Molecular Regulation of Vascular Smooth Muscle Cell D Disease

Physiological Reviews 84, 767-801 DOI: 10.1152/physrev.00041.2003

Citation Report

#	Article	IF	CITATIONS
2	A G/C Element Mediates Repression of the SM22α Promoter Within Phenotypically Modulated Smooth Muscle Cells in Experimental Atherosclerosis. Circulation Research, 2004, 95, 981-988.	2.0	127
3	L-type Voltage-Gated Ca 2+ Channels Modulate Expression of Smooth Muscle Differentiation Marker Genes via a Rho Kinase/Myocardin/SRF–Dependent Mechanism. Circulation Research, 2004, 95, 406-414.	2.0	164
4	Restricted inactivation of serum response factor to the cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17132-17137.	3.3	231
5	Extracellular matrix gene expression in the developing mouse aorta. Advances in Developmental Biology (Amsterdam, Netherlands), 2005, 15, 81-128.	0.4	23
6	Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials, 2005, 26, 5405-5413.	5.7	592
7	Regulation of smooth muscle differentiation by the myocardin family of serum response factor co-factors. Journal of Thrombosis and Haemostasis, 2005, 3, 1976-1984.	1.9	25
8	Anti-Inflammatory Effects of Statins: Clinical Evidence and Basic Mechanisms. Nature Reviews Drug Discovery, 2005, 4, 977-987.	21.5	760
9	Transcriptional Regulation at the Chromatin Level in the Cardiovasculature Through Protein-protein Interactions and Chemical Modifications. Trends in Cardiovascular Medicine, 2005, 15, 125-129.	2.3	7
10	A Role for Msx2 and Necdin in Smooth Muscle Differentiation of Mesoangioblasts and Other Mesoderm Progenitor Cells. Trends in Cardiovascular Medicine, 2005, 15, 96-100.	2.3	14
11	Predictive screening for regulators of conserved functional gene modules (gene batteries) in mammals. BMC Genomics, 2005, 6, 68.	1.2	35
12	Hypoxia-inducible factor 1α modulates adhesion, migration, and FAK phosphorylation in vascular smooth muscle cells. Journal of Cellular Biochemistry, 2005, 96, 971-985.	1.2	42
13	Roles of Hemodynamic Forces in Vascular Cell Differentiation. Annals of Biomedical Engineering, 2005, 33, 772-779.	1.3	94
14	Oxidative Stress Produced with Cell Migration Increases Synthetic Phenotype of Vascular Smooth Muscle Cells. Annals of Biomedical Engineering, 2005, 33, 1546-1554.	1.3	47
16	Microarray analysis reveals novel gene expression changes associated with erectile dysfunction in diabetic rats. Physiological Genomics, 2005, 23, 192-205.	1.0	55
17	Fetal cerebrovascular acclimatization responses to high-altitude, long-term hypoxia: a model for prenatal programming of adult disease?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R16-R24.	0.9	47
18	Actin cytoskeletal dynamics in smooth muscle contraction. Canadian Journal of Physiology and Pharmacology, 2005, 83, 851-856.	0.7	59
19	An MT1-MMP-PDGF receptor-Â axis regulates mural cell investment of the microvasculature. Genes and Development, 2005, 19, 979-991.	2.7	109
20	Stretch-dependent growth and differentiation in vascular smooth muscle: role of the actin cytoskeleton. Canadian Journal of Physiology and Pharmacology, 2005, 83, 869-875.	0.7	50

#	Article	IF	CITATIONS
21	Ca2+/calmodulin-dependent protein kinase IV activates cysteine-rich protein 1 through adjacent CRE and CArG elements. American Journal of Physiology - Cell Physiology, 2005, 289, C785-C793.	2.1	20
22	Notch-mediated CBF-1/RBP-Jκ-dependent regulation of human vascular smooth muscle cell phenotype in vitro. American Journal of Physiology - Cell Physiology, 2005, 289, C1188-C1196.	2.1	99
23	Bone Morphogenetic Protein Signaling Modulates Myocardin Transactivation of Cardiac Genes. Circulation Research, 2005, 97, 992-1000.	2.0	47
24	Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8916-8921.	3.3	134
25	Notch Signaling Represses Myocardin-induced Smooth Muscle Cell Differentiation. Journal of Biological Chemistry, 2005, 280, 8994-9004.	1.6	106
26	Increased Neointima Formation in Cysteine-Rich Protein 2–Deficient Mice in Response to Vascular Injury. Circulation Research, 2005, 97, 1323-1331.	2.0	56
27	PIAS1 Activates the Expression of Smooth Muscle Cell Differentiation Marker Genes by Interacting with Serum Response Factor and Class I Basic Helix-Loop-Helix Proteins. Molecular and Cellular Biology, 2005, 25, 8009-8023.	1.1	48
28	GATA-6 Regulates Genes Promoting Synthetic Functions in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 309-314.	1.1	56
29	Nuclear Factor of Activated T Cells and Serum Response Factor Cooperatively Regulate the Activity of an α-Actin Intronic Enhancer. Journal of Biological Chemistry, 2005, 280, 26113-26120.	1.6	54
30	Competition of PTB with TIA proteins for binding to a U-rich cis-element determines tissue-specific splicing of the myosin phosphatase targeting subunit 1. Rna, 2005, 11, 1725-1736.	1.6	24
31	Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1082-1087.	3.3	270
32	Pre–B-Cell Colony–Enhancing Factor Regulates NAD + -Dependent Protein Deacetylase Activity and Promotes Vascular Smooth Muscle Cell Maturation. Circulation Research, 2005, 97, 25-34.	2.0	176
33	HERP1 Inhibits Myocardin-Induced Vascular Smooth Muscle Cell Differentiation by Interfering With SRF Binding to CArG Box. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2328-2334.	1.1	98
34	Smooth Muscle-Specific Genes Are Differentially Sensitive to Inhibition by Elk-1. Molecular and Cellular Biology, 2005, 25, 9874-9885.	1.1	60
35	Synthetic Retinoid Am80 Suppresses Smooth Muscle Phenotypic Modulation and In-Stent Neointima Formation by Inhibiting KLF5. Circulation Research, 2005, 97, 1132-1141.	2.0	87
36	Molecular Determinants of Vascular Smooth Muscle Cell Diversity. Circulation Research, 2005, 96, 280-291.	2.0	269
37	Altered vascular remodeling in fibulin-5-deficient mice reveals a role of fibulin-5 in smooth muscle cell proliferation and migration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2946-2951.	3.3	113
38	Shear Stress Inhibits Smooth Muscle Cell–Induced Inflammatory Gene Expression in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 963-969.	1.1	56

#	Article	IF	CITATIONS
39	GATA-6 Can Act as a Positive or Negative Regulator of Smooth Muscle-specific Gene Expression. Journal of Biological Chemistry, 2005, 280, 4745-4752.	1.6	55
40	Vascular Progenitor Cells: Origin and Mechanisms of Mobilization, Differentiation, Integration, and Vasculogenesis. Stem Cells and Development, 2005, 14, 122-139.	1.1	61
41	Requirement of myocardin-related transcription factor-B for remodeling of branchial arch arteries and smooth muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15122-15127.	3.3	139
42	c-Myc Antisense Oligonucleotides Preserve Smooth Muscle Differentiation and Reduce Negative Remodelling following Rat Carotid Arteriotomy. Journal of Vascular Research, 2005, 42, 214-225.	0.6	21
43	Regulation of Vascular Calcification. Circulation Research, 2005, 96, 717-722.	2.0	270
44	Contractile Properties of the Cultured Vascular Smooth Muscle Cells. Circulation Research, 2005, 96, 890-897.	2.0	46
45	Depletion of Serum Response Factor by RNA Interference Mimics the Mitogenic Effects of Platelet Derived Growth Factor-BB in Vascular Smooth Muscle Cells. Circulation Research, 2005, 97, 427-433.	2.0	28
46	The Translation of Transcription. Circulation Research, 2005, 97, 1083-1084.	2.0	2
47	Kruppel-like Factor 4 Abrogates Myocardin-induced Activation of Smooth Muscle Gene Expression. Journal of Biological Chemistry, 2005, 280, 9719-9727.	1.6	297
48	MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. Journal of Experimental Medicine, 2005, 202, 663-671.	4.2	117
49	Vascular Smooth Muscle Cell Phenotype-Dependent Phosphodiesterase 4D Short Form Expression: Role of Differential Histone Acetylation on cAMP-Regulated Function. Molecular Pharmacology, 2005, 68, 596-605.	1.0	39
50	On How Insulin May Influence Ageing and Become Atherogenic throughout the Insulin-Like Growth Factor-1 Receptor Pathway: In vitro Studies with Human Vascular Smooth Muscle Cells. Gerontology, 2005, 51, 225-230.	1.4	16
51	Bone Morphogenetic Protein 4 Promotes Pulmonary Vascular Remodeling in Hypoxic Pulmonary Hypertension. Circulation Research, 2005, 97, 496-504.	2.0	146
52	Rho and vascular disease. Atherosclerosis, 2005, 183, 1-16.	0.4	128
53	Transforming Growth Factor-β-Dependent Growth Inhibition in Primary Vascular Smooth Muscle Cells Is p38-Dependent. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1005-1012.	1.3	92
54	The association of caveolae, actin, and the dystrophin–glycoprotein complex: a role in smooth muscle phenotype and function?. Canadian Journal of Physiology and Pharmacology, 2005, 83, 877-891.	0.7	44
55	Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2984.	1.6	98
56	Downregulated REST Transcription Factor Is a Switch Enabling Critical Potassium Channel Expression and Cell Proliferation. Molecular Cell, 2005, 20, 45-52.	4.5	133

#	Article	IF	CITATIONS
57	Phenotypic Modulation of Smooth Muscle Cells through Interaction of Foxo4 and Myocardin. Developmental Cell, 2005, 9, 261-270.	3.1	176
58	Heparin recovers AT1 receptor and its intracellular signal transduction in cultured vascular smooth muscle cells. FEBS Letters, 2005, 579, 281-284.	1.3	17
59	The intron 5/6 promoter region of the ship1 gene regulates expression in stem/progenitor cells of the mouse embryo. Developmental Biology, 2005, 283, 503-521.	0.9	40
60	Smoothelin-A Is Essential for Functional Intestinal Smooth Muscle Contractility in Mice. Gastroenterology, 2005, 129, 1592-1601.	0.6	71
61	Sustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway. Journal of Vascular Surgery, 2005, 42, 772-780.	0.6	61
62	Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development. Development (Cambridge), 2006, 133, 4245-4256.	1.2	123
63	Aging, smooth muscle cells and vascular pathobiology: Implications for atherosclerosis. Atherosclerosis, 2006, 188, 221-230.	0.4	99
64	Characterization of free-floating spheres from human trabecular meshwork (HTM) cell culture in vitro. Experimental Eye Research, 2006, 82, 959-967.	1.2	50
65	CHF1/Hey2 suppresses SM-MHC promoter activity through an interaction with GATA-6. Biochemical and Biophysical Research Communications, 2006, 339, 151-156.	1.0	21
66	Shear stress induces endothelial transdifferentiation from mouse smooth muscle cells. Biochemical and Biophysical Research Communications, 2006, 346, 860-865.	1.0	37
67	Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochemical and Biophysical Research Communications, 2006, 351, 321-327.	1.0	87
68	The role of transforming growth factor-Î ² in atherosclerosis. Cytokine and Growth Factor Reviews, 2006, 17, 487-499.	3.2	93
69	ΠEF1 Mediates TGF-β Signaling in Vascular Smooth Muscle Cell Differentiation. Developmental Cell, 2006, 11, 93-104.	3.1	134
70	A critical developmental role for tgfbr2 in myogenic cell lineages is revealed in mice expressing SM22-Cre, not SMMHC-Cre. Journal of Molecular and Cellular Cardiology, 2006, 41, 724-731.	0.9	50
71	Regulation of vascular smooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependent protein kinase. Frontiers in Bioscience - Landmark, 2006, 11, 356.	3.0	118
72	Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. Journal of Clinical Investigation, 2006, 116, 3139-3149.	3.9	159
73	Effects of Stenting the Parent Artery on Aneurysm Filling and Gene Expression of Various Potential Factors Involved in Healing of Experimental Aneurysms. Interventional Neuroradiology, 2006, 12, 289-302.	0.7	5
75	Neutrophils, lymphocytes, and monocytes exhibit diverse behaviors in transendothelial and subendothelial migrations under coculture with smooth muscle cells in disturbed flow. Blood, 2006, 107, 1933-1942.	0.6	72

#	Article	IF	CITATIONS
76	The role of vascular dysfunction in developmental origins of health and disease: evidence from human and animal studies. , 2006, , 286-299.		0
77	Novel transcripts of Nox1 are regulated by alternative promoters and expressed under phenotypic modulation of vascular smooth muscle cells. Biochemical Journal, 2006, 398, 303-310.	1.7	25
78	Nutritional Control, Gene Regulation, and Transformation of Vascular Smooth Muscle Cells in Atherosclerosis. Cardiovascular & Hematological Disorders Drug Targets, 2006, 6, 151-168.	0.2	16
79	Proteomic analysis reveals higher demand for antioxidant protection in embryonic stem cell-derived smooth muscle cells. Proteomics, 2006, 6, 6437-6446.	1.3	28
80	BALLOON INJURY ALTERS alpha-ADRENOCEPTOR EXPRESSION ACROSS RAT CAROTID ARTERY WALL. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 204-210.	0.9	8
81	Serum response factor, its cofactors, and epithelial–mesenchymal signaling in urinary bladder smooth muscle formation. Differentiation, 2006, 74, 30-39.	1.0	14
82	Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. International Journal of Experimental Pathology, 2006, 87, 463-474.	0.6	73
83	Sphingolipids differentially regulate mitogen-activated protein kinases and intracellular Ca2+ in vascular smooth muscle: effects on CREB activation. British Journal of Pharmacology, 2006, 147, 351-359.	2.7	33
84	Potassium channels at the beginnings of cell proliferation. Journal of Physiology, 2006, 570, 1-1.	1.3	7
85	Assessment of Contractility of Purified Smooth Muscle Cells Derived from Embryonic Stem Cells. Stem Cells, 2006, 24, 1678-1688.	1.4	59
86	Elastic fibres and vascular structure in hypertension. , 2006, 111, 771-791.		208
87	Comparison between recombinant baculo- and adenoviral-vectors as transfer system in cardiovascular cells. Archives of Virology, 2006, 151, 255-271.	0.9	20
89	Diversity of CD97 in smooth muscle cells. Cell and Tissue Research, 2006, 324, 139-147.	1.5	19
90	Deficient innervation characterizes intestinal strictures in a rat model of colitis. Experimental and Molecular Pathology, 2006, 80, 54-66.	0.9	30
91	Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-β1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells. Cellular Signalling, 2006, 18, 1270-1278.	1.7	78
92	Dependence of Proliferating Dedifferentiated Vascular Smooth Muscle Contraction on Rho–Rho Kinase System. Trends in Cardiovascular Medicine, 2006, 16, 124-128.	2.3	8
93	Transforming growth factor-Î ² induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells. Developmental Dynamics, 2006, 235, 82-93.	0.8	92
94	Ginsenoside Rg1 inhibits tumor necrosis factor-α (TNF-α)-induced human arterial smooth muscle cells (HASMCs) proliferation. Journal of Cellular Biochemistry, 2006, 98, 1471-1481.	1.2	34

#	Article	IF	CITATIONS
95	Less REST, More Vascular Disease? Regulation of Cell Cycle and Migration of Vascular Smooth Muscle Cells. Cell Cycle, 2006, 5, 129-131.	1.3	8
96	Cholinergic Receptor and Cyclic Stretch-Mediated Inflammatory Gene Expression in Intact ASM. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 417-425.	1.4	49
97	Hepatoma-Derived Growth Factor Is Expressed after Vascular Injury in the Rat and Stimulates Smooth Muscle Cell Migration. Pediatric Research, 2006, 59, 778-783.	1.1	35
98	New therapeutic possibilities for vein graft disease in the post-edifoligide era. Future Cardiology, 2006, 2, 493-501.	0.5	10
99	Regulation of myosin light chain kinase and telokin expression in smooth muscle tissues. American Journal of Physiology - Cell Physiology, 2006, 291, C817-C827.	2.1	72
100	Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2665-2670.	3.3	83
101	Upregulation of intermediate-conductance Ca2+-activated K+channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2493-H2503.	1.5	104
102	Excitation–Transcription Coupling in Arterial Smooth Muscle. Circulation Research, 2006, 98, 868-878.	2.0	186
103	Short-term treatment of spontaneously hypertensive rats with liver growth factor reduces carotid artery fibrosis, improves vascular function, and lowers blood pressure. Cardiovascular Research, 2006, 69, 764-771.	1.8	36
104	Null mutation in macrophage migration inhibitory factor prevents muscle cell loss and fibrosis in partial bladder outlet obstruction. American Journal of Physiology - Renal Physiology, 2006, 291, F1343-F1353.	1.3	33
105	Elastin biosynthesis: The missing link in tissue-engineered blood vessels. Cardiovascular Research, 2006, 71, 40-49.	1.8	279
106	Contribution of serum response factor and myocardin to transcriptional regulation of smoothelins. Cardiovascular Research, 2006, 70, 136-145.	1.8	32
107	Serum deprivation results in redifferentiation of human umbilical vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2006, 291, C50-C58.	2.1	107
108	The prostacyclin receptor induces human vascular smooth muscle cell differentiation via the protein kinase A pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1337-H1346.	1.5	76
109	The Fat1 cadherin integrates vascular smooth muscle cell growth and migration signals. Journal of Cell Biology, 2006, 173, 417-429.	2.3	88
110	Rho-Kinase as a Drug Target for the Treatment of Airway Hyperresponsiveness in Asthma. Mini-Reviews in Medicinal Chemistry, 2006, 6, 339-348.	1.1	62
111	Function of cGMP-Dependent Protein Kinases as Revealed by Gene Deletion. Physiological Reviews, 2006, 86, 1-23.	13.1	384
112	Smooth Muscle Cells in Atherosclerosis Originate From the Local Vessel Wall and Not Circulating Progenitor Cells in ApoE Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2696-2702.	1.1	217

#	Article	IF	CITATIONS
113	Myocardin Induces Cardiomyocyte Hypertrophy. Circulation Research, 2006, 98, 1089-1097.	2.0	137
114	Modulation of Smooth Muscle Cell Migration by Members of the Low-Density Lipoprotein Receptor Family. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1246-1252.	1.1	35
115	Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-β-dependent mechanism. Journal of Cell Science, 2006, 119, 4994-5005.	1.2	155
116	PRISM/PRDM6, a Transcriptional Repressor That Promotes the Proliferative Gene Program in Smooth Muscle Cells. Molecular and Cellular Biology, 2006, 26, 2626-2636.	1.1	117
117	Embryonic Growth-Associated Protein Is One Subunit of a Novel N-Terminal Acetyltransferase Complex Essential for Embryonic Vascular Development. Circulation Research, 2006, 98, 846-855.	2.0	26
118	The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes and Development, 2006, 20, 1545-1556.	2.7	423
119	Role of Angiotensin Type-1 and Angiotensin Type-2 Receptors in the Expression of Vascular Integrins in Angiotensin Il–Infused Rats. Hypertension, 2006, 47, 122-127.	1.3	21
120	Origin of Neointimal Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2579-2581.	1.1	72
121	The TGFβ activated kinase TAK1 regulates vascular development in vivo. Development (Cambridge), 2006, 133, 1529-1541.	1.2	118
122	Role of Nuclear Ca 2+ /Calmodulin-Stimulated Phosphodiesterase 1A in Vascular Smooth Muscle Cell Growth and Survival. Circulation Research, 2006, 98, 777-784.	2.0	121
123	TRP Proteins. Circulation Research, 2006, 98, 446-447.	2.0	15
124	Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovascular Research, 2006, 69, 614-624.	1.8	435
125	Acute Stroke. , 0, , .		3
126	Increased Myosin Light Chain Kinase Expression in Hypertension: Regulation by Serum Response Factor via an Insertion Mutation in the Promoter. Molecular Biology of the Cell, 2006, 17, 4039-4050.	0.9	34
127	LPP Expression During In Vitro Smooth Muscle Differentiation and Stent-Induced Vascular Injury. Circulation Research, 2006, 98, 378-385.	2.0	35
128	Upregulated TRPC1 Channel in Vascular Injury In Vivo and Its Role in Human Neointimal Hyperplasia. Circulation Research, 2006, 98, 557-563.	2.0	195
129	Wilms' Tumor 1–Associating Protein Regulates the Proliferation of Vascular Smooth Muscle Cells. Circulation Research, 2006, 99, 1338-1346.	2.0	50
130	New Insights to Vascular Smooth Muscle Cell and Pericyte Differentiation of Mouse Embryonic Stem Cells In Vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1457-1464.	1.1	26

#	Article	IF	CITATIONS
131	Nucleoprotein Interactions Governing Cell Type-dependent Repression of the Mouse Smooth Muscle α-Actin Promoter by Single-stranded DNA-binding Proteins Purα and Purβ*. Journal of Biological Chemistry, 2006, 281, 7907-7918.	1.6	31
132	Jagged1-selective Notch Signaling Induces Smooth Muscle Differentiation via a RBP-Jκ-dependent Pathway. Journal of Biological Chemistry, 2006, 281, 28555-28564.	1.6	131
133	Matrix Metalloproteinase-2 Expression by Vascular Smooth Muscle Cells Is Mediated by Both Stimulatory and Inhibitory Signals in Response to Growth Factors. Journal of Biological Chemistry, 2006, 281, 25915-25925.	1.6	63
134	Regulation of smooth muscle cells in development and vascular disease: current therapeutic strategies. Expert Review of Cardiovascular Therapy, 2006, 4, 789-800.	0.6	43
135	Ca 2+ , Calmodulin, and Cyclins in Vascular Smooth Muscle Cell Cycle. Circulation Research, 2006, 98, 1240-1243.	2.0	31
136	Fishing for Function in Zebrafish. Circulation Research, 2006, 98, 723-726.	2.0	2
137	Ultrastructure of Zebrafish Dorsal Aortic Cells. Zebrafish, 2006, 3, 455-463.	0.5	20
138	Cthrc1 Is a Novel Inhibitor of Transforming Growth Factor-Î ² Signaling and Neointimal Lesion Formation. Circulation Research, 2007, 100, 826-833.	2.0	90
139	Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. American Journal of Physiology - Cell Physiology, 2007, 293, C1824-C1833.	2.1	145
140	Vascular Hypertrophy and Hypertension Caused by Transgenic Overexpression of Profilin 1. Journal of Biological Chemistry, 2007, 282, 37632-37639.	1.6	43
141	The Balance of Power: The Law of Yin and Yang in Smooth Muscle Cell Fate. Circulation Research, 2007, 101, 111-113.	2.0	4
142	Yin Yang-1 Inhibits Vascular Smooth Muscle Cell Growth and Intimal Thickening by Repressing p21 WAF1/Cip1 Transcription and p21 WAF1/Cip1 -Cdk4-Cyclin D1 Assembly. Circulation Research, 2007, 101, 146-155.	2.0	67
143	Rapamycin Promotes Vascular Smooth Muscle Cell Differentiation through Insulin Receptor Substrate-1/Phosphatidylinositol 3-Kinase/Akt2 Feedback Signaling. Journal of Biological Chemistry, 2007, 282, 36112-36120.	1.6	124
144	Control of Phenotypic Plasticity of Smooth Muscle Cells by Bone Morphogenetic Protein Signaling through the Myocardin-related Transcription Factors. Journal of Biological Chemistry, 2007, 282, 37244-37255.	1.6	147
145	Move On!. Circulation Research, 2007, 100, 757-760.	2.0	3
146	Myocardin-Related Transcription Factors. Circulation Research, 2007, 100, 633-644.	2.0	234
147	The Histone Demethylase, Jmjd1a, Interacts With the Myocardin Factors to Regulate SMC Differentiation Marker Gene Expression. Circulation Research, 2007, 101, e115-23.	2.0	93
148	NFATc3 Mediates Chronic Hypoxia-induced Pulmonary Arterial Remodeling with α-Actin Up-regulation. Journal of Biological Chemistry, 2007, 282, 15081-15089.	1.6	100

