Suppression of the biosynthesis of proanthocyanidin in repressor

Plant Biotechnology Journal 2, 487-493 DOI: 10.1111/j.1467-7652.2004.00094.x

Citation Report

#	Article	IF	CITATIONS
1	Molecular Biology and Biotechnology of Flavonoid Biosynthesis. , 2005, , 143-218.		10
2	Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant Journal, 2005, 42, 218-235.	2.8	891
3	Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant Journal, 2005, 44, 62-75.	2.8	114
4	Engineering of plant natural product pathways. Current Opinion in Plant Biology, 2005, 8, 329-336.	3.5	123
5	Enhanced radical scavenging activity of genetically modified Arabidopsis seeds. Biotechnology Letters, 2005, 27, 297-303.	1.1	41
6	The NAC Transcription Factors NST1 and NST2 of Arabidopsis Regulate Secondary Wall Thickenings and Are Required for Anther Dehiscence. Plant Cell, 2005, 17, 2993-3006.	3.1	632
7	A Chimeric AtMYB23 Repressor Induces Hairy Roots, Elongation of Leaves and Stems, and Inhibition of the Deposition of Mucilage on Seed Coats in Arabidopsis. Plant and Cell Physiology, 2005, 46, 147-155.	1.5	50
8	Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiology, 2006, 140, 637-646.	2.3	738
9	GENETICS AND BIOCHEMISTRY OF SEED FLAVONOIDS. Annual Review of Plant Biology, 2006, 57, 405-430.	8.6	1,056
10	Antibody-based metabolic engineering in plants. Journal of Biotechnology, 2006, 124, 271-283.	1.9	9
11	Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Plant Biotechnology Journal, 2006, 4, 325-332.	4.1	139
12	TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids inArabidopsis thaliana. Plant Journal, 2006, 46, 768-779.	2.8	288
13	Suppression and restoration of male fertility using a transcription factor. Plant Biotechnology Journal, 2007, 5, 297-312.	4.1	67
14	The zinc finger network of plants. Cellular and Molecular Life Sciences, 2008, 65, 1150-1160.	2.4	373
15	Transcription factors for predictive plant metabolic engineering: are we there yet?. Current Opinion in Biotechnology, 2008, 19, 138-144.	3.3	146
16	Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Functional Plant Biology, 2008, 35, 606.	1.1	141
17	MYBL2 is a new regulator of flavonoid biosynthesis in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 55, 940-953.	2.8	474
18	AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant Journal, 2008, 55, 954-967.	2.8	500

TATION REDO

	CITATION	REPORT	
#	Article	IF	CITATIONS
19	Gene Discovery and Metabolic Engineering in the Phenylpropanoid Pathway. , 0, , 113-138.		0
20	Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany, 2008, 59, 3621-3634.	2.4	193
21	Chimeric AGAMOUS repressor induces serrated petal phenotype in Torenia fournieri similar to that induced by cytokinin application. Plant Biotechnology, 2008, 25, 45-53.	0.5	30
22	FioreDB: a database of phenotypic information induced by the chimeric repressor silencing technology (CRES-T) in Arabidopsis and floricultural plants. Plant Biotechnology, 2008, 25, 37-43.	0.5	24
23	Manipulation of plant metabolic pathways by transcription factors. Plant Biotechnology, 2009, 26, 29-38.	0.5	34
24	Bioengineering. , 2009, , 435-473.		3
25	TOMATO AGAMOUS‣IKE 1 is a component of the fruit ripening regulatory network. Plant Journal, 2009, 60, 1081-1095.	2.8	298
26	Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. Plant Journal, 2009, 60, 79-90.	2.8	105
27	TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Developmental Biology, 2009, 325, 412-421.	0.9	232
28	Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind. Molecular Genetics and Genomics, 2010, 284, 399-414.	1.0	40
29	Detection of protein-protein interactions in plants using the transrepressive activity of the EAR motif repression domain. Plant Journal, 2010, 61, 570-578.	2.8	31
30	Members of the LATERAL ORGAN BOUNDARIES DOMAIN Transcription Factor Family Are Involved in the Regulation of Secondary Growth in <i>Populus</i> Â. Plant Cell, 2010, 22, 3662-3677.	3.1	114
31	Molecular Biology and Biotechnology of Flower Pigments. , 2010, , 161-187.		8
32	Genetic Engineering of Novel Flower Colors in Floricultural Plants: Recent Advances via Transgenic Approaches. Methods in Molecular Biology, 2010, 589, 325-347.	0.4	35
33	Production of picotee-type flowers in Japanese gentian by CRES-T. Plant Biotechnology, 2011, 28, 173-180.	0.5	26
34	Arabidopsis chimeric TCP3 repressor produces novel floral traits in Torenia fournieri and Chrysanthemum morifolium. Plant Biotechnology, 2011, 28, 131-140.	0.5	44
35	Induction of double flowers in Pharbitis nil using a class-C MADS-box transcription factor with Chimeric REpressor gene-Silencing Technology. Plant Biotechnology, 2011, 28, 153-165.	0.5	21
36	Creating ruffled flower petals in Cyclamen persicum by expression of the chimeric cyclamen TCP repressor. Plant Biotechnology, 2011, 28, 141-147.	0.5	31

