, A53		32	

718	Radio continuum size evolution of star-forming galaxies over 0.35 2019, 625, A114	19
717	Nonparametric Star Formation History Reconstruction with Gaussian Processes. I. Counting Major Episodes of Star Formation. 2019 , 879, 116	28
716	Star Formation Histories of the LEGUS Spiral Galaxies. I. The Flocculent Spiral NGC 7793. 2019 , 878, 1	12
715	Active Galactic Nucleus Pairs from the Sloan Digital Sky Survey. III. Chandra X-Ray Observations Unveil Obscured Double Nuclei. 2019 , 882, 41	11
714	Stellar Mass Growth of Brightest Cluster Galaxy Progenitors in COSMOS Since $z \sim 3$. 2019 , 881, 150	14
713	Living with Neighbors. I. Observational Clues to Hydrodynamic Impact of Neighboring Galaxies on Star Formation. 2019 , 882, 14	7
712	Massive galaxies on the road to quenching: ALMA observations of powerful high redshift radio galaxies. 2019 , 621, A27	19
711	Star formation and gas in the minor merger UGC 10214. 2019 , 623, A154	O
710	Deciphering an evolutionary sequence of merger stages in infrared-luminous starburst galaxies atz~ 0.7. 2019 , 623, A64	11
709	The most massive, passive, and oldest galaxies at 0.5 2019, 630, A145	4
708	The XXL Survey. 2019 , 625, A112	12
707	Ultimate merging at z ~ 0.1. 2019 , 627, L3	3
706	The MUSE-Wide Survey: survey description and first data release. 2019 , 624, A141	45
705	WATCAT: a tale of wide-angle tailed radio galaxies. 2019 , 626, A8	10
704	A LOFAR-IRAS cross-match study: the far-infrared radio correlation and the 150 MHz luminosity as a star-formation rate tracer. 2019 , 631, A109	13
703	Properties of LBGs with [OIII] detection at z \sim 3.5. 2019 , 631, A123	7
702	The abundance of massive compact galaxies at 1.0 2019, 19, 150	2
701	The Data Analysis Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey: Emission-line Modeling. 2019 , 158, 160	79

700	Compact Star-forming Galaxies as Old Starbursts Becoming Quiescent. 2019 , 886, 88		16
699	The ALMaQUEST Survey: The Molecular Gas Main Sequence and the Origin of the Star-forming Main Sequence. 2019 , 884, L33		38
698	Identifying galaxy mergers in observations and simulations with deep learning. 2019, 626, A49		24
697	Understanding the Discrepancy between IRX and Balmer Decrement in Tracing Galaxy Dust Attenuation. 2019 , 886, 28		10
696	Estimating the Molecular Gas Mass of Low-redshift Galaxies from a Combination of Mid-infrared Luminosity and Optical Properties. 2019 , 887, 172		3
695	The ALMA Fornax Cluster Survey I: stirring and stripping of the molecular gas in cluster galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 2251-2268	4.3	30
694	The main sequence of star-forming galaxies []. The local relation and its bending. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3213-3226	4.3	43
693	Starburst galaxies in semi-analytic models of galaxy formation and evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 4454-4465	4.3	6
692	SDSS-IV MaNGA han archaeological view of the cosmic star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 1557-1586	4.3	40
691	Mildly suppressed star formation in central regions of MaNGA Seyfert galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 194-205	4.3	8
690	Systematic study of outflows in the Local Universe using CALIFA: I. Sample selection and main properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 4032-4056	4.3	30
689	Nature versus nurture: what regulates star formation in satellite galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 5041-5051	4.3	22
688	The lifecycle of molecular clouds in nearby star-forming disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 2872-2909	4.3	105
687	The MUSE Atlas of Discs (MAD): Ionized gas kinematic maps and an application to diffuse ionized gas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 4089-4107	4.3	16
686	L-GALAXIES 2020: Spatially resolved cold gas phases, star formation, and chemical enrichment in galactic discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 5795-5814	4.3	28
685	The massinetallicity and the fundamental metallicity relation revisited on a fully Te-based abundance scale for galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 944-964	4.3	73
684	SEDOBS: A tool to create simulated galaxy observations. 2020 , 30, 100354		1
683	Swirls of FIRE: spatially resolved gas velocity dispersions and star formation rates in FIRE-2 disc environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 1620-1637	4.3	17

682	High molecular gas content and star formation rates in local galaxies that host quasars, outflows, and jets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 1560-1575	4.3	20
681	The AGN contribution to the UVIIR luminosities of interacting galaxies and its role in identifying the main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 4325-4369	4.3	4
680	SDSS-IV MaNGA: the indispensable role of bars in enhancing the central star formation of low-z galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 1406-1423	4.3	9
679	H121-centimetre emission from an ensemble of galaxies at an average redshift of one. 2020 , 586, 369-	372	18
678	Streams, Substructures, and the Early History of the Milky Way. 2020 , 58, 205-256		81
677	Age and metallicity of galaxies in different environments of the Coma supercluster. 2020 , 81, 101417		3
676	The stellar mass assembly of low-redshift, massive, central galaxies in SDSS and the TNG300 simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 4262-4275	4.3	2
675	SDSS IV MaNGA: Metallicity and ionisation parameter in local star-forming galaxies from Bayesian fitting to photoionisation models. 2020 , 636, A42		22
674	Effect of bars on evolution of SDSS spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 5839-5850	4.3	3
673	Star-Forming Galaxies at Cosmic Noon. 2020 , 58, 661-725		29
673 672	Star-Forming Galaxies at Cosmic Noon. 2020, 58, 661-725 Connecting SDSS central galaxies to their host haloes using total satellite luminosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020, 496, 5463-5481	4.3	29
	Connecting SDSS central galaxies to their host haloes using total satellite luminosity. <i>Monthly</i>	4-3	, in the second
672	Connecting SDSS central galaxies to their host haloes using total satellite luminosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 5463-5481 Stellar populations and physical properties of starbursts in the antennae galaxy from self-consistent modelling of MUSE spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 ,		5
672 671	Connecting SDSS central galaxies to their host haloes using total satellite luminosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 5463-5481 Stellar populations and physical properties of starbursts in the antennae galaxy from self-consistent modelling of MUSE spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 3860-3895 SDSS-IV MaNGA: The kinematic-morphology of galaxies on the mass versus star-formation relation	4.3	5
672 671 670	Connecting SDSS central galaxies to their host haloes using total satellite luminosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 5463-5481 Stellar populations and physical properties of starbursts in the antennae galaxy from self-consistent modelling of MUSE spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 3860-3895 SDSS-IV MaNGA: The kinematic-morphology of galaxies on the mass versus star-formation relation in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 1958-1977 Observations of [OI]63 fh line emission in main-sequence galaxies at z ~ 1.5. <i>Monthly Notices of the</i>	4.3	5 5 18
672 671 670	Connecting SDSS central galaxies to their host haloes using total satellite luminosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 5463-5481 Stellar populations and physical properties of starbursts in the antennae galaxy from self-consistent modelling of MUSE spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 3860-3895 SDSS-IV MaNGA: The kinematic-morphology of galaxies on the mass versus star-formation relation in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 1958-1977 Observations of [OI]63 In line emission in main-sequence galaxies at z ~ 1.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 1788-1794 The Three Hundred project: the stellar and gas profiles. <i>Monthly Notices of the Royal Astronomical</i>	4·3 4·3	5 5 18
672 671 670 669	Connecting SDSS central galaxies to their host haloes using total satellite luminosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 5463-5481 Stellar populations and physical properties of starbursts in the antennae galaxy from self-consistent modelling of MUSE spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 3860-3895 SDSS-IV MaNGA: The kinematic-morphology of galaxies on the mass versus star-formation relation in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 1958-1977 Observations of [OI]63 fh line emission in main-sequence galaxies at z ~ 1.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 1788-1794 The Three Hundred project: the stellar and gas profiles. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 2930-2948 A panchromatic spatially resolved analysis of nearby galaxies III. The main sequence Igas relation at sub-kpc scale in grand-design spirals. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 ,	4·3 4·3 4·3	5 5 18 1

(2020-2020)

664	Effect of the environment on star formation activity and stellar mass for star-forming galaxies in the COSMOS field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 948-956	4.3	2	
663	Active galactic nucleus and dwarf galaxy gas kinematics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 4562-4576	4.3	3	
662	xGASS: the role of bulges along and across the local star-forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5596-5605	4.3	9	
661	AGN and star formation properties of insideBut assembled galaxy candidates at z . <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 4345-4355	4.3	4	
660	Evidence for galaxy quenching in the green valley caused by a lack of a circumgalactic medium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 2289-2301	4.3	3	
659	The dependence of the galaxy stellar-to-halo mass relation on galaxy morphology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 3578-3593	4.3	11	
658	The specific star formation rate function at different mass scales and quenching: a comparison between cosmological models and SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 2036-2048	4.3	7	
657	Discovery and follow-up of ASASSN-19dj: an X-ray and UV luminous TDE in an extreme post-starburst galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 1673-1696	4.3	24	
656	Environment from cross-correlations: connecting hot gas and the quenching of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 2241-2261	4.3	5	
655	The X-ray view of merger-induced active galactic nuclei activity at low redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 2380-2389	4.3	6	
654	Stochastic modelling of star-formation histories II: star-formation variability from molecular clouds and gas inflow. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 698-725	4.3	26	
653	The influence of environment on satellite galaxies in the GAEA semi-analytic model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 4327-4344	4.3	11	
652	Star cluster formation in the most extreme environments: insights from the HiPEEC survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 3267-3294	4.3	17	
651	The host galaxies of 106 rapidly evolving transients discovered by the Dark Energy Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 2575-2593	4.3	7	
650	A census of ultraluminous X-ray sources in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 4790-4810	4.3	20	
649	Ejective and preventative: the IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 768-792	4.3	43	
648	The GOGREEN survey: post-infall environmental quenching fails to predict the observed age difference between quiescent field and cluster galaxies at z´>´1. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5317-5342	4.3	14	
647	How do central and satellite galaxies quench? Insights from spatially resolved spectroscopy in the MaNGA survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 230-268	4.3	26	

646	A single galaxy population? Statistical evidence that the star-forming main sequence might be the tip of the iceberg. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 573-586	4.3	4
645	The anatomy of a star-forming galaxy II: FUV heating via dust. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 2028-2041	4.3	1
644	Interacting galaxies in the IllustrisTNG simulations - I: Triggered star formation in a cosmological context. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 4969-4985	4.3	20
643	A phylogenetic analysis of galaxies in the Coma Cluster and the field: a new approach to galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 5607-5622	4.3	O
642	Chemodynamics of green pea galaxies II. Outflows and turbulence driving the escape of ionizing photons and chemical enrichment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 3541-35	5 6 7	9
641	Host Galaxies of Type Ic and Broad-lined Type Ic Supernovae from the Palomar Transient Factory: Implications for Jet Production. 2020 , 892, 153		25
640	Observing the Effects of Galaxy Interactions on the Circumgalactic Medium. 2020 , 893, L3		1
639	A detailed look at the stellar populations in green valley galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 2720-2737	4.3	5
638	PhotoWeb redshift: boosting photometric redshift accuracy with large spectroscopic surveys. 2020 , 636, A90		2
637	High-redshift JWST predictions from IllustrisTNG: II. Galaxy line and continuum spectral indices and dust attenuation curves. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 4747-4768	4.3	13
636	Forward modeling of galaxy kinematics in slitless spectroscopy. 2020 , 633, A43		1
635	The Roles of Mass and Environment in the Quenching of Galaxies. II 2020 , 889, 156		12
634	High-velocity Type Ia Supernova Has a Unique Host Environment. 2020 , 895, L5		8
633	Spatially Resolved Spectroscopic Properties of Low-Redshift Star-Forming Galaxies. 2020 , 58, 99-155		65
632	ZFIRE: Measuring Electron Density with [O ii] as a Function of Environment at z = 1.62. 2020 , 892, 77		10
631	Three Dusty Star-forming Galaxies at $z \sim 1.5$: Mergers and Disks on the Main Sequence. 2020 , 892, 104		5
630	The Variability of the Star Formation Rate in Galaxies. I. Star Formation Histories Traced by EW(H) and EW(HIA). 2020 , 892, 87		11
629	Galaxy assembly bias of central galaxies in the Illustris simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 2739-2754	4.3	15