#	Article	IF	CITATIONS
149	A Novel Role of Brg1 in the Regulation of SRF/MRTFA-dependent Smooth Muscle-specific Gene Expression. Journal of Biological Chemistry, 2007, 282, 25708-25716.	1.6	73
150	Downregulation of smooth muscle α-actin expression by bacterial lipopolysaccharide. Cardiovascular Research, 2007, 74, 262-269.	1.8	20
151	Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: role of cGMP-dependent protein kinase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1459-L1466.	1.3	50
152	Insulin increases the expression of contractile phenotypic markers in airway smooth muscle. American Journal of Physiology - Cell Physiology, 2007, 293, C429-C439.	2.1	81
153	Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovascular Research, 2007, 75, 618-628.	1.8	108
154	Nox 4 Regulation of Vascular Smooth Muscle Cell Differentiation Marker Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 12-14.	1.1	21
155	RhoA-Dependent Vascular Smooth Muscle Cell–Specific Transcription. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 448-449.	1.1	2
156	cAMP-Specific Phosphodiesterase-4 Enzymes in the Cardiovascular System. Circulation Research, 2007, 100, 950-966.	2.0	283
157	Vascular development in early ovine gestation: carotid smooth muscle function, phenotype, and biochemical markers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R323-R333.	0.9	18
158	Calcium/calmodulin-dependent protein kinase II-δ isoform regulation of vascular smooth muscle cell proliferation. American Journal of Physiology - Cell Physiology, 2007, 292, C2276-C2287.	2.1	73
159	Role of NAD(P)H:quinone oxidoreductase 1 on tumor necrosis factor-α-induced migration of human vascular smooth muscle cells. Cardiovascular Research, 2007, 76, 331-339.	1.8	21
160	Gene Expression Programs of Human Smooth Muscle Cells: Tissue-Specific Differentiation and Prognostic Significance in Breast Cancers. PLoS Genetics, 2007, 3, e164.	1.5	56
161	FcγRIIa mediates C-reactive protein-induced inflammatory responses of human vascular smooth muscle cells by activating NADPH oxidase 4. Cardiovascular Research, 2007, 75, 555-565.	1.8	66
162	GATA-6 mediates human bladder smooth muscle differentiation: involvement of a novel enhancer element in regulating α-smooth muscle actin gene expression. American Journal of Physiology - Cell Physiology, 2007, 293, C1093-C1102.	2.1	25
163	Smooth muscle cell-specific transcription is regulated by nuclear localization of the myocardin-related transcription factors. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1170-H1180.	1.5	90
164	Angiotensin II, Focal Adhesion Kinase, and PRX1 Enhance Smooth Muscle Expression of Lipoma Preferred Partner and its Newly Identified Binding Partner Palladin to Promote Cell Migration. Circulation Research, 2007, 100, 817-825.	2.0	50
165	Cellular and morphological changes during neointimal hyperplasia development in a porcine arteriovenous graft model. Nephrology Dialysis Transplantation, 2007, 22, 3139-3146.	0.4	64
166	Loss of the α7 Integrin Promotes Extracellular Signal-Regulated Kinase Activation and Altered Vascular Remodeling. Circulation Research, 2007, 101, 672-681.	2.0	40

#	Article	IF	CITATIONS
167	Myocardin in Tumor Suppression and Myofibroblast Differentiation. Cell Cycle, 2007, 6, 1141-1146.	1.3	13
168	Myocardin is a bifunctional switch for smooth versus skeletal muscle differentiation. Proceedings of the United States of America, 2007, 104, 16570-16575.	3.3	84
169	Epicardium-derived progenitor cells require β-catenin for coronary artery formation. Proceedings of the United States of America, 2007, 104, 18109-18114.	3.3	149
170	The Renin-Angiotensin System in Conscious Newborn Sheep: Metabolic Clearance Rate and Activity. Pediatric Research, 2007, 61, 681-686.	1.1	11
171	9B-6 Inhibition of Smooth Muscle Proliferation by Ultrasound-Triggered Release of Rapamycin from Microbubbles. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	6
172	Bilirubin and Biliverdin Treatment of Atherosclerotic Diseases. Cell Cycle, 2007, 6, 39-43.	1.3	79
173	Mechanisms of induction of endothelial cell E-selectin expression by smooth muscle cells and its inhibition by shear stress. Blood, 2007, 110, 519-528.	0.6	67
174	Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders. Multi-organ whole-genome measurements and reverse engineering to uncover gene networks underlying complex traits. Journal of Lipid Research, 2007, 48, 267-277.	2.0	19
175	Response Gene to Complement 32, a Novel Regulator for Transforming Growth Factor-β-induced Smooth Muscle Differentiation of Neural Crest Cells. Journal of Biological Chemistry, 2007, 282, 10133-10137.	1.6	46
176	Oxidized Phospholipids Induce Phenotypic Switching of Vascular Smooth Muscle Cells In Vivo and In Vitro. Circulation Research, 2007, 101, 792-801.	2.0	188
177	mCAT Got YouR TEF?. Circulation Research, 2007, 101, 856-858.	2.0	2
178	Developmental Basis of Vascular Smooth Muscle Diversity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1248-1258.	1.1	602
179	Formation of Extracellular Matrix-Digesting Invadopodia by Primary Aortic Smooth Muscle Cells. Circulation Research, 2007, 100, 1328-1336.	2.0	52
180	FoxO4 Regulates Tumor Necrosis Factor Alpha-Directed Smooth Muscle Cell Migration by Activating Matrix Metalloproteinase 9 Gene Transcription. Molecular and Cellular Biology, 2007, 27, 2676-2686.	1.1	103
181	Mediator Subunit MED28 (Magicin) Is a Repressor of Smooth Muscle Cell Differentiation. Journal of Biological Chemistry, 2007, 282, 32152-32157.	1.6	24
182	Nox4 Is Required for Maintenance of the Differentiated Vascular Smooth Muscle Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 42-48.	1.1	296
183	Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2007, 292, C59-C69.	2.1	212
184	Vascular Disease: A New Progenitor Biology. Current Vascular Pharmacology, 2007, 5, 61-68.	0.8	20

#	Article	IF	CITATIONS
185	Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. American Journal of Physiology - Cell Physiology, 2007, 292, C70-C81.	2.1	411
186	Frontiers in Nephrology. Journal of the American Society of Nephrology: JASN, 2007, 18, 2853-2862.	3.0	3
187	A Cysteine-rich LIM-only Protein Mediates Regulation of Smooth Muscle-specific Gene Expression by cGMP-dependent Protein Kinase. Journal of Biological Chemistry, 2007, 282, 33367-33380.	1.6	32
188	Diaphanous 1 and 2 Regulate Smooth Muscle Cell Differentiation by Activating the Myocardin-Related Transcription Factors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 478-486.	1.1	53
189	Smooth Muscle Cells and Myofibroblasts Use Distinct Transcriptional Mechanisms for Smooth Muscle α-Actin Expression. Circulation Research, 2007, 101, 883-892.	2.0	77
190	α7β1 Integrin. Circulation Research, 2007, 101, 651-653.	2.0	5
191	Molecular Control of Vascular Smooth Muscle Cell Differentiation and Phenotypic Plasticity. Novartis Foundation Symposium, 2007, 283, 174-193.	1.2	144
192	Blood Cell and Vessel Formation Following Transplantation of Activin-Treated Explants in Xenopus. Biological and Pharmaceutical Bulletin, 2007, 30, 1856-1859.	0.6	12
193	Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochemical Society Transactions, 2007, 35, 890-894.	1.6	62
194	Adaptations of the Rat Vagina in Pregnancy to Accommodate Delivery. Obstetrics and Gynecology, 2007, 109, 128-135.	1.2	36
195	Role of the extracellular matrix and its receptors in smooth muscle cell function: implications in vascular development and disease. Current Opinion in Lipidology, 2007, 18, 540-545.	1.2	40
196	Osteopontin, a missing link in PDGF-induced smooth muscle cell migration. Cardiovascular Research, 2007, 75, 634-635.	1.8	9
197	Kruppel-like Factors (KLFs) in muscle biology. Journal of Molecular and Cellular Cardiology, 2007, 43, 1-10.	0.9	88
198	Differential display fingerprints: new approach toÂcharacterize smooth muscle cells andÂhuman coronary atherectomy tissues. Pathologie Et Biologie, 2007, 55, 328-335.	2.2	1
199	Regulation of angiogenesis: Wound healing as a model. Progress in Histochemistry and Cytochemistry, 2007, 42, 115-170.	5.1	290
200	TGF-β up-regulates serum response factor in activated hepatic stellate cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 1250-1257.	1.8	15
201	Platelet-derived growth factor receptor-α is a key determinant of smooth muscle α-actin filaments in bone marrow-derived mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 2007, 39, 379-391.	1.2	52
202	Inhibition of vascular smooth muscle cell proliferation by serum from rats treated orally with Gastrodia and Uncaria decoction, a traditional Chinese formulation. Journal of Ethnopharmacology, 2007, 114, 458-462.	2.0	24

		Report	
#	Article	IF	CITATIONS
203	Up-regulation of skeletal muscle LIM protein 1 gene by 25-hydroxycholesterol may mediate morphological changes of rat aortic smooth muscle cells. Life Sciences, 2007, 80, 460-467.	2.0	6
204	Cytostatic drugs differentially affect phenotypic features of porcine coronary artery smooth muscle cell populations. FEBS Letters, 2007, 581, 5847-5851.	1.3	8
206	The Myofibroblast. American Journal of Pathology, 2007, 170, 1807-1816.	1.9	1,782
207	Novel blocker of NFAT activation inhibits IL-6 production in human myometrial arteries and reduces vascular smooth muscle cell proliferation. American Journal of Physiology - Cell Physiology, 2007, 292, C1167-C1178.	2.1	82
209	Regulation of vascular smooth muscle cell differentiation. Journal of Vascular Surgery, 2007, 45, A25-A32.	0.6	322
210	Smooth muscle cell signal transduction: Implications of vascular biology for vascular surgeons. Journal of Vascular Surgery, 2007, 45, A15-A24.	0.6	95
211	Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an α-smooth muscle actin-Cre transgenic mouse. Respiratory Research, 2007, 8, 1.	1.4	154
212	Effects of Longâ€Term Castration on the Smooth Muscle Cell Phenotype of the Rat Ventral Prostate. Journal of Andrology, 2007, 28, 777-783.	2.0	28
215	The nuclear autoantigen CENPâ€B displays cytokineâ€like activities toward vascular smooth muscle cells. Arthritis and Rheumatism, 2007, 56, 3814-3826.	6.7	18
216	Endothelin induces functional hypertrophy of peritubular smooth muscle cells. Journal of Cellular Physiology, 2007, 212, 264-273.	2.0	7
217	Spatiotemporal expression of smooth muscle markers in developing zebrafish gut. Developmental Dynamics, 2007, 236, 1623-1632.	0.8	63
218	L'athérosclérose, une maladie inflammatoire. Revue Francophone Des Laboratoires, 2007, 2007, 43-48.	0.0	0
219	Prostatic stromal cells derived from benign prostatic hyperplasia specimens possess stem cell like property. Prostate, 2007, 67, 1265-1276.	1.2	45
220	Independent association of matrix metalloproteinase-10, cardiovascular risk factors and subclinical atherosclerosis. Journal of Thrombosis and Haemostasis, 2007, 5, 91-97.	1.9	62
221	Involvement of glutathione/glutathione <i>S</i> â€ŧransferase antioxidant system in butyrateâ€ɨnhibited vascular smooth muscle cell proliferation. FEBS Journal, 2007, 274, 5962-5978.	2.2	35
222	Altered Ca2+ handling of smooth muscle cells in aorta of apolipoprotein E-deficient mice before development of atherosclerotic lesions. Cell Calcium, 2007, 41, 295-302.	1.1	40
223	Relationship of connexin43 expression to phenotypic modulation in cultured human aortic smooth muscle cells. European Journal of Cell Biology, 2007, 86, 617-628.	1.6	20
224	Ex vivo generation of mature and functional human smooth muscle cells differentiated from skeletal myoblasts. Experimental Cell Research, 2007, 313, 1337-1346.	1.2	9

#	Article	IF	CITATIONS
225	Cardioprotective prostacyclin signaling in vascular smooth muscle. Prostaglandins and Other Lipid Mediators, 2007, 82, 109-118.	1.0	86
226	Smoothelin in Vascular Smooth Muscle Cells. Trends in Cardiovascular Medicine, 2007, 17, 26-30.	2.3	86
227	Vascular Biology and the Sex of Flies: Regulation of Vascular Smooth Muscle Cell Proliferation by Wilms' Tumor 1–Associating Protein. Trends in Cardiovascular Medicine, 2007, 17, 230-234.	2.3	20
228	Transforming Growth Factor β/Bone Morphogenic Protein Signaling in Pulmonary Arterial Hypertension: Remodeling Revisited. Trends in Cardiovascular Medicine, 2007, 17, 263-269.	2.3	48
229	Programming Smooth Muscle Plasticity With Chromatin Dynamics. Circulation Research, 2007, 100, 1428-1441.	2.0	143
230	Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Netherlands Heart Journal, 2007, 15, 100-108.	0.3	734
232	A Modular Tissue Engineering Construct Containing Smooth Muscle Cells and Endothelial Cells. Annals of Biomedical Engineering, 2007, 35, 2039-2049.	1.3	48
233	A proteomic approach to the investigation of early events involved in vascular smooth muscle cell activation. Cell and Tissue Research, 2007, 328, 185-195.	1.5	20
234	A proteomic approach to the investigation of early events involved in the activation of vascular smooth muscle cells. Cell and Tissue Research, 2007, 329, 119-128.	1.5	20
235	Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials, 2008, 29, 1610-1619.	5.7	72
236	Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer. Biomaterials, 2008, 29, 4510-4520.	5.7	69
237	LPS induces inflammatory responses in human aortic vascular smooth muscle cells via Toll-like receptor 4 expression and nitric oxide production. Immunology Letters, 2008, 120, 57-64.	1.1	89
238	Bone marrow stem cells for urologic tissue engineering. World Journal of Urology, 2008, 26, 341-349.	1.2	84
239	The non-excitable smooth muscle: Calcium signaling and phenotypic switching during vascular disease. Pflugers Archiv European Journal of Physiology, 2008, 456, 769-785.	1.3	208
240	Do two mutually exclusive gene modules define the phenotypic diversity of mammalian smooth muscle?. Molecular Genetics and Genomics, 2008, 280, 127-37.	1.0	15
241	Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell and Tissue Research, 2008, 333, 449-459.	1.5	113
242	Comparative in silico analysis identifies bona fide MyoD binding sites within the Myocyte Stress 1 gene promoter. BMC Molecular Biology, 2008, 9, 50.	3.0	11
243	Evidence for Hox-specified positional identities in adult vasculature. BMC Developmental Biology, 2008, 8, 93.	2.1	38

#	Article	IF	CITATIONS
244	Clinical application of proteomics approaches in vascular diseases. Proteomics - Clinical Applications, 2008, 2, 238-250.	0.8	5
245	Prostate stem cells and benign prostatic hyperplasia. Prostate, 2008, 68, 1025-1034.	1.2	83
246	Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFβ. Developmental Dynamics, 2008, 237, 366-376.	0.8	70
247	Induction and modulation of smooth muscle differentiation in <i>Xenopus</i> embryonic cells. Developmental Dynamics, 2008, 237, 3373-3386.	0.8	9
248	Generation and characterization of <i>Csrp1</i> enhancerâ€driven tissueâ€restricted Creâ€recombinase mice. Genesis, 2008, 46, 167-176.	0.8	10
249	Emodin inhibits TNFâ€Î±â€induced human aortic smoothâ€muscle cell proliferation via caspase―and mitochondrialâ€dependent apoptosis. Journal of Cellular Biochemistry, 2008, 105, 70-80.	1.2	51
250	Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. Journal of Cellular Physiology, 2008, 217, 789-799.	2.0	42
251	The expression of cross-linked elastin by rabbit blood vessel smooth muscle cells cultured in polyhydroxyalkanoate scaffolds. Biomaterials, 2008, 29, 4187-4194.	5.7	70
252	Differentiation of smooth muscle progenitor cells in peripheral blood and its application in tissue engineered blood vessels. Journal of Zhejiang University: Science B, 2008, 9, 923-930.	1.3	20
253	SMAD proteins control DROSHA-mediated microRNA maturation. Nature, 2008, 454, 56-61.	13.7	1,196
254	The contribution of protein kinase C and rho-kinase to the regulation of receptor-dependent contraction of arteries decreases with age independently of sympathetic innervation. Biophysics (Russian Federation), 2008, 53, 626-631.	0.2	2
255	FOXO-binding partners: it takes two to tango. Oncogene, 2008, 27, 2289-2299.	2.6	185
256	LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nature Genetics, 2008, 40, 455-459.	9.4	110
257	Enhanced proliferation of aortal smooth muscle cells treated by 1,25(OH) ₂ D ₃ <i>in vitro</i> coincides with impaired formation of elastic fibres. International Journal of Experimental Pathology, 2008, 89, 117-124.	0.6	13
258	Regulation of smooth muscle excitation and contraction. Neurogastroenterology and Motility, 2008, 20, 39-53.	1.6	248
259	Regulation of SRF/CArG-dependent gene transcription during chronic partial obstruction of murine small intestine. Neurogastroenterology and Motility, 2008, 20, 829-842.	1.6	32
260	Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis. BMC Immunology, 2008, 9, 43.	0.9	59
261	The FoxO transcription factors and metabolic regulation. FEBS Letters, 2008, 582, 54-67.	1.3	162

#	Article	IF	CITATIONS
262	Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases. Free Radical Biology and Medicine, 2008, 44, 1232-1245.	1.3	52
263	Nitrotyrosine promotes human aortic smooth muscle cell migration through oxidative stress and ERK1/2 activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1576-1584.	1.9	15
264	Cilostazol alleviates cerebral small-vessel pathology and white-matter lesions in stroke-prone spontaneously hypertensive rats. Brain Research, 2008, 1203, 170-176.	1.1	37
265	Bradykinin-induced expression of α-smooth muscle actin in human mesenchymal stem cells. Cellular Signalling, 2008, 20, 1882-1889.	1.7	26
266	Adenovirus-mediated intra-arterial delivery of cellular repressor of E1A-stimulated genes inhibits neointima formation in rabbits after balloon injury. Journal of Vascular Surgery, 2008, 48, 201-209.	0.6	28
267	Cancer-Derived Lysophosphatidic Acid Stimulates Differentiation of Human Mesenchymal Stem Cells to Myofibroblast-Like Cells. Stem Cells, 2008, 26, 789-797.	1.4	143
268	Complement activation in vascular remodeling and organ damage. Drug Discovery Today Disease Mechanisms, 2008, 5, e299-e306.	0.8	5
269	Current Perspectives in microRNAs (miRNA). , 2008, , .		3
271	Formation of smooth muscle α actin filaments in CD34+ bone marrow cells on arterial elastic laminae: Potential role of SH2 domain-containing protein tyrosine phosphatase-1. Matrix Biology, 2008, 27, 282-294.	1.5	5
272	Fluid Shear Stress Regulates the Expression of TGF-β1 and Its Signaling Molecules in Mouse Embryo Mesenchymal Progenitor Cells. Journal of Surgical Research, 2008, 150, 266-270.	0.8	29
273	CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid. Developmental Biology, 2008, 315, 331-354.	0.9	40
274	Pathway analysis of seven common diseases assessed by genome-wide association. Genomics, 2008, 92, 265-272.	1.3	324
275	TGF-β1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60c-src/EGFRY845 and Rho/ROCK signaling. Journal of Molecular and Cellular Cardiology, 2008, 44, 527-538.	0.9	89
276	Plasminogen activator inhibitor type 1 inhibits smooth muscle cell proliferation in pulmonary arterial hypertension. International Journal of Biochemistry and Cell Biology, 2008, 40, 1872-1882.	1.2	33
277	Angiotensin II-induced differentiation of adipose tissue-derived mesenchymal stem cells to smooth muscle-like cells. International Journal of Biochemistry and Cell Biology, 2008, 40, 2482-2491.	1.2	83
278	The early- and late stages in phenotypic modulation of vascular smooth muscle cells: Differential roles for lysophosphatidic acid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 571-581.	1.2	16
279	Hic-5, an adaptor protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Biochemical and Biophysical Research Communications, 2008, 376, 682-687.	1.0	17
280	Transcriptional regulation of the human CD97 promoter by Sp1/Sp3 in smooth muscle cells. Gene, 2008, 413, 67-75.	1.0	6

# 281	ARTICLE Long-Term Engraftment of Bone Marrow-Derived Cells in the Intimal Hyperplasia Lesion of Autologous Vein Grafts. American Journal of Pathology, 2008, 172, 839-848.	IF 1.9	CITATIONS 26
282	Differentiation of Bone Marrow Mesenchymal Stem Cells into the Smooth Muscle Lineage by Blocking ERK/MAPK Signaling Pathway. Stem Cells and Development, 2008, 17, 897-908.	1.1	91
283	Role of Smooth Muscle Cells in the Initiation and Early Progression of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 812-819.	1.1	706
284	Conditional Deletion of Krulˆppel-Like Factor 4 Delays Downregulation of Smooth Muscle Cell Differentiation Markers but Accelerates Neointimal Formation Following Vascular Injury. Circulation Research, 2008, 102, 1548-1557.	2.0	211
285	Angiotensin II induction of PDGF-C expression is mediated by AT1 receptor-dependent Egr-1 transactivation. Nucleic Acids Research, 2008, 36, 1941-1951.	6.5	20
286	CaMKII-δ Isoform Regulation of Neointima Formation After Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 441-447.	1.1	50
287	Integrin β1 Subunit Controls Mural Cell Adhesion, Spreading, and Blood Vessel Wall Stability. Circulation Research, 2008, 102, 562-570.	2.0	103
288	Targeting Connexin 43 Prevents Platelet-Derived Growth Factor-BB–Induced Phenotypic Change in Porcine Coronary Artery Smooth Muscle Cells. Circulation Research, 2008, 102, 653-660.	2.0	56
289	Differentially Expressed Soluble Proteins in Aortic Cells from Atherosclerosis-Susceptible and Resistant Pigeons. Poultry Science, 2008, 87, 1328-1334.	1.5	10
290	Antisense to Transforming Growth Factor-β ₁ Facilitates the Apoptosis of Macrophages in Rat Vein Grafts. Journal of Vascular Research, 2008, 45, 365-374.	0.6	5
291	Effects of serum deprivation on the mechanical properties of adherent vascular smooth muscle cells. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2008, 222, 761-772.	1.0	16
292	Sphingosine-1-Phosphate Receptor Subtypes Differentially Regulate Smooth Muscle Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1454-1461.	1.1	86
293	Myocardin Is Sufficient for a Smooth Muscle-Like Contractile Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1505-1510.	1.1	112
294	Hairy-Related Transcription Factors Inhibit Notch-Induced Smooth Muscle α-Actin Expression by Interfering With Notch Intracellular Domain/CBF-1 Complex Interaction With the CBF-1–Binding Site. Circulation Research, 2008, 102, 661-668.	2.0	82
295	A Rho Kinase/Myocardin-Related Transcription Factor-A–Dependent Mechanism Underlies the Sphingosylphosphorylcholine-Induced Differentiation of Mesenchymal Stem Cells Into Contractile Smooth Muscle Cells. Circulation Research, 2008, 103, 635-642.	2.0	67
296	Interactions, Functions, and Independence of Plasma Membrane STIM1 and TRPC1 in Vascular Smooth Muscle Cells. Circulation Research, 2008, 103, e97-104.	2.0	82
297	Directing Myogenic Mesenchymal Stem Cell Differentiation. Circulation Research, 2008, 103, 560-561.	2.0	20
298	Time Courses of Growth and Remodeling of Porcine Aortic Media During Hypertension: A Quantitative Immunohistochemical Examination. Journal of Histochemistry and Cytochemistry, 2008, 56, 359-370.	1.3	63

#	Article	IF	CITATIONS
299	Integrin-linked kinase regulates smooth muscle differentiation marker gene expression in airway tissue. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L988-L997.	1.3	31
300	MCAT Elements and the TEF-1 Family of Transcription Factors in Muscle Development and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 8-17.	1.1	84
301	Smooth Muscle Expression of Lipoma Preferred Partner Is Mediated by an Alternative Intronic Promoter That Is Regulated by Serum Response Factor/Myocardin. Circulation Research, 2008, 103, 61-69.	2.0	17
302	STIM1: a new therapeutic target in occlusive vascular disease?. Cardiovascular Research, 2008, 81, 627-628.	1.8	4
303	Engineering vascularized tissues using natural and synthetic small molecules. Organogenesis, 2008, 4, 215-227.	0.4	24
304	A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1 ⁺ smooth muscle progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9349-9354.	3.3	262
305	Intravascular ultrasound mediated delivery of DNA via microbubble carriers to an injured porcine artery in vivo. , 2008, , .		8
306	Redox Signaling, Vascular Function, and Hypertension. Antioxidants and Redox Signaling, 2008, 10, 1045-1059.	2.5	219
307	Naturally Extended CT · AG Repeats Increase H-DNA Structures and Promoter Activity in the Smooth Muscle Myosin Light Chain Kinase Gene. Molecular and Cellular Biology, 2008, 28, 863-872.	1.1	21
308	Deck of CArGs. Circulation Research, 2008, 103, 13-15.	2.0	7
309	Transforming Growth Factor-β (TGF-β1) Down-regulates Notch3 in Fibroblasts to Promote Smooth Muscle Gene Expression. Journal of Biological Chemistry, 2008, 283, 1324-1333.	1.6	97
310	Transforming Growth Factor β Up-regulates Cysteine-rich Protein 2 in Vascular Smooth Muscle Cells via Activating Transcription Factor 2. Journal of Biological Chemistry, 2008, 283, 15003-15014.	1.6	28
311	Requirement of an Intermediate Gene Expression for Biphasic ERK1/2 Activation in Thrombin-stimulated Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2008, 283, 25871-25878.	1.6	8
313	Ca ²⁺ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. American Journal of Physiology - Cell Physiology, 2008, 295, C779-C790.	2.1	181
314	Hsc70 regulates cell surface ASIC2 expression and vascular smooth muscle cell migration. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2022-H2030.	1.5	31
315	Mechanisms of Arterial Remodeling in Hypertension. Hypertension, 2008, 52, 195-200.	1.3	256
316	Kruppel-like Factor 4 is Required for the Expression of Vascular Smooth Muscle Cell Differentiation Marker Genes Induced by All-Trans Retinoic Acid. Journal of Biochemistry, 2008, 144, 313-321.	0.9	59
317	Contractile smooth muscle cells derived from hair-follicle stem cells. Cardiovascular Research, 2008, 79, 24-33.	1.8	79