CITATION REPORT

#	Article	IF	CITATIONS
37	Generation of chimeric repressors that confer salt tolerance in <i>Arabidopsis</i> and rice. Plant Biotechnology Journal, 2011, 9, 736-746.	4.1	67
38	The myb transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture, 2011, 106, 235-242.	1.2	46
39	The ethylene signaling pathway has a negative impact on sucrose-induced anthocyanin accumulation in Arabidopsis. Journal of Plant Research, 2011, 124, 193-200.	1.2	40
40	The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. Journal of Experimental Botany, 2011, 62, 1189-1200.	2.4	82
41	Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L Plant Cell Reports, 2012, 31, 111-119.	2.8	48
42	The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta, 2013, 237, 1199-1211.	1.6	78
43	A bHLH-Type Transcription Factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, Acts as a Repressor to Negatively Regulate Jasmonate Signaling in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 1641-1656.	3.1	269
44	Carbon partitioning in tissues of a gain-of-function mutant (<i>MYB75</i> / <i>PAP1-D</i>) and a loss-of-function mutant (<i>myb75-1</i>) in <i>Arabidopsis thaliana</i> . Botany, 2014, 92, 93-99.	0.5	6
45	Studies on the role of the <i>SINAC3</i> gene in regulating seed development in tomato (<i>Solanum) Tj ETQq0</i>	0 0 rgBT /0	Overlock 10 T
46	Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple. Frontiers in Plant Science, 2015, 6, 243.	1.7	58
47	Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation. Journal of Experimental Botany, 2015, 66, 3775-3789.	2.4	80
48	Metabolic engineering to enhance the value of plants as green factories. Metabolic Engineering, 2015, 27, 83-91.	3.6	65
50	Evaluation of N Fertilizers Effects on Grape Based on the Expression of N Metabolic Genes. Horticultural Plant Journal, 2016, 2, 261-271.	2.3	4
51	Phloem-Specific Methionine Recycling Fuels Polyamine Biosynthesis in a Sulfur-Dependent Manner and Promotes Flower and Seed Development. Plant Physiology, 2016, 170, 790-806.	2.3	22
52	The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2017, 40, 56-68.	2.8	107

53	Two R2R3â€ <scp>MYB</scp> proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. Plant Journal, 2018, 96, 949-965.	2.8	137
54	Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors. Plant Physiology and Biochemistry, 2019, 136, 178-187.	2.8	166
55	Nuclear Prohibitin3 Maintains Genome Integrity and Cell Proliferation in the Root Meristem through Minichromosome Maintenance 2. Plant Physiology, 2019, 179, 1669-1691.	2.3	19

#	Article	IF	CITATIONS
56	Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). Plant Molecular Biology, 2019, 100, 451-465.	2.0	46
57	R2R3â€ <scp>MYB</scp> transcription factor <scp>MYB</scp> 6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in <i>Populus tomentosa</i> . Plant Journal, 2019, 99, 733-751.	2.8	134
58	Ft MYB 16 interacts with Ftimportinâ€Î±1 to regulate rutin biosynthesis in tartary buckwheat. Plant Biotechnology Journal, 2019, 17, 1479-1481.	4.1	20
59	Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genetics, 2020, 16, e1008847.	1.5	41
60	Differential functional traits underlying the contrasting salt tolerance in Lepidium species. Plant and Soil, 2020, 448, 315-334.	1.8	15
61	Transcriptome profiling reveals cytokinin promoted callus regeneration in Brassica juncea. Plant Cell, Tissue and Organ Culture, 2020, 141, 191-206.	1.2	13
62	Blue Light Regulates Phosphate Deficiency-Dependent Primary Root Growth Inhibition in Arabidopsis. Frontiers in Plant Science, 2019, 10, 1803.	1.7	12
63	DnaJ Proteins Regulate WUS Expression in Shoot Apical Meristem of Arabidopsis. Plants, 2021, 10, 136.	1.6	6
64	A poplar Bâ€box protein <scp>PtrBBX23</scp> modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. Plant, Cell and Environment, 2021, 44, 3015-3033.	2.8	35
65	Gibberellins Inhibit Flavonoid Biosynthesis and Promote Nitrogen Metabolism in Medicago truncatula. International Journal of Molecular Sciences, 2021, 22, 9291.	1.8	7
66	Identification of R2R3-MYB gene family reveal candidate genes for anthocyanin biosynthesis in Lonicera caerulea fruit based on RNA-seq data. Journal of Berry Research, 2021, 11, 669-687.	0.7	0
67	Modifying Anthocyanin Production in Flowers. , 2008, , 49-80.		21
70	Transcription Factors, Gene Regulatory Networks and Agronomic Traits. Advances in Agroecology, 2011, , 65-94.	0.3	1
71	The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis. PLoS ONE, 2008, 3, e1387.	1.1	42
72	CH 3 Molecular Biology and Biotechnology of Flavonoid Biosynthesis. , 2005, , 157-232.		8
73	Metabolic Engineering of Bioactive Phenylpropanoids in Crops. , 2010, , 181-196.		1
75	Regulation of MYB Transcription Factors of Anthocyanin Synthesis in Lily Flowers. Frontiers in Plant Science, 2021, 12, 761668.	1.7	30
76	Biological Function and Stress Response Mechanism of MYB Transcription Factor Family Genes. Journal of Plant Growth Regulation, 2023, 42, 83-95.	2.8	18

CITATION REPORT

#	Article	IF	Citations
77	BLISTER promotes seed maturation and fatty acid biosynthesis by interacting with WRINKLED1 to regulate chromatin dynamics in Arabidopsis. Plant Cell, 2022, 34, 2242-2265.	3.1	11
84	Reducing the biosynthesis of condensed tannin in winged bean (Psophocarpus tetragonolobus (L.)	Tj ETQq1 1 0.784314 r	gBT /Overloc