(2020-2020)

628	The Variability of Star Formation Rate in Galaxies. II. Power Spectrum Distribution on the Main Sequence. 2020 , 895, 25		7
627	Balmer Break Galaxy Candidates at $z\sim 6$: A Potential View on the Star Formation Activity at z ? 14. 2020 , 889, 137		16
626	The ISM scaling relations in DustPedia late-type galaxies: A benchmark study for the Local Universe. 2020 , 633, A100		24
625	H i gas content of SDSS galaxies revealed by ALFALFA: implications for the massfinetallicity relation and the environmental dependence of H i in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 111-124	4.3	4
624	WolfRayet Galaxies in SDSS-IV MaNGA. I. Catalog Construction and Sample Properties. 2020, 896, 121		8
623	Timing the earliest quenching events with a robust sample of massive quiescent galaxies at 2 < z < 5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 695-707	4.3	21
622	xGASS: passive discs do not host unexpectedly large reservoirs of cold atomic hydrogen. 2020 , 494, L42	-L47	12
621	SDSS-IV MaNGA: spatially resolved dust attenuation in spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 2305-2320	4.3	10
620	Properties of simulated galaxies and supermassive black holes in cosmic voids. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 899-921	4.3	2
619	A binning-free method reveals a continuous relationship between galaxies AGN power and offset from main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 1392-1402	4.3	9
618	CLASH-VLT: Enhancement of (O/H) in $z = 0.35$ RX J2248 2431 cluster galaxies. 2020 , 633, A139		6
617	Deceptively cold dust in the massive starburst galaxy GN20 at z ~ 4. 2020 , 634, L14		25
616	Structural and stellar-population properties versus bulge types in Sloan Digital Sky Survey central galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 1686-1707	4.3	14
615	The high-redshift SFRM* relation is sensitive to the employed star formation rate and stellar mass indicators: towards addressing the tension between observations and simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 5592-5606	4.3	13
614	Both starvation and outflows drive galaxy quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 5406-5434	4.3	37
613	Multiwavelength Study of an X-Ray Tidal Disruption Event Candidate in NGC 5092. 2020 , 891, 121		7
612	The MOSDEF survey: direct-method metallicities and ISM conditions at z \sim 1.5B.5. Monthly Notices of the Royal Astronomical Society, 2020 , 491, 1427-1455	4.3	52
611	The evolution of rest-frame UV properties, Ly \boxplus Ws, and the SFR \blacksquare tellar mass relation at z ~ 2 \blacksquare for SC4K LAEs. Monthly Notices of the Royal Astronomical Society, 2020 , 493, 141-160	4.3	22

610	The AMUSING++ Nearby Galaxy Compilation. I. Full Sample Characterization and Galactic-scale Outflow Selection. 2020 , 159, 167		33	
609	The Host Galaxies of Tidal Disruption Events. 2020 , 216, 1		22	
608	The Activation of Galactic Nuclei and Their Accretion Rates Are Linked to the Star Formation Rates and Bulge-types of Their Host Galaxies. 2020 , 889, 14		8	
607	The ALMaQUEST Survey \blacksquare I. What drives central starbursts at $z \sim 0$?. Monthly Notices of the Royal Astronomical Society, 2020 , 492, 6027-6041	4.3	18	
606	Galaxy Morphology Network: A Convolutional Neural Network Used to Study Morphology and Quenching in ~100,000 SDSS and ~20,000 CANDELS Galaxies. 2020 , 895, 112		11	
605	Evolution of galaxies in groups in the Coma Supercluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 466-481	4.3	5	
604	The dust and cold gas content of local star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 2531-2541	4.3	2	
603	The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra. 2020 , 249, 3		363	
602	Generating synthetic cosmological data with GalSampler. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 5040-5051	4.3	7	
601	The Evolution of the Star-Forming Interstellar Medium Across Cosmic Time. 2020 , 58, 157-203		78	
600	Galaxy pairs in the Sloan Digital Sky Survey IXIV. Galaxy mergers do not lie on the fundamental metallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 3469-3480	4.3	8	
599	The star formation histories of $z\sim 1$ post-starburst galaxies. Monthly Notices of the Royal Astronomical Society, 2020 , 494, 529-548	4.3	21	
598	The frequency of very young galaxies in the local Universe [II. The view from SDSS spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 1791-1811	4.3	8	
597	Applications of Stellar Population Synthesis in the Distant Universe. 2020 , 8, 6		3	
596	Ionized gas outflow signatures in SDSS-IV MaNGA active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 4680-4696	4.3	28	
595	The H i morphology and stellar properties of strongly barred galaxies: support for bar quenching in massive spirals. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 4697-4715	4.3	16	
594	Are galactic star formation and quenching governed by local, global, or environmental phenomena?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 96-139	4.3	45	
593	Variations in the slope of the resolved star-forming main sequence: a tool for constraining the mass of star-forming regions. 2020 , 493, L87-L91		8	

592	The Nature of the Double Nuclei in the Barred S0 Galaxy IC 676. 2020, 890, 145		1
591	The global environment of small galaxy systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 1818-1826	4.3	1
590	Blue galaxies: modelling nebular He ii emission in high redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 4509-4522	4.3	4
589	Properties of galaxies with an offset between the position angles of the major kinematic and photometric axes. 2020 , 634, A26		5
588	Stellar age gradients and inside-out star formation quenching in galaxy bulges. 2020 , 635, A177		6
587	The ALPINE-ALMA [C II] survey: Star-formation-driven outflows and circumgalactic enrichment in the early Universe. 2020 , 633, A90		51
586	xGASS: cold gas content and quenching in galaxies below the star-forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 1982-1995	4.3	21
585	Galactic conformity in both star formation and morphological properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 2722-2730	4.3	5
584	The ALMaQUEST survey IIII. Scatter in the resolved star-forming main sequence is primarily due to variations in star formation efficiency. 2020 , 493, L39-L43		31
583	Chemical abundances of Seyfert 2 AGNs II. Comparing oxygen abundances from distinct methods using SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 468-479	4.3	12
582	The Importance of Star Formation Intensity in LyEscape from Green Pea Galaxies and Lyman Break Galaxy Analogs. 2020 , 893, 134		8
581	Galaxies hosting an active galactic nucleus: a view from the CALIFA survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 3073-3090	4.3	27
580	Into the Ly $\frac{1}{2}$ ungle: exploring the circumgalactic medium of galaxies at $z \sim 4\overline{B}$ with MUSE. Monthly Notices of the Royal Astronomical Society, 2020 , 493, 5336-5356	4.3	12
579	Nebular-line emission during the Epoch of Reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 6079-6094	4.3	7
578	The impact of the connectivity of the cosmic web on the physical properties of galaxies at its nodes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 4294-4309	4.3	17
577	Spatially resolved star formation and fuelling in galaxy interactions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 3113-3133	4.3	18
576	SPARTAN: Maximizing the use of spectro-photometric observational data during template fitting. 2021 , 34, 100427		1
575	Estimation of the Galaxy Quenching Rate in the Illustris Simulation. 2021 , 906, 129		1

574	The Landscape of Galaxies Harboring Changing-look Active Galactic Nuclei in the Local Universe. 2021 , 907, L21		7
573	OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society,	4.3	11
572	An Ultradeep Multiband VLA Survey of the Faint Radio Sky (COSMOS-XS): Source Catalog and Number Counts. 2021 , 907, 5		8
571	A machine learning approach to measuring the quenched fraction of low-mass satellites beyond the Local Group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 1636-1645	4.3	1
570	Galaxy and Mass Assembly: Group and field galaxy morphologies in the star-formation rate Istellar mass plane. 2021 , 646, A151		1
569	The properties and environment of very young galaxies in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 4815-4841	4.3	2
568	Observational Evidence for Enhanced Black Hole Accretion in Giant Elliptical Galaxies. 2021 , 908, 85		4
567	A reassessment of strong line metallicity conversions in the machine learning era. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 1082-1095	4.3	6
566	The SAGA Survey. II. Building a Statistical Sample of Satellite Systems around Milky Waylike Galaxies. 2021 , 907, 85		40
565	The EDGE C ALIFA survey: the local and global relations between B , B FR, and b ol that regulate star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 1615-1635	4.3	13
564	An atlas of MUSE observations towards twelve massive lensing clusters. 2021 , 646, A83		19
563	Pix2Prof: fast extraction of sequential information from galaxy imagery via a deep natural language daptioning model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 96-105	4.3	5
562	Galaxy evolution across environments as probed by the ages, stellar metallicities, and [PFe] of central and satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 4457-4478	4.3	13
561	Relation between AGN type and host galaxy properties. 2021 , 646, A167		6
560	Deep extragalactic visible legacy survey (DEVILS): stellar mass growth by morphological type since $z = 1$. Monthly Notices of the Royal Astronomical Society, 2021 , 505, 136-160	4.3	2
559	L-GALAXIES 2020: The evolution of radial metallicity profiles and global metallicities in disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 4474-4495	4.3	11
558	Investigating the projected phase space of Gaussian and non-Gaussian clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 3065-3080	4.3	1
557	Estimating the metallicity of star-forming early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 2340-2348	4.3	1

556	Modelling the M*BFR relation at high redshift: untangling factors driving biases in the intrinsic scatter measurement. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 4855-4877	4.3	1
555	Incidence, scaling relations and physical conditions of ionized gas outflows in MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 5134-5160	4.3	10
554	The non-linear infrared-radio correlation of low-z galaxies: implications for redshift evolution, a new radio SFR recipe, and how to minimize selection bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 118-145	4.3	8
553	Correlations between H \oplus equivalent width and galaxy properties at z = 0.47: Physical or selection-driven?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 5115-5133	4.3	O
552	Synergies between low- and intermediate-redshift galaxy populations revealed with unsupervised machine learning. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 3010-3031	4.3	O
551	J-PAS: Measuring emission lines with artificial neural networks. 2021 , 647, A158		2
550	SDSS-IV MaNGA: A Star Formation B aryonic Mass Relation at Kiloparsec Scales. 2021 , 909, 131		8
549	The MUSE Extremely Deep Field: The cosmic web in emission at high redshift. 2021 , 647, A107		17
548	AT2020caa: A Type Ia Supernova with a Prior Outburst or a Statistical Fluke?. 2021 , 5, 62		1
547	ASASSN-18am/SN 2018gk: an overluminous Type IIb supernova from a massive progenitor. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 3472-3491	4.3	1
546	Ultraviolet spectra of extreme nearby star-forming regions: Evidence for an overabundance of very massive stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 6112-6135	4.3	10
545	Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 3931-3952	4.3	10
544	The infrared-radio correlation of star-forming galaxies is stronglyM?-dependent but nearly redshift-invariant sincez~ 4. 2021 , 647, A123		15
543	The LOFAR Two-metre Sky Survey Deep Fields. 2021 , 648, A6		11
542	Connection between Galaxies and H i in Circumgalactic and Intergalactic Media: Variation according to Galaxy Stellar Mass and Star Formation Activity. 2021 , 911, 98		4
541	Introducing piXedfit: A Spectral Energy Distribution Fitting Code Designed for Resolved Sources. 2021 , 254, 15		3
540	Gas-phase Metallicity as a Diagnostic of the Drivers of Star Formation on Different Spatial Scales. 2021 , 910, 137		8
539	Accelerated Galaxy Growth and Environmental Quenching in a Protocluster at $z = 3.24$. 2021 , 911, 46		3