#	Article	IF	CITATIONS
318	Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-β1. American Journal of Physiology - Cell Physiology, 2008, 294, C1332-C1341.	2.1	43
319	Preventing Stenosis by Local Inhibition of K _{Ca} 3.1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1036-1038.	1.1	1
320	A Vascular Bone Collector. Circulation Research, 2008, 102, 507-509.	2.0	8
321	MicroRNA in Muscle Development and Function. , 2008, , 129-144.		0
322	Local Delivery of the K _{Ca} 3.1 Blocker, TRAM-34, Prevents Acute Angioplasty-Induced Coronary Smooth Muscle Phenotypic Modulation and Limits Stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1084-1089.	1.1	98
323	Pitx2 is functionally important in the early stages of vascular smooth muscle cell differentiation. Journal of Cell Biology, 2008, 181, 461-473.	2.3	51
324	FRNK Expression Promotes Smooth Muscle Cell Maturation During Vascular Development and After Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2115-2122.	1.1	29
325	Runx2 Represses Myocardin-Mediated Differentiation and Facilitates Osteogenic Conversion of Vascular Smooth Muscle Cells. Molecular and Cellular Biology, 2008, 28, 1147-1160.	1.1	66
326	Circulating progenitor cells contribute to neointimal formation in nonirradiated chimeric mice. FASEB Journal, 2008, 22, 428-436.	0.2	58
327	Myocardin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1416-1417.	1.1	19
328	Intracellular Localization of Cthrc1 Characterizes Differentiated Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1332-1338.	1.1	17
329	Muscling Through the microRNA World. Experimental Biology and Medicine, 2008, 233, 131-138.	1.1	120
330	Origin of Cells That Contribute to Neointima Growth. Circulation, 2008, 117, 3060-3061.	1.6	8
331	Lung Vascular Cell Heterogeneity: Endothelium, Smooth Muscle, and Fibroblasts. Proceedings of the American Thoracic Society, 2008, 5, 783-791.	3.5	94
332	Targeted Deletion of PTEN in Smooth Muscle Cells Results in Vascular Remodeling and Recruitment of Progenitor Cells Through Induction of Stromal Cell–Derived Factor-1α. Circulation Research, 2008, 102, 1036-1045.	2.0	99
333	"FRNKly, Smooth Muscle, I Don't Give a CArG!â€: Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2091-2093.	1.1	0
334	Chapter 9 Development of Coronary Vessels. Methods in Enzymology, 2008, 445, 209-228.	0.4	8
335	Phenotype and Functional Plasticity of Airway Smooth Muscle: Role of Caveolae and Caveolins. Proceedings of the American Thoracic Society, 2008, 5, 80-88.	3.5	84

#	Article	IF	CITATIONS
336	microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes and Development, 2008, 22, 3242-3254.	2.7	703
337	Regenerative repair after endoluminal injury in mice with specific antagonism of protease activated receptors on CD34+ vascular progenitors. Blood, 2008, 111, 4155-4164.	0.6	19
338	Intimal Hyperplasia in Murine Models. Current Drug Targets, 2008, 9, 251-260.	1.0	69
339	Contribution of circulating vascular progenitors in lesion formation and vascular healing: lessons from animal models. Current Opinion in Lipidology, 2008, 19, 498-504.	1.2	20
341	Dynamics of Cytoskeletal and Contractile Protein Organization: An Emerging Paradigm for Airway Smooth Muscle Contraction. , 0, , 31-51.		2
342	Proteomic Biomarkers of Atherosclerosis. Biomarker Insights, 2008, 3, BMI.S488.	1.0	24
343	Role of E2F1-Cyclin E1-Cyclin E2 Circuit in Human Coronary Smooth Muscle Cell Proliferation and Therapeutic Potential of Its Downregulation by siRNAs. Molecular Medicine, 2009, 15, 297-306.	1.9	39
344	Intravascular ultrasound detection and delivery of molecularly targeted microbubbles for gene delivery. , 2009, , .		0
345	Poisson inverse gradient approach to vascular myocyte detection and segmentation. , 2009, , .		0
346	PIAS1 Mediates TGFβ-Induced SM α-Actin Gene Expression Through Inhibition of KLF4 Function-Expression by Protein Sumoylation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 99-106.	1.1	48
347	The Actin-associated Protein Palladin Is Required for Development of Normal Contractile Properties of Smooth Muscle Cells Derived from Embryoid Bodies. Journal of Biological Chemistry, 2009, 284, 2121-2130.	1.6	26
348	The Smooth Muscle Cell-restricted KCNMB1 Ion Channel Subunit Is a Direct Transcriptional Target of Serum Response Factor and Myocardin. Journal of Biological Chemistry, 2009, 284, 33671-33682.	1.6	55
349	Regulation of Proliferation and Membrane Potential by Chloride Currents in Rat Pulmonary Artery Smooth Muscle Cells. Hypertension, 2009, 54, 286-293.	1.3	28
350	The Four-and-a-half LIM Domain Protein 2 Regulates Vascular Smooth Muscle Phenotype and Vascular Tone. Journal of Biological Chemistry, 2009, 284, 13202-13212.	1.6	28
351	Mechanical Regulation of the Proangiogenic Factor CCN1/CYR61 Gene Requires the Combined Activities of MRTF-A and CREB-binding Protein Histone Acetyltransferase. Journal of Biological Chemistry, 2009, 284, 23125-23136.	1.6	101
352	Myocardin-dependent Activation of the CArG Box-rich Smooth Muscle Î ³ -Actin Gene. Journal of Biological Chemistry, 2009, 284, 32582-32590.	1.6	33
353	Sphingosine 1-Phosphate. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1439-1443.	1.1	51
354	Endothelial and Smooth Muscle-derived Neuropilin-like Protein Regulates Platelet-derived Growth Factor Signaling in Human Vascular Smooth Muscle Cells by Modulating Receptor Ubiquitination. Journal of Biological Chemistry, 2009, 284, 29376-29382.	1.6	21

#	Article	IF	CITATIONS
355	C Terminus of Hsc70-interacting Protein Promotes Smooth Muscle Cell Proliferation and Survival through Ubiquitin-mediated Degradation of FoxO1. Journal of Biological Chemistry, 2009, 284, 20090-20098.	1.6	66
356	Biomechanical Regulation of Endothelium-dependent Events Critical for Adaptive Remodeling. Journal of Biological Chemistry, 2009, 284, 8412-8420.	1.6	44
357	Mechanisms behind the Synergistic Effect of Sirolimus and Imatinib in Preventing Restenosis after Intimal Injury. Journal of Vascular Research, 2009, 46, 240-252.	0.6	6
358	Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. Journal of Clinical Investigation, 2009, 119, 2634-2647.	3.9	583
359	"Obese―Smooth Muscle Cells Fail to Assemble Collagen Fibrils. Circulation Research, 2009, 104, 826-828.	2.0	2
360	Oxidized Phospholipids Induce Type VIII Collagen Expression and Vascular Smooth Muscle Cell Migration. Circulation Research, 2009, 104, 609-618.	2.0	108
361	NOTCH3 Expression Is Induced in Mural Cells Through an Autoregulatory Loop That Requires Endothelial-Expressed JAGGED1. Circulation Research, 2009, 104, 466-475.	2.0	246
362	Density-Dependent Shift of Transforming Growth Factor-Beta-1 from Inhibition to Stimulation of Vascular Smooth Muscle Cell Growth Is Based on Unconventional Regulation of Proliferation, Apoptosis and Contact Inhibition. Journal of Vascular Research, 2009, 46, 85-97.	0.6	18
363	Rhein Inhibits TNF-α-Induced Human Aortic Smooth Muscle Cell Proliferation via Mitochondrial-Dependent Apoptosis. Journal of Vascular Research, 2009, 46, 375-386.	0.6	28
364	<i>N</i> -4-Tert-Butyl Benzyl Haloperidol Chloride Suppresses Ca ²⁺ -dependent Egr-1 Expression and Subsequently Inhibits Vascular Smooth Muscle Cell Proliferation Induced by Angiotensin II. Cellular Physiology and Biochemistry, 2009. 23. 295-304.	1.1	8
365	Analysis of In Situ and Ex Vivo Vascular Endothelial Growth Factor Receptor Expression During Experimental Aortic Aneurysm Progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1452-1457.	1.1	69
366	Hepatocyte gp130 Deficiency Reduces Vascular Remodeling After Carotid Artery Ligation. Hypertension, 2009, 54, 1035-1042.	1.3	5
367	Vascular Smooth Muscle Cells as a Valvular Interstitial Cell Surrogate in Heart Valve Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 3889-3897.	1.6	14
368	Sulfasalazine induces haem oxygenase-1 via ROS-dependent Nrf2 signalling, leading to control of neointimal hyperplasia. Cardiovascular Research, 2009, 82, 550-560.	1.8	46
369	Molecular Aspects of Intestinal Radiation-Induced Fibrosis. Current Molecular Medicine, 2009, 9, 273-280.	0.6	46
370	Strong Smooth Muscle Differentiation Is Dependent on Myocardin Gene Amplification in Most Human Retroperitoneal Leiomyosarcomas. Cancer Research, 2009, 69, 2269-2278.	0.4	63
371	Expression and Role of the Calcium-Sensing Receptor in the Blood Vessel Wall. Current Pharmaceutical Biotechnology, 2009, 10, 282-288.	0.9	16
372	Translocon closure to Ca ²⁺ leak in proliferating vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H910-H916.	1.5	23

#	Article	IF	CITATIONS
373	Negligible contribution of coronary adventitial fibroblasts to neointimal formation following balloon angioplasty in swine. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1532-H1539.	1.5	11
374	PKA-Dependent Phosphorylation of Serum Response Factor Inhibits Smooth Muscle–Specific Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 2153-2160.	1.1	19
375	Protein Kinase A-regulated Assembly of a MEF2·HDAC4 Repressor Complex Controls c-Jun Expression in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2009, 284, 19027-19042.	1.6	61
376	PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H442-H452.	1.5	76
377	MT1-MMP promotes vascular smooth muscle dedifferentiation through LRP1 processing. Journal of Cell Science, 2009, 122, 126-135.	1.2	48
378	Inherent differences in morphology, proliferation, and migration in saphenous vein smooth muscle cells cultured from nondiabetic and Type 2 diabetic patients. American Journal of Physiology - Cell Physiology, 2009, 297, C1307-C1317.	2.1	50
379	Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotypic modulation of smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1027-H1037.	1.5	133
380	Developmental changes in Ca2+ homeostasis and contractility in gallbladder smooth muscle. American Journal of Physiology - Cell Physiology, 2009, 296, C783-C791.	2.1	15
381	Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H ₂ O ₂ . American Journal of Physiology - Cell Physiology, 2009, 296, C711-C723.	2.1	165
382	PGC-1α attenuates neointimal formation via inhibition of vascular smooth muscle cell migration in the injured rat carotid artery. American Journal of Physiology - Cell Physiology, 2009, 297, C645-C653.	2.1	32
383	CHIP Represses Myocardin-Induced Smooth Muscle Cell Differentiation via Ubiquitin-Mediated Proteasomal Degradation. Molecular and Cellular Biology, 2009, 29, 2398-2408.	1.1	66
384	Established neointimal hyperplasia in vein grafts expands via TGF-β-mediated progressive fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1200-H1207.	1.5	52
385	Transforming growth factor-β signaling in hypertensive remodeling of porcine aorta. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H2044-H2053.	1.5	18
386	Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: role of cGMP-dependent protein kinase and myocardin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L780-L789.	1.3	43
387	The SWI/SNF Chromatin Remodeling Complex Regulates Myocardin-Induced Smooth Muscle–Specific Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 921-928.	1.1	84
388	Shear Stress Induces Synthetic-to-Contractile Phenotypic Modulation in Smooth Muscle Cells via Peroxisome Proliferator-Activated Receptor α/δActivations by Prostacyclin Released by Sheared Endothelial Cells. Circulation Research, 2009, 105, 471-480.	2.0	86
389	Thrombin Stimulates Smooth Muscle Cell Differentiation From Peripheral Blood Mononuclear Cells via Protease-Activated Receptor-1, RhoA, and Myocardin. Circulation Research, 2009, 105, 214-218.	2.0	54
390	Cytoglobin Is Expressed in the Vasculature and Regulates Cell Respiration and Proliferation via Nitric Oxide Dioxygenation. Journal of Biological Chemistry, 2009, 284, 8539-8547.	1.6	99

#	Article	IF	CITATIONS
391	The anti-inflammatory agent bindarit inhibits neointima formation in both rats and hyperlipidaemic mice. Cardiovascular Research, 2009, 84, 485-493.	1.8	49
392	Functional Characterization and Transcriptome Analysis of Embryonic Stem Cell–Derived Contractile Smooth Muscle Cells. Hypertension, 2009, 53, 196-204.	1.3	28
393	ATP-Binding Cassette Transporter A1 Expression and Apolipoprotein A-I Binding Are Impaired in Intima-Type Arterial Smooth Muscle Cells. Circulation, 2009, 119, 3223-3231.	1.6	88
394	Sphingosine-1-Phosphate Receptor-2 Regulates Expression of Smooth Muscle Alpha-Actin After Arterial Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1644-1650.	1.1	33
395	Molecular Mechanisms of Collagen Isotype-Specific Modulation of Smooth Muscle Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 225-231.	1.1	94
396	MicroRNA-145 in vascular smooth muscle cell biology: A new therapeutic target for vascular disease. Cell Cycle, 2009, 8, 3469-3473.	1.3	88
397	mTOR Regulates Vascular Smooth Muscle Cell Differentiation From Human Bone Marrow–Derived Mesenchymal Progenitors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 232-238.	1.1	43
398	Functional Characterization of a Putative Serine Carboxypeptidase in Vascular Smooth Muscle Cells. Circulation Research, 2009, 105, 271-278.	2.0	13
399	MicroRNA-modulated targeting of vascular smooth muscle cells. Journal of Clinical Investigation, 2009, 119, 2526-2528.	3.9	35
400	Activation of NAD(P)H:Quinone Oxidoreductase 1 Prevents Arterial Restenosis by Suppressing Vascular Smooth Muscle Cell Proliferation. Circulation Research, 2009, 104, 842-850.	2.0	73
401	MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modulator, Controls Vascular Neointimal Lesion Formation. Circulation Research, 2009, 105, 158-166.	2.0	613
402	Smooth muscle phenotypic modulation is an early event in aortic aneurysms. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 1392-1399.	0.4	257
403	Cell and molecular mechanisms of insulinâ€induced angiogenesis. Journal of Cellular and Molecular Medicine, 2009, 13, 4492-4504.	1.6	83
404	Interstitial cells from rat middle cerebral artery belong to smooth muscle cell type. Journal of Cellular and Molecular Medicine, 2009, 13, 4532-4539.	1.6	18
405	Critical roles for thrombin in acute and chronic inflammation. Journal of Thrombosis and Haemostasis, 2009, 7, 122-126.	1.9	91
406	Histopathology of Clinical Coronary Restenosis in Drug-Eluting Versus Bare Metal Stents. American Journal of Cardiology, 2009, 104, 1660-1667.	0.7	54
407	Synthetic retinoid Am80 inhibits interaction of KLF5 with RARα through inducing KLF5 dephosphorylation mediated by the PI3K/Akt signaling in vascular smooth muscle cells. FEBS Letters, 2009, 583, 1231-1236.	1.3	39
408	Ankrd17, an ubiquitously expressed ankyrin factor, is essential for the vascular integrity during embryogenesis. FEBS Letters, 2009, 583, 2765-2771.	1.3	23

#	Article	IF	CITATIONS
409	Remodeling of aortic smooth muscle during avian embryonic development. Developmental Dynamics, 2009, 238, 624-631.	0.8	37
410	Efficient temporallyâ€controlled targeted mutagenesis in smooth muscle cells of the adult mouse. Genesis, 2009, 47, 14-18.	0.8	169
411	Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissueâ€engineered smallâ€diameter blood vessels. Journal of Biomedical Materials Research - Part A, 2009, 88A, 1104-1121.	2.1	120
412	Expression of CPI-17 in smooth muscle during embryonic development and in neointimal lesion formation. Histochemistry and Cell Biology, 2009, 132, 191-198.	0.8	13
413	Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflugers Archiv European Journal of Physiology, 2009, 457, 673-685.	1.3	78
415	Fibronectins in vascular morphogenesis. Angiogenesis, 2009, 12, 165-175.	3.7	222
416	Mechanical properties of the extracellular matrix alter expression of smooth muscle protein LPP and its partner palladin; relationship to early atherosclerosis and vascular injury. Journal of Muscle Research and Cell Motility, 2009, 30, 41-55.	0.9	24
417	Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. Stem Cell Reviews and Reports, 2009, 5, 231-246.	5.6	388
418	Adipose Derived Stem Cells and Smooth Muscle Cells: Implications for Regenerative Medicine. Stem Cell Reviews and Reports, 2009, 5, 256-265.	5.6	45
419	Prostacyclin receptor/thromboxane receptor interactions and cellular responses in human atherothrombotic disease. Current Atherosclerosis Reports, 2009, 11, 227-235.	2.0	18
420	Syndromic and nonâ€syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. Journal of Pathology, 2009, 218, 131-142.	2.1	162
421	Regulation of smooth muscle-specific gene expression by cGMP-dependent protein kinase. BMC Pharmacology, 2009, 9, P79.	0.4	0
422	miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 2009, 460, 705-710.	13.7	1,412
423	Calcineurin-NFAT signaling is involved in phenylephrine-induced vascular smooth muscle cell proliferation. Acta Pharmacologica Sinica, 2009, 30, 537-544.	2.8	26
424	The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death and Differentiation, 2009, 16, 1590-1598.	5.0	504
425	Notch3 signaling promotes the development of pulmonary arterial hypertension. Nature Medicine, 2009, 15, 1289-1297.	15.2	303
426	The outflow tract of the heart in fishes: anatomy, genes and evolution. Journal of Fish Biology, 2009, 74, 983-1036.	0.7	64
427	The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials, 2009, 30, 1268-1272.	5.7	237

#	Article	IF	CITATIONS
428	Smooth muscle cell differentiation from human bone marrow: Variations in cell type specific markers and <i>Id</i> gene expression in a new model ofÂcellÂculture. Cell Biology International, 2009, 33, 621-631.	1.4	8
429	Thromboxane A2 Induces Differentiation of Human Mesenchymal Stem Cells to Smooth Muscle-Like Cells. Stem Cells, 2009, 27, 191-199.	1.4	55
430	Induction of MicroRNA-221 by Platelet-derived Growth Factor Signaling Is Critical for Modulation of Vascular Smooth Muscle Phenotype. Journal of Biological Chemistry, 2009, 284, 3728-3738.	1.6	292
431	Ultrastructural Observations on Inflammatory Angiogenesis in Gastric Carcinomas with Massive Neutrophil Infiltration. Ultrastructural Pathology, 2009, 33, 1-5.	0.4	5
432	Smooth Muscle Cell Phenotype Modulation and Contraction on Native and Cross-Linked Polyelectrolyte Multilayers. Biomacromolecules, 2009, 10, 3062-3068.	2.6	53
433	Presence of α-smooth muscle actin-positive endothelial cells in the luminal surface of adult aorta. Biochemical and Biophysical Research Communications, 2009, 380, 620-626.	1.0	27
434	Notch signaling regulates the differentiation of bone marrow-derived cells into smooth muscle-like cells during arterial lesion formation. Biochemical and Biophysical Research Communications, 2009, 381, 654-659.	1.0	29
435	Cell–cell bond modulates vascular smooth muscle cell responsiveness to Angiotensin II. Biochemical and Biophysical Research Communications, 2009, 388, 523-528.	1.0	1
436	Smooth(ing) Muscle Differentiation by MicroRNAs. Cell Stem Cell, 2009, 5, 130-132.	5.2	9
437	Transcriptional regulation of SM22α by Wnt3a: Convergence with TGFβ1/Smad signaling at a novel regulatory element. Journal of Molecular and Cellular Cardiology, 2009, 46, 621-635.	0.9	41
438	Growth inhibition and differentiation of cultured smooth muscle cells depend on cellular crossbridges across the tubular lumen of type I collagen matrix honeycombs. Microvascular Research, 2009, 77, 143-149.	1.1	6
439	Characterization of vascular mural cells during zebrafish development. Mechanisms of Development, 2009, 126, 638-649.	1.7	111
440	Cardio-Respiratory Control in Vertebrates. , 2009, , .		12
441	Chapter 6 The Human Prostacyclin Receptor. Progress in Molecular Biology and Translational Science, 2009, 89, 133-166.	0.9	4
442	Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respiratory Research, 2009, 10, 95.	1.4	174
443	Chapter 7 Cell Protective Functions of Secretory Clusterin (sCLU). Advances in Cancer Research, 2009, 104, 115-138.	1.9	21
444	Vascularization Strategies for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2009, 15, 353-370.	2.5	765
446	cGMP Regulated Protein Kinases (cGK). Handbook of Experimental Pharmacology, 2009, , 137-162.	0.9	162

#	Article	IF	CITATIONS
447	Stem Cells in Regenerative Medicine. Methods in Molecular Biology, 2009, , .	0.4	8
448	MicroRNA and vascular smooth muscle cell phenotype: new therapy for atherosclerosis?. Genome Medicine, 2009, 1, 85.	3.6	28
449	2 PDE4 Inhibitors – A Review of the Current Field. Progress in Medicinal Chemistry, 2009, 47, 37-74.	4.1	54
450	Signaling Pathways Regulating Vascular Smooth Muscle Cell Differentiation. Vascular, 2009, 17, 15-20.	0.4	64
451	Vascular Extracellular Matrix and Arterial Mechanics. Physiological Reviews, 2009, 89, 957-989.	13.1	782
452	Cellular and molecular mechanisms of thoracic aortic aneurysms. Nature Reviews Cardiology, 2009, 6, 771-786.	6.1	264
453	Epstein-Barr Virus-Induced Gene-3 Is Expressed in Human Atheroma Plaques. American Journal of Pathology, 2009, 175, 440-447.	1.9	61
454	Paradoxical Effects of PDCF-BB Overexpression in Endothelial Cells on Engineered Blood Vessels In Vivo. American Journal of Pathology, 2009, 175, 294-302.	1.9	43
455	Regulation of Smooth Muscle Contraction by Small GTPases. Physiology, 2009, 24, 342-356.	1.6	123
456	A Comparison of Murine Smooth Muscle Cells Generated from Embryonic versus Induced Pluripotent Stem Cells. Stem Cells and Development, 2009, 18, 741-748.	1.1	76
457	Role of Vascular Progenitor Cells in Cardiovascular Disease. Current Pharmaceutical Design, 2009, 15, 2760-2768.	0.9	8
458	Differential gene expression in a coculture model of angiogenesis reveals modulation of select pathways and a role for Notch signaling. Physiological Genomics, 2009, 36, 69-78.	1.0	45
459	An Inhibitory Effect of Chrysoeriol on Platelet-Derived Growth Factor (PDGF)-Induced Proliferation and PDGF Receptor Signaling in Human Aortic Smooth Muscle Cells. Journal of Pharmacological Sciences, 2009, 110, 105-110.	1.1	24
460	Regenerative pharmacology and bladder regeneration. , 2009, , 322-333.		1
461	Smooth Muscle Progenitor Cells: Friend or Foe in Vascular Disease?. Current Stem Cell Research and Therapy, 2009, 4, 131-140.	0.6	28
462	The Intermediate-Conductance Ca2+-Activated K+ Channel (KCa3.1) in Vascular Disease. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2009, 7, 1-11.	0.4	45
463	Cerebrovascular Smooth Muscle Actin Is Increased in Nondemented Subjects With Frequent Senile Plaques at Autopsy: Implications for the Pathogenesis of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2009, 68, 417-424.	0.9	5
464	MicroRNAs in Arterial Remodelling, Inflammation and Atherosclerosis. Current Drug Targets, 2010, 11, 950-956.	1.0	76

ARTICLE IF CITATIONS CARS and SHG microscopy of artificial bioengineered tissues., 2010,,. 1 465 Use of Myocardin in the Classification of Mesenchymal Tumors of the Uterus. International Journal of Gynecological Pathology, 2010, 29, 55-62. Cancer Epigenetics: From Disruption of Differentiation Programs to the Emergence of Cancer Stem 467 2.0 22 Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 251-258. CTRP3/cartducin is induced by transforming growth factor \hat{a} ² and promotes vascular smooth muscle 468 cell proliferation. Cell Biology International, 2010, 34, 261-266. Generation and Biological Activities of Oxidized Phospholipids. Antioxidants and Redox Signaling, 469 2.5 461 2010, 12, 1009-1059. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived 1.3 mesenchymal stem cells. Journal of Zhejiang University: Science B, 2010, 11, 489-496. Differentiation of Adipose-Derived Stem Cells into Contractile Smooth Muscle Cells Induced by 471 Transforming Growth Factor-Î²1 and Bone Morphogenetic Protein-4. Tissue Engineering - Part A, 2010, 16, 1.6 105 1201-1213. Propylthiouracil, independent of its antithyroid effect, promotes vascular smooth muscle cells 2.5 differentiation via PTEN induction. Basic Research in Cardiology, 2010, 105, 19-28. Smooth muscle cell differentiation in the processus vaginalis of children with hernia or hydrocele. 473 0.9 10 Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2010, 14, 187-191. Tissue reaction to three different types of tissue glues in an experimental aorta dissection model: a 474 0.8 39 quantitative approach. Histochemistry and Cell Biology, 2010, 133, 241-259. Role of Specific MicroRNAs in Regulation of Vascular Smooth Muscle Cell Differentiation and the 475 1.1 54 Response to Injury. Journal of Cardiovascular Translational Research, 2010, 3, 246-250. Endogenous transforming growth factor (TGF) beta1 promotes differentiation of smooth muscle cells from embryonic stem cells: stable plasmid-based siRNA silencing of TGF beta1 gene expression. 0.9 Journal of Physiological Sciences, 2010, 60, 35-41. Homocysteine modulates the proteolytic potential of human arterial smooth muscle cells through a 477 1.4 36 reactive oxygen species dependant mechanism. Molecular and Cellular Biochemistry, 2010, 335, 203-210. Phenotypic modulation of cultured vascular smooth muscle cells: a functional analysis focusing on MLC and ERK1/2 phosphorylation. Molecular and Cellular Biochemistry, 2010, 341, 279-289. 1.4 The role of lysophosphatidic acid receptors in phenotypic modulation of vascular smooth muscle 479 1.0 13 cells. Molecular Biology Reports, 2010, 37, 2675-2686. Cellular and Molecular Regulation of Spiral Artery Remodelling: Lessons from the Cardiovascular 480 160 Field. Placenta, 2010, 31, 465-474. A gel-free approach in vascular smooth muscle cell proteome: perspectives for a better insight into 481 0.7 10 activation. Proteome Science, 2010, 8, 15. Proliferation of human primary vascular smooth muscle cells depends on serum response factor. European Journal of Cell Biology, 2010, 89, 216-224.

#	Article	IF	CITATIONS
483	Pathogenesis of giant cell arteritis: More than just an inflammatory condition?. Autoimmunity Reviews, 2010, 9, 635-645.	2.5	110
484	Progenitor cell-derived smooth muscle cells in vascular disease. Biochemical Pharmacology, 2010, 79, 1706-1713.	2.0	60
485	Store-operated Ca2+ entry is not essential for PDGF-BB induced phenotype modulation in rat aortic smooth muscle. Cell Calcium, 2010, 48, 10-18.	1.1	5
486	Circulating smooth muscle progenitor cells in atherosclerosis and plaque rupture: Current perspective and methods of analysis. Vascular Pharmacology, 2010, 52, 11-20.	1.0	31
487	Disruption of actin cytoskeleton mediates loss of tensile stress induced early phenotypic modulation of vascular smooth muscle cells in organ culture. Experimental and Molecular Pathology, 2010, 88, 52-57.	0.9	19
488	Contribution of myocardin in the hypoxia-induced phenotypic switching of rat pulmonary arterial smooth muscle cells. Experimental and Molecular Pathology, 2010, 89, 301-306.	0.9	29
489	Sex Steroid Receptors in Male Human Bladder: Expression and Biological Function. Journal of Sexual Medicine, 2010, 7, 2698-2713.	0.3	66
490	Role of Krüppelâ€like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells. IUBMB Life, 2010, 62, 132-139.	1.5	45
492	Selfâ€Assembly of Rodlike Bioâ€nanoparticles in Capillary Tubes. Angewandte Chemie - International Edition, 2010, 49, 868-872.	7.2	97
493	A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 2010, 31, 1158-1170.	5.7	221
494	Engineering surfaces for site-specific vascular differentiation of mouse embryonic stem cells. Acta Biomaterialia, 2010, 6, 1904-1916.	4.1	26
495	The proliferation and differentiation of placental-derived multipotent cells into smooth muscle cells on fibrillar collagen. Biomaterials, 2010, 31, 4367-4375.	5.7	23
496	Surface biocompatible modification of polypropylene by entrapment of polypropylene-block-poly(vinylpyrrolidone). Colloids and Surfaces B: Biointerfaces, 2010, 80, 200-205.	2.5	13
497	Phylogeny informs ontogeny: a proposed common theme in the arterial pole of the vertebrate heart. Evolution & Development, 2010, 12, 552-567.	1.1	33
498	Ca ²⁺ signalling by P2Y receptors in cultured rat aortic smooth muscle cells. British Journal of Pharmacology, 2010, 160, 1953-1962.	2.7	25
499	Tuning in to the â€~right' calcium channel regulation in experimental models of diabetes. British Journal of Pharmacology, 2010, 161, 1455-1457.	2.7	2
500	Oxidized low density lipoproteinâ€induced transdifferentiation of bone marrowâ€derived smooth muscleâ€iike cells into foamâ€iike cells <i>in vitro</i> . International Journal of Experimental Pathology, 2010, 91, 24-33.	0.6	26
501	Molecular basis for antagonism between PDGF and the TGFÎ ² family of signalling pathways by control of miR-24 expression. EMBO Journal, 2010, 29, 559-573.	3.5	186

#	Article	IF	CITATIONS
502	Role of serum response factor in the pathogenesis of disease. Laboratory Investigation, 2010, 90, 1274-1284.	1.7	113
503	Enhanced survival of vascular smooth muscle cells accounts for heightened elastin deposition in arteries of neonatal spontaneously hypertensive rats. Experimental Physiology, 2010, 95, 550-560.	0.9	12
504	Stress and the epigenetic landscape: a link to the pathobiology of human diseases?. Nature Reviews Genetics, 2010, 11, 806-812.	7.7	106
505	Linking actin dynamics and gene transcription to drive cellular motile functions. Nature Reviews Molecular Cell Biology, 2010, 11, 353-365.	16.1	829
506	Targeted Gene Transfection from Microbubbles into Vascular Smooth Muscle Cells Using Focused, Ultrasound-Mediated Delivery. Ultrasound in Medicine and Biology, 2010, 36, 1470-1480.	0.7	71
507	Trophoblast–arterial interactions in vitro. , 0, , 140-148.		0
508	The mechanism of stem cell differentiation into smooth muscle cells. Thrombosis and Haemostasis, 2010, 104, 440-448.	1.8	30
509	TRPC channels in smooth muscle cells. Frontiers in Bioscience - Landmark, 2010, 15, 1023.	3.0	75
511	The vessel wall: A forgotten player in post thrombotic syndrome. Thrombosis and Haemostasis, 2010, 104, 681-692.	1.8	48
512	Shear Stress Modulation of Smooth Muscle Cell Marker Genes in 2-D and 3-D Depends on Mechanotransduction by Heparan Sulfate Proteoglycans and ERK1/2. PLoS ONE, 2010, 5, e12196.	1.1	68
513	Chromatin Remodeling Pathways in Smooth Muscle Cell Differentiation, and Evidence for an Integral Role for p300. PLoS ONE, 2010, 5, e14301.	1.1	26
514	Endothelial vascular smooth muscle cell coculture assay for high throughput screening assays to identify antiangiogenic and other therapeutic molecules. International Journal of High Throughput Screening, 2010, 2010, 171.	0.5	55
515	Signalling molecules involved in mouse bladder smooth muscle cellular differentiation. International Journal of Developmental Biology, 2010, 54, 175-180.	0.3	18
516	Systemic Circulation. , 2010, , 91-116.		3
517	RNAi-mediated Rab5a suppression inhibits proliferation and migration of vascular smooth muscle cells. Acta Cardiologica, 2010, 65, 507-514.	0.3	6
518	Effects of rolipram on U46619-induced contraction and cyclic nucleotide content in the porcine coronary artery. Journal of Smooth Muscle Research, 2010, 46, 17-29.	0.7	5
519	Patent ductus arteriosus in mice with smooth muscle-specific <i>Jag1</i> deletion. Development (Cambridge), 2010, 137, 4191-4199.	1.2	75
520	Loss of the Serum Response Factor Cofactor, Cysteine-Rich Protein 1, Attenuates Neointima Formation in the Mouse. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 694-701.	1.1	26

#	Article	IF	CITATIONS
521	Krüppel-like Factor 4 Promotes Differentiation by Transforming Growth Factor-β Receptor-mediated Smad and p38 MAPK Signaling in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2010, 285, 17846-17856.	1.6	83
522	Cartilage Oligomeric Matrix Protein Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells by Interacting With α ₇ β ₁ Integrin. Circulation Research, 2010, 106, 514-525.	2.0	113
523	Site Specificity of Aneurysmal Disease. Circulation, 2010, 121, 560-568.	1.6	120
524	Mouse Aorta Smooth Muscle Cells Differentiate Into Lymphoid Tissue Organizer-Like Cells on Combined Tumor Necrosis Factor Receptor-1/Lymphotoxin β-Receptor NF-κB Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 395-402.	1.1	103
525	Sphingosine 1-Phosphate Receptor 2 Signals Through Leukemia-Associated RhoGEF (LARG), to Promote Smooth Muscle Cell Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1779-1786.	1.1	45
526	Atorvastatin attenuates inflammatory infiltration and vascular remodeling in lung of hypercholesterolemia rabbits. Experimental Lung Research, 2010, 36, 573-592.	0.5	9
527	Myocardin Functions as an Effective Inducer of Growth Arrest and Differentiation in Human Uterine Leiomyosarcoma Cells. Cancer Research, 2010, 70, 501-511.	0.4	32
528	Bone Marrow–Derived Cells Contribute to Vascular Inflammation but Do Not Differentiate Into Smooth Muscle Cell Lineages. Circulation, 2010, 122, 2048-2057.	1.6	116
529	Bone marrowâ€derived CX ₃ CR1 progenitors contribute to neointimal smooth muscle cells <i>via</i> fractalkine CX ₃ CR1 interaction. FASEB Journal, 2010, 24, 81-92.	0.2	48
530	Elastin Haploinsufficiency Results in Progressive Aortic Valve Malformation and Latent Valve Disease in a Mouse Model. Circulation Research, 2010, 107, 549-557.	2.0	68
531	MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. Journal of Cell Biology, 2010, 189, 13-22.	2.3	197
532	Notch and Transforming Growth Factor-β (TGFβ) Signaling Pathways Cooperatively Regulate Vascular Smooth Muscle Cell Differentiation. Journal of Biological Chemistry, 2010, 285, 17556-17563.	1.6	131
533	Repression of Versican Expression by MicroRNA-143. Journal of Biological Chemistry, 2010, 285, 23241-23250.	1.6	76
534	miR-10a Contributes to Retinoid Acid-induced Smooth Muscle Cell Differentiation. Journal of Biological Chemistry, 2010, 285, 9383-9389.	1.6	120
535	Regulatory polymorphism in transcription factor KLF5 at the MEF2 element alters the response to angiotensin II and is associated with human hypertension. FASEB Journal, 2010, 24, 1780-1788.	0.2	30
536	Integrative genomics identifies DSCR1 (RCAN1) as a novel NFAT-dependent mediator of phenotypic modulation in vascular smooth muscle cells. Human Molecular Genetics, 2010, 19, 468-479.	1.4	40
537	Effects of Extracellular Matrix on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Smooth Muscle Cell Lineage: Utility for Cardiovascular Tissue Engineering. Cells Tissues Organs, 2010, 191, 269-280.	1.3	52
538	Characterization of Ion Channels Involved in the Proliferative Response of Femoral Artery Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1203-1211.	1.1	53

#	Article	IF	CITATIONS
539	Alcohol Inhibits Smooth Muscle Cell Proliferation via Regulation of the Notch Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2597-2603.	1.1	30
540	Smoothelin-like 1 Protein Regulates Myosin Phosphatase-targeting Subunit 1 Expression during Sexual Development and Pregnancy*. Journal of Biological Chemistry, 2010, 285, 29357-29366.	1.6	37
541	Intimal Smooth Muscle Cells. Circulation, 2010, 122, 2005-2008.	1.6	19
542	Low-Density Lipoproteins Induce Heat Shock Protein 27 Dephosphorylation, Oligomerization, and Subcellular Relocalization in Human Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1212-1219.	1.1	38
543	15-Deoxy-î"12-14-Prostaglandin-J2 Induces Hypertrophy and Loss of Contractility in Human Testicular Peritubular Cells: Implications for Human Male Fertility. Endocrinology, 2010, 151, 1257-1268.	1.4	64
544	Ovarian cancer-derived lysophosphatidic acid stimulates secretion of VEGF and stromal cell-derived factor-11± from human mesenchymal stem cells. Experimental and Molecular Medicine, 2010, 42, 280.	3.2	51
545	Redox Control of Vascular Smooth Muscle Function. Antioxidants and Redox Signaling, 2010, 12, 579-581.	2.5	2
546	Ultrasound-mediated delivery of echogenic immunoliposomes to porcine vascular smooth muscle cells <i>in vivo</i> . Journal of Liposome Research, 2010, 20, 160-167.	1.5	26
547	Impaired Peroxisome Proliferator-activated Receptor-Î ³ Contributes to Phenotypic Modulation of Vascular Smooth Muscle Cells during Hypertension. Journal of Biological Chemistry, 2010, 285, 13666-13677.	1.6	48
548	Ultrasound-microbubble-mediated drug delivery efficacy and cell viability depend on microbubble radius and ultrasound frequency. , 2010, , .		6
549	Interferon-Î ³ -mediated Inhibition of Serum Response Factor-dependent Smooth Muscle-specific Gene Expression. Journal of Biological Chemistry, 2010, 285, 32415-32424.	1.6	22
550	Cyclosporine Up-Regulates Krüppel-Like Factor-4 (KLF4) in Vascular Smooth Muscle Cells and Drives Phenotypic Modulation In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 34-42.	1.3	42
551	Pregnenolone Sulphate- and Cholesterol-Regulated TRPM3 Channels Coupled to Vascular Smooth Muscle Secretion and Contraction. Circulation Research, 2010, 106, 1507-1515.	2.0	134
552	Modulation of Myocardin Function by the Ubiquitin E3 Ligase UBR5. Journal of Biological Chemistry, 2010, 285, 11800-11809.	1.6	31
553	Can lineage-specific markers be identified to characterize mesenchyme-derived cell populations in the human airways?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L169-L183.	1.3	9
554	Cell cycle-dependent expression of Kv3.4 channels modulates proliferation of human uterine artery smooth muscle cells. Cardiovascular Research, 2010, 86, 383-391.	1.8	24
555	Molecular and functional effects of organismal ageing on smooth muscle cells derived from bone marrow mesenchymal stem cells. Cardiovascular Research, 2010, 87, 147-155.	1.8	43
556	Roles of cytosolic Ca ²⁺ concentration and myofilament Ca ²⁺ sensitization in age-dependent cerebrovascular myogenic tone. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1034-H1044.	1.5	17

#	Article	IF	CITATIONS
557	Pericytes in the macrovascular intima: possible physiological and pathogenetic impact. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H754-H770.	1.5	44
558	TGF-β suppresses the upregulation of MMP-2 by vascular smooth muscle cells in response to PDGF-BB. American Journal of Physiology - Cell Physiology, 2010, 298, C191-C201.	2.1	47
559	Vascular smooth muscle phenotypic diversity and function. Physiological Genomics, 2010, 42A, 169-187.	1.0	129
560	TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections. Cardiovascular Research, 2010, 88, 520-529.	1.8	117
561	Mitogenic factors promoting intestinal smooth muscle cell proliferation. American Journal of Physiology - Cell Physiology, 2010, 299, C805-C817.	2.1	24
562	Identification and functional implication of a Rho kinase-dependent moesin-EBP50 interaction in noradrenaline-stimulated artery. American Journal of Physiology - Cell Physiology, 2010, 299, C1530-C1540.	2.1	14
563	Kv3.4, a key signalling molecule controlling the cell cycle and proliferation of human arterial smooth muscle cells. Cardiovascular Research, 2010, 86, 351-352.	1.8	1
564	Stress-induced senescence exaggerates postinjury neointimal formation in the old vasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H66-H74.	1.5	22
565	cGMP-dependent protein kinase and the regulation of vascular smooth muscle cell gene expression: possible involvement of Elk-1 sumoylation. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1660-H1670.	1.5	20
566	Nifedipine Inhibits Vascular Smooth Muscle Cell Dedifferentiation via Downregulation of Akt Signaling. Hypertension, 2010, 56, 247-252.	1.3	21
567	Genetic variants promoting smooth muscle cell proliferation can result in diffuse and diverse vascular diseases: Evidence for a hyperplastic vasculomyopathy. Genetics in Medicine, 2010, 12, 196-203.	1.1	85
568	Regulation of serum response factor activity and smooth muscle cell apoptosis by chromodomain helicase DNA-binding protein 8. American Journal of Physiology - Cell Physiology, 2010, 299, C1058-C1067.	2.1	15
569	Novel role of Egr-1 in nicotine-related neointimal formation. Cardiovascular Research, 2010, 88, 296-303.	1.8	30
570	Aging increases p16INK4a expression in vascular smooth-muscle cells. Bioscience Reports, 2010, 30, 11-18.	1.1	17
571	Inactivation of the tumour suppressor, PTEN, in smooth muscle promotes a pro-inflammatory phenotype and enhances neointima formation. Cardiovascular Research, 2010, 86, 274-282.	1.8	78
572	Adipocytokines in Atherothrombosis: Focus on Platelets and Vascular Smooth Muscle Cells. Mediators of Inflammation, 2010, 2010, 1-26.	1.4	55
573	Both lipid- and protein-phosphatase activities of PTEN contribute to the p53-PTEN anti-invasion pathway. Cell Cycle, 2010, 9, 4450-4454.	1.3	28
574	Reversible or Irreversible Remodeling in Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 629-634.	1.4	139

#	Article	IF	CITATIONS
575	Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration. American Journal of Physiology - Cell Physiology, 2010, 298, C993-C1005.	2.1	137
576	Insulin, Thrombin, ERK1/2 Kinase and Vascular Smooth Muscle Cells Proliferation. Current Pharmaceutical Design, 2010, 16, 3895-3902.	0.9	24
577	Neuronal nitric oxide inhibits intestinal smooth muscle growth. American Journal of Physiology - Renal Physiology, 2010, 298, G896-G907.	1.6	14
578	The Rho Pathway Mediates Transition to an Alveolar Type I Cell Phenotype During Static Stretch of Alveolar Type II Cells. Pediatric Research, 2010, 67, 585-590.	1.1	25
579	Notch Signaling in Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2010, 661, 279-298.	0.8	25
580	Role of Cardiac Neural Crest Cells in Morphogenesis of the Heart and Great Vessels. , 2010, , 417-439.		2
581	Coronary Microvascular Reactivity to Adenosine Predicts Adverse Outcome in Women Evaluated for Suspected Ischemia. Journal of the American College of Cardiology, 2010, 55, 2825-2832.	1.2	660
582	The Application of Ribozymes and DNAzymes in Muscle and Brain. Molecules, 2010, 15, 5460-5472.	1.7	9
583	Complex Regulation and Function of the Inflammatory Smooth Muscle Cell Phenotype in Atherosclerosis. Journal of Vascular Research, 2010, 47, 168-180.	0.6	222
584	Genistein Suppresses Tumor Necrosis Factor-α-Induced Proliferation via the Apoptotic Signaling Pathway in Human Aortic Smooth Muscle Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 2015-2019.	2.4	17
585	Calcium channel regulation in vascular smooth muscle cells: Synergistic effects of statins and calcium channel blockers. International Journal of Cardiology, 2010, 139, 2-6.	0.8	30
586	Serum response factor depletion affects the proliferation of the hepatocellular carcinoma cells HepG2 and JHH6. Biochimie, 2010, 92, 455-463.	1.3	34
587	MicroRNA Regulatory Networks in Cardiovascular Development. Developmental Cell, 2010, 18, 510-525.	3.1	466
588	Rho kinase and hypertension. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 1276-1284.	1.8	104
589	Influence of cholesterol and fish oil dietary intake on nitric oxide-induced apoptosis in vascular smooth muscle cells. Nitric Oxide - Biology and Chemistry, 2010, 22, 205-212.	1.2	12
590	Mechanical Forces and Vascular Injury. , 2010, , 275-289.		0
591	Engineering blood vessels using stem cells: innovative approaches to treat vascular disorders. Expert Review of Cardiovascular Therapy, 2010, 8, 1433-1445.	0.6	29
592	TGF-Î ² signaling in aortic aneurysm: another round of controversy. Journal of Genetics and Genomics, 2010, 37, 583-591.	1.7	23

#	Article	IF	CITATIONS
593	Enhanced circulating soluble LR11 in patients with coronary organic stenosis. Atherosclerosis, 2010, 210, 581-584.	0.4	34
594	Silencing of the F11R gene reveals a role for F11R/JAM-A in the migration of inflamed vascular smooth muscle cells and in atherosclerosis. Atherosclerosis, 2010, 212, 197-205.	0.4	20

Mammalian Target of Rapamycin (mTOR) Induces Proliferation and De-Differentiation Responses to Three Coordinate Pathophysiologic Stimuli (Mechanical Strain, Hypoxia, and Extracellular Matrix) Tj ETQq0 0 0 rgBT1/@verlock#10 Tf 50 6

596	Dicing Up MicroRNA Gene Expression Profiles in Normal and Neoplastic Smooth Muscle Cells. American Journal of Pathology, 2010, 177, 541-543.	1.9	1
597	Cystathionine gamma-lyase deficiency and overproliferation of smooth muscle cells. Cardiovascular Research, 2010, 86, 487-495.	1.8	142
598	Vascular smooth muscle cell differentiation – 2010. Journal of Biomedical Research, 2010, 24, 169-180.	0.7	18
599	Cardiovascular Pathology in Hutchinson-Gilford Progeria: Correlation With the Vascular Pathology of Aging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2301-2309.	1.1	332
600	Smooth Muscle Cell Hypertrophy, Proliferation, Migration and Apoptosis in Pulmonary Hypertension. , 2011, 1, 295-317.		102
601	Bone marrow-derived cells and hypertension. Expert Review of Cardiovascular Therapy, 2010, 8, 1139-1148.	0.6	1
602	Real-time monitoring of relaxation and contractility of smooth muscle cells on a novel biohybrid chip. Lab on A Chip, 2010, 10, 2965.	3.1	37
603	Mechanosensitive transient receptor potential vanilloid type 1 channels contribute to vascular remodeling of rat fistula veins. Journal of Vascular Surgery, 2010, 52, 1310-1320.	0.6	28
604	Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, 2010, , .	0.8	4
605	Molecular Regulation of Contractile Smooth Muscle Cell Phenotype: Implications for Vascular Tissue Engineering. Tissue Engineering - Part B: Reviews, 2010, 16, 467-491.	2.5	315
606	Notch Signaling in the Vasculature. Current Topics in Developmental Biology, 2010, 92, 277-309.	1.0	221
607	Vascular smooth muscle contractility depends on cell shape. Integrative Biology (United Kingdom), 2011, 3, 1063-1070.	0.6	110
608	Selective Activation of Sphingosine 1-Phosphate Receptors 1 and 3 Promotes Local Microvascular Network Growth. Tissue Engineering - Part A, 2011, 17, 617-629.	1.6	37
609	MicroRNA-130a Mediates Proliferation of Vascular Smooth Muscle Cells in Hypertension. American Journal of Hypertension, 2011, 24, 1087-1093.	1.0	96
610	Cellularized alginate sheets for blood vessel reconstruction. Soft Matter, 2011, 7, 3621.	1.2	14

#	Article	IF	CITATIONS
611	Serum Response Factor–Dependent MicroRNAs Regulate Gastrointestinal Smooth Muscle Cell Phenotypes. Gastroenterology, 2011, 141, 164-175.	0.6	50
612	â€~CArG'ing for microRNAs. Gastroenterology, 2011, 141, 24-27.	0.6	1
613	Cell-Cell Interactions Mediate the Response of Vascular Smooth Muscle Cells to Substrate Stiffness. Biophysical Journal, 2011, 101, 622-630.	0.2	77
614	Microribonucleic Acids for Prevention of Plaque Rupture and In-Stent Restenosis. Journal of the American College of Cardiology, 2011, 57, 383-389.	1.2	33
615	Expansion of the Human Adipose-Derived Stromal Vascular Cell Fraction Yields a Population of Smooth Muscle-Like Cells with Markedly Distinct Phenotypic and Functional Properties Relative to Mesenchymal Stem Cells. Tissue Engineering - Part C: Methods, 2011, 17, 843-860.	1.1	40
616	Initiation of Angiogenesis in Atherosclerosis: Smooth Muscle Cells as Mediators of the Angiogenic Response to Atheroma Formation. Trends in Cardiovascular Medicine, 2011, 21, 183-187.	2.3	41
618	Myocardin-related Transcription Factor-A Complexes Activate Type I Collagen Expression in Lung Fibroblasts. Journal of Biological Chemistry, 2011, 286, 44116-44125.	1.6	108
619	miRNAs: roles and clinical applications in vascular disease. Expert Review of Molecular Diagnostics, 2011, 11, 79-89.	1.5	86
620	Using a co-culture microsystem for cell migration under fluid shear stress. Lab on A Chip, 2011, 11, 2583.	3.1	18
621	Vascular Dysfunction in Heart Disease. , 2011, , 283-303.		2
621 622	Vascular Dysfunction in Heart Disease. , 2011, , 283-303. Effects of rosuvastatin on the coordinated proteomic response of human coronary smooth muscle cells to low density lipoproteins. ClÃnica E InvestigaciÃ ³ n En Arteriosclerosis, 2011, 23, 191-200.	0.4	2
	Effects of rosuvastatin on the coordinated proteomic response of human coronary smooth muscle	0.4	
622	Effects of rosuvastatin on the coordinated proteomic response of human coronary smooth muscle cells to low density lipoproteins. ClÃnica E InvestigaciÃ ³ n En Arteriosclerosis, 2011, 23, 191-200. Plexiform Lesions in Pulmonary Arterial Hypertension. American Journal of Pathology, 2011, 179,		0
622 623	Effects of rosuvastatin on the coordinated proteomic response of human coronary smooth muscle cells to low density lipoproteins. ClĂnica E InvestigaciÃ ³ n En Arteriosclerosis, 2011, 23, 191-200. Plexiform Lesions in Pulmonary Arterial Hypertension. American Journal of Pathology, 2011, 179, 167-179. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans.	1.9	0
622 623 624	Effects of rosuvastatin on the coordinated proteomic response of human coronary smooth muscle cells to low density lipoproteins. ClÄnica E InvestigaciÃ ³ n En Arteriosclerosis, 2011, 23, 191-200. Plexiform Lesions in Pulmonary Arterial Hypertension. American Journal of Pathology, 2011, 179, 167-179. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clinica Chimica Acta, 2011, 412, 66-70. Lack of association between cellular repressor of E1A-stimulated genes (GREG) polymorphisms and	1.9 0.5	0 144 201
622 623 624 625	Effects of rosuvastatin on the coordinated proteomic response of human coronary smooth muscle cells to low density lipoproteins. ClÃnica E InvestigaciÃ ³ n En Arteriosclerosis, 2011, 23, 191-200. Plexiform Lesions in Pulmonary Arterial Hypertension. American Journal of Pathology, 2011, 179, 167-179. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clinica Chimica Acta, 2011, 412, 66-70. Lack of association between cellular repressor of E1A-stimulated genes (GREG) polymorphisms and coronary artery disease in the Han population of North China. Clinica Chimica Acta, 2011, 412, 249-252. PDCFRÎ ² Signaling Regulates Mural Cell Plasticity and Inhibits Fat Development. Developmental Cell,	1.9 0.5 0.5	0 144 201 2
622 623 624 625 626	Effects of rosuvastatin on the coordinated proteomic response of human coronary smooth muscle cells to low density lipoproteins. ClÄnica E InvestigaciÄ ³ n En Arteriosclerosis, 2011, 23, 191-200. Plexiform Lesions in Pulmonary Arterial Hypertension. American Journal of Pathology, 2011, 179, 167-179. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clinica Chimica Acta, 2011, 412, 66-70. Lack of association between cellular repressor of E1A-stimulated genes (GREG) polymorphisms and coronary artery disease in the Han population of North China. Clinica Chimica Acta, 2011, 412, 249-252. PDGFRÎ ² Signaling Regulates Mural Cell Plasticity and Inhibits Fat Development. Developmental Cell, 2011, 20, 815-826. Rab1 GTPase regulates phenotypic modulation of pulmonary artery smooth muscle cells by mediating the transport of angiotensin II type 1 receptor under hypoxia. International Journal of Biochemistry	1.9 0.5 0.5 3.1	0 144 201 2 178

#	Article	IF	CITATIONS
630	New phenotypic aspects of the decidual spiral artery wall during early post-implantation mouse pregnancy. Biochemical and Biophysical Research Communications, 2011, 416, 211-216.	1.0	15
631	Hydrogen sulfide in cell survival: a double-edged sword. Expert Review of Clinical Pharmacology, 2011, 4, 33-47.	1.3	44
632	Morphological features of coronary arteries in patients with coronary spastic angina: Assessment with intracoronary optical coherence tomography. International Journal of Cardiology, 2011, 146, 334-340.	0.8	39
633	Small Interfering RNA to c-myc Inhibits Vein Graft Restenosis in a Rat Vein Graft Model. Journal of Surgical Research, 2011, 169, e85-e91.	0.8	18
634	Heparin stimulates elastogenesis: Application to silk-based vascular grafts. Matrix Biology, 2011, 30, 346-355.	1.5	20
635	A Central Role of Heme Oxygenase-1 in Cardiovascular Protection. Antioxidants and Redox Signaling, 2011, 15, 1835-1846.	2.5	144
636	Circulating smooth muscle progenitor cells in arterial remodeling. Journal of Molecular and Cellular Cardiology, 2011, 50, 273-279.	0.9	55
637	SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2011, 50, 621-633.	0.9	55
638	Vascular smooth muscle Jak2 deletion prevents angiotensin II-mediated neointima formation following injury in mice. Journal of Molecular and Cellular Cardiology, 2011, 50, 1026-1034.	0.9	25
639	Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. Journal of Molecular and Cellular Cardiology, 2011, 51, 651-664.	0.9	46
640	MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo. Circulation Research, 2011, 109, 880-893.	2.0	280
641	Histone Deacetylase 3 Regulates Smooth Muscle Differentiation in Neural Crest Cells and Development of the Cardiac Outflow Tract. Circulation Research, 2011, 109, 1240-1249.	2.0	55
642	Chronic treatment with PDGF-BB and endothelin-1 synergistically induces vascular hyperplasia and loss of contractility in organ-cultured rat tail artery. Atherosclerosis, 2011, 214, 288-294.	0.4	14
643	Oncostatin M is expressed in atherosclerotic lesions: A role for Oncostatin M in the pathogenesis of atherosclerosis. Atherosclerosis, 2011, 216, 292-298.	0.4	41
644	Monocyte chemotactic protein-3 induces human coronary smooth muscle cell proliferation. Atherosclerosis, 2011, 217, 113-119.	0.4	42
645	The role of microRNA-145 in human embryonic stem cell differentiation into vascular cells. Atherosclerosis, 2011, 219, 468-474.	0.4	57
646	Regulation of VSMC behavior by the cadherin-catenin complex. Frontiers in Bioscience - Landmark, 2011, 16, 644.	3.0	29
647	The role of blood flow and microRNAs in blood vessel development. International Journal of Developmental Biology, 2011, 55, 419-429.	0.3	21

#	Article	IF	CITATIONS
648	Proliferation unleashed: The role of Skp2 in vascular smooth muscle cell proliferation. Frontiers in Bioscience - Landmark, 2011, 16, 1517.	3.0	12
649	Adipose-Derived Stem Cells (ASCs) for Tissue Engineering. , 0, , .		7
650	Identification of human thrombin-activatable fibrinolysis inhibitor in vascular and inflammatory cells. Thrombosis and Haemostasis, 2011, 105, 999-1009.	1.8	15
651	Are We There Yet? A Story About Cardiac Stem Cells. , 0, , .		Ο
652	Lentiviral-Mediated shRNA Silencing of PDE4D Gene Inhibits Platelet-Derived Growth Factor-Induced Proliferation and Migration of Rat Aortic Smooth Muscle Cells. Stroke Research and Treatment, 2011, 2011, 1-7.	0.5	8
653	Pathogenesis of Neointima Formation Following Vascular Injury. Cardiovascular & Hematological Disorders Drug Targets, 2011, 11, 30-39.	0.2	67
654	Towards the Maturation and Characterization of Smooth Muscle Cells Derived from Human Embryonic Stem Cells. PLoS ONE, 2011, 6, e17771.	1.1	32
655	Sphingosine 1-Phosphate Induces Differentiation of Mesoangioblasts towards Smooth Muscle. A Role for GATA6. PLoS ONE, 2011, 6, e20389.	1.1	23
656	New therapeutic potential of microRNA treatment to target vulnerable atherosclerotic lesions and plaque rupture. Current Opinion in Cardiology, 2011, 26, 569-575.	0.8	12
657	Early cardiac gene transcript levels in peripheral blood mononuclear cells in patients with untreated essential hypertension. Journal of Hypertension, 2011, 29, 791-797.	0.3	19
658	Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?. Physiological Genomics, 2011, 43, 529-533.	1.0	73
659	ATRA activates and PDGF-BB represses the SM22α promoter through KLF4 binding to, or dissociating from, its cis-DNA elements. Cardiovascular Research, 2011, 90, 464-474.	1.8	47
660	Serial Intravascular Ultrasound Observation of the Behavior of Coronary Artery During a Positive Spasm Provocation Test. Circulation Journal, 2011, 75, 1529-1531.	0.7	3
661	Protein kinase A and the exchange protein directly activated by cAMP (Epac) modulate phenotype plasticity in human airway smooth muscle. British Journal of Pharmacology, 2011, 164, 958-969.	2.7	25
662	Nanomolar potency and selectivity of a Ca ²⁺ release-activated Ca ²⁺ channel inhibitor against store-operated Ca ²⁺ entry and migration of vascular smooth muscle cells. British Journal of Pharmacology, 2011, 164, 382-393.	2.7	53
663	Pulsatile Culture of a Poly(DL‣acticâ€Coâ€Glycolic Acid) Sandwiched Cell/Hydrogel Construct Fabricated Using a Stepâ€byâ€Step Mold/Extraction Method. Artificial Organs, 2011, 35, 645-655.	1.0	30
664	Pluripotent stem cell differentiation into vascular cells: A novel technology with promises for vascular re(generation). , 2011, 129, 29-49.		95
665	Arterial remodeling and atherosclerosis: miRNAs involvement. Vascular Pharmacology, 2011, 55, 106-110.	1.0	45

#	Article	IF	CITATIONS
666	"Fishing―for endothelial microRNA functions and dysfunction. Vascular Pharmacology, 2011, 55, 60-68.	1.0	10
667	Serum response factor is required for cell contact maintenance but dispensable for proliferation in visceral yolk sac endothelium. BMC Developmental Biology, 2011, 11, 18.	2.1	4
668	Mathematical modeling of simultaneous drug release and in vivo absorption. International Journal of Pharmaceutics, 2011, 418, 130-141.	2.6	55
669	NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin via p38MAPK and serum response factor. Free Radical Biology and Medicine, 2011, 50, 354-362.	1.3	83
670	SK&F 96365 induces apoptosis and autophagy by inhibiting Akt–mTOR signaling in A7r5 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 2157-2164.	1.9	10
671	Signaling Mechanisms That Regulate Smooth Muscle Cell Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1495-1505.	1.1	208
672	Transforming Growth Factor-β1 (TGF-β1) Utilizes Distinct Pathways for the Transcriptional Activation of MicroRNA 143/145 in Human Coronary Artery Smooth Muscle Cells. Journal of Biological Chemistry, 2011, 286, 30119-30129.	1.6	126
673	Expansion of the Human Adipose-derived Stromal Vascular Cell Fraction Yields a Population of Smooth Muscle-like Cells with Markedly Distinct Phenotypic and Functional Properties Relative to Mesenchymal Stem Cells. Tissue Engineering - Part C: Methods, 0, , 110402044831004.	1.1	0
674	Micromanaging Vascular Smooth Muscle Cell Differentiation and Phenotypic Modulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2370-2377.	1.1	203
675	Down-regulation of Krüppel-like Factor-4 (KLF4) by MicroRNA-143/145 Is Critical for Modulation of Vascular Smooth Muscle Cell Phenotype by Transforming Growth Factor-β and Bone Morphogenetic Protein 4. Journal of Biological Chemistry, 2011, 286, 28097-28110.	1.6	227
676	Contributions of VEGF to age-dependent transmural gradients in contractile protein expression in ovine carotid arteries. American Journal of Physiology - Cell Physiology, 2011, 301, C653-C666.	2.1	20
677	Protection of Endothelial Cells, Inhibition of Neointimal Hyperplasia by β-elemene in an Injured Artery. Cardiovascular Drugs and Therapy, 2011, 25, 233-242.	1.3	18
678	The actin associated protein palladin in smooth muscle and in the development of diseases of the cardiovasculature and in cancer. Journal of Muscle Research and Cell Motility, 2011, 32, 7-17.	0.9	32
679	ROCK inhibition prevents fetal serum-induced alteration in structure and function of organ-cultured mesenteric artery. Journal of Muscle Research and Cell Motility, 2011, 32, 65-76.	0.9	4
680	Isolation, culture, and characterization of smooth muscle cells from human intracranial aneurysms. Acta Neurochirurgica, 2011, 153, 311-318.	0.9	12
681	Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomechanics and Modeling in Mechanobiology, 2011, 10, 939-953.	1.4	191
682	Esophageal smooth muscle cells dedifferentiate with loss of α-smooth muscle actin expression after 8 weeks of explant expansion in vitro culture: Implications on esophagus tissue engineering. European Surgery - Acta Chirurgica Austriaca, 2011, 43, 168-173.	0.3	6
683	Fluid Flow Mechanotransduction in Vascular Smooth Muscle Cells and Fibroblasts. Annals of Biomedical Engineering, 2011, 39, 1608-1619.	1.3	194

# 684	ARTICLE Development of an Endothelial–Smooth Muscle Cell Coculture Model Using Phenotype-Controlled	IF 1.3	CITATIONS 30
685	Smooth Muscle Cells. Annals of Biomedical Engineering, 2011, 39, 2750-2758. Developmental changes in mesenteric artery reactivity in embryonic and newly hatched chicks. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2011, 181, 1063-1073.	0.7	11
686	cGMP and PKGI are required for vascular BMP signaling. BMC Pharmacology, 2011, 11, .	0.4	1
687	Spice up the hypertension diet - curcumin and piperine prevent remodeling of aorta in experimental L-NAME induced hypertension. Nutrition and Metabolism, 2011, 8, 72.	1.3	70
688	Recent advances in the use of <i>Sus scrofa</i> (pig) as a model system for proteomic studies. Proteomics, 2011, 11, 776-793.	1.3	156
689	Smooth muscle phenotypic diversity is mediated through alterations in <i>Myocardin</i> gene splicing. Journal of Cellular Physiology, 2011, 226, 2702-2711.	2.0	11
690	Myocardinâ€related transcription factorâ€A induces cardiomyocyte hypertrophy. IUBMB Life, 2011, 63, 54-61.	1.5	28
691	Roles of genipin crosslinking and biomolecule conditioning in collagenâ€based biopolymer: Potential for vascular media regeneration. Journal of Biomedical Materials Research - Part A, 2011, 97A, 16-26.	2.1	25
692	Culture media for the differentiation of mesenchymal stromal cells. Acta Biomaterialia, 2011, 7, 463-477.	4.1	225
693	The use of micropatterning to control smooth muscle myosin heavy chain expression and limit the response to transforming growth factor β1 in vascular smooth muscle cells. Biomaterials, 2011, 32, 410-418.	5.7	32
694	Three-dimensional growth of iPS cell-derived smooth muscle cells on nanofibrous scaffolds. Biomaterials, 2011, 32, 4369-4375.	5.7	53
695	Characterization of a PLGA sandwiched cell/fibrin tubular construct and induction of the adipose derived stem cells into smooth muscle cells. Materials Science and Engineering C, 2011, 31, 801-808.	3.8	18
696	Gene profiling of the rat medial collateral ligament during early healing using microarray analysis. Journal of Applied Physiology, 2011, 111, 552-565.	1.2	20
697	Bone Marrow–Derived Smooth Muscle–Like Cells Are Infrequent in Advanced Primary Atherosclerotic Plaques but Promote Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1291-1299.	1.1	58
698	Adiponectin Decreases Pulmonary Arterial Remodeling in Murine Models of Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 340-347.	1.4	46
699	Lysophosphatidic acid effects on atherosclerosis and thrombosis. Clinical Lipidology, 2011, 6, 413-426.	0.4	49
700	MicroRNA and Vascular Smooth Muscle Cells. Vitamins and Hormones, 2011, 87, 321-339.	0.7	15
701	Vascular Smooth-Muscle-Cell Activation. International Review of Cell and Molecular Biology, 2011, 288, 43-99.	1.6	39

#	Article	IF	CITATIONS
702	Specificity Protein-1 as a Critical Regulator of Human Cystathionine Î ³ -Lyase in Smooth Muscle Cells. Journal of Biological Chemistry, 2011, 286, 26450-26460.	1.6	76
703	Three-Dimensional Topography of Synthetic Scaffolds Induces Elastin Synthesis by Human Coronary Artery Smooth Muscle Cells. Tissue Engineering - Part A, 2011, 17, 1561-1571.	1.6	40
704	Cyclic Nucleotide Phosphodiesterase 1 Regulates Lysosome-Dependent Type I Collagen Protein Degradation in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 616-623.	1.1	25
705	Blast-induced phenotypic switching in cerebral vasospasm. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12705-12710.	3.3	115
706	miR-143 and miR-145. Circulation: Cardiovascular Genetics, 2011, 4, 197-205.	5.1	189
707	Soluble Jagged-1 Inhibits Neointima Formation by Attenuating Notch-Herp2 Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1059-1065.	1.1	38
708	Smooth Muscle Calponin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2172-2180.	1.1	28
709	Smooth Muscle Cell Differentiation In Vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1485-1494.	1.1	82
710	Ultrastructural Analysis and Electron Microscopic Localization of Nox4 in Healthy and Atherosclerotic Human Aorta. Ultrastructural Pathology, 2011, 35, 1-6.	0.4	15
711	Coherent anti-Stokes Raman scattering microscopy of human smooth muscle cells in bioengineered tissue scaffolds. Journal of Biomedical Optics, 2011, 16, 021115.	1.4	17
712	Characterization of <i>Pax3</i> -expressing cells from adult blood vessels. Journal of Cell Science, 2011, 124, 3980-3988.	1.2	14
713	Induction of MicroRNA-1 by Myocardin in Smooth Muscle Cells Inhibits Cell Proliferation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 368-375.	1.1	121
714	Nuclear Factor of Activated T Cells 5 Regulates Vascular Smooth Muscle Cell Phenotypic Modulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2287-2296.	1.1	43
715	Smooth Muscle Cells for Vascular Engineering. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2772-2774.	1.1	3
716	Response Gene to Complement 32 Promotes Vascular Lesion Formation Through Stimulation of Smooth Muscle Cell Proliferation and Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, e19-26.	1.1	52
717	Focal Adhesion Kinase Regulates Smooth Muscle Cell Recruitment to the Developing Vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2193-2202.	1.1	18
718	Transcriptional Regulation of S Phase Kinase-associated Protein 2 by NR4A Orphan Nuclear Receptor NOR1 in Vascular Smooth Muscle Cells*. Journal of Biological Chemistry, 2011, 286, 35485-35493.	1.6	27
719	Microparticles, Vascular Function, and Atherothrombosis. Circulation Research, 2011, 109, 593-606.	2.0	331

#	Article	IF	CITATIONS
720	Cartilage Oligomeric Matrix Protein Inhibits Vascular Smooth Muscle Calcification by Interacting With Bone Morphogenetic Protein-2. Circulation Research, 2011, 108, 917-928.	2.0	103
721	Effects of cigarette smoke and hypoxia on pulmonary circulation in the guinea pig. European Respiratory Journal, 2011, 38, 617-627.	3.1	51
722	Obesity and Pulmonary Arterial Hypertension: Is Adiponectin the Molecular Link between these Conditions?. Pulmonary Circulation, 2011, 1, 440-447.	0.8	46
723	Adiponectin Induces Vascular Smooth Muscle Cell Differentiation via Repression of Mammalian Target of Rapamycin Complex 1 and FoxO4. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1403-1410.	1.1	71
724	CYP26B1 Plays a Major Role in the Regulation of All- <i>trans</i> -Retinoic Acid Metabolism and Signaling in Human Aortic Smooth Muscle Cells. Journal of Vascular Research, 2011, 48, 23-30.	0.6	22
725	Exercise Training Restores Hypertension-Induced Changes in the Elastic Tissue of the Thoracic Aorta. Journal of Vascular Research, 2011, 48, 513-524.	0.6	29
726	Serum Response Factor Regulates Expression of Phosphatase and Tensin Homolog Through a MicroRNA Network in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2909-2919.	1.1	30
727	Human Coronary Artery Smooth Muscle Cell Responses to Bioactive Polyelectrolyte Multilayer Interfaces. Biotechnology Research International, 2011, 2011, 1-15.	1.4	3
728	Cilostazol Inhibits Vascular Smooth Muscle Cell Proliferation and Reactive Oxygen Species Production through Activation of AMP-activated Protein Kinase Induced by Heme Oxygenase-1. Korean Journal of Physiology and Pharmacology, 2011, 15, 203.	0.6	17
729	Genome-Wide Microarray Analyses Identify the Protein C Receptor as a Novel Calcineurin/Nuclear Factor of Activated T Cells–Dependent Gene in Vascular Smooth Muscle Cell Phenotypic Modulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2665-2675.	1.1	5
730	Vascular Smooth Muscle Progenitor Cells. Circulation Research, 2011, 108, 365-377.	2.0	170
731	Spleen Tyrosine Kinase Modulates the Proliferation and Phenotypes of Vascular Smooth Muscle Cells Induced by Platelet-Derived Growth Factor. DNA and Cell Biology, 2011, 30, 149-155.	0.9	3
732	Ca2+ regulatory mechanisms of exercise protection against coronary artery disease in metabolic syndrome and diabetes. Journal of Applied Physiology, 2011, 111, 573-586.	1.2	45
733	The Complex Biology of FOXO. Current Drug Targets, 2011, 12, 1322-1350.	1.0	110
734	p53 regulation of podosome formation and cellular invasion in vascular smooth muscle cells. Cell Adhesion and Migration, 2011, 5, 144-149.	1.1	15
735	PPARÂ attenuates intimal hyperplasia by inhibiting TLR4-mediated inflammation in vascular smooth muscle cells. Cardiovascular Research, 2011, 92, 484-493.	1.8	48
736	Disturbed spermatogenesis associated with thickened lamina propria of seminiferous tubules is not caused by dedifferentiation of myofibroblasts. Human Reproduction, 2011, 26, 1450-1461.	0.4	32
737	Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms. Cardiovascular Research, 2011, 89, 446-456.	1.8	95

#	Article	IF	CITATIONS
738	Potent suppression of vascular smooth muscle cell migration and human neointimal hyperplasia by KV1.3 channel blockers. Cardiovascular Research, 2011, 89, 282-289.	1.8	55
739	Blocking potassium channels: a new principle for treating restenosis?. Cardiovascular Research, 2011, 89, 255-257.	1.8	2
740	WD Repeat-containing Protein 5, a Ubiquitously Expressed Histone Methyltransferase Adaptor Protein, Regulates Smooth Muscle Cell-selective Gene Activation through Interaction with Pituitary Homeobox 2. Journal of Biological Chemistry, 2011, 286, 21853-21864.	1.6	22
741	FoxO1 Mediates an Autofeedback Loop Regulating SIRT1 Expression. Journal of Biological Chemistry, 2011, 286, 5289-5299.	1.6	178
742	The Amiloride Derivative Phenamil Attenuates Pulmonary Vascular Remodeling by Activating NFAT and the Bone Morphogenetic Protein Signaling Pathway. Molecular and Cellular Biology, 2011, 31, 517-530.	1.1	22
743	Hypoxia Potentiates MicroRNA-Mediated Gene Silencing through Posttranslational Modification of Argonaute2. Molecular and Cellular Biology, 2011, 31, 4760-4774.	1.1	124
744	Transforming Growth Factor-β1-induced Transcript 1 Protein, a Novel Marker for Smooth Muscle Contractile Phenotype, Is Regulated by Serum Response Factor/Myocardin Protein. Journal of Biological Chemistry, 2011, 286, 41589-41599.	1.6	43
745	Smad3-mediated Myocardin Silencing. Journal of Biological Chemistry, 2011, 286, 15050-15057.	1.6	43
746	APOL1 Localization in Normal Kidney and Nondiabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2011, 22, 2119-2128.	3.0	211
747	Inhibition of In-Stent Stenosis by Oral Administration of Bindarit in Porcine Coronary Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2448-2454.	1.1	28
748	Bone Marrow–Derived Smooth Muscle Cells Are Breaking Bad in Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1258-1259.	1.1	1
749	Protease-Activated Receptor-2 Modulates Protease-Activated Receptor-1–Driven Neointimal Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, e100-6.	1.1	64
750	PYK2 signaling is required for PDGF-dependent vascular smooth muscle cell proliferation. American Journal of Physiology - Cell Physiology, 2011, 301, C242-C251.	2.1	36
751	Myoendothelial gap junctional signaling induces differentiation of pulmonary arterial smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L527-L535.	1.3	37
752	Cilostazol Promotes Vascular Smooth Muscles Cell Differentiation Through the cAMP Response Element-Binding Protein-Dependent Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2106-2113.	1.1	48
753	Progenitor Cells in Pulmonary Vascular Remodeling. Pulmonary Circulation, 2011, 1, 3-16.	0.8	79
754	SDF-1α Induction in Mature Smooth Muscle Cells by Inactivation of PTEN Is a Critical Mediator of Exacerbated Injury-Induced Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1300-1308.	1.1	118
755	Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1707-H1721.	1.5	38

#	Article	IF	CITATIONS
756	Proliferation modulates intestinal smooth muscle phenotype in vitro and in colitis in vivo. American Journal of Physiology - Renal Physiology, 2011, 300, G903-G913.	1.6	37
757	Early Atheroma-Derived Agonists of Peroxisome Proliferator–Activated Receptor-γ Trigger Intramedial Angiogenesis in a Smooth Muscle Cell–Dependent Manner. Circulation Research, 2011, 109, 1003-1014.	2.0	46
758	MicroRNAs ontrol of Essential Genes: Implications for Pulmonary Vascular Disease. Pulmonary Circulation, 2011, 1, 357-364.	0.8	37
759	Smad2 and PEA3 cooperatively regulate transcription of response gene to complement 32 in TGF-β-induced smooth muscle cell differentiation of neural crest cells. American Journal of Physiology - Cell Physiology, 2011, 301, C499-C506.	2.1	20
760	PDGF-induced vascular smooth muscle cell proliferation is associated with dysregulation of insulin receptor substrates. American Journal of Physiology - Cell Physiology, 2011, 300, C1375-C1385.	2.1	39
761	Formin Homology Domain–Containing Protein 1 Regulates Smooth Muscle Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 360-367.	1.1	24
762	Reciprocal regulation controlling the expression of CPI-17, a specific inhibitor protein for the myosin light chain phosphatase in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2012, 303, C58-C68.	2.1	23
763	Inherent and Benzo[a]pyrene-Induced Differential Aryl Hydrocarbon Receptor Signaling Greatly Affects Life Span, Atherosclerosis, Cardiac Gene Expression, and Body and Heart Growth in Mice. Toxicological Sciences, 2012, 126, 391-404.	1.4	58
764	RhoA guanine exchange factor expression profile in arteries: evidence for a Rho kinase-dependent negative feedback in angiotensin II-dependent hypertension. American Journal of Physiology - Cell Physiology, 2012, 302, C1394-C1404.	2.1	30
765	Reciprocal expression of MRTF-A and myocardin is crucial for pathological vascular remodelling in mice. EMBO Journal, 2012, 31, 4428-4440.	3.5	83
766	Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries. American Journal of Physiology - Cell Physiology, 2012, 303, C1090-C1103.	2.1	25
767	Crucial Role of CD40 Signaling in Vascular Wall Cells in Neointimal Formation and Vascular Remodeling After Vascular Interventions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 50-64.	1.1	36
768	Two microRNAs, miR-330 and miR-125b-5p, mark the juxtaglomerular cell and balance its smooth muscle phenotype. American Journal of Physiology - Renal Physiology, 2012, 302, F29-F37.	1.3	40
769	Rare, Nonsynonymous Variant in the Smooth Muscle-Specific Isoform of Myosin Heavy Chain, <i>MYH11</i> , R247C, Alters Force Generation in the Aorta and Phenotype of Smooth Muscle Cells. Circulation Research, 2012, 110, 1411-1422.	2.0	81
770	Determinants of evolving metabolic and cardiovascular benefit/risk profiles of rosiglitazone therapy during the natural history of diabetes: molecular mechanisms in the context of integrated pathophysiology. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1171-E1182.	1.8	13
771	Differentially expressed genes in aortic smooth muscle cells from atherosclerosis-susceptible and atherosclerosis-resistant pigeons. Poultry Science, 2012, 91, 1315-1325.	1.5	5
772	Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms. Physiological Genomics, 2012, 44, 417-429.	1.0	106
773	Cigarette Smoke and Inflammation: Role in Cerebral Aneurysm Formation and Rupture. Mediators of Inflammation, 2012, 2012, 1-12.	1.4	112

#	Article	IF	CITATIONS
774	Cooperative Binding of KLF4, pELK-1, and HDAC2 to a G/C Repressor Element in the SM22α Promoter Mediates Transcriptional Silencing During SMC Phenotypic Switching In Vivo. Circulation Research, 2012, 111, 685-696.	2.0	129
775	Smooth Muscle Phenotypic Modulation—A Personal Experience. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1784-1789.	1.1	93
776	MicroRNAs Are Essential for Stretch-induced Vascular Smooth Muscle Contractile Differentiation via MicroRNA (miR)-145-dependent Expression of L-type Calcium Channels. Journal of Biological Chemistry, 2012, 287, 19199-19206.	1.6	58
777	Leiomodin 1, a New Serum Response Factor-dependent Target Gene Expressed Preferentially in Differentiated Smooth Muscle Cells. Journal of Biological Chemistry, 2012, 287, 2459-2467.	1.6	73
778	Urokinase Receptor Associates With Myocardin to Control Vascular Smooth Muscle Cells Phenotype in Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 110-122.	1.1	31
779	Influences of surface chemistry and swelling of salt-treated polyelectrolyte multilayers on migration of smooth muscle cells. Journal of the Royal Society Interface, 2012, 9, 3455-3468.	1.5	34
780	MicroRNA regulation of smooth muscle gene expression and phenotype. Current Opinion in Hematology, 2012, 19, 224-231.	1.2	66
781	Platelet-Derived Growth Factor Maintains Stored Calcium Through a Nonclustering Orai1 Mechanism But Evokes Clustering If the Endoplasmic Reticulum Is Stressed by Store Depletion. Circulation Research, 2012, 111, 66-76.	2.0	11
782	TLR 2 Induces Vascular Smooth Muscle Cell Migration Through cAMP Response Elementâ^'Binding Proteinâ^'Mediated Interleukin-6 Production. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2751-2760.	1.1	54
783	MEF2 is regulated by CaMKIIÎ′2 and a HDAC4–HDAC5 heterodimer in vascular smooth muscle cells. Biochemical Journal, 2012, 444, 105-114.	1.7	48
784	Originâ€specific epigenetic program correlates with vascular bedâ€specific differences in <i>Rgs5</i> expression. FASEB Journal, 2012, 26, 181-191.	0.2	32
785	Three-Dimensional Microstructural Changes in Murine Abdominal Aortic Aneurysms Quantified Using Immunofluorescent Array Tomography. Journal of Histochemistry and Cytochemistry, 2012, 60, 97-109.	1.3	12
786	Vascular Klotho Deficiency Potentiates the Development of Human Artery Calcification and Mediates Resistance to Fibroblast Growth Factor 23. Circulation, 2012, 125, 2243-2255.	1.6	387
787	Macrophages Regulate Smooth Muscle Differentiation of Mesenchymal Stem Cells via a Prostaglandin F _{21±} â^'Mediated Paracrine Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2733-2740.	1.1	26
788	Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovascular Research, 2012, 95, 156-164.	1.8	672
789	The a"MAZEâ€ing World of Lung-Specific Transgenic Mice. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 269-282.	1.4	59
790	The Induction of Yes-Associated Protein Expression After Arterial Injury Is Crucial for Smooth Muscle Phenotypic Modulation and Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2662-2669.	1.1	94
791	TNF-α-mediated proliferation of vascular smooth muscle cells involves Raf-1-mediated inactivation of Rb and transcription of E2F1-regulated genes. Cell Cycle, 2012, 11, 109-118.	1.3	34

#	Article	IF	CITATIONS
792	Characterization of the Human Smooth Muscle Cell Secretome for Regenerative Medicine. Tissue Engineering - Part C: Methods, 2012, 18, 797-816.	1.1	11
793	Novel Stem Cell–Based Drug Discovery Platforms for Cardiovascular Disease. Journal of Biomolecular Screening, 2012, 17, 1117-1127.	2.6	5
794	Characterization of corpus cavernosum smooth muscle cell phenotype in diabetic rats with erectile dysfunction. International Journal of Impotence Research, 2012, 24, 196-201.	1.0	48
795	Simvastatin inhibits sphingosylphosphorylcholine-induced differentiation of human mesenchymal stem cells into smooth muscle cells. Experimental and Molecular Medicine, 2012, 44, 159.	3.2	6
796	The Notch Pathway Attenuates Interleukin 1β (IL1β)-mediated Induction of Adenylyl Cyclase 8 (AC8) Expression during Vascular Smooth Muscle Cell (VSMC) Trans-differentiation. Journal of Biological Chemistry, 2012, 287, 24978-24989.	1.6	20
797	A Novel RhoA/ROCK-CPI-17-MEF2C Signaling Pathway Regulates Vascular Smooth Muscle Cell Gene Expression. Journal of Biological Chemistry, 2012, 287, 8361-8370.	1.6	63
798	Smooth Muscle-specific Expression of Calcium-independent Phospholipase A2β (iPLA2β) Participates in the Initiation and Early Progression of Vascular Inflammation and Neointima Formation. Journal of Biological Chemistry, 2012, 287, 24739-24753.	1.6	22
799	Mitochondrial Motility and Vascular Smooth Muscle Proliferation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 3000-3011.	1.1	58
800	Store-operated Ca2+ entry (SOCE) pathways. , 2012, , .		2
801	xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mrow><mml:msup><mml:mrow><mml:mtext>Ca</mml:mtext></mml:mrow><mm mathvariant="bold">2<mml:mo mathvariant="bold">+</mml:mo </mm </mml:msup></mml:mrow> <td>l:mn 2.0</td> <td>21</td>	l:mn 2.0	21
802	Pulmonary Arterial Hypertension, Journal of Signal Transduction, 2012, 2012, 1-16. Yap1 Protein Regulates Vascular Smooth Muscle Cell Phenotypic Switch by Interaction with Myocardin. Journal of Biological Chemistry, 2012, 287, 14598-14605.	1.6	100
803	Calcium Cycling in Synthetic and Contractile Phasic or Tonic Vascular Smooth Muscle Cells. , 2012, , .		2
804	Modulation of Smooth Muscle Cell Phenotype. Circulation Research, 2012, 111, 659-661.	2.0	12
805	MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling. Cardiovascular Research, 2012, 93, 594-604.	1.8	98
806	Notch signalling in smooth muscle cells during development and disease. Cardiovascular Research, 2012, 95, 138-146.	1.8	87
807	Towards the therapeutic use of vascular smooth muscle progenitor cells. Cardiovascular Research, 2012, 95, 205-214.	1.8	31
808	Induction of intracellular heat-shock protein 72 prevents the development of vascular smooth muscle cell calcification. Cardiovascular Research, 2012, 96, 524-532.	1.8	8
809	Changing topographic Hox expression in blood vessels results in regionally distinct vessel wall remodeling. Biology Open, 2012, 1, 430-435.	0.6	23

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
810	Visfatin and Cardio–Cerebro–Vascular Disease. Journal of Cardiovascular Pharmacology, 2012, 59, 1-9). 0.8	39
811	Effectiveness of Cyclooxygenase-2 Inhibition in Limiting Abdominal Aortic Aneurysm Progression in Mice Correlates With a Differentiated Smooth Muscle Cell Phenotype. Journal of Cardiovascular Pharmacology, 2012, 60, 520-529.	0.8	17
812	Increased secretion of Gas6 by smooth muscle cells in human atherosclerotic carotid plaques. Thrombosis and Haemostasis, 2012, 107, 140-149.	1.8	30
813	Anti-atherogenic activity of wild grape (Vitis thunbergii) extract antagonizing smooth muscle cell proliferation and migration promoted by neighboring macrophages. International Journal of Molecular Medicine, 2012, 29, 1137-45.	1.8	3
814	Transcriptional Regulation of the Fetal Cardiac Gene Program. Journal of Pharmacological Sciences, 2012, 119, 198-203.	1.1	85
815	Upregulation of TRPM7 Channels by Angiotensin II Triggers Phenotypic Switching of Vascular Smooth Muscle Cells of Ascending Aorta. Circulation Research, 2012, 111, 1137-1146.	2.0	68
816	Lysophosphatidic acid in atherosclerotic diseases. British Journal of Pharmacology, 2012, 167, 465-482.	2.7	80
817	Serotonin passes through myoendothelial gap junctions to promote pulmonary arterial smooth muscle cell differentiation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L767-L777.	1.3	45
818	The role of microRNAs in arterial remodelling. Thrombosis and Haemostasis, 2012, 107, 611-618.	1.8	100
819	A novel lentivirus for quantitative assessment of gene knockdown in stem cell differentiation. Gene Therapy, 2012, 19, 1123-1132.	2.3	31
820	Assembly of Virus Particles and Virus-like Particles as Templates for Biomedical Applications. ACS Symposium Series, 2012, , 21-56.	0.5	1
821	Calcium homeostasis in vascular smooth muscle cells is altered in type 2 diabetes by Bcl-2 protein modulation of InsP ₃ R calcium release channels. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H124-H134.	1.5	24
822	Knock out of neuronal nitric oxide synthase exacerbates intestinal ischemia/reperfusion injury in mice. Cell and Tissue Research, 2012, 349, 565-576.	1.5	31
823	Low Strength Static Magnetic Field Inhibits the Proliferation, Migration, and Adhesion of Human Vascular Smooth Muscle Cells in a Restenosis Model Through Mediating Integrins β1-FAK, Ca2+ Signaling Pathway. Annals of Biomedical Engineering, 2012, 40, 2611-2618.	1.3	17
824	Effect of Heparin-Derived Oligosaccharide on Vascular Smooth Muscle Cell Proliferation and the Signal Transduction Mechanisms Involved. Cardiovascular Drugs and Therapy, 2012, 26, 479-488.	1.3	6
825	P2Y receptor subtypes evoke different Ca2+ signals in cultured aortic smooth muscle cells. Purinergic Signalling, 2012, 8, 763-777.	1.1	21
826	Enhancer of polycomb1 lessens neointima formation by potentiation of myocardin-induced smooth muscle differentiation. Atherosclerosis, 2012, 222, 84-91.	0.4	10
827	Inhibition of neointimal hyperplasia in the rat carotid artery injury model by a HMGB1 inhibitor. Atherosclerosis, 2012, 224, 332-339.	0.4	51

#	Article	IF	CITATIONS
828	Cardiovascular Protection by ApoE and ApoE-HDL Linked to Suppression of ECM Gene Expression and Arterial Stiffening. Cell Reports, 2012, 2, 1259-1271.	2.9	159
829	Microsystems for biomimetic stimulation of cardiac cells. Lab on A Chip, 2012, 12, 3235.	3.1	55
830	Proteomics changes in adhesion molecules: a driving force for vascular smooth muscle cell phenotypic switch. Molecular BioSystems, 2012, 8, 1052.	2.9	10
831	Myocardin-like protein 2 regulates TGFÎ ² signaling in embryonic stem cells and the developing vasculature. Development (Cambridge), 2012, 139, 3531-3542.	1.2	19
832	Impact of Endothelial Cells on 3D Cultured Smooth Muscle Cells in a Biomimetic Hydrogel. ACS Applied Materials & Interfaces, 2012, 4, 1378-1387.	4.0	31
833	Functional genetics. Thrombosis Research, 2012, 129, 336-340.	0.8	3
834	microRNAs in cardiovascular development. Journal of Molecular and Cellular Cardiology, 2012, 52, 949-957.	0.9	90
835	The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovascular Research, 2012, 95, 194-204.	1.8	573
836	Biology of Intracranial Aneurysms: Role of Inflammation. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1659-1676.	2.4	403
837	Altered hemodynamics, endothelial function, and protein expression occur with aortic coarctation and persist after repair. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1304-H1318.	1.5	37
838	Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). American Journal of Physiology - Cell Physiology, 2012, 302, C1-C8.	2.1	94
839	Vascular smooth muscle cell phenotypic plasticity: focus on chromatin remodelling. Cardiovascular Research, 2012, 95, 147-155.	1.8	51
840	Thoracic Aortic Aneurysm (TAAD)-causing Mutation in Actin Affects Formin Regulation of Polymerization. Journal of Biological Chemistry, 2012, 287, 28398-28408.	1.6	25
841	Platelet-Derived Growth Factor-BB Mediates Cell Migration through Induction of Activating Transcription Factor 4 and Tenascin-C. American Journal of Pathology, 2012, 180, 2590-2597.	1.9	15
842	Ohioensin F suppresses TNF-α-induced adhesion molecule expression by inactivation of the MAPK, Akt and NF-κB pathways in vascular smooth muscle cells. Life Sciences, 2012, 90, 396-406.	2.0	22
843	Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease. Matrix Biology, 2012, 31, 197-205.	1.5	26
844	Stereocalpin A inhibits the expression of adhesion molecules in activated vascular smooth muscle cells. International Immunopharmacology, 2012, 12, 315-325.	1.7	16
845	SOX9 and myocardin counteract each other in regulating vascular smooth muscle cell differentiation. Biochemical and Biophysical Research Communications, 2012, 422, 285-290.	1.0	43

#	Article	IF	CITATIONS
846	Regulation of S100A4 expression via the JAK2–STAT3 pathway in rhomboid-phenotype pulmonary arterial smooth muscle cells exposure to hypoxia. International Journal of Biochemistry and Cell Biology, 2012, 44, 1337-1345.	1.2	17
847	Over-expression of PKCIα inhibits hypoxia-induced proliferation, Akt activation, and phenotype modulation of human PASMCs: The role of phenotype modulation of PASMCs in pulmonary vascular remodeling. Gene, 2012, 492, 354-360.	1.0	32
848	Calcium Signaling in Vascular Smooth Muscle Cells: From Physiology to Pathology. Advances in Experimental Medicine and Biology, 2012, 740, 795-810.	0.8	28
849	A new mechanobiological era: microfluidic pathways to apply and sense forces at the cellular level. Current Opinion in Chemical Biology, 2012, 16, 400-408.	2.8	62
850	Ca ²⁺ /calmodulinâ€dependent protein kinase II function in vascular remodelling. Journal of Physiology, 2012, 590, 1349-1356.	1.3	39
851	Roles of microRNAs in atherosclerosis and restenosis. Journal of Biomedical Science, 2012, 19, 79.	2.6	66
852	Characterization of proximal pulmonary arterial cells from chronic thromboembolic pulmonary hypertension patients. Respiratory Research, 2012, 13, 27.	1.4	41
853	Ribozyme-mediated gene knock down strategy to dissect the consequences of PDGF stimulation in vascular smooth muscle cells. BMC Research Notes, 2012, 5, 268.	0.6	3
855	Living cardiac patch: the elixir for cardiac regeneration. Expert Opinion on Biological Therapy, 2012, 12, 1623-1640.	1.4	78
856	Procontractile G protein–mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling. Journal of Experimental Medicine, 2012, 209, 2277-2290.	4.2	31
857	Vinpocetine Suppresses Pathological Vascular Remodeling by Inhibiting Vascular Smooth Muscle Cell Proliferation and Migration. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 479-488.	1.3	46
858	Resident phenotypically modulated vascular smooth muscle cells in healthy human arteries. Journal of Cellular and Molecular Medicine, 2012, 16, 2802-2812.	1.6	8
859	Balloon Injury in Rats as a Model for Studying TRP Channel Contribution to Vascular Smooth Muscle Remodeling. Methods in Pharmacology and Toxicology, 2012, , 101-111.	0.1	0
860	Osteopontin regulates αâ€smooth muscle actin and calponin in vascular smooth muscle cells. Cell Biology International, 2012, 36, 155-161.	1.4	47
861	The roots of Salvia miltiorrhiza (Danshen) and Pueraria lobata (Gegen) inhibit atherogenic events: A study of the combination effects of the 2-herb formula. Journal of Ethnopharmacology, 2012, 143, 859-866.	2.0	45
862	Radial Construction of an Arterial Wall. Developmental Cell, 2012, 23, 482-493.	3.1	82
863	Genetic Variants in Smooth Muscle Contraction and Adhesion Genes Cause Thoracic Aortic Aneurysms and Dissections and Other Vascular Diseases. , 2012, , 1291-1300.		0
864	Gastrodin inhibits cell proliferation in vascular smooth muscle cells and attenuates neointima formation in vivo. International Journal of Molecular Medicine, 2012, 30, 1034-1040.	1.8	29

#	Article	IF	CITATIONS
865	Factors Involved in Signal Transduction During Vertebrate Myogenesis. International Review of Cell and Molecular Biology, 2012, 296, 187-272.	1.6	6
866	Kruppel-Like Factors and Vascular Inflammation: Implications for Atherosclerosis. Current Atherosclerosis Reports, 2012, 14, 438-449.	2.0	30
867	Role of Tissue Factor in Atherothrombosis. Current Atherosclerosis Reports, 2012, 14, 394-401.	2.0	47
868	Association of smooth muscle cell phenotypes with extracellular matrix disorders in thoracic aortic dissection. Journal of Vascular Surgery, 2012, 56, 1698-1709.e1.	0.6	89
869	Rho kinase regulation of vasopressin-induced calcium entry in vascular smooth muscle cell: Comparison between rat isolated aorta and cultured aortic cells. Cell Calcium, 2012, 52, 413-421.	1.1	11
870	The effects of aging on the intimal region of the human saphenous vein: insights from multimodal microscopy and quantitative image analysis. Histochemistry and Cell Biology, 2012, 138, 435-445.	0.8	11
871	Inhibition of MicroRNA-302 (miR-302) by Bone Morphogenetic Protein 4 (BMP4) Facilitates the BMP Signaling Pathway. Journal of Biological Chemistry, 2012, 287, 38656-38664.	1.6	52
873	Benign prostate hyperplasia and stem cells: a new therapeutic opportunity. Cell Biology and Toxicology, 2012, 28, 435-442.	2.4	9
874	Development of the Smooth Muscle Cell Lineage. , 2012, , 1109-1116.		2
875	G-Protein-Coupled Receptors in Smooth Muscle. , 2012, , 1145-1153.		1
876	Heterogeneity of Smooth Muscle. , 2012, , 1183-1195.		6
877	Molecular Pathways of Smooth Muscle Disease. , 2012, , 1279-1287.		1
878	Vascular Smooth Muscle Cell Phenotypic Adaptation. , 2012, , 1269-1278.		1
879	Smooth Muscle Progenitor Cells. , 2012, , 1391-1400.		1
881	Smooth Muscle. , 2012, , 1401-1408.		0
882	Bindarit Inhibits Human Coronary Artery Smooth Muscle Cell Proliferation, Migration and Phenotypic Switching. PLoS ONE, 2012, 7, e47464.	1.1	20
883	β-Adrenergic cAMP Signals Are Predominantly Regulated by Phosphodiesterase Type 4 in Cultured Adult Rat Aortic Smooth Muscle Cells. PLoS ONE, 2012, 7, e47826.	1.1	17
884	Molecular Pathways of Notch Signaling in Vascular Smooth Muscle Cells. Frontiers in Physiology, 2012, 3, 81.	1.3	82

# 885	ARTICLE Alcohol and Cardiovascular Disease—Modulation of Vascular Cell Function. Nutrients, 2012, 4, 297-318.	IF 1.7	CITATIONS
886	Endothelial and Vascular Smooth Cell Dysfunctions: A Comprehensive Appraisal. , 0, , .		2
887	Tianma Modulates Blood Vessel Tonicity. The Open Biochemistry Journal, 2012, 6, 56-65.	0.3	19
888	Regulation of Differentiated Phenotypes of Vascular Smooth Muscle Cells. , 0, , .		4
889	Vascular Smooth Muscle Cells and the Comparative Pathology of Atherosclerosis. , 0, , .		0
890	Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Frontiers in Bioscience - Scholar, 2012, S4, 1044-1064.	0.8	34
891	Microvascular Guidance: A Challenge to Support the Development of Vascularised Tissue Engineering Construct. Scientific World Journal, The, 2012, 2012, 1-10.	0.8	23
892	Molecular cloning and in silico analysis of the duck (Anas platyrhynchos) MEF2A gene cDNA and its expression profile in muscle tissues during fetal development. Genetics and Molecular Biology, 2012, 35, 182-190.	0.6	13
893	Nuclear Fusionâ€Independent Smooth Muscle Differentiation of Human Adiposeâ€Derived Stem Cells Induced by a Smooth Muscle Environment. Stem Cells, 2012, 30, 481-490.	1.4	25
894	Phenotypic changes in cultured smooth muscle cells: limitation or opportunity for tissue engineering of hollow organs?. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 505-511.	1.3	38
895	Vascular Smooth Muscle Cells: Isolation, Culture, and Characterization. Methods in Molecular Biology, 2012, 843, 169-176.	0.4	78
896	Pharmacological Actions of Statins: A Critical Appraisal in the Management of Cancer. Pharmacological Reviews, 2012, 64, 102-146.	7.1	370
897	Matrix metalloproteinases and their inhibitors in pulmonary hypertension. European Respiratory Journal, 2012, 40, 766-782.	3.1	125
898	Bone Morphogenetic Protein 4 Promotes Vascular Smooth Muscle Contractility by Activating MicroRNA-21 (miR-21), which Down-regulates Expression of Family of Dedicator of Cytokinesis (DOCK) Proteins. Journal of Biological Chemistry, 2012, 287, 3976-3986.	1.6	90
899	MicroRNAâ€21 represses human cystathionine gammaâ€lyase expression by targeting at specificity proteinâ€1 in smooth muscle cells. Journal of Cellular Physiology, 2012, 227, 3192-3200.	2.0	60
900	Nonâ€linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose. Journal of Biophotonics, 2012, 5, 404-414.	1.1	16
901	Malabaricone C inhibits PDGFâ€induced proliferation and migration of aortic smooth muscle cells through induction of heme oxygenaseâ€1. Journal of Cellular Biochemistry, 2012, 113, 2866-2876.	1.2	16
902	Vein graft failure: current clinical practice and potential for gene therapeutics. Gene Therapy, 2012, 19, 630-636.	2.3	45

#	Article	IF	CITATIONS
903	A Comparison of Human Smooth Muscle and Mesenchymal Stem Cells as Potential Cell Sources for Tissue-Engineered Vascular Patches. Tissue Engineering - Part A, 2012, 18, 986-998.	1.6	24
904	Generation of human vascular smooth muscle subtypes provides insight into embryological origin–dependent disease susceptibility. Nature Biotechnology, 2012, 30, 165-173.	9.4	321
905	The effects of myocyte enhancer factor 2A gene on the proliferation, migration and phenotype of vascular smooth muscle cells. Cell Biochemistry and Function, 2012, 30, 108-113.	1.4	12
906	Cell Division Cycle 7 Is a Novel Regulator of Transforming Growth Factor-β-induced Smooth Muscle Cell Differentiation. Journal of Biological Chemistry, 2012, 287, 6860-6867.	1.6	30
907	Epigenetic Control of Smooth Muscle Cell Differentiation and Phenotypic Switching in Vascular Development and Disease. Annual Review of Physiology, 2012, 74, 13-40.	5.6	614
908	Monocyte chemoattractant protein-1 mediates angiotensin II-induced vascular smooth muscle cell proliferation via SAPK/JNK and ERK1/2. Molecular and Cellular Biochemistry, 2012, 366, 355-362.	1.4	19
909	Inhibition of cyclooxygenase-2 modulates phenotypic switching of vascular smooth muscle cells during increased aortic blood flow. Heart and Vessels, 2012, 27, 307-315.	0.5	16
910	Inhibition of STAT3 signaling prevents vascular smooth muscle cell proliferation and neointima formation. Basic Research in Cardiology, 2012, 107, 261.	2.5	52
911	The role of perivascular adipose tissue in vascular smooth muscle cell growth. British Journal of Pharmacology, 2012, 165, 643-658.	2.7	131
912	Intracellular Ca ²⁺ Signalling and Phenotype of Vascular Smooth Muscle Cells. Basic and Clinical Pharmacology and Toxicology, 2012, 110, 42-48.	1.2	62
913	Matrix Metalloproteinases and Descending Aortic Aneurysms: Parity, Disparity, and Switch. Journal of Cardiac Surgery, 2012, 27, 81-90.	0.3	35
914	Convergence of physical and chemical signaling in the modulation of vascular smooth muscle cell cycle and proliferation by fibrillar collagen-regulated P66Shc. Biomaterials, 2012, 33, 6728-6738.	5.7	7
915	Local Medial Microenvironment Directs Phenotypic Modulation of Smooth Muscle Cells After Experimental Renal Transplantation. American Journal of Transplantation, 2012, 12, 1429-1440.	2.6	15
916	Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 734, 62-68.	0.4	4
917	Premature birth is associated with not fully differentiated contractile smooth muscle cells in human umbilical artery. Placenta, 2012, 33, 511-517.	0.7	6
918	Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: Involvement of the MAPK, NF-κB and AP-1 signaling pathways. Vascular Pharmacology, 2012, 56, 131-141.	1.0	52
919	Crosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseases. Vascular Pharmacology, 2012, 57, 24-28.	1.0	42
920	An updated view on stem cell differentiation into smooth muscle cells. Vascular Pharmacology, 2012, 56, 280-287.	1.0	11

#	Article	IF	CITATIONS
921	Vascular differentiation from embryonic stem cells: Novel technologies and therapeutic promises. Vascular Pharmacology, 2012, 56, 267-279.	1.0	45
922	MMP-2 expression by fibroblasts is suppressed by the myofibroblast phenotype. Experimental Cell Research, 2012, 318, 1542-1553.	1.2	36
923	Reduced expression of myocardin and serum response factor in the cavernous tissue of diabetic rats. Andrologia, 2012, 44, 518-522.	1.0	6
924	Apigenin attenuates neointima formation via suppression of vascular smooth muscle cell phenotypic transformation. Journal of Cellular Biochemistry, 2012, 113, 1198-1207.	1.2	18
925	Tissue transglutaminase promotes PDGF/PDGFRâ€mediated signaling and responses in vascular smooth muscle cells. Journal of Cellular Physiology, 2012, 227, 2089-2096.	2.0	16
926	MicroRNAs in Hypertension: Mechanisms and Therapeutic Targets. Current Hypertension Reports, 2012, 14, 79-87.	1.5	125
927	Toxicological Insight from AP-1 Silencing Study on Proliferation, Migration, and Dedifferentiation of Rat Vascular Smooth Muscle Cell. Cardiovascular Toxicology, 2012, 12, 25-38.	1.1	11
928	Isolation and culture of smooth muscle cells from human acute type A aortic dissection. Journal of Cardiothoracic Surgery, 2013, 8, 83.	0.4	13
929	MicroRNAs in pulmonary arterial remodeling. Cellular and Molecular Life Sciences, 2013, 70, 4479-4494.	2.4	61
931	Endothelial Indoleamine 2,3-Dioxygenase Protects against Development of Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 482-491.	2.5	41
932	Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering. Journal of Materials Science, 2013, 48, 5113-5124.	1.7	37
933	Prevention of neointimal hyperplasia in balloon-injured rat carotid artery via small interference RNA mediated downregulation of osteopontin gene. Molecular and Cellular Biochemistry, 2013, 377, 1-10.	1.4	11
934	General Concepts of Blood Vessel Formation and Remodeling. , 2013, , 1-23.		2
935	Binding of pro-migratory serum factors to electrospun PLLA nano-fibers. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 2006-2017.	1.9	9
936	Comparison of vascular smooth muscle cells in canine great vessels. BMC Veterinary Research, 2013, 9, 54.	0.7	8
937	Grating-based X-ray phase-contrast tomography of atherosclerotic plaque at high photon energies. Zeitschrift Fur Medizinische Physik, 2013, 23, 194-203.	0.6	23
938	Vascular smooth muscle cell phenotype is defined by <scp>C</scp> a ²⁺ â€dependent transcription factors. FEBS Journal, 2013, 280, 5488-5499.	2.2	83
939	Simulated Microgravity Exposure Modulates the Phenotype of Cultured Vascular Smooth Muscle Cells. Cell Biochemistry and Biophysics, 2013, 66, 121-130.	0.9	17

ARTICLE IF CITATIONS Characterization of transcriptional and posttranscriptional properties of native and cultured 940 1.5 5 phenotypically modulated vascular smooth muscle cells. Cell and Tissue Research, 2013, 352, 265-275. Substrate Stiffness Regulates PDGF-Induced Circular Dorsal Ruffle Formation Through MLCK. 941 1.0 Cellular and Molecular Bioengineering, 2013, 6, 138-147. Cell cycle regulator geminin is dispensable for the proliferation of vascular smooth muscle cells. 942 2.3 5 Science China Life Sciences, 2013, 56, 731-738. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells. 943 Biochemical and Biophysical Research Communications, 2013, 441, 579-585. Role and mechanism of tissue plasminogen activator in venous wall fibrosis remodeling after deep 944 venous thrombosis via the glycogen synthase kinase-3 beta signaling pathway. Journal of Surgical 0.8 10 Research, 2013, 184, 1182-1195. Identification of a Klf4-dependent upstream repressor region mediating transcriptional regulation of the myocardin gene in human smooth muscle cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechánisms, 2013, 1829, 1191-1201. Adenosine monophosphate-activated protein kinase regulates platelet-derived growth 946 factor-BB-induced vascular smooth muscle cell migration. Archives of Biochemistry and Biophysics, 1.4 7 2013, 530, 83-92. miR-663 and the miRaculous Vascular Smooth Muscle Phenotypic Switch. Circulation Research, 2013, 2.0 113, 1102-1105. MicroRNA-155 in the Pathogenesis of Atherosclerosis: A Conflicting Role?. Heart Lung and Circulation, 948 0.2 47 2013, 22, 811-818. Exploring smooth muscle phenotype and function in a bioreactor model of abdominal aortic 949 1.8 aneurysm. Journal of Translational Medicine, 2013, 11, 208. Epigenetics: Novel Mechanism of Pulmonary Hypertension. Lung, 2013, 191, 601-610. 950 1.4 16 Scleroderma-Related Lung Disease: Are Adipokines Involved Pathogenically?. Current Rheumatology 2.1 Reports, 2013, 15, 381. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFbeta/Notch signalling pathway and increased cell proliferation. BMC 952 1.2 29 Genomics, 2013, 14, 770. Up-regulation of KCa3.1 promotes human airway smooth muscle cell phenotypic modulation. 3.1 24 Pharmacological Research, 2013, 77, 30-38. EGFR and the Complexity of Receptor Crosstalk in the Cardiovascular System. Current Molecular 954 0.6 13 Medicine, 2013, 13, 3-12. The distinguishing cellular features of pulmonary artery smooth muscle cells from chronic thromboembolic pulmonary hypertension patients. Experimental Lung Research, 2013, 39, 349-358. Eupatolide Inhibits PDGFâ€induced Proliferation and Migration of Aortic Smooth Muscle Cells Through 956 2.8 28 ROSâ€dependent Heme Oxygenaseâ€1 Induction. Phytotherapy Research, 2013, 27, 1700-1707. Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic 1.8 aneurysm. Cardiovascular Research, 2013, 100, 316-324.

	Сітатіо	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
958	Evidence That Acetylsalicylic Acid Attenuates Inflammation in the Walls of Human Cerebral Aneurysms: Preliminary Results. Journal of the American Heart Association, 2013, 2, e000019.	1.6	115
959	Smooth muscle cells in human atherosclerosis: Proteomic profiling reveals differences in expression of Annexin A1 and mitochondrial proteins in carotid disease. Journal of Molecular and Cellular Cardiology, 2013, 54, 65-72.	0.9	45
960	AMP-activated protein kinase inhibits vascular smooth muscle cell proliferation and migration and vascular remodeling following injury. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H369-H381.	1.5	67
961	Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells. Cardiovascular Research, 2013, 97, 321-330.	1.8	136
962	Functions of MicroRNAs in Cardiovascular Biology and Disease. Annual Review of Physiology, 2013, 75, 69-93.	5.6	140
963	Detection of histone modifications at specific gene loci in single cells in histological sections. Nature Methods, 2013, 10, 171-177.	9.0	220
964	Smooth Muscle Cell Plasticity. Circulation Research, 2013, 112, 17-22.	2.0	146
965	Engineering biocompatible implant surfaces. Progress in Materials Science, 2013, 58, 327-381.	16.0	81
966	New insights into the role of sphingosine 1-phosphate and lysophosphatidic acid in the regulation of skeletal muscle cell biology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 176-184.	1.2	22
967	Effect of sinomenine on vascular smooth muscle cell dedifferentiation and neointima formation after vascular injury in mice. Molecular and Cellular Biochemistry, 2013, 373, 53-62.	1.4	15
968	Analysis of Stromal Cell Secretomes Reveals a Critical Role for Stromal Cell–Derived Hepatocyte Growth Factor and Fibronectin in Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 513-522.	1.1	45
969	Transglutaminase Inhibitors Attenuate Vascular Calcification in a Preclinical Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 43-51.	1.1	26
970	Apolipoprotein(a) acts as a chemorepellent to human vascular smooth muscle cells via integrin αVβ3 and RhoA/ROCK-mediated mechanisms. International Journal of Biochemistry and Cell Biology, 2013, 45, 1776-1783.	1.2	16
971	Fat, fire and muscle – The role of adiponectin in pulmonary vascular inflammation and remodeling. Pulmonary Pharmacology and Therapeutics, 2013, 26, 420-426.	1.1	14
972	Transforming Growth Factor β1 and Coronary Intimal Hyperplasia in Pediatric Patients With Congenital Heart Disease. Canadian Journal of Cardiology, 2013, 29, 849-857.	0.8	18
973	Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics, 2013, 45, 1431-1438.	9.4	472
974	TNF-α Induces Phenotypic Modulation in Cerebral Vascular Smooth Muscle Cells: Implications for Cerebral Aneurysm Pathology. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1564-1573.	2.4	133
975	Electrophoretic coating of amphiphilic chitosan colloids on regulating cellular behaviour. Journal of the Royal Society Interface, 2013, 10, 20130411.	1.5	4

#	Article	IF	CITATIONS
976	Differential and synergistic effects of mechanical stimulation andÂgrowth factor presentation on vascular wall function. Biomaterials, 2013, 34, 7281-7291.	5.7	14
977	Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation. Redox Biology, 2013, 1, 542-551.	3.9	137
978	Activation of PPAR-α induces cell cycle arrest and inhibits transforming growth factor-β1 induction of smooth muscle cell phenotype in 10T1/2 mesenchymal cells. Cellular Signalling, 2013, 25, 1252-1263.	1.7	12
979	Premature differentiation of vascular smooth muscle cells in human congenital diaphragmatic hernia. Experimental and Molecular Pathology, 2013, 94, 195-202.	0.9	43
980	Scleroderma Mesenchymal Stem Cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis, 2013, 16, 595-607.	3.7	61
981	Transport and Function of Chloride in Vascular Smooth Muscles. Journal of Vascular Research, 2013, 50, 69-87.	0.6	30
982	Myocardin and microRNAâ€1 modulate bladder activity through connexin 43 expression during postâ€natal development. Journal of Cellular Physiology, 2013, 228, 1819-1826.	2.0	24
983	Trophoblast-Induced Changes in C-X-C Motif Chemokine 10 Expression Contribute to Vascular Smooth Muscle Cell Dedifferentiation During Spiral Artery Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, e93-e101.	1.1	37
984	Perivascular cells in blood vessel regeneration. Biotechnology Journal, 2013, 8, 434-447.	1.8	78
985	Vascular Histopathologic Reaction to Pulmonary Artery Banding in an In Vivo Growing Porcine Model. Pediatric Cardiology, 2013, 34, 1652-1660.	0.6	10
986	GPER: A novel target for non-genomic estrogen action in the cardiovascular system. Pharmacological Research, 2013, 71, 53-60.	3.1	40
987	SERCA2a gene transfer prevents intimal proliferation in an organ culture of human internal mammary artery. Gene Therapy, 2013, 20, 396-406.	2.3	18
988	Differentiated markers in undifferentiated cells: Expression of smooth muscle contractile proteins in multipotent bone marrow mesenchymal stem cells. Development Growth and Differentiation, 2013, 55, 591-605.	0.6	48
989	MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes. Experimental Cell Research, 2013, 319, 1165-1175.	1.2	46
990	Long-term zinc deprivation accelerates rat vascular smooth muscle cell proliferation involving the down-regulation of JNK1/2 expression in MAPK signaling. Atherosclerosis, 2013, 228, 46-52.	0.4	34
991	A proteomic portrait of atherosclerosis. Journal of Proteomics, 2013, 82, 92-112.	1.2	13
992	cGMP-Dependent Protein Kinases (cGK). Methods in Molecular Biology, 2013, 1020, 17-50.	0.4	53
993	Regulation of vascular smooth muscle mechanotransduction by microRNAs and L-type calcium channels. Communicative and Integrative Biology, 2013, 6, e22278.	0.6	16

#	Article	IF	CITATIONS
994	Urokinase Receptor Mediates Doxorubicin-Induced Vascular Smooth Muscle Cell Senescence via Proteasomal Degradation of TRF2. Journal of Vascular Research, 2013, 50, 109-123.	0.6	32
995	Early growth response 2 (Egr2) plays opposing roles in committing C3H10T1/2 stem cells to adipocytes and smooth muscle-like cells. International Journal of Biochemistry and Cell Biology, 2013, 45, 1825-1832.	1.2	13
996	Expression and promoter analysis of a highly restricted integrin alpha gene in vascular smooth muscle. Gene, 2013, 513, 82-89.	1.0	26
997	The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials, 2013, 34, 30-41.	5.7	240
998	Surface biocompatible modification of polyurethane by entrapment of a macromolecular modifier. Colloids and Surfaces B: Biointerfaces, 2013, 102, 354-360.	2.5	28
999	Indole-3-carbinol blocks platelet-derived growth factor-stimulated vascular smooth muscle cell function and reduces neointima formation in vivo. Journal of Nutritional Biochemistry, 2013, 24, 62-69.	1.9	8
1000	Ephs and ephrins resurface in inflammation, immunity, and atherosclerosis. Pharmacological Research, 2013, 67, 42-52.	3.1	66
1001	MicroRNA-663 Regulates Human Vascular Smooth Muscle Cell Phenotypic Switch and Vascular Neointimal Formation. Circulation Research, 2013, 113, 1117-1127.	2.0	164
1002	Targeted STIM deletion impairs calcium homeostasis, NFAT activation, and growth of smooth muscle. FASEB Journal, 2013, 27, 893-906.	0.2	67
1003	MicroRNA-124 Suppresses the Transactivation of Nuclear Factor of Activated T Cells by Targeting Multiple Genes and Inhibits the Proliferation of Pulmonary Artery Smooth Muscle Cells. Journal of Biological Chemistry, 2013, 288, 25414-25427.	1.6	111
1004	Induced Pluripotent Stem Cells in Cardiovascular Drug Discovery. Circulation Research, 2013, 112, 534-548.	2.0	99
1005	Quaking, an RNA-Binding Protein, Is a Critical Regulator of Vascular Smooth Muscle Cell Phenotype. Circulation Research, 2013, 113, 1065-1075.	2.0	86
1006	MiRNA-146a regulates the maturation and differentiation of vascular smooth muscle cells by targeting NF-κB expression. Molecular Medicine Reports, 2013, 8, 407-412.	1.1	52
1007	notch3 is essential for oligodendrocyte development and vascular integrity in zebrafish. DMM Disease Models and Mechanisms, 2013, 6, 1246-59.	1.2	32
1008	MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1. Cardiovascular Research, 2013, 99, 185-193.	1.8	109
1009	PPARÎ ³ modulates vascular smooth muscle cell phenotype via a protein kinase G-dependent pathway and reduces neointimal hyperplasia after vascular injury. Experimental and Molecular Medicine, 2013, 45, e65-e65.	3.2	34
1010	Nectin-Like Molecule-5 Regulates Intimal Thickening After Carotid Artery Ligation in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1206-1211.	1.1	4
1011	Lineage of Bone Marrow–Derived Cells in Atherosclerosis. Circulation Research, 2013, 112, 1634-1647.	2.0	20

#	Article	IF	CITATIONS
1012	Cysteine-rich protein 2 alters p130Cas localization and inhibits vascular smooth muscle cell migration. Cardiovascular Research, 2013, 100, 461-471.	1.8	23
1013	High pulsatility flow stimulates smooth muscle cell hypertrophy and contractile protein expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L70-L81.	1.3	49
1014	Functional expression of smooth muscle-specific ion channels in TGF-β ₁ -treated human adipose-derived mesenchymal stem cells. American Journal of Physiology - Cell Physiology, 2013, 305, C377-C391.	2.1	38
1015	Regulation of MicroRNAs by Brahma-related Gene 1 (Brg1) in Smooth Muscle Cells. Journal of Biological Chemistry, 2013, 288, 6397-6408.	1.6	16
1016	cGMP-Dependent Protein Kinase Inhibitors in Health and Disease. Pharmaceuticals, 2013, 6, 269-286.	1.7	29
1017	Expression of conventional and novel glucose transporters, GLUT1, -9, -10, and -12, in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2013, 304, C574-C589.	2.1	55
1018	A novel in vitro model system for smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. American Journal of Physiology - Cell Physiology, 2013, 304, C289-C298.	2.1	29
1019	PDCF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochemical Journal, 2013, 451, 375-388.	1.7	175
1020	Role of Arginase in Vessel Wall Remodeling. Frontiers in Immunology, 2013, 4, 111.	2.2	67
1021	Altered phenotypic gene expression of 10T1/2 mesenchymal cells in nonuniformly stretched PEGDA hydrogels. American Journal of Physiology - Cell Physiology, 2013, 305, C100-C110.	2.1	6
1022	A simple method for using silicone elastomer masks for quantitative analysis of cell migration without cellular damage or substrate disruption. Cell Adhesion and Migration, 2013, 7, 479-485.	1.1	8
1023	The vascular smooth muscle cell: a therapeutic target in TypeÂ2 diabetes?. Clinical Science, 2013, 125, 167-182.	1.8	64
1024	The Role of Cyclic 3'-5' Adenosine Monophosphate (cAMP) in Differentiated and Trans-Differentiated Vascular Smooth Muscle Cells. , 0, , .		2
1025	A Molecular Mechanism for Therapeutic Effects of cGMP-elevating Agents in Pulmonary Arterial Hypertension. Journal of Biological Chemistry, 2013, 288, 16557-16566.	1.6	21
1026	Genetic and Pharmacologic Disruption of Interleukin-1β Signaling Inhibits Experimental Aortic Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 294-304.	1.1	143
1027	Percutaneous Tissue-Engineered Pulmonary Valved Stent Implantation: Comparison of Bone Marrow-Derived CD133+-Cells and Cells Obtained from Carotid Artery. Tissue Engineering - Part C: Methods, 2013, 19, 363-374.	1.1	13
1028	CaMKIIδ-dependent Inhibition of cAMP-response Element-binding Protein Activity in Vascular Smooth Muscle. Journal of Biological Chemistry, 2013, 288, 33519-33529.	1.6	26
1029	Stem cells in vascular graft tissue engineering for congenital heart surgery. Interventional Cardiology, 2013, 5, 647-662.	0.0	1

#	Article	IF	CITATIONS
1030	Mitogen-Activated Protein Kinase 14 Is a Novel Negative Regulatory Switch for the Vascular Smooth Muscle Cell Contractile Gene Program. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 378-386.	1.1	22
1031	Cell Division Cycle 7 Mediates Transforming Growth Factor-Î ² -induced Smooth Muscle Maturation through Activation of Myocardin Gene Transcription. Journal of Biological Chemistry, 2013, 288, 34336-34342.	1.6	12
1032	Myocardin Regulates Vascular Response to Injury Through miR-24/-29a and Platelet-Derived Growth Factor Receptor-β. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2355-2365.	1.1	46
1033	Directing Smooth Muscle Cell Fate. Circulation Research, 2013, 112, 1402-1404.	2.0	1
1034	Smad2 and Myocardin-Related Transcription Factor B Cooperatively Regulate Vascular Smooth Muscle Differentiation From Neural Crest Cells. Circulation Research, 2013, 113, e76-86.	2.0	46
1035	Maturation and Differentiation of the Fetal Vasculature. Clinical Obstetrics and Gynecology, 2013, 56, 537-548.	0.6	17
1036	The Transcription Factor Foxf1 Binds to Serum Response Factor and Myocardin to Regulate Gene Transcription in Visceral Smooth Muscle Cells. Journal of Biological Chemistry, 2013, 288, 28477-28487.	1.6	50
1037	Coagulation and the Vessel Wall in Pulmonary Embolism. Pulmonary Circulation, 2013, 3, 728-738.	0.8	22
1038	Proteomic evidence for the plasticity of cultured vascular smooth muscle cells. Turkish Journal of Biology, 2013, 37, 414-425.	2.1	8
1039	UnTEThering (Smooth Muscle) Cell Plasticity. Circulation, 2013, 128, 2002-2004.	1.6	3
1040	Over-expression of Neuron-derived Orphan Receptor-1 (NOR-1) exacerbates neointimal hyperplasia after vascular injury. Human Molecular Genetics, 2013, 22, 1949-1959.	1.4	46
1041	Regulation of Vascular Smooth Muscle Cell Turnover by Endothelial Cell–Secreted MicroRNA-126. Circulation Research, 2013, 113, 40-51.	2.0	223
1042	Soluble Jagged1 Inhibits Pulmonary Hypertension by Attenuating Notch Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2733-2739.	1.1	35
1043	Recurrent <i>NCOA2</i> gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes and Cancer, 2013, 52, 538-550.	1.5	189
1044	A Study of the Early Changes of the Level of Calcitonin Geneâ€Related Peptide and Histopathology of Penises of Rats with Experimentally Induced Type I Diabetes Mellitus by Streptozocin. Sexual Medicine, 2013, 1, 21-29.	0.9	1
1045	Partial loss of contractile marker proteins in human testicular peritubular cells in infertility patients. Andrology, 2013, 1, 318-324.	1.9	41
1046	A Potential Gravity-Sensing Role of Vascular Smooth Muscle Cell Glycocalyx in Altered Gravitational Stimulation. Astrobiology, 2013, 13, 626-636.	1.5	10
1047	Curcumin Regulates <scp>VSMC</scp> Phenotype Transition via Modulation of <scp>N</scp> otch and <scp>W</scp> nt Signaling Pathways. Drug Development Research, 2013, 74, 252-258.	1.4	3

#	Article	IF	CITATIONS
1048	Loss of Epigenetic Kruppel-like Factor 4 Histone Deacetylase (KLF-4-HDAC)-mediated Transcriptional Suppression Is Crucial in Increasing Vascular Endothelial Growth Factor (VEGF) Expression in Breast Cancer. Journal of Biological Chemistry, 2013, 288, 27232-27242.	1.6	35
1049	Noncanonical Matrix Metalloprotease-1-Protease-activated Receptor-1 Signaling Triggers Vascular Smooth Muscle Cell Dedifferentiation and Arterial Stenosis. Journal of Biological Chemistry, 2013, 288, 23105-23115.	1.6	41
1050	TIPE2 deficiency accelerates neointima formation by downregulating smooth muscle cell differentiation. Cell Cycle, 2013, 12, 501-510.	1.3	25
1051	Thin-Capped Atheromata With Reduced Collagen Content in Pigs Develop in Coronary Arterial Regions Exposed to Persistently Low Endothelial Shear Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1494-1504.	1.1	81
1052	Atorvastatin-Loaded Hydrogel Affects the Smooth Muscle Cells of Human Veins. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 574-581.	1.3	26
1053	The effect of mechanical strain on soft (cardiovascular) and hard (bone) tissues. Cell Adhesion and Migration, 2013, 7, 165-173.	1.1	12
1054	Cortistatin Inhibits Migration and Proliferation of Human Vascular Smooth Muscle Cells and Decreases Neointimal Formation on Carotid Artery Ligation. Circulation Research, 2013, 112, 1444-1455.	2.0	50
1055	Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Human Molecular Genetics, 2013, 22, 5107-5120.	1.4	66
1056	Ten-Eleven Translocation-2 (TET2) Is a Master Regulator of Smooth Muscle Cell Plasticity. Circulation, 2013, 128, 2047-2057.	1.6	231
1057	Pathogenic arterial remodeling: the good and bad of microRNAs. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1050-H1059.	1.5	97
1059	Nutritional Therapy in the Treatment of Oxidative-Stress-Induced Heart Disease. , 2013, , 309-324.		0
1060	ROCK inhibitor, Y-27632, reduces FBS-induced structural alteration in organ-cultured mesenteric artery. Journal of Analytical Science and Technology, 2013, 4, 15.	1.0	1
1061	Inhibitory effects of Akebia quinata ethanol extract on TNF-α-mediated vascular inflammation in human aortic smooth muscle cells. Molecular Medicine Reports, 2013, 7, 379-383.	1.1	7
1062	Transcriptional and post-transcriptional regulation of cCMP-dependent protein kinase (PKC-I): pathophysiological significance. Cardiovascular Research, 2013, 97, 200-207.	1.8	25
1063	Human hair follicle stem cell differentiation into contractile smooth muscle cells is induced by transforming growth factor-β1 and platelet-derived growth factor BB. Molecular Medicine Reports, 2013, 8, 1715-1721.	1.1	18
1064	Urokinase Receptor Counteracts Vascular Smooth Muscle Cell Functional Changes Induced by Surface Topography. Theranostics, 2013, 3, 516-526.	4.6	8
1065	Identification of MicroRNAs with Altered Expression Profiles in a Rat Model of Experimentally Induced Early Cerebral Aneurysms. Korean Journal of Neurotrauma, 2013, 9, 41.	0.2	1
1066	Vascular Embryology and Angiogenesis. , 2013, , 1-13.		1

#	Article	IF	CITATIONS
1067	Vascular Smooth Muscle. , 2013, , 25-42.		3
1068	Sarco (Endo) Plasmic Reticulum Calcium Atpases (SERCA) Isoforms in the Normal and Diseased Cardiac, Vascular and Skeletal Muscle. Journal of Cardiovascular Diseases & Diagnosis, 2013, 01, .	0.0	4
1069	MicroRNA-mediated Regulation of Angiogenesis. Current Angiogenesis, 2013, 2, 40-53.	0.1	0
1070	Pericytes as the Source of Mesenchymal Stem Cells. , 2013, , 233-250.		3
1071	A Critical Role for Proinflammatory Behavior of Smooth Muscle Cells in Hemodynamic Initiation of Intracranial Aneurysm. PLoS ONE, 2013, 8, e74357.	1.1	31
1072	Tonic and Phasic Smooth Muscle Contraction Is Not Regulated by the PKCα - CPI-17 Pathway in Swine Stomach Antrum and Fundus. PLoS ONE, 2013, 8, e74608.	1.1	14
1073	Atherosclerosis-Susceptible and Atherosclerosis-Resistant Pigeon Aortic Smooth Muscle Cells Express Different Genes and Proteins in vitro. , 2013, , .		1
1074	Reactive Oxygen Species in Vascular Formation and Development. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-14.	1.9	80
1075	Stem cells for vascular engineering. , 0, , 621-639.		0
1076	MicroRNAome of Vascular Smooth Muscle Cells: Potential for MicroRNA-Based Vascular Therapies. , 2013, , .		2
1077	MicroRNA-365 Inhibits Vascular Smooth Muscle Cell Proliferation through Targeting Cyclin D1. International Journal of Medical Sciences, 2014, 11, 765-770.	1.1	41
1078	Resveratrol Induces Vascular Smooth Muscle Cell Differentiation through Stimulation of SirT1 and AMPK. PLoS ONE, 2014, 9, e85495.	1.1	70
1079	Syndecan-1 Regulates Vascular Smooth Muscle Cell Phenotype. PLoS ONE, 2014, 9, e89824.	1.1	27
1080	Mebendazole Reduces Vascular Smooth Muscle Cell Proliferation and Neointimal Formation Following Vascular Injury in Mice. PLoS ONE, 2014, 9, e90146.	1.1	6
1081	The LIM-Only Protein FHL2 Reduces Vascular Lesion Formation Involving Inhibition of Proliferation and Migration of Smooth Muscle Cells. PLoS ONE, 2014, 9, e94931.	1.1	17
1082	Fibronectin Matrix Polymerization Regulates Smooth Muscle Cell Phenotype through a Rac1 Dependent Mechanism. PLoS ONE, 2014, 9, e94988.	1.1	22
1083	The Ran GTPase-Activating Protein (RanGAP1) Is Critically Involved in Smooth Muscle Cell Differentiation, Proliferation and Migration following Vascular Injury: Implications for Neointima Formation and Restenosis. PLoS ONE, 2014, 9, e101519.	1.1	13
1084	Dual Regulation of Myocardin Expression by Tumor Necrosis Factor-α in Vascular Smooth Muscle Cells. PLoS ONE, 2014, 9, e112120.	1.1	12

#	Article	IF	CITATIONS
1085	The C2238/αANP Variant Is a Negative Modulator of Both Viability and Function of Coronary Artery Smooth Muscle Cells. PLoS ONE, 2014, 9, e113108.	1.1	10
1086	Are oxidised low-density lipoproteins the true inducers of inflammation in atherosclerosis?. Inflammasome, 2014, 1, .	0.6	4
1087	Resveratrol Inhibits Phenotype Modulation by Platelet Derived Growth Factor-bb in Rat Aortic Smooth Muscle Cells. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-9.	1.9	11
1088	Murine Aortic Smooth Muscle Cells Acquire, Though Fail to Present Exogenous Protein Antigens on Major Histocompatibility Complex Class II Molecules. BioMed Research International, 2014, 2014, 1-10.	0.9	3
1089	Lysyl oxidase (LOX) in vascular remodelling. Thrombosis and Haemostasis, 2014, 112, 812-824.	1.8	26
1090	Smooth Muscle Cell Functionality on Collagen Immobilized Polycaprolactone Nanowire Surfaces. Journal of Functional Biomaterials, 2014, 5, 58-77.	1.8	17
1091	miR-18a-5p MicroRNA Increases Vascular Smooth Muscle Cell Differentiation by Downregulating Syndecan4. Korean Circulation Journal, 2014, 44, 255.	0.7	39
1092	Role of Krüppel-Like Factor 4 and its Binding Proteins in Vascular Disease. Journal of Atherosclerosis and Thrombosis, 2014, 21, 402-413.	0.9	40
1093	The Role of MicroRNAs in Vascular Diseases; Smooth Muscle Cell Differentiation and De-Differentiation. Korean Circulation Journal, 2014, 44, 218.	0.7	1
1094	Contribution of intestinal smooth muscle to Crohn's disease fibrogenesis. European Journal of Histochemistry, 2014, 58, 2457.	0.6	29
1095	MicroRNAs and Smooth Muscle Cells Phenotypic Switching in PAH. Journal of Pulmonary & Respiratory Medicine, 2014, 04, .	0.1	0
1096	Deficiency of MAPK-activated protein kinase 2 (MK2) prevents adverse remodelling and promotes endothelial healing after arterial injury. Thrombosis and Haemostasis, 2014, 112, 1264-1276.	1.8	20
1097	Low-frequency ultrasound induces apoptosis of rat aortic smooth muscle cells (A7r5) via the intrinsic apoptotic pathway. Genetics and Molecular Research, 2014, 13, 3143-3153.	0.3	5
1098	Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. Journal of Biomedical Research, 2014, 28, 25.	0.7	109
1099	Elevated expression of connective tissue growth factor, osteopontin and increased collagen content in human ascending thoracic aortic aneurysms. Vascular, 2014, 22, 20-27.	0.4	30
1100	The CCR5 chemokine receptor mediates vasoconstriction and stimulates intimal hyperplasia in human vessels in vitro. Cardiovascular Research, 2014, 101, 513-521.	1.8	21
1101	Interferon regulatory factor 9 is critical for neointima formation following vascular injury. Nature Communications, 2014, 5, 5160.	5.8	61
1102	Pulmonary Vascular Development. , 2014, , 85-119.		0

#	Article	IF	Citations
1103	Activation of the Retinoid X Receptor Modulates Angiotensin II-Induced Smooth Muscle Gene Expression and Inflammation in Vascular Smooth Muscle Cells. Molecular Pharmacology, 2014, 86, 570-579.	1.0	10
1104	Review of Molecular and Mechanical Interactions in the Aortic Valve and Aorta: Implications for the Shared Pathogenesis of Aortic Valve Disease and Aortopathy. Journal of Cardiovascular Translational Research, 2014, 7, 823-846.	1.1	8
1105	Geminin Interference Facilitates Vascular Smooth Muscle Cell Proliferation by Upregulation of CDK-1. Cardiovascular Drugs and Therapy, 2014, 28, 407-414.	1.3	6
1106	Calcifying vascular smooth muscle cells and osteoblasts: independent cell types exhibiting extracellular matrix and biomineralization-related mimicries. BMC Genomics, 2014, 15, 965.	1.2	87
1107	Asymmetric Cell–Matrix and Biomechanical Abnormalities in Elastin Insufficiency Induced Aortopathy. Annals of Biomedical Engineering, 2014, 42, 2014-2028.	1.3	7
1108	The Transcription Factor TEAD1 Represses Smooth Muscle-specific Gene Expression by Abolishing Myocardin Function*. Journal of Biological Chemistry, 2014, 289, 3308-3316.	1.6	45
1109	Calcineurin/Nuclear Factor of Activated T Cells–Coupled Vanilliod Transient Receptor Potential Channel 4 Ca ²⁺ Sparklets Stimulate Airway Smooth Muscle Cell Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 1064-1075.	1.4	35
1110	γ-Secretase inhibitor DAPT attenuates intimal hyperplasia of vein grafts by inhibition of Notch1 signaling. Laboratory Investigation, 2014, 94, 654-662.	1.7	18
1111	Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling. Cell Death and Disease, 2014, 5, e1251-e1251.	2.7	96
1112	Repression of Sox9 by Jag1 Is Continuously Required to Suppress the Default Chondrogenic Fate of Vascular Smooth Muscle Cells. Developmental Cell, 2014, 31, 707-721.	3.1	65
1113	p53 in cell invasion, podosomes, and invadopodia. Cell Adhesion and Migration, 2014, 8, 205-214.	1.1	26
1114	Regulation of signaling interactions and receptor endocytosis in growing blood vessels. Cell Adhesion and Migration, 2014, 8, 366-377.	1.1	41
1115	Regulation of Vascular Smooth Muscle Cell Phenotype in Three-Dimensional Coculture System by Jagged1-Selective Notch3 Signaling. Tissue Engineering - Part A, 2014, 20, 1175-1187.	1.6	34
1116	The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Frontiers in Physiology, 2014, 5, 212.	1.3	208
1117	Downregulation of L-type Ca ²⁺ channel in rat mesenteric arteries leads to loss of smooth muscle contractile phenotype and inward hypertrophic remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1287-H1301.	1.5	20
1118	Neural programming of mesenteric and renal arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H563-H573.	1.5	19
1119	Maternal food restriction modulates cerebrovascular structure and contractility in adult rat offspring: effects of metyrapone. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R401-R410.	0.9	18
1120	Esophagus Tissue Engineering: Designing and Crafting the Components for the "Hybrid Construct― Approach. European Journal of Pediatric Surgery, 2014, 24, 246-262.	0.7	15

#	Article	IF	CITATIONS
1121	MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review). International Journal of Molecular Medicine, 2014, 34, 923-933.	1.8	88
1122	Culture medium effects on vascular smooth muscle cell contractile protein expression and morphology in 2D v. 3D. , 2014, , .		0
1123	Smooth-muscle progenitor cells isolated from patients with moyamoya disease: novel experimental cell model. Journal of Neurosurgery, 2014, 120, 415-425.	0.9	45
1124	Therapeutic potential of Rb phosphorylation in atherosclerosis. Cell Cycle, 2014, 13, 352-352.	1.3	6
1125	Endothelial Fate Mapping in Mice With Pulmonary Hypertension. Circulation, 2014, 129, 692-703.	1.6	69
1126	MicroRNAs in Atherosclerosis. Journal of Vascular Research, 2014, 51, 338-349.	0.6	53
1127	Adsorption of plasma proteins and fibronectin on poly(hydroxylethyl methacrylate) brushes of different thickness and their relationship with adhesion and migration of vascular smooth muscle cells. International Journal of Energy Production and Management, 2014, 1, 17-25.	1.9	27
1128	Resveratrol inhibits glucoseâ€induced migration of vascular smooth muscle cells mediated by focal adhesion kinase. Molecular Nutrition and Food Research, 2014, 58, 1389-1401.	1.5	32
1129	Downâ€Regulation of miRâ€96 by Bone Morphogenetic Protein Signaling is Critical for Vascular Smooth Muscle Cell Phenotype Modulation. Journal of Cellular Biochemistry, 2014, 115, 889-895.	1.2	39
1130	Stretchâ€Dependent Smooth Muscle Differentiation in the Portal Vein—Role of Actin Polymerization, Calcium Signaling, and micro <scp>RNA</scp> s. Microcirculation, 2014, 21, 230-238.	1.0	18
1131	An Experimental Investigation of the Effect of Mechanical and Biochemical Stimuli on Cell Migration Within a Decellularized Vascular Construct. Annals of Biomedical Engineering, 2014, 42, 2029-2038.	1.3	12
1132	Baicalin attenuates transforming growth factor-l²1-induced human pulmonary artery smooth muscle cell proliferation and phenotypic switch by inhibiting hypoxia inducible factor-11± and aryl hydrocarbon receptor expression. Journal of Pharmacy and Pharmacology, 2014, 66, 1469-1477.	1.2	46
1133	Notch signaling governs phenotypic modulation of smooth muscle cells. Vascular Pharmacology, 2014, 63, 88-96.	1.0	30
1134	Trophic action of sympathetic nerves reduces arterial smooth muscle Ca ²⁺ sensitivity during early post-natal development in rats. Acta Physiologica, 2014, 212, 128-141.	1.8	31
1135	Reply to the Editor. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 2440-2442.	0.4	0
1136	Smooth Muscleâ€Protein Translocation and Tissue Function. Anatomical Record, 2014, 297, 1734-1746.	0.8	6
1137	Prostatic α1â€∎drenoceptors: New concepts of function, regulation, and intracellular signaling. Neurourology and Urodynamics, 2014, 33, 1074-1085.	0.8	60
1138	A bioinformatic and computational study of myosin phosphatase subunit diversity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R256-R270.	0.9	21

#	Article	IF	CITATIONS
1139	Proliferative changes of renal arteriolar walls induced by administration of angiotensin II receptor blocker are frequent in juvenile rats. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 440-449.	1.0	4
1140	Role of Biomechanical Forces in Stem Cell Vascular Lineage Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2184-2190.	1.1	60
1141	Embryonic rat vascular smooth muscle cells revisited - a model for neonatal, neointimal SMC or differentiated vascular stem cells?. Vascular Cell, 2014, 6, 6.	0.2	23
1142	Homodimerization of RBPMS2 through a new RRM-interaction motif is necessary to control smooth muscle plasticity. Nucleic Acids Research, 2014, 42, 10173-10184.	6.5	39
1143	Interferon Regulatory Factor 8 Modulates Phenotypic Switching of Smooth Muscle Cells by Regulating the Activity of Myocardin. Molecular and Cellular Biology, 2014, 34, 400-414.	1.1	30
1144	Modulation of cysteine-rich protein 2 expression in vascular injury and atherosclerosis. Molecular Biology Reports, 2014, 41, 7033-7041.	1.0	7
1145	Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury. Vascular Cell, 2014, 6, 21.	0.2	117
1146	Smooth muscle cell phenotypic switch. Current Opinion in Lipidology, 2014, 25, 374-379.	1.2	72
1147	Swelling-activated Clâ^' currents and intracellular CLC-3 are involved in proliferation of human pulmonary artery smooth muscle cells. Journal of Hypertension, 2014, 32, 318-330.	0.3	24
1148	The vascular bed in COPD: pulmonary hypertension and pulmonary vascular alterations. European Respiratory Review, 2014, 23, 350-355.	3.0	72
1149	Olfactomedin 2, a novel regulator for transforming growth factor-β–induced smooth muscle differentiation of human embryonic stem cell–derived mesenchymal cells. Molecular Biology of the Cell, 2014, 25, 4106-4114.	0.9	30
1150	miRNAs in post-ischaemic angiogenesis and vascular remodelling. Biochemical Society Transactions, 2014, 42, 1629-1636.	1.6	18
1151	Interferon Regulatory Factor 7 Protects Against Vascular Smooth Muscle Cell Proliferation and Neointima Formation. Journal of the American Heart Association, 2014, 3, e001309.	1.6	27
1152	The Role of Reactive Oxygen Species in Microvascular Remodeling. International Journal of Molecular Sciences, 2014, 15, 23792-23835.	1.8	50
1154	Differential Effects of Intravenous Anesthetics on PDGF-BB-Induced Vascular Smooth Muscle Cell Migration. Cellular Physiology and Biochemistry, 2014, 33, 1827-1837.	1.1	9
1155	Treatment of Bladder Dysfunction Using Stem Cell or Tissue Engineering Technique. Korean Journal of Urology, 2014, 55, 228.	1.2	35
1156	Phenotypic Modulation of Mesenteric Vascular Smooth Muscle Cells from Type 2 Diabetic Rats is Associated with Decreased Caveolin-1 Expression. Cellular Physiology and Biochemistry, 2014, 34, 1497-1506.	1.1	26
1157	Resveratrol Inhibits Phenotypic Switching of Neointimal Vascular Smooth Muscle Cells After Balloon Injury Through Blockade of Notch Pathway. Journal of Cardiovascular Pharmacology, 2014, 63, 233-239.	0.8	15

ARTICLE IF CITATIONS # Interferon regulatory factor 3 protects against adverse neo-intima formation. Cardiovascular 1158 1.8 20 Research, 2014, 102, 469-479. Modulation of vascular smooth muscle cell phenotype by STAT-1 and STAT-3. Atherosclerosis, 2014, 234, 0.4 19 169-175. The role of SIRT6 in the differentiation of vascular smooth muscle cells in response to cyclic strain. 1160 1.2 36 International Journal of Biochemistry and Cell Biology, 2014, 49, 98-104. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and 1161 2.4 114 clinical application. Cellular and Molecular Life Sciences, 2014, 71, 2271-2288. The cyclic AMP response elementâ€binding protein (CREB) mediates smooth muscle cell proliferation in 1162 1.8 29 response to angiotensin II. Journal of Cell Communication and Signaling, 2014, 8, 29-37. Smooth Muscle Cell Phenotypic Switching in Stroke. Translational Stroke Research, 2014, 5, 377-384. 2.3 Smooth Muscle Phenotype Switching in Blast Traumatic Brain Injury-Induced Cerebral Vasospasm. 1164 2.326 Translational Stroke Research, 2014, 5, 385-393. A Smooth Muscle-Like Origin for Beige Adipocytes. Cell Metabolism, 2014, 19, 810-820. 1165 7.2 373 Directed differentiation of embryonic origin–specific vascular smooth muscle subtypes from human 1166 5.5 82 pluripotent stem cells. Nature Protocols, 2014, 9, 929-938. Adipose-derived stem cells (ADSCs) and muscle precursor cells (MPCs) for the treatment of bladder 1.2 voiding dysfunction. World Journal of Urology, 2014, 32, 1241-1248. Fluid Mechanics, Arterial Disease, and Gene Expression. Annual Review of Fluid Mechanics, 2014, 46, 1168 10.8 134 591-614. CXCR2â€mediated tumorâ€associated neutrophil recruitment is regulated by IFNâ€Î². International Journal of 2.3 1169 Cancer, 2014, 134, 1346-1358. Role of the PI3K/AKT Pathway in Modulating Cytoskeleton Rearrangements and Phenotype Switching in 1170 0.9 39 Rat Pulmonary Arterial Vascular Smooth Muscle Cells. DNA and Cell Biology, 2014, 33, 12-19. Plateletâ€Derived Growth Factor Regulation of Typeâ€5 Phosphodiesterase in Human and Rat Penile 1171 0.3 Smooth Muscle Cells. Journal of Sexual Medicine, 2014, 11, 1675-1684. The Genetic Basis of Aortic Aneurysm. Cold Spring Harbor Perspectives in Medicine, 2014, 4, 1172 2.9 61 a015909-a015909. Proteomic Study of the Microdissected Aortic Media in Human Thoracic Aortic Aneurysms. Journal of 1.8 24 Proteome Research, 2014, 13, 5071-5080. The pigeon (Columba livia) model of spontaneous atherosclerosis. Poultry Science, 2014, 93, 2691-2699. 1174 1.58 Induction of endometrial mesenchymal stem cells into tissue-forming cells suitable for fascial repair. 1175 4.1 Acta Biomaterialia, 2014, 10, 5012-5020.

#	Article	IF	CITATIONS
1176	Effect of Heparin-Derived Oligosaccharide on bFGFR1 and bFGFR2 in Vascular Smooth Muscle Cells. Vascular and Endovascular Surgery, 2014, 48, 289-296.	0.3	4
1177	Pulmonary vascular changes in asthma and COPD. Pulmonary Pharmacology and Therapeutics, 2014, 29, 144-155.	1.1	68
1178	HIFâ€1 Alphaâ€Induced Upâ€Regulation of miRâ€9 Contributes to Phenotypic Modulation in Pulmonary Artery Smooth Muscle Cells During Hypoxia. Journal of Cellular Physiology, 2014, 229, 1511-1520.	2.0	49
1179	Mutual amplification of corticosteroids and angiotensin systems in human vascular smooth muscle cