High-resolution boundary analysis duringArabidopsis t

Plant Journal 38, 182-192 DOI: 10.1111/j.1365-313x.2004.02026.x

Citation Report

#	Article	IF	CITATIONS
1	Cell cycle and differentiation. Current Opinion in Plant Biology, 2004, 7, 661-669.	3.5	84
2	Novel Functions of Plant Cyclin-Dependent Kinase Inhibitors, ICK1/KRP1, Can Act Non-Cell-Autonomously and Inhibit Entry into Mitosis. Plant Cell, 2005, 17, 1704-1722.	3.1	167
3	Recent Developments Regarding the Evolutionary Origin of Flowers. Advances in Botanical Research, 2006, 44, 63-127.	0.5	22
5	The Genetic Control of Flower Size and Shape. , 0, , 71-97.		Ο
6	Morphogenesis and Patterning at the Organ Boundaries in the Higher Plant Shoot Apex. Plant Molecular Biology, 2006, 60, 915-928.	2.0	93
7	Expression of Cell Cycle Genes in Shoot Apical Meristems. Plant Molecular Biology, 2006, 60, 947-961.	2.0	14
8	Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, 2006, 9, 72-77.	3.5	130
9	The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants. Journal of Experimental Botany, 2006, 57, 961-970.	2.4	81
10	Flower primordium formation at the Arabidopsis shoot apex: quantitative analysis of surface geometry and growth. Journal of Experimental Botany, 2006, 57, 571-580.	2.4	75
11	Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18854-18859.	3.3	43
12	Arabidopsis JAGGED LATERAL ORGANS Is Expressed in Boundaries and Coordinates KNOX and PIN Activity. Plant Cell, 2007, 19, 1795-1808.	3.1	133
13	Phyllotaxy. Plant Signaling and Behavior, 2007, 2, 293-295.	1.2	3
14	Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta, 2007, 226, 1183-1194.	1.6	168
15	The Arabidopsis petal: a model for plant organogenesis. Trends in Plant Science, 2008, 13, 430-436.	4.3	93
16	The meristem-to-organ boundary: more than an extremity of anything. Current Opinion in Genetics and Development, 2008, 18, 287-294.	1.5	75
17	Flowering and apical meristem growth dynamics. Journal of Experimental Botany, 2008, 59, 187-201.	2.4	109
18	Arabidopsis Genes <i>AS1</i> , <i>AS2</i> , and <i>JAG</i> Negatively Regulate Boundary-Specifying Genes to Promote Sepal and Petal Development. Plant Physiology, 2008, 146, 323-324.	2.3	93
19	A Conserved Molecular Framework for Compound Leaf Development. Science, 2008, 322, 1835-1839.	6.0	320

ATION REDO

#	Article	IF	Citations
20	<i>LATERAL ORGAN FUSION1</i> and <i>LATERAL ORGAN FUSION2</i> function in lateral organ separation and axillary meristem formation in <i>Arabidopsis</i> . Development (Cambridge), 2009, 136, 2423-2432.	1.2	130
21	Time to Stop: Flower Meristem Termination. Plant Physiology, 2009, 150, 1764-1772.	2.3	46
22	Morphogenesis at the inflorescence shoot apex of Anagallis arvensis: surface geometry and growth in comparison with the vegetative shoot. Journal of Experimental Botany, 2009, 60, 3407-3418.	2.4	15
23	A microRNA–transcription factor module regulates lateral organ size and patterning in Arabidopsis. Plant Journal, 2009, 58, 450-463.	2.8	88
24	Old dogs, new tricks: Regulatory evolution in conserved genetic modules leads to novel morphologies in plants. Developmental Biology, 2009, 332, 25-35.	0.9	66
25	Carpel development in a floral mutant of dioecious Silene latifolia producing asexual and female-like flowers. Journal of Plant Physiology, 2009, 166, 1832-1838.	1.6	3
26	The flowering of Arabidopsis flower development. Plant Journal, 2010, 61, 1014-1028.	2.8	200
27	Flower Development. The Arabidopsis Book, 2010, 8, e0127.	0.5	227
28	Two Separate Pathways Including SICLV1, SISTM and SICUC That Control Carpel Development in a Bisexual Mutant of Silene latifolia. Plant and Cell Physiology, 2010, 51, 282-293.	1.5	14
29	A rapid and robust assay for detection of S-phase cell cycle progression in plant cells and tissues by using ethynyl deoxyuridine. Plant Methods, 2010, 6, 5.	1.9	156
30	Auxin: A major regulator of organogenesis. Comptes Rendus - Biologies, 2010, 333, 290-296.	0.1	52
31	Twenty years on: The inner workings of the shoot apical meristem, a developmental dynamo. Developmental Biology, 2010, 341, 95-113.	0.9	299
32	Mechanical Integration of Plant Cells and Plants. Signaling and Communication in Plants, 2011, , .	0.5	5
33	Defining the boundaries: structure and function of LOB domain proteins. Trends in Plant Science, 2011, 16, 47-52.	4.3	173
34	Founder cell specification. Trends in Plant Science, 2011, 16, 607-613.	4.3	35
35	Carpeloidy in flower evolution and diversification: a comparative study in Carica papaya and Arabidopsis thaliana. Annals of Botany, 2011, 107, 1453-1463.	1.4	9
36	TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant Journal, 2011, 68, 147-158.	2.8	261
37	DORNRÖSCHEN-LIKE expression marks Arabidopsis floral organ founder cells and precedes auxin response maxima. Plant Molecular Biology, 2011, 76, 171-185.	2.0	73

CITATION REPORT

	China	JN REPORT	
#	Article	IF	CITATIONS
38	Organogenesis from stem cells in planta: multiple feedback loops integrating molecular and mechanical signals. Cellular and Molecular Life Sciences, 2011, 68, 2885-2906.	2.4	48
39	<i>ORGAN BOUNDARY1</i> defines a gene expressed at the junction between the shoot apical meristem and lateral organs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2154-2159.	3.3	70
40	Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. Annals of Botany, 2012, 110, 923-934.	1.4	46
41	<i>Arabidopsis</i> LATERAL ORGAN BOUNDARIES negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21146-21151.	3.3	167
42	<i>PETAL LOSS</i> is a boundary gene that inhibits growth between developing sepals in <i>Arabidopsis thaliana</i> . Plant Journal, 2012, 71, 724-735.	2.8	60
43	Mechanical control of morphogenesis at the shoot apex. Journal of Experimental Botany, 2013, 64, 4729-4744.	2.4	52
44	Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC Plant Biology, 2013, 13, 123.	1.6	37
45	The ATP-Binding Cassette Transporter ABCB19 Regulates Postembryonic Organ Separation in Arabidopsis. PLoS ONE, 2013, 8, e60809.	1.1	20
46	The tomato NAC transcription factor SINAM2 is involved in flower-boundary morphogenesis. Journal of Experimental Botany, 2013, 64, 5497-5507.	2.4	79
47	Control of Reproductive Floral Organ Identity Specification in <i>Arabidopsis</i> by the C Function Regulator AGAMOUS Â. Plant Cell, 2013, 25, 2482-2503.	3.1	169
48	Matching Patterns of Gene Expression to Mechanical Stiffness at Cell Resolution through Quantitative Tandem Epifluorescence and Nanoindentation Â. Plant Physiology, 2014, 165, 1399-1408	2.3	53
49	Genome-wide analysis of the WD-repeat protein family in cucumber and Arabidopsis. Molecular Genetics and Genomics, 2014, 289, 103-124.	1.0	54
50	Lateral suppressor and Goblet act in hierarchical order to regulate ectopic meristem formation at the base of tomato leaflets. Plant Journal, 2015, 81, 837-848.	2.8	29
51	A conserved role for <i><scp>CUP</scp>â€<scp>SHAPED COTYLEDON</scp></i> genes during ovule development. Plant Journal, 2015, 83, 732-742.	2.8	70
52	HANABA TARANU (HAN) Bridges Meristem and Organ Primordia Boundaries through PINHEAD, JAGGED, BLADE-ON-PETIOLE2 and CYTOKININ OXIDASE 3 during Flower Development in Arabidopsis. PLoS Genetics 2015, 11, e1005479.	, 1.5	81
53	PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10. Journal of Experimental Botany, 2015, 66, 2475-2485.	2,4	31
54	Alternate wiring of a <i>KNOXI</i> genetic network underlies differences in leaf development of <i>A. thaliana</i> and <i>C. hirsuta</i> . Genes and Development, 2015, 29, 2391-2404.	2.7	68
55	The CUP-SHAPED COTYLEDON2 and 3 genes have a post-meristematic effect on Arabidopsis thaliana phyllotaxis. Annals of Botany, 2015, 115, 807-820.	1.4	19

CITATION REPORT

		Citation Report		
#	Article		IF	Citations
56	A systems approach to understand shoot branching. Current Plant Biology, 2015, 3-4,	13-19.	2.3	14
57	O Cell, Where Art Thou? The mechanisms of shoot meristem patterning. Current Opinio Biology, 2015, 23, 91-97.	on in Plant	3.5	83
58	Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Ar Genetics, 2016, 12, e1006168.	abidopsis. PLoS	1.5	91
59	<i>Divide et impera</i> : boundaries shape the plant body and initiate new meristems. N 2016, 209, 485-498.	New Phytologist,	3.5	90
60	Analysis of the Arabidopsis <i>superman</i> allelic series and the interactions with othe demonstrate developmental robustness and joint specification of male–female boun meristem termination and carpel compartmentalization. Annals of Botany, 2016, 117,	dary, flower	1.4	40
62	The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral merist Arabidopsis. Development (Cambridge), 2016, 143, 1108-19.	em activities in	1.2	45
63	CUC Transcription Factors: To the Meristem and Beyond. , 2016, , 229-247.			17
64	SHOOT MERISTEMLESS trafficking controls axillary meristem formation, meristem size boundaries in Arabidopsis. Plant Journal, 2017, 90, 435-446.	and organ	2.8	56
65	<i>SUPERMAN</i> prevents class B gene expression and promotes stem cell termination whorl of <i>Arabidopsis thaliana</i> flowers. Proceedings of the National Academy of S United States of America, 2017, 114, 7166-7171.	on in the fourth Sciences of the	3.3	74
66	HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2 ONE, 2017, 12, e0185106.	expression. PLoS	1.1	31
67	Life behind the wall: sensing mechanical cues in plants. BMC Biology, 2017, 15, 59.		1.7	136
68	Xyloglucans fucosylation defects do not alter plant boundary domain definition. Plant S Behavior, 2018, 13, e1430545.	Signaling and	1.2	2
70	Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology. Fro Genetics, 2018, 9, 478.	ontiers in	1.1	58
71	The Tomato BLADE ON PETIOLE and TERMINATING FLOWER Regulate Leaf Axil Patterni Proximal-Distal Axes. Frontiers in Plant Science, 2018, 9, 1126.	ng Along the	1.7	18
72	<scp>SUPERMAN</scp> regulates floral whorl boundaries through control of auxin bio EMBO Journal, 2018, 37, .	synthesis.	3.5	85
73	Evolution and genetic control of the floral ground plan. New Phytologist, 2018, 220, 70)-86.	3.5	38
74	Getting leaves into shape: a molecular, cellular, environmental and evolutionary view. D (Cambridge), 2018, 145, .	evelopment	1.2	61
75	Dissecting the pathways coordinating patterning and growth by plant boundary domai Genetics, 2019, 15, e1007913.	ns. PLoS	1.5	36

		CITATION REPORT		
#	Article		IF	Citations
76	Growth and biomechanics of shoot organs. Journal of Experimental Botany, 2019, 70,	3573-3585.	2.4	31
77	Same Actor in Different Stages: Genes in Shoot Apical Meristem Maintenance and Flor Determinacy in Arabidopsis. Frontiers in Ecology and Evolution, 2020, 8, .	ral Meristem	1.1	18
78	Dissecting mechanisms in root growth from the transition zone perspective. Journal of Botany, 2020, 71, 2390-2396.	f Experimental	2.4	32
79	Leaf Shape Diversity: From Genetic Modules to Computational Models. Annual Review 2021, 72, 325-356.	of Plant Biology,	8.6	20
80	Flower Development in Arabidopsis: There Is More to It Than Learning Your ABCs. Metl Molecular Biology, 2014, 1110, 3-33.	hods in	0.4	29
81	Mechanics of the Meristems. Signaling and Communication in Plants, 2011, , 133-172		0.5	10
83	The Autonomous Pathways for Floral Inhibition and Induction. , 2007, , 35-42.			1
84	Do Pollinators Discriminate between Different Floral Forms?. , 2007, , 181-191.			2
85	The Vernalization Pathway of Floral Induction and the Role of Gibberellin. , 2007, , 52-	58.		0
86	Historical Interpretations of Flower Induction and Flower Development. , 2007, , 10-20).		0
87	Enhancing Flower Colour. , 2007, , 158-168.			0
88	Changes at the Shoot Apical Meristem in Response to Floral Induction. , 2007, , 71-82			0
89	Flower Induction in Arabidopsis thaliana. , 2007, , 25-34.			0
90	The Photoperiodic Pathway of Floral Induction. , 2007, , 43-51.			0
91	Are Flowers under Selective Pressure to Increase Pollinator Attention?. , 2007, , 171-18	30.		0
92	Integrating the <i>Arabidopsis thaliana</i> Flower Induction Pathways and Assessing the Which the Model Is Ubiquitous. , 2007, , 59-68.	ne Extent to		0
94	Preventing Self-fertilization. , 2007, , 111-122.			0
95	Function and Development of Gametophytes. , 2007, , 103-110.			0

#	Article	IF	CITATIONS
96	Colouring the Flower. , 2007, , 147-157.		0
97	Why Are Flowers Different? Pollination Syndromes—The Theory. , 2007, , 127-137.		0
98	The ABC Model in Evolution. , 2007, , 95-102.		0
99	Pollination Syndromes—The Evidence. , 2007, , 192-200.		0
100	Development of the Floral Organs. , 2007, , 83-94.		0
101	The Evolution of Flowers. , 2007, , 3-9.		0
102	Changing Floral Shape and Structure. , 2007, , 138-146.		0
104	Meristem Termination and Organ Number Control in Early Stage of Arabidopsis Flower Development. Journal of Cell Signaling, 2018, 03, .	0.3	0
106	7. Développement des plantes. , 2017, , 272-308.		0
107	The annotation and analysis of complex 3D plant organs using 3DCoordX. Plant Physiology, 2022, 189, 1278-1295.	2.3	4
114	Integrative Analysis of miRNAs and Their Targets Involved in Ray Floret Growth in Gerbera hybrida. International Journal of Molecular Sciences, 2022, 23, 7296.	1.8	0
117	Effects of ectopic expression of WOX4 and WOX14 on stem cell maintenance and organogenesis of Arabidopsis thaliana. Acta Physiologiae Plantarum, 2023, 45, .	1.0	1
119	Flower Development in Arabidopsis. Methods in Molecular Biology, 2023, , 3-38.	0.4	1