538	Asymmetry Revisited: The Effect of Dust Attenuation and Galaxy Inclination. 2021, 911, 145	1
537	Mass and Environment as Drivers of Galaxy Evolution. IV. On the Quenching of Massive Central Disk Galaxies in the Local Universe. 2021 , 911, 57	7
536	AGNs in small galaxy systems: comparing the main properties of active objects in pairs, triplets, and groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 4389-4399	O
535	The Infrared Emission and Vigorous Star Formation of Low-redshift Quasars. 2021 , 910, 124	7
534	X-ray quasi-periodic eruptions from two previously quiescent galaxies. 2021 , 592, 704-707	24
533	Probing possible effects of circumgalactic media on the metal content of galaxies through the massfhetallicity relationship. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 1959-1968 4·3	
532	Star formation quenching stages of active and non-active galaxies. 2021 , 648, A64	5
531	The HST See Change Program. I. Survey Design, Pipeline, and Supernova Discoveries*. 2021 , 912, 87	3
530	Stellar, Gas, and Dust Emission of Star-forming Galaxies out to z ~ 2. 2021 , 913, 34	1
529	Properties of gas phases around cosmic filaments at $z = 0$ in the IllustrisTNG simulation. 2021 , 649, A117	8
528	MaNGA galaxy properties II. An extensive optical, mid-infrared photometric, and environmental catalogue. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 3135-3156	2
527	On the Correlation between Atomic Gas and Bars in Galaxies. 2021 , 161, 260	Ο
526	The Fundamental Plane in the LEGA-C Survey: Unraveling the M/L Ratio Variations of Massive Star-forming and Quiescent Galaxies at $z \sim 0.8$. 2021 , 913, 103	5
525	Deep Extragalactic VIsible Legacy Survey (DEVILS): SED fitting in the D10-COSMOS field and the evolution of the stellar mass function and SFRM? relation. <i>Monthly Notices of the Royal</i> Astronomical Society, 2021 , 505, 540-567	11
524	Efficient Detection of Emission-line Galaxies in the Cl0016+1609 and MACSJ1621.4+3810 Supercluster Filaments Using SITELLE*. 2021 , 161, 255	O
523	The X-SHOOTER Lyman Burvey at z = 2 (XLS-z2) I: what makes a galaxy a Lyman Demitter?. Monthly Notices of the Royal Astronomical Society, 2021 , 505, 1382-1412 4-3	9
522	The physical properties of local (U)LIRGs: A comparison with nearby early- and late-type galaxies. 2021 , 649, A137	1
521	Galaxy formation with L-GALAXIES: modelling the environmental dependency of galaxy evolution and comparing with observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 492-514 ^{4.3}	8

520	The Corona Borealis supercluster: connectivity, collapse, and evolution. 2021, 649, A51		1
519	The miniJPAS survey. 2021 , 649, A79		2
518	Cosmic Star Formation History Measured at 1.4 GHz. 2021 , 914, 126		3
517	Anisotropic satellite galaxy quenching modulated by black hole activity. 2021 , 594, 187-190		5
516	J-PLUS: The star formation main sequence and rate density at d ? 75 Mpc. 2021 , 650, A68		2
515	Hosts and triggers of AGNs in the Local Universe. 2021 , 650, A155		3
514	The imprint of cosmic web quenching on central galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 4920-4934	4.3	1
513	Star formation scaling relations at ~100 pc from PHANGS: Impact of completeness and spatial scale. 2021 , 650, A134		14
512	Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case. 2021 , 8,		2
511	Green valley galaxies in the cosmic web: internal versus environmental quenching. 2021 , 2021, 045		3
510	A systematic search for changing-look quasars in SDSS-II using difference spectra. 2021 , 650, A33		1
509	Do gas clouds in narrow-line regions of Seyfert galaxies come from their nuclei?. 2021 , 73, 1152-1165		О
508	GASP. XXXIII. The Ability of Spatially Resolved Data to Distinguish among the Different Physical Mechanisms Affecting Galaxies in Low-density Environments. 2021 , 914, 27		8
507	The Heraklion Extragalactic Catalogue (HECATE): a value-added galaxy catalogue for multimessenger astrophysics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 1896-1915	4.3	1
506	Deep Extragalactic VIsible Legacy Survey (DEVILS): consistent multiwavelength photometry for the DEVILS regions (COSMOS, XMMLSS, and ECDFS). <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 256-287	4.3	2
505	The connection between star formation and supermassive black hole activity in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 2619-2637	4.3	O
504	On the dark matter haloes of optical and IR-selected AGNs in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 5403-5411	4.3	1
503	Surrogate modelling the Baryonic Universe II: On forward modelling the colours of individual and populations of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	5

 $_{\rm 502}$ $\,$ The HI gas and star formation in star-forming galaxies selected from ALFALFA. 2021, 21, 123

501	An AMUSING look at the host of the periodic nuclear transient ASASSN-14ko reveals a second AGN. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 6014-6028	4.3	2
500	HETDEX [O iii] Emitters. I. A Spectroscopically Selected Low-redshift Population of Low-mass, Low-metallicity Galaxies. 2021 , 916, 11		2
499	Measuring the Average Molecular Gas Content of Star-forming Galaxies at $z = 34$. 2021 , 916, 12		3
498	The GOGREEN survey: dependence of galaxy properties on halo mass at $z > 1$ and implications for environmental quenching. Monthly Notices of the Royal Astronomical Society,	4.3	5
497	Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 z 6.4.		4
496	Self-consistent population spectral synthesis with FADO. 2021 , 651, A99		O
495	Variation of the nebular dust attenuation curve with the properties of local star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 3588-3595	4.3	2
494	Bar quenching: Evidence from star-formation-rate indicators. 2021 , 651, A107		O
493	The puzzling origin of massive compact galaxies in MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 300-317	4.3	
492	Simulating the infrared sky with a SPRITZ. 2021 , 651, A52		O
491	Dissecting the SizeMass and 🛮 Mass Relations at 1.0 2021, 915, 87		11
490	The OTELO Survey: The Star Formation Rate Evolution of Low-mass Galaxies. 2021, 915, L17		
489	Galaxy zoo: stronger bars facilitate quenching in star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 4389-4408	4.3	7
488	SDSS-IV MaNGA: Refining Strong Line Diagnostic Classifications Using Spatially Resolved Gas Dynamics. 2021 , 915, 35		12
487	IQ Collaboratory. II. The Quiescent Fraction of Isolated, Low-mass Galaxies across Simulations and Observations. 2021 , 915, 53		4
486	An Empirical Determination of the Dependence of the Circumgalactic Mass Cooling Rate and Feedback Mass Loading Factor on Galactic Stellar Mass. 2021 , 916, 101		2
485	Galaxy Properties at the Faint End of the H i Mass Function. 2021 , 918, 23		2

484	LLAMA: Stellar populations in the nuclei of ultra-hard X-ray-selected AGN and matched inactive galaxies.		1
483	VALES. VIII. Weak ionized gas outflows in star-forming galaxies at z~0.15 traced with VLT/MUSE.		O
482	A universal relationship between stellar masses and binding energies of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 2423-2431	4.3	О
481	Do galaxies die? Different views from simulations and observations in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 5108-5116	4.3	2
480	Neutrinos from the cosmic noon: a probe of the cosmic star formation history. 2021 , 2021, 019		2
479	The nature of hyperluminous infrared galaxies.		O
478	Dynamical properties of z ~4.5 dusty star-forming galaxies and their connection with local early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 3952-3984	4.3	14
477	The evolution of merger fraction of galaxies at z Monthly Notices of the Royal Astronomical Society , 2021 , 507, 3113-3124	4.3	2
476	The MOSDEF survey: The dependence of H \oplus to-UV SFR ratios on SFR and size at z \sim 2. Monthly Notices of the Royal Astronomical Society,	4.3	2
475	Two interacting galaxies hiding as one, revealed by MaNGA. 2021 , 653, A47		2
474	Ionized Gas Outflows in Low-excitation Radio Galaxies Are Radiation Driven. 2021, 918, 65		3
473	Star Formation and Quenching of Central Galaxies from Stacked Hi Measurements. 2021 , 918, 53		4
473 472	Star Formation and Quenching of Central Galaxies from Stacked Hi Measurements. 2021 , 918, 53 Properties of galaxies with ring structures. 2021 , 653, A71		1
472	Properties of galaxies with ring structures. 2021 , 653, A71 SUPER. V. ALMA continuum observations of z~2 AGN and the elusive evidence of outflows	4.3	1
47 ² 47 ¹	Properties of galaxies with ring structures. 2021 , 653, A71 SUPER. V. ALMA continuum observations of z~2 AGN and the elusive evidence of outflows influencing star formation. On the Constraints of Galaxy Assembly Bias in Velocity Space. <i>Monthly Notices of the Royal</i>	4-3	1
47 ² 47 ¹ 47 ⁰	Properties of galaxies with ring structures. 2021, 653, A71 SUPER. V. ALMA continuum observations of z~2 AGN and the elusive evidence of outflows influencing star formation. On the Constraints of Galaxy Assembly Bias in Velocity Space. Monthly Notices of the Royal Astronomical Society, AGN and star formation at cosmic noon: comparison of data to theoretical models. Monthly Notices		1 4 0

466	Constraining the Milky Way\u00ed ultraviolet-to-infrared SED with Gaussian process regression. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
465	EMPRESS. III. Morphology, Stellar Population, and Dynamics of Extremely Metal-poor Galaxies (EMPGs): Are EMPGs Local Analogs of High-z Young Galaxies?*. 2021 , 918, 54		4
464	What Determines the H i Gas Content in Galaxies? Morphological Dependence of the H i Gas Fraction across the M *BFR Plane. 2021 , 918, 68		2
463	ZFIRE: The Beginning of the End for Massive Galaxies at $z\sim2$ and Why Environment Matters. 2021 , 919, 57		1
462	The Dawes Review 9: The role of cold gas stripping on the star formation quenching of satellite galaxies. 2021 , 38,		23
461	OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society,	4.3	O
460	Gas compression and stellar feedback in the tidally interacting and ram-pressure stripped Virgo spiral galaxy NGC 4654. 2021 , 645, A111		4
459	H i global scaling relations in the WISE-WHISP survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 5711-5725	4.3	4
458	Comparing galaxy formation in the L-GALAXIES semi-analytical model and the IllustrisTNG simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 1051-1069	4.3	7
457	Local Starbursts in a Cosmological Context. 2005 , 3-10		14
			, i
456	Demographics and Host Galaxies of Starbursts. 2005 , 187-194		21
456 455	Demographics and Host Galaxies of Starbursts. 2005 , 187-194 Galaxy Collisions Dawn of a New Era. 2006 , 115-158		
			21
455	Galaxy Collisions Dawn of a New Era. 2006 , 115-158		21
455 454	Galaxy Collisions Dawn of a New Era. 2006, 115-158 The Co-Evolution of Galaxies and Black Holes: Current Status and Future Prospects. 2009, 335-356		21 18 5
455 454 453	Galaxy Collisions Dawn of a New Era. 2006, 115-158 The Co-Evolution of Galaxies and Black Holes: Current Status and Future Prospects. 2009, 335-356 Gas Accretion and Star-Formation Rates with IFUs and Background Quasars. 2017, 355-368		21 18 5
455 454 453 452	Galaxy Collisions IDawn of a New Era. 2006, 115-158 The Co-Evolution of Galaxies and Black Holes: Current Status and Future Prospects. 2009, 335-356 Gas Accretion and Star-Formation Rates with IFUs and Background Quasars. 2017, 355-368 Star Forming Dwarf Galaxies. 2012, 175-194		21 18 5 1

(2015-2010)

448	A fundamental plane for field star-forming galaxies. 2010 , 521, L53	264
447	Environmental dependence of local luminous infrared galaxies. 2010 , 522, A33	58
446	Spectral energy distributions of an AKARI-SDSS-GALEX sample of galaxies. 2011 , 529, A22	53
445	Supernovae without host galaxies?. 2012 , 538, A30	5
444	Activity in galactic nuclei of cluster and field galaxies in the local universe. 2012 , 538, A15	38
443	Galaxy interactions. 2012 , 539, A46	31
442	Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschelobservations. 2012 , 540, A109	161
441	The triggering probability of radio-loud AGN. 2012 , 541, A62	54
440	Properties ofz~ 3B Lyman break galaxies. 2014 , 563, A81	103
439	The interaction-driven starburst contribution to the cosmic star formation rate density. 2013 , 552, A44	25
438	Extremely metal-poor galaxies: The H i content. 2013 , 558, A18	30
437	Dust spectral energy distributions of nearby galaxies: an insight from theHerschelReference Survey. 2014 , 565, A128	129
436	Physical properties of AGN host galaxies as a probe of supermassive black hole feeding mechanisms. 2015 , 576, A32	12
435	The MUSE 3D view of theHubbleDeep Field South. 2015 , 575, A75	132
434	Emission-line-selected galaxies atz= 0.6½ in GOODS South: Stellar masses, SFRs, and large-scale structure. 2015 , 580, A42	10
434		10
	structure. 2015 , 580, A42	

430	Molecular gas in low-metallicity starburst galaxies:. 2016 , 588, A23	47
429	Massive stars formed in atomic hydrogen reservoirs: H I observations of gamma-ray burst host galaxies. 2015 , 582, A78	51
428	Deep MUSE observations in the HDFS. 2016 , 591, A49	60
427	Effect of bars on the galaxy properties. 2016 , 595, A63	18
426	Light breeze in the local Universe. 2017 , 606, A36	30
425	The effects of the cluster environment on the galaxy mass-size relation in MACS J1206.2-0847. 2017 , 604, A54	21
424	Strong dependence of Type Ia supernova standardization on the local specific star formation rate. 2020 , 644, A176	40
423	The final data release of ALLSMOG: a survey of CO in typical local low-M*star-forming galaxies. 2017 , 604, A53	31
422	An ALMA survey of submillimetre galaxies in the COSMOS field: Physical properties derived from energy balance spectral energy distribution modelling. 2017 , 606, A17	37
421	Spatially-resolved star formation histories of CALIFA galaxies. 2017 , 607, A128	40
420	The role of molecular gas in galaxy transition in compact groups. 2017 , 607, A110	10
420 419	The role of molecular gas in galaxy transition in compact groups. 2017 , 607, A110 The MUSEHubbleUltra Deep Field Survey. 2017 , 608, A3	10
419	The MUSEHubbleUltra Deep Field Survey. 2017 , 608, A3 Neutral carbon and highly excited CO in a massive star-forming main sequence galaxy at z = 2.2.	23
419	The MUSEHubbleUltra Deep Field Survey. 2017 , 608, A3 Neutral carbon and highly excited CO in a massive star-forming main sequence galaxy at z = 2.2. 2019 , 628, A104	6
419 418 417	The MUSEHubbleUltra Deep Field Survey. 2017, 608, A3 Neutral carbon and highly excited CO in a massive star-forming main sequence galaxy at z = 2.2. 2019, 628, A104 Scaling relations and baryonic cycling in local star-forming galaxies. 2020, 638, A4 Identification of filamentary structures in the environment of superclusters of galaxies in the Local	2366
419 418 417 416	The MUSEHubbleUltra Deep Field Survey. 2017, 608, A3 Neutral carbon and highly excited CO in a massive star-forming main sequence galaxy at z = 2.2. 2019, 628, A104 Scaling relations and baryonic cycling in local star-forming galaxies. 2020, 638, A4 Identification of filamentary structures in the environment of superclusters of galaxies in the Local Universe. 2020, 637, A31	23668

(2009-2020)

412	Molecular gas and star formation activity in luminous infrared galaxies in clusters at intermediate redshifts. 2020 , 640, A64	5
411	SDSS-IV MaNGA: Global and local stellar population properties of elliptical galaxies. 2020 , 644, A117	12
410	Double-peak emission line galaxies in the SDSS catalogue. 2020 , 641, A171	5
409	Connection between galactic downsizing and the most fundamental galactic scaling relations. 2020 , 642, A113	5
408	Multiscale cosmic web detachments, connectivity, and preprocessing in the supercluster SCl A2142 cocoon. 2020 , 641, A172	9
407	Populations of filaments from the distribution of galaxies in numerical simulations. 2020 , 641, A173	12
406	Revisiting dual AGN candidates with spatially resolved LBT spectroscopy. 2020 , 639, A117	5
405	Spectroscopic study of the HII regions in the NGC 1232 galaxy. 2020 , 642, A203	2
404	The MUSE Hubble Ultra Deep Field Survey. 2020 , 641, A118	15
403	CO emission in distant galaxies on and above the main sequence. 2020 , 641, A155	18
402	In pursuit of giants. 2020 , 644, A144	12
401	The EDGE-CALIFA survey: exploring the role of molecular gas on galaxy star formation quenching. 2020 , 644, A97	9
400	On measuring the Tully-Fisher relation atz > 1. 2006 , 450, 25-37	4
399	Significant evolution of the stellar mass-metallicity relation since $z \sim 0.65$. 2006 , 447, 113-119	27
398	The stellar masses of 25 000 galaxies at 0.2 🗈 🗈 .0 estimated by the COMBO-17 survey. 2006 , 453, 869-881	245
397	Emission-lines calibrations of the star formation rate from the Sloan Digital Sky Survey. 2009 , 495, 759-773	26
396	Core-collapse supernovae in low-metallicity environments and future all-sky transient surveys. 2008 , 489, 359-375	27
395	Stellar population analysis on local infrared-selected galaxies. 2009 , 495, 457-469	16

394	The VVDS-SWIRE-GALEX-CFHTLS surveys: physical properties of galaxies at z below 1.2 from photometric data. 2008 , 491, 713-730	53
393	HEderived Star Formation Rates for Threez?0.75 EDisCS Galaxy Clusters. 2005 , 630, 206-227	126
392	Chemical Abundances of DEEP2 Star-forming Galaxies atz~1.0🛭.5. 2005 , 635, 1006-1021	129
391	Luminous Infrared Galaxies in the Local Universe. 2006 , 649, 722-729	51
390	The Environments of Ultrastrong MgiiAbsorbers. 2007 , 658, 185-202	35
389	The ERO Host Galaxy of GRB 020127: Implications for the Metallicity of GRB Progenitors. 2007 , 660, 504-508	57
388	Deep GALEX Imaging of the COSMOS HST Field: A First Look at the Morphology of z \sim 0.7 Star-forming Galaxies. 2007 , 172, 468-493	137
387	Keck DEIMOS Spectroscopy of a GALEX UV-Selected Sample from the Medium Imaging Survey. 2007 , 173, 471-481	1
386	The Diverse Properties of the Most Ultraviolet-Luminous Galaxies Discovered by GALEX. 2007 , 173, 441-456	102
385	The Co-Formation of Spheroids and Quasars Traced in their Clustering. 2007 , 662, 110-130	85
384	Isolating Triggered Star Formation. 2007 , 671, 1538-1549	70
383	Galaxy Mergers atz? 1 in the HUDF: Evidence for a Peak in the Major Merger Rate of Massive Galaxies1. 2008 , 678, 751-757	58
382	The Host Galaxies and Black Holes of Typicalz~0.5¶.4 AGNs. 2008, 677, 127-136	49
381	Metallicities and Physical Conditions in Star-forming Galaxies atz~ 1.0🛭.51. 2008 , 678, 758-779	138
380	Structure and Star Formation in Galaxies out toz= 3: Evidence for Surface Density Dependent Evolution and Upsizing. 2008 , 688, 770-788	330
379	THE METALLICITIES OF LOW STELLAR MASS GALAXIES AND THE SCATTER IN THE MASS-METALLICITY RELATION. 2012 , 750, 120	71
378	THEXMMCLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES. 2012 , 752, 12	42
377	CALCIUM H & K INDUCED BY GALAXY HALOS. 2013 , 773, 16	32

376	Can a conditioning on stellar mass explain the mutual information between morphology and environment?. 2020 , 2020, 039-039		3
375	The intrinsic SFRF and sSFRF of galaxies: comparing SDSS observation with IllustrisTNG simulation. 2020 , 20, 195		7
374	The physical properties of galaxies with unusually high gas-phase metallicity. 2020 , 20, 020		1
373	The stellar metallicity distribution function of galaxies in the CALIFA survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 4838-4853	4.3	7
372	Constraining delay time distribution of binary neutron star mergers from host galaxy properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 5220-5229	4.3	3
371	Evaluating hydrodynamical simulations with green valley galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 3685-3702	4.3	4
370	The Metal Abundances across Cosmic Time (MACT) Survey. III IThe relationship between stellar mass and star formation rate in extremely low-mass galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 501, 2231-2249	4.3	2
369	Compact galaxies and the sizehass galaxy distribution from a colour-selected sample at 0.04 < z < 0.15 supplemented by ugrizYJHK photometric redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 1557-1574	4.3	2
368	The effects of star formation history in the SFRIM* relation of H ii galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 3240-3253	4.3	1
367	First Light And Reionization Epoch Simulations (FLARES) []. Environmental dependence of high-redshift galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 2127-2145	4.3	8
366	A population of galaxy-scale jets discovered using LOFAR. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 4921-4936	4.3	10
365	Spatially offset black holes in the Horizon-AGN simulation and comparison to observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 4639-4657	4.3	7
364	The evolution of the low-frequency radio AGN population to z? 1.5 in the ELAIS N1 field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 4685-4702	4.3	3
363	The weak imprint of environment on the stellar populations of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 4469-4490	4.3	3
362	The impact of merging on the origin of kinematically misaligned and counter-rotating galaxies in MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 14-23	4.3	6
361	Observing correlations between dark matter accretion and galaxy growth []. Recent star formation activity in isolated Milky Way-mass galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 1253-1272	4.3	3
360	Molecular hydrogen in IllustrisTNG galaxies: carefully comparing signatures of environment with local CO and SFR data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 3158-3178	4.3	12
359	Compact, bulge-dominated structures of spectroscopically confirmed quiescent galaxies at z B. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 501, 2659-2676	4.3	6

358	Anomalous gas in ESO 149-G003: a MeerKAT-16 view. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 501, 2704-2723	3
357	The ALMaQUEST Survey IV. The non-universality of kpc-scale star formation relations and the factors that drive them. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 501, 4777-4797	15
356	A homogeneous measurement of the delay between the onsets of gas stripping and star formation quenching in satellite galaxies of groups and clusters. <i>Monthly Notices of the Royal Astronomical</i> 4.3 <i>Society,</i> 2021 , 501, 5073-5095	13
355	A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 4.3 2021 , 501, 4359-4382	12
354	The time-scales probed by star formation rate indicators for realistic, bursty star formation histories from the FIRE simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 501, 4812-4824	12
353	SDSS-IV MaNGA: when is morphology imprinted on galaxies?. 2020 , 500, L42-L46	4
352	THE ENVIRONMENTAL DEPENDENCE OF THE AGE OF ACTIVE GALAXIES AND THE DEPENDENCE OF THE CLUSTERING PROPERTIES OF ACTIVE GALAXIES ON AGE. 2020 , 56, 87-95	3
351	ISM EXCITATION AND METALLICITY OF STAR-FORMING GALAXIES ATZ? 3.3 FROM NEAR-IR SPECTROSCOPY. 2016 , 822, 42	91
350	STAR FORMATION ACTIVITY IN A YOUNG GALAXY CLUSTER ATZ= 0.866. 2016 , 825, 108	1
349	TESTING THE WAVELENGTH DEPENDENCE OF COSMOLOGICAL REDSHIFT DOWN TO 🛭 ~ 10🖪. 2016 , 825, 115	4
348	APERTURE EFFECTS ON THE OXYGEN ABUNDANCE DETERMINATIONS FROM CALIFA DATA. 2016 , 826, 71	17
347	EXPLORING SYSTEMATIC EFFECTS IN THE RELATION BETWEEN STELLAR MASS, GAS PHASE METALLICITY, AND STAR FORMATION RATE. 2016 , 827, 35	33
346	RADIAL DISTRIBUTION OF ISM GAS-PHASE METALLICITY IN CLASH CLUSTERS ATz~ 0.35: A NEW OUTLOOK ON ENVIRONMENTAL IMPACT ON GALAXY EVOLUTION. 2016 , 831, 104	11
345	The Hot Gas Exhaust of Starburst Engines in Mergers: Testing Models of Stellar Feedback and Star Formation Regulation. 2019 , 158, 169	4
344	The Effect of Environment on AGN Activity: The Properties of Radio and Optical AGN in Void, Isolated, and Group Galaxies. 2020 , 160, 227	4
343	The ALFALFA-SDSS Galaxy Catalog. 2020, 160, 271	9
342	Main-sequence Scatter is Real: The Joint Dependence of Galaxy Clustering on Star Formation and Stellar Mass. 2021 , 161, 49	5
341	DETERMINING THE LARGE-SCALE ENVIRONMENTAL DEPENDENCE OF GAS-PHASE METALLICITY IN DWARF GALAXIES. 2017 , 834, 186	6

(2020-2019)

340	The Coevolution of Massive Quiescent Galaxies and Their Dark Matter Halos over the Last 6 Billion Years. 2019 , 878, 158	7
339	Spectral Energy Distributions of Companion Galaxies to z ~ 6 Quasars. 2019 , 881, 163	10
338	The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Evolution of the Molecular Gas in CO-selected Galaxies. 2019 , 882, 136	45
337	The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-mass Selected Galaxies Using MUSE Spectroscopy. 2019 , 882, 140	32
336	Recalibration of [O ii]B727 as a Star Formation Rate Estimator for Active and Inactive Galaxies. 2019 , 882, 89	8
335	The Recent Burstiness of Star Formation in Galaxies at $z \sim 4.5$ from HEMeasurements. 2019 , 884, 133	25
334	A Trio of Massive Black Holes Caught in the Act of Merging. 2019 , 887, 90	7
333	Automated Mining of the ALMA Archive in the COSMOS Field (A3COSMOS). II. Cold Molecular Gas Evolution out to Redshift 6. 2019 , 887, 235	46
332	Unveiling Sizes of Compact AGN Hosts with ALMA. 2020 , 888, 44	5
331	BreakBRD Galaxies. I. Global Properties of Spiral Galaxies with Central Star Formation in Red Disks. 2020 , 889, 188	4
330	A Catalog of AGN Host Galaxies Observed with HST/ACS: Correlations between Star Formation and AGN Activity. 2020 , 888, 78	14
329	The Physical Properties of S0 Galaxy PGC 26218: The Origin of Starburst and Star Formation. 2020 , 889, 132	4
328	Thermal Regulation and the Star-forming Main Sequence. 2020 , 890, 19	3
327	A Comprehensive Study of HEmitters at z \sim 0.62 in the DAWN Survey: The Need for Deep and Wide Regions. 2020 , 892, 30	3
326	Mass-to-light Ratios of Spatially Resolved Stellar Populations in M31. 2020 , 891, 32	6
325	A Method to Distinguish Quiescent and Dusty Star-forming Galaxies with Machine Learning. 2020 , 891, 136	8
324	A Large Population of Obscured AGN in Disguise as Low-luminosity AGN in Chandra Deep Field South. 2020 , 897, 160	11
323	Gravitational Potential and Surface Density Drive Stellar Populations. II. Star-forming Galaxies. 2020 , 898, 62	5

322	The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: The Nature of the Faintest Dusty Star-forming Galaxies. 2020 , 901, 79	21
321	Galaxy and Mass Assembly (GAMA): Demonstrating the Power of WISE in the Study of Galaxy Groups to z 2020, 898, 20	11
320	The VLA-COSMOS 3 GHz Large Project: Evolution of Specific Star Formation Rates out to z \sim 5. 2020 , 899, 58	25
319	Extremely Metal-poor Representatives Explored by the Subaru Survey (EMPRESS). I. A Successful Machine-learning Selection of Metal-poor Galaxies and the Discovery of a Galaxy with M* 2020, 898, 142	16
318	Local Starburst Conditions and Formation of GRB 980425/SN 1998bw within a Collisional Ring. 2020 , 899, 165	2
317	A Chandra X-Ray Survey of Optically Selected AGN Pairs. 2020 , 900, 79	8
316	GASP XXX. The Spatially Resolved SFRMass Relation in Stripping Galaxies in the Local Universe. 2020 , 899, 98	13
315	Tracing the Coevolution Path of Supermassive Black Holes and Spheroids with AKARI-selected Ultraluminous IR Galaxies at Intermediate Redshifts. 2020 , 900, 51	5
314	Correlation of Structure and Stellar Properties of Galaxies in Stripe 82. 2020 , 899, 89	2
313	Some Die Filthy Rich: The Diverse Molecular Gas Contents of Post-starburst Galaxies Probed by Dust Absorption. 2020 , 900, 107	5
312	Connecting Optical Morphology, Environment, and H i Mass Fraction for Low-redshift Galaxies Using Deep Learning. 2020 , 900, 142	3
311	A Census of Sub-kiloparsec Resolution Metallicity Gradients in Star-forming Galaxies at Cosmic Noon from HST Slitless Spectroscopy. 2020 , 900, 183	13
310	A Catalog of 406 AGNs in MaNGA: A Connection between Radio-mode AGNs and Star Formation Quenching. 2020 , 901, 159	10
309	Characteristic Mass in Galaxy Quenching: Environmental versus Internal Effects. 2020 , 902, 75	4
308	ALMaQUEST. IV. The ALMA-MaNGA QUEnching and STar Formation (ALMaQUEST) Survey. 2020 , 903, 145	15
307	A Significant Excess in Major Merger Rate for AGNs with the Highest Eddington Ratios at z 2020, 904, 79	9
306	The Subaru HSC Galaxy Clustering with Photometric Redshift. I. Dark Halo Masses versus Baryonic Properties of Galaxies at 0.3 ½ 🛭 .4. 2020 , 904, 128	6
305	The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics. 2020 , 904, 35	38

304	The breakBRD Breakdown: Using IllustrisTNG to Track the Quenching of an Observationally Motivated Sample of Centrally Star-forming Galaxies. 2020 , 903, 143		1
303	The Binary⊞ost Connection: Astrophysics of Gravitational-Wave Binaries from Host Galaxy Properties. 2020 , 905, 21		7
302	Integral Field Spectroscopy of Fast Outflows in Dwarf Galaxies with AGNs. 2020 , 905, 166		10
301	Significant Suppression of Star Formation in Radio-quiet AGN Host Galaxies with Kiloparsec-scale Radio Structures. 2020 , 904, 83		7
300	Quantifying the Effect of Black Hole Feedback from the Central Galaxy on the Satellite Populations of Groups and Clusters. 2019 , 884, L45		2
299	Tightly Coupled Morpho-kinematic Evolution for Massive Star-forming and Quiescent Galaxies across 7 Gyr of Cosmic Time. 2020 , 903, L30		4
298	OUP accepted manuscript.		2
297	Star-forming S0 galaxies in the SDSS-IV MaNGA survey. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	O
296	SDSS-IV MaNGA: drivers of stellar metallicity in nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 4844-4857	4.3	1
295	The Large Early Galaxy Astrophysics Census (LEGA-C) Data Release 3: 3000 High-quality Spectra of K s -selected Galaxies at $z > 0.6$. 2021 , 256, 44		11
294	The extension of the fundamental metallicity relation beyond BPT star-forming sequence: evidence for both gas accretion and starvation.		1
293	Investigating the spectra and physical nature of galaxy scale jets. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3
292	Multi-messenger astrophysics with THESEUS in the 2030s. 1		2
291	Scaling relations and baryonic cycling in local star-forming galaxies. III. Outflows, effective yields, and metal loading factors.		О
290	Implications of a spatially resolved main sequence for the size evolution of star forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
289	The impact of void environment on AGN. Monthly Notices of the Royal Astronomical Society,	4.3	О
288	From blue cloud to red sequence: evidence of morphological transition prior to star formation quenching. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
287	Galactic traversability: a new concept for extragalactic SETI. 2021 , 20, 359-376		О

286	Star-Forming, Recently Star-Forming, and R ed and DeadlGalaxies at 1 2005, 195-200	
285	Efficiency of the Dynamical Mechanism. 2005 , 167-172	1
284	COSMOLOGICAL SIMULATIONS OF GALAXY FORMATION II: MATCHING THE OBSERVATIONAL PROPERTIES OF DISK GALAXIES. 2007 , 557-564	
283	THE MULTIWAVELENGTH VIEW OF STAR-FORMING DISKS. 2007 , 397-408	1
282	A FULLY EMPIRICAL APPROACH TO GALAXY EVOLUTION. 2010 , 25, 65-69	
281	References. 269-318	
280	On the Origin of Gaseous Galaxy Halos Low-Column Density Gas in the Milky Way Halo. 117-130	
279	The Central Regions of Local (U)LIRGs Viewed with Big Radio Eyes. 2013 , 141-160	
278	Clusters of Galaxies. 2013 , 265-303	
277	The Evolution of the Mass-Metallicity Relation at 0.20 2013, 30, 59-67	
²⁷⁷		1
		1
276	Global Star Formation Efficiency of Local Galaxies. 2013 , 34, 407-414	1
276 275	Global Star Formation Efficiency of Local Galaxies. 2013 , 34, 407-414 On the Impact of Empirical and Theoretical Star Formation Laws on Galaxy Formation. 2014 , 39-69	1
276 275 274	Global Star Formation Efficiency of Local Galaxies. 2013, 34, 407-414 On the Impact of Empirical and Theoretical Star Formation Laws on Galaxy Formation. 2014, 39-69 STAR FORMING ACTIVITY OF CLUSTER GALAXIES AT z~1. 2015, 30, 503-505	1
276 275 274 273	Global Star Formation Efficiency of Local Galaxies. 2013, 34, 407-414 On the Impact of Empirical and Theoretical Star Formation Laws on Galaxy Formation. 2014, 39-69 STAR FORMING ACTIVITY OF CLUSTER GALAXIES AT z~1. 2015, 30, 503-505 Introduction. 2016, 1-27	1
276 275 274 273 272	Global Star Formation Efficiency of Local Galaxies. 2013, 34, 407-414 On the Impact of Empirical and Theoretical Star Formation Laws on Galaxy Formation. 2014, 39-69 STAR FORMING ACTIVITY OF CLUSTER GALAXIES AT z~1. 2015, 30, 503-505 Introduction. 2016, 1-27 Galaxy Formation and Evolution. 2016, 81-111	1

Accretion rate in AGN and X-ray-to-optical flux ratio at z D.2. 2019, 15, 314-316 268 Detailed characterisation of LINERs and retired galaxies in the local universe. 2019, 15, 323-325 267 Six Local Analogs for High Redshift Galaxies. 2019, 3, 180 266 The Star-forming Interstellar Medium of Lyman Break Galaxy Analogs. 2019, 887, 251 265 Environmental Influences on Star Formation in Low-mass Galaxies Observed by the 264 SDSS-IV/MaNGA Survey. 2020, 894, 57 A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). IV. Rapidly Growing 263 (Super) Massive Black Holes in Extremely Radio-loud Galaxies. 2021, 921, 51 262 The Black Hole-star Formation Connection Over Cosmic Time. 2021, 133, 104101 O GLACE survey: Galaxy activity in ZwCl0024+1652 cluster from strong optical emission lines. Monthly 261 4.3 Notices of the Royal Astronomical Society, 2021, 501, 2430-2450 A low-frequency study of linear polarization in radio galaxies. Monthly Notices of the Royal 260 4.3 1 Astronomical Society, 2021, 502, 273-292 The Star-forming Main Sequence and the Contribution of Dust-obscured Star Formation since $z'\sim 4$ 259 from the Far-UV+IR Luminosity Functions. 2020, 905, 171 The formation of a blue cluster in the local Universe. 2020, 20, 207 258 OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society, 257 4.3 Unveiling the internal structure of the Hercules supercluster. Monthly Notices of the Royal 256 4.3 1 Astronomical Society, The properties of inside-out assembled galaxies at z < 0.1. 2019, 15, 358-360 255 OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society, 254 4.3 \circ Effects of AGN feedback on galaxy downsizing in different environments. 2020, 15, 163-165 253 The importance of the diffuse ionized gas for interpreting galaxy spectra. 2020, 15, 371-380 252 1 High density galaxy environments The radio view. 2020, 15, 91-98 251

250	Suppressed or Enhanced Central Star Formation Rates in Late-type Barred Galaxies. 2020 , 893, 19		5
249	The Evolving Interstellar Medium of Star-forming Galaxies, as Traced by Stardust*. 2021 , 921, 40		3
248	The NEWFIRM HETDEX Survey: Photometric Catalog and a Conservative Sample of Massive Quiescent Galaxies at z = 38 over 17.5 deg2 in the SHELA Field. 2021 , 921, 58		5
247	H \oplus ased star formation rates in and around z \sim 0.5 EDisCS clusters. Monthly Notices of the Royal Astronomical Society,	4.3	1
246	Observational measures of halo properties beyond mass. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3
245	Observing correlations between dark matter accretion and galaxy growth: II. testing the impact of galaxy mass, star formation indicator, and neighbour colours. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	O
244	Circumnuclear Molecular Gas in Low-redshift Quasars and Matched Star-forming Galaxies. 2020 , 898, 61		1
243	HST Grism-derived Forecasts for Future Galaxy Redshift Surveys. 2020 , 897, 98		7
242	GALEX Studies of Early-type Galaxies: the UV Rising Flux and Residual Star Formation. 2009, 1-16		
241	The Relative Role of Bars and Galaxy Environments in AGN Triggering of SDSS Spirals. 2020 , 901, L38		2
240	The local and global properties of different types of supernova host galaxies. 2020, 20, 169		1
239	The environmental dependence of rapidly quenching and rejuvenating galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 590-602	4.3	1
238	Satellites and central galaxies in SDSS: the influence of interactions on their properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 1046-1058	4.3	1
237	Inside-out star formation quenching and the need for a revision of bulge-disk decomposition concepts for spiral galaxies.		O
236	Past, Present, and Future of the Scaling Relations of Galaxies and Active Galactic Nuclei. 2021 , 8,		2
235	Extinction in the Large Magellanic Cloud Bar around NGC 1854, NGC 1856, and NGC 1858. 2021 , 922, 135		2
234	CO-CAVITY pilot survey: Molecular gas and star formation in void galaxies.		0
233	Physical Drivers of Emission-line Diversity of SDSS Seyfert 2s and LINERs after Removal of Contributions from Star Formation. 2021 , 922, 156		3

232	First direct dynamical detection of a dual super-massive black hole system at sub-kpc separation.		O
231	One of Everything: The Breakthrough Listen Exotica Catalog. 2021 , 257, 42		1
230	Environmental Dependence of All the Five Band Luminosities of Active Galactic Nucleus (AGN) Host Galaxies. 2021 , 64, 446-457		
229	The Role of H i in Regulating the Size Growth of Local Galaxies. 2021 , 922, 235		
228	The ALFALFA Almost Dark Galaxy AGC 229101: A 2 Billion Solar Mass H i Cloud with a Very Low Surface Brightness Optical Counterpart. 2021 , 162, 274		1
227	Spatially resolved properties of supernova host galaxies in SDSS-IV MaNGA. 2022 , 21, 306		
226	Ubiquitous [O ii] Emission in Quiescent Galaxies at z 🛈 .85 from the LEGA-C Survey*. 2021 , 923, 18		О
225	COLDz: Probing Cosmic Star Formation With Radio FreeEree Emission. 2022, 924, 76		O
224	Cool outflows in MaNGA: a systematic study and comparison to the warm phase. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
223	The evolution of brightest cluster galaxies in the nearby Universe II: The star-formation activity and the stellar mass from spectral energy distribution. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
222	The quenching of galaxies, bulges, and disks since cosmic noon. A machine learning approach for identifying causality in astronomical data.		4
221	Investigating the origin of observed central dips in radial metallicity profiles. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 511, 371-392	4.3	O
220	Evidence for the connection between star formation rate and the evolutionary phases of quasars.		3
219	The PHANGS-MUSE survey. Probing the chemo-dynamical evolution of disc galaxies.		10
218	The Dependence of the Type Ia Supernova Host Bias on Observation or Fitting Technique. 2022 , 925, 115		1
217	Extremely massive disc galaxies in the nearby Universe form through gas-rich minor mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 511, 607-615	4.3	1
216	Cosmic Near-infrared Background Tomography with SPHEREx Using Galaxy Cross-correlations. 2022 , 925, 136		1
215	Quenching Timescales in the IllustrisTNG Simulation. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	2

214	OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society,	4.3	1
213	The star formation burstiness and ionizing efficiency of low-mass galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
212	What drives galaxy quenching? A deep connection between galaxy kinematics and quenching in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 511, 1913-1941	4.3	1
211	A3COSMOS: A census on the molecular gas mass and extent of main-sequence galaxies across cosmic time.		2
2 10	An IFU View of the Active Galactic Nuclei in MaNGA Galaxy Pairs. 2021 , 923, 6		О
209	The cosmic environment overtakes the local density in shaping galaxy star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 3071-3084	4.3	1
208	On the quenching of star formation in observed and simulated central galaxies: Evidence for the role of integrated AGN feedback. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	5
207	IQ Collaboratory. III. The Empirical Dust Attenuation Framework Making Hydrodynamical Simulations with a Grain of Dust. 2022 , 926, 122		3
206	Strong spiral arms drive secular growth of pseudo bulges in disk galaxies.		1
205	Investigation of the effect of bars on the properties of spiral galaxies: a multivariate statistical study. 1-31		
204	The LOFAR view of giant, early-type galaxies: Radio emission from active nuclei and star formation.		1
203	The BPT Diagram in Cosmological Galaxy Formation Simulations: Understanding the Physics Driving Offsets at High Redshift. 2022 , 926, 80		2
202	A combined VANDELS and LEGA-C study: the evolution of quiescent galaxy size, stellar mass, and age from $z = 0.6$ to $z = 1.3$. Monthly Notices of the Royal Astronomical Society, 2022 , 512, 1262-1274	4.3	3
201	The Fornax3D project: The environmental impact on gas metallicity gradients in Fornax cluster galaxies.		O
200	H ii regions in CALIFA survey: II. The relation between their physical properties and galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 3436-3463	4.3	1
200 199		4.3	1
	evolution. Monthly Notices of the Royal Astronomical Society, 2022 , 512, 3436-3463	4.3	

196	Linking Extragalactic Transients and Their Host Galaxy Properties: Transient Sample, Multiwavelength Host Identification, and Database Construction. 2022 , 259, 13		О
195	The molecular gas resolved by ALMA in the low-metallicity merging dwarf galaxy Haro 11.		О
194	Galaxy And Mass Assembly (GAMA): Data Release 4 and the z & amp;lt; 0.1 total and z & amp;lt; 0.08 morphological galaxy stellar mass functions. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	9
193	The GasBtar Formation Cycle in Nearby Star-forming Galaxies. II. Resolved Distributions of CO and HEmission for 49 PHANGS Galaxies. 2022 , 927, 9		O
192	The environmental dependence of the stellar velocity dispresion of active galactic nucleus (AGN) host galaxies and dependence of the clustering properties of AGN host galaxies on the stellar velocity dispersion. 27-40		
191	Probing star formation and ISM properties using galaxy disk inclination. III. Evolution in dust opacity and clumpiness between redshift 0.0 < z< 0.7 constrained from UV to NIR.		1
190	Star-forming S0 Galaxies in SDSS-MaNGA: fading spirals or rejuvenated S0s?. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
189	Mid-infrared Variability of Low-redshift Active Galactic Nuclei: Constraints on a Hot Dust Component with a Variable Covering Factor. 2022 , 927, 107		O
188	The multifarious ionization sources and disturbed kinematics of extraplanar gas in five low-mass galaxies. 2022 , 659, A153		1
187	Determining Star Formation Rates of Active Galactic Nucleus Host Galaxies Based on SED Fitting with Submillimeter Data. 2022 , 928, 73		Ο
186	On the origin of red spirals: does assembly bias play a role?. 2022 , 2022, 024		O
185	Variations in the Sigma_SFR - Sigma_mol - Sigma_* plane across galactic environments in PHANGS galaxies.		1
184	What drives the scatter of local star-forming galaxies in the BPT diagrams? A Machine Learning based analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 4136-4163	4.3	1
183	SDSS-IV MaNGA: Understanding Ionized Gas Turbulence Using Integral Field Spectroscopy of 4500 Star-forming Disk Galaxies. 2022 , 928, 58		O
182	Asymmetric Star Formation Triggered by Gas Inflow in a Barred Lenticular Galaxy PGC 34107. 2022 , 927, 215		
181	Cold Gas in Massive Galaxies as a Critical Test of Black Hole Feedback Models. 2022 , 927, 189		O
180	The ALPINE-ALMA [CII] survey. Dust attenuation curves at z=4.4-5.5.		О
179	CHANG-ES XXV: HI Imaging of Nearby Edge-on Galaxies (Data Release 4. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	O

178	The KLEVER survey: nitrogen abundances at $z \sim 2$ and probing the existence of a fundamental nitrogen relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 2867-2889	4.3	4
177	GOODS-ALMA 2.0: Starbursts in the main sequence reveal compact star formation regulating galaxy evolution prequenching. 2022 , 659, A196		2
176	Strong [O iii] B007 Emission-line Compact Galaxies in LAMOST DR9: Blueberries, Green Peas, and Purple Grapes. 2022 , 927, 57		0
175	NIHAO-LG: The uniqueness of local group dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	O
174	Effect of AGN on the morphological properties of their host galaxies in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
173	What is Important? Morphological Asymmetries are Useful Predictors of Star Formation Rates of Star-forming Galaxies in SDSS Stripe 82. 2021 , 923, 205		3
172	Comparison of Composite and Star-forming Early-type Galaxies. 2022, 163, 28		
171	Modelling emission lines in star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 510, 1880-1893	4.3	1
170	Galaxy evolution in different environments along redshift within the local universe z < 0.8. 2021 , 2145, 012002		
169	A Self-Calibrating Halo-Based Group Finder: Application to SDSS. 2021 , 923, 154		O
169 168	A Self-Calibrating Halo-Based Group Finder: Application to SDSS. 2021, 923, 154 The Complete Local-Volume Groups Sample IIV. Star formation and gas content in group-dominant galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4191-4207	4.3	0
	The Complete Local-Volume Groups Sample IIV. Star formation and gas content in	4.3	
168	The Complete Local-Volume Groups Sample IIV. Star formation and gas content in group-dominant galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 4191-4207 The ALMaQUEST survey IX: the nature of the resolved star forming main sequence. <i>Monthly Notices</i>		2
168 167	The Complete Local-Volume Groups Sample IIV. Star formation and gas content in group-dominant galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 4191-4207 The ALMaQUEST survey IX: the nature of the resolved star forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 3622-3628		6
168 167 166	The Complete Local-Volume Groups Sample IIV. Star formation and gas content in group-dominant galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 4191-4207 The ALMaQUEST survey IX: the nature of the resolved star forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 3622-3628 Detection of a Multiphase Intragroup Medium: Results from the COS-IGrM Survey. 2021 , 923, 189	4.3	2 6 0
168 167 166	The Complete Local-Volume Groups Sample IIV. Star formation and gas content in group-dominant galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 4191-4207 The ALMaQUEST survey IX: the nature of the resolved star forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 3622-3628 Detection of a Multiphase Intragroup Medium: Results from the COS-IGrM Survey. 2021 , 923, 189 OUP accepted manuscript. <i>Monthly Notices of the Royal Astronomical Society</i> , The average dust attenuation curve at z ~ 1.3 based on HST grism surveys. <i>Monthly Notices of the</i>	4-3	2 6 0
168 167 166 165	The Complete Local-Volume Groups Sample IIV. Star formation and gas content in group-dominant galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 4191-4207 The ALMaQUEST survey IX: the nature of the resolved star forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 3622-3628 Detection of a Multiphase Intragroup Medium: Results from the COS-IGrM Survey. 2021 , 923, 189 OUP accepted manuscript. <i>Monthly Notices of the Royal Astronomical Society</i> , The average dust attenuation curve at z ~ 1.3 based on HST grism surveys. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4-3	2 6 0

160	North Ecliptic Pole merging galaxy catalogue.		O
159	Disc cloaking: Establishing a lower limit to the number density of local compact massive spheroids/bulges and the potential fate of some high-z red nuggets. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
158	106 new emission-line galaxies and 29 new Galactic HII regions are identified with spectra in the Unknown dataset of LAMOST DR7.		
157	The SUNBIRD survey: the K-band luminosity functions of young massive clusters in intensely star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
156	The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient. 2022 , 930, 12		4
155	The spatial distribution of satellites in galaxy clusters. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
154	Centrally Concentrated H i Distribution Enhances Star Formation in Galaxies. 2022, 930, 85		O
153	Extragalactic fast X-ray transient candidates discovered by Chandra (2000-2014).		1
152	Characterisation of the stellar content of SDSS EELGs through self-consistent spectral modelling.		O
151	On the relation of host properties and environment of AGN galaxies across the standard optical diagnostic diagram. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
151	· · · · · · · · · · · · · · · · · · ·	4.3	0
Ť	diagnostic diagram. Monthly Notices of the Royal Astronomical Society, Nearby galaxies in the LOFAR Two-metre Sky Survey. I. Insights into the non-linearity of the	4.3	0
150	diagnostic diagram. Monthly Notices of the Royal Astronomical Society, Nearby galaxies in the LOFAR Two-metre Sky Survey. I. Insights into the non-linearity of the radio-SFR relation. The Galaxy Starburst/Main-sequence Bimodality over Five Decades in Stellar Mass at z BB.5. 2022	4-3	
150 149	diagnostic diagram. Monthly Notices of the Royal Astronomical Society, Nearby galaxies in the LOFAR Two-metre Sky Survey. I. Insights into the non-linearity of the radio-SFR relation. The Galaxy Starburst/Main-sequence Bimodality over Five Decades in Stellar Mass at z BB.5. 2022, 930, 128 Variability Selected Active Galactic Nuclei from ASAS-SN Survey: Constraining the Low Luminosity	4.3	
150 149 148	diagnostic diagram. Monthly Notices of the Royal Astronomical Society, Nearby galaxies in the LOFAR Two-metre Sky Survey. I. Insights into the non-linearity of the radio-SFR relation. The Galaxy Starburst/Main-sequence Bimodality over Five Decades in Stellar Mass at z BB.5. 2022, 930, 128 Variability Selected Active Galactic Nuclei from ASAS-SN Survey: Constraining the Low Luminosity AGN Population. 2022, 930, 110 The Environmental Dependence of the Stellar Velocity Dispersion of Active Galactic Nucleus (AGN) Host Galaxies and Dependence of the Clustering Properties of AGN Host Galaxies on the Stellar	4.3	
150 149 148	diagnostic diagram. <i>Monthly Notices of the Royal Astronomical Society</i> , Nearby galaxies in the LOFAR Two-metre Sky Survey. I. Insights into the non-linearity of the radio-SFR relation. The Galaxy Starburst/Main-sequence Bimodality over Five Decades in Stellar Mass at z BB.5. 2022, 930, 128 Variability Selected Active Galactic Nuclei from ASAS-SN Survey: Constraining the Low Luminosity AGN Population. 2022, 930, 110 The Environmental Dependence of the Stellar Velocity Dispersion of Active Galactic Nucleus (AGN) Host Galaxies and Dependence of the Clustering Properties of AGN Host Galaxies on the Stellar Velocity Dispersion. The Close AGN Reference Survey (CARS). Tracing the circumnuclear star formation in the	4.3	1
150 149 148 147 146	diagnostic diagram. <i>Monthly Notices of the Royal Astronomical Society</i> , Nearby galaxies in the LOFAR Two-metre Sky Survey. I. Insights into the non-linearity of the radio-SFR relation. The Galaxy Starburst/Main-sequence Bimodality over Five Decades in Stellar Mass at z BB.5. 2022, 930, 128 Variability Selected Active Galactic Nuclei from ASAS-SN Survey: Constraining the Low Luminosity AGN Population. 2022, 930, 110 The Environmental Dependence of the Stellar Velocity Dispersion of Active Galactic Nucleus (AGN) Host Galaxies and Dependence of the Clustering Properties of AGN Host Galaxies on the Stellar Velocity Dispersion. The Close AGN Reference Survey (CARS). Tracing the circumnuclear star formation in the super-Eddington NLS1 Mrk 1044.	4.3	1 O

142	Linking Characteristics of the Polycyclic Aromatic Hydrocarbon Population with Galaxy Properties: A Quantitative Approach Using the NASA Ames PAH IR Spectroscopic Database. 2022 , 931, 38		O
141	Star formation characteristics of CNN-identified post-mergers in the Ultraviolet Near Infrared Optical Northern Survey (UNIONS). <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	2
140	Central star formation in double-peak, gas-rich radio galaxies.		0
139	Galaxy pairs in the sloan digital sky survey XV: Properties of ionised outflows. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	O
138	Massive central galaxies of galaxy groups in the Romulus simulations: an overview of galaxy properties at $z = 0$. Monthly Notices of the Royal Astronomical Society,	4.3	2
137	Chemical abundances in Seyfert galaxies[IX. Helium abundance estimates. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	2
136	The PAU Survey: measurements of the 4000 Ispectral break with narrow-band photometry. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
135	Testing the role of AGN on the star formation and metal enrichment of E win galaxies !!! <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
134	Predicting Supermassive Black Hole Mass with Machine Learning Methods.		
133	Mass-metallicity and star formation rate in galaxies: A complex relation tuned to stellar age.		2
132	New Insights into the Evolution of Massive Stars and Their Effects on Our Understanding of Early Galaxies. 2022 , 60,		2
131	The fundamental metallicity relation from SDSS (z \sim 0) to VIPERS (z \sim 0.7). Data selection or evolution.		1
130	Cold Gas Reservoirs of Low- and High-mass Central Galaxies Differ in Response to Active Galactic Nucleus Feedback. 2022 , 933, L12		О
129	WISDOM project IXI. Star formation efficiency in the bulge of the AGN-host Galaxy NGC´3169 with SITELLE and ALMA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 514, 5035-5055	4.3	O
128	A repeating fast radio burst associated with a persistent radio source. 2022 , 606, 873-877		4
127	SDSS IV MaNGA - Gas rotation velocity lags in the final sample of MaNGA galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
126	Chemical Evolution of the Universe and its Consequences for Gravitational-Wave Astrophysics. 2200170)	0
125	A stochastic model to reproduce the star-formation history of individual galaxies in hydrodynamic simulations. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1

124	The SizeMass Relation of Post-starburst Galaxies in the Local Universe. 2022, 933, 228	О
123	An orbital perspective on the starvation, stripping, and quenching of satellite galaxies in the eagle simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 4-3	O
122	Statistical Analysis of H i Profile Asymmetry and Shape for Nearby Galaxies. 2022, 261, 21	O
121	Unusual Gas Structure in an Otherwise Normal Spiral Galaxy Hosting GRB 171205A/SN 2017iuk. 2022 , 164, 69	
120	Star formation and AGN feedback in the local Universe: Combining LOFAR and MaNGA.	
119	COSMOS2020: Manifold learning to estimate physical parameters in large galaxy surveys.	О
118	The COS Legacy Archive Spectroscopy Survey (CLASSY) Treasury Atlas*. 2022, 261, 31	1
117	Photometric redshifts from SDSS images with an interpretable deep capsule network. 2022 , 515, 5285-5305	O
116	The Mass Scale of High-redshift Galaxies: Virial Mass Estimates Calibrated with Stellar Dynamical Models from LEGA-C. 2022 , 936, 9	О
115	The statistical properties of 28 IR-bright dust-obscured galaxies and SED modelling using CIGALE.	
114	Multiply lensed star forming clumps in the A521-sys1 galaxy at redshift 1.	О
113	Warped Disk Galaxies. I. Linking U-type Warps in Groups/Clusters to Jellyfish Galaxies. 2022 , 935, 48	
112	The miniJPAS survey. Galaxy populations in the most massive cluster in miniJPAS: mJPC2470-1771.	О
111	Sub-percentage measure of distances to redshift of 0.1 by a new cosmic ruler.	
110	Exploring the physical properties of lensed star-forming clumps at 2?z?6.	1
109	Atomic Gas Dominates the Baryonic Mass of Star-forming Galaxies at z 🛘 .3. 2022 , 935, L5	O
108	The Velocity Map Asymmetry of Ionized Gas in MaNGA. I. The Catalog and General Properties. 2022 , 262, 6	
107	Dissecting Nearby Galaxies with piXedfit. II. Spatially Resolved Scaling Relations among Stars, Dust, and Gas. 2022 , 935, 98	O

106	An AGN with an Ionized Gas Outflow in a Massive Quiescent Galaxy in a Protocluster at $z = 3.09$. 2022 , 935, 89	O
105	The Star-forming Main Sequence of the Host Galaxies of Low-redshift Quasars. 2022 , 934, 130	O
104	The ALMaQUEST Survey X: What powers merger induced star formation?.	O
103	The Arecibo Galaxy Environment Survey (AGES). XI. The expanded Abell 1367 field: Data catalogue and Hi census over the surveyed volume.	
102	SDSS-IV MaNGA: the chemical co-evolution of gas and stars in spiral galaxies.	2
101	Photometric variability in star-forming galaxies as evidence for low-mass AGN and a precursor to quenching. 2022 , 515, 5905-5913	
100	High Equivalent Width of $H\mathbb{H}[N \text{ ii}]$ Emission in z ~ 8 Lyman-break Galaxies from IRAC 5.8 fb Observations: Evidence for Efficient Lyman-continuum Photon Production in the Epoch of Reionization. 2022 , 935, 94	1
99	CLASSY V: The Impact of Aperture Effects on the Inferred Nebular Properties of Local Star-forming Galaxies. 2022 , 935, 74	1
98	The miniJPAS survey: The role of group environment in quenching the star formation.	О
97	XXL-HSC: Link between AGN activity and star formation in the early Universe (z > 3.5).	O
96	The Relation between Morphological Asymmetry and Nuclear Activity in Low-redshift Galaxies. 2022 , 925, 70	1
95	The EDGE-CALIFA survey: The role of spiral arms and bars in driving central molecular gas concentrations.	1
94	Revisiting stellar properties of star-forming galaxies with stellar and nebular spectral modelling.	О
93	VINTERGATAN IV: Cosmic phases of star formation in Milky Way-like galaxies. 2022, 516, 2272-2279	1
92	Aging of galaxies along the morphological sequence, marked by bulge growth and disk quenching.	О
91	LyÆscape from Low-mass, Compact, High-redshift Galaxies. 2022 , 164, 159	O
90	On the Kinematics of Cold, Metal-enriched Galactic Fountain Flows in Nearby Star-forming Galaxies. 2022 , 936, 171	0
89	Morpho-kinematics of MACS J0416.1-2403 low-mass galaxies.	O

88	CLASS: Coronal Line Activity Spectroscopic Survey. 2022 , 936, 140	1
87	SDSS-IV MaNGA: pyPipe3D Analysis Release for 10,000 Galaxies. 2022 , 262, 36	O
86	The merger fraction of post-starburst galaxies in UNIONS. 2022 , 516, 4354-4372	1
85	Galaxy mergers can rapidly shut down star formation.	1
84	Empirical scenaria of galaxy evolution.	O
83	GASP XXXIX: MeerKAT hunts Jellyfish in A2626. 2022 , 516, 2683-2696	0
82	ULISSE: A tool for one-shot sky exploration and its application to active galactic nucleus detection.	O
81	Quenching in the Right Place at the Right Time: Tracing the Shared History of Starbursts, Active Galactic Nuclei, and Poststarburst Galaxies Using Their Structures and Multiscale Environments. 2022 , 936, 124	O
80	The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z \sim 8.	3
79	SFR estimations from $z = 0$ to $z = 0.9$. A comparison of SFR calibrators for star-forming galaxies.	О
78	J-PLUS: Uncovering a large population of extreme [OIII] emitters in the local Universe.	O
77	A panchromatic view of infrared quasars: Excess star formation and radio emission in the most heavily obscured systems.	0
76	Beyond Galaxy Bimodality: The Complex Interplay between Kinematic Morphology and Star Formation in the Local Universe. 2022 , 937, 117	О
75	Non-Gaussianity of optical emission lines in SDSS star-forming galaxies and its implications on galactic outflows. 2022 , 39,	Ο
74	The Space Density of Intermediate-redshift, Extremely Compact, Massive Starburst Galaxies. 2022 , 164, 222	0
73	Star formation quenching in the infall region around galaxy clusters. 2022 , 517, 4515-4528	O
72	Galaxy Zoo: Clump Scout - Design and first application of a two-dimensional aggregation tool for citizen science.	О
71	The resolved scaling relations in DustPedia: Zooming in on the local Universe.	1

70	From Clusters to Proto-Clusters: The Infrared Perspective on Environmental Galaxy Evolution. 2022 , 8, 554	0
69	Deep Investigation of Neutral Gas Origins (DINGO): Hî stacking experiments with early science data.	O
68	The Chocolate Chip Cookie Model: Dust Geometry of Milky Wayllke Disk Galaxies. 2022 , 938, 139	Ο
67	SIT 45: An interacting, compact, and star-forming isolated galaxy triplet.	O
66	Unveiling the main sequence of galaxies at z $\mathbb B$ with the James Webb Space Telescope: predictions from simulations.	0
65	Death at watersheds: Galaxy quenching in low-density environments.	O
64	Cold gas mass measurements for the era of large optical spectroscopic surveys. 2022 , 518, 353-367	О
63	Star-forming early-type galaxies and quiescent late-type galaxies in the local Universe.	O
62	The MUSE Hubble Ultra Deep Field surveys: Data release II.	1
61	Diffstar: a fully parametric physical model for galaxy assembly history. 2022 , 518, 562-584	1
60	The MeerKAT Galaxy Clusters Legacy Survey: star formation in massive clusters at 0.15 & amp;lt; z & amp;lt; 0.35.	О
59	The Main Sequence of star forming galaxies across cosmic times.	O
58	A Statistical Analysis on the Morphology and Color of Galaxies Hosting Radio-loud Active Galactic Nuclei. 2022 , 164, 246	Ο
57	An investigation of the star-forming main sequence considering the nebular continuum emission at low-z.	O
56	Investigating the Effect of Galaxy Interactions on Star Formation at 0.5 < z < 3.0. 2022, 940, 4	Ο
55	A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). XIV. Main-sequence relation in a rich environment down to Mstar $\sim 10^6$ Mo.	O
54	The dark side of galaxy stellar populations []I. The dependence of star-formation histories on halo mass and on the scatter of the main sequence. 2022 , 518, 6325-6339	Ο
53	The molecular gas main sequence and SchmidtRennicutt relation are fundamental, the star-forming main sequence is a (useful) byproduct. 2022 , 518, 4767-4781	1

52	The Stellar Mass Function in CANDELS and Frontier Fields: The Buildup of Low-mass Passive Galaxies since $z \sim 3$. 2022 , 940, 135	О
51	Massive quiescent galaxies at $z \sim 3$: A comparison of selection, stellar population, and structural properties with simulation predictions. 2022 , 518, 5953-5975	Ο
50	Witnessing the star formation quenching in L* ellipticals. 2022 , 518, 4943-4960	О
49	Calibration of the Tully E isher relation in the WISE W1 (3.4 fb) and W2 (4.6 fb) bands. 2022 , 519, 102-120	О
48	MASCOT: molecular gas depletion times and metallicity gradients Levidence for feedback in quenching active galaxies. 2022 , 518, 5500-5521	0
47	The High-ionization IR Fine Structure Lines as Bolometric Indicators of the AGN Power: Study of the Complete 12 fb AGN Sample. 2022 , 941, 46	O
46	The Physical Origin of Galactic Conformity: From Theory to Observation.	0
45	Atomic Gas Scaling Relations of Star-forming Galaxies at z 🗈 . 2022 , 941, L6	O
44	Ultra-diffuse Galaxies as Extreme Star-forming Environments. I. Mapping Star Formation in H i-rich UDGs. 2022 , 941, 11	O
43	Reconstructing Orbits of Galaxies in Extreme Regions (ROGER) III: galaxy evolution patterns in projected phase space around massive X-ray clusters.	O
42	The Anisotropic Circumgalactic Medium of Massive Early-type Galaxies. 2022, 941, 18	0
41	The metallicity fundamental dependence on both local and global galactic quantities. 2022 , 519, 1149-1170	0
40	The galaxy morphologydensity relation in the EAGLE simulation. 2022, 518, 5260-5278	О
39	CO Emission, Molecular Gas, and Metallicity in Main-sequence Star-forming Galaxies at $z \sim 2.3*$. 2023 , 942, 24	1
38	Ageing and quenching through the ageing diagram: predictions from simulations and observational constraints.	0
37	The Roles of Morphology and Environment on the Star Formation Rate S tellar Mass Relation in COSMOS from 0 < z < 3.5. 2023 , 942, 49	O
36	The State of the Molecular Gas in Post-starburst Galaxies. 2023 , 942, 25	0
35	An Elusive Population of Massive Disk Galaxies Hosting Double-lobed Radio-loud Active Galactic Nuclei. 2022 , 941, 95	O

34	AGNs in post-mergers from the ultraviolet near infrared optical northern survey. 2023, 519, 6149-6161	O
33	The Contribution of Evolved Stars to Polycyclic Aromatic Hydrocarbon Heating and Implications for Estimating Star Formation Rates. 2023 , 943, 60	O
32	Relating galaxies across different redshift to study galaxy evolution. 2023, 520, 1774-1788	O
31	PHANGS-MUSE: Detection and Bayesian classification of ~40000 ionised nebulae in nearby spiral galaxies.	O
30	A Candidate Runaway Supermassive Black Hole Identified by Shocks and Star Formation in its Wake. 2023 , 946, L50	О
29	MusE GAs FLOw and Wind (MEGAFLOW) IX. The impact of gas flows on the relations between the mass, star formation rate, and metallicity of galaxies. 2023 , 521, 546-557	O
28	HETDEX Public Source Catalog 1: 220 K Sources Including Over 50 K LyÆmitters from an Untargeted Wide-area Spectroscopic Survey*. 2023 , 943, 177	O
27	A New Physical Picture for Active Galactic Nuclei Lacking Optical Emission Lines. 2023 , 943, 174	O
26	Star formation histories of dwarf spheroidal and dwarf elliptical galaxies in the local Universe. 2023 , 520, 5521-5535	О
25	The entropy of galaxy spectra: how much information is encoded?. 2023 , 2, 78-90	O
24	Flows around galaxies. 2023 , 671, A160	0
23	Decoding NGC 7252 as a blue elliptical galaxy. 2023 , 671, A166	O
22	PHANGSIIWST First Results: Mid-infrared Emission Traces Both Gas Column Density and Heating at 100 pc Scales. 2023 , 944, L9	O
21	The Fundamental Signature of Star Formation Quenching from AGN Feedback: A Critical Dependence of Quiescence on Supermassive Black Hole Mass, Not Accretion Rate. 2023 , 944, 108	O
20	The PHANGSIIWST Treasury Survey: Star Formation, Feedback, and Dust Physics at High Angular Resolution in Nearby GalaxieS. 2023 , 944, L17	О
19	The Bimodal Absorption System Imaging Campaign (BASIC). I. A Dual Population of Low-metallicity Absorbers at z < 1. 2023 , 944, 101	1
18	The relation between morphology, star formation history, and environment in local Universe galaxies. 2023 , 521, 1292-1315	О
17	Galaxy Zoo: kinematics of strongly and weakly barred galaxies. 2023 , 521, 1775-1793	O

CITATION REPORT

16	The Art of Measuring Physical Parameters in Galaxies: A Critical Assessment of Spectral Energy Distribution Fitting Techniques. 2023 , 944, 141	1
15	A Multiwavelength Study of Active Galactic Nuclei in Post-merger Remnants. 2023 , 944, 168	O
14	The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge. 2023 , 945, 16	1
13	Local and large-scale effects on the astrophysics of void galaxies. 2023 , 521, 916-925	O
12	The Local Cluster Survey II: disc-dominated cluster galaxies with suppressed star formation. 2023 , 521, 4614-4629	О
11	Spatially Resolved Stellar Populations of 0.3 < z < 6.0 Galaxies in WHL 013708 and MACS 0647+70 Clusters as Revealed by JWST: How Do Galaxies Grow and Quench over Cosmic Time?. 2023, 945, 117	O
10	Revealing the Galaxy⊞alo Connection through Machine Learning. 2023 , 945, 122	О
9	Evidence for Black Holes in Green Peas from WISE Colors and Variability. 2023, 945, 157	O
8	The connection between stellar mass, age, and quenching time-scale in massive quiescent galaxies at z ? 1. 2023 , 521, 5400-5409	O
7	Star formation rate and stellar mass calibrations based on infrared photometry and their dependence on stellar population age and extinction.	О
6	On the impact of spectral template uncertainties in synthetic stellar populations. 2023 , 521, 4995-5012	O
5	Hard X-Ray to Radio Multiwavelength SED Analysis of Local U/LIRGs in the GOALS Sample with a Self-consistent AGN Model including a Polar-dust Component. 2023 , 265, 37	Ο
4	The most luminous, merger-free AGNs show only marginal correlation with bar presence. 2023 , 522, 211-225	0
3	SN 2020jgb: A Peculiar Type Ia Supernova Triggered by a Helium-shell Detonation in a Star-forming Galaxy. 2023 , 946, 83	O
2	The variability of the broad-line Balmer decrement for quasars from the Sloan Digital Sky Survey reverberation mapping. 2023 , 522, 5680-5689	O
1	The LyReference Sample. XIV. LyAmaging of 45 Low-redshift Star-forming Galaxies and Inferences on Global Emission. 2023 , 266, 15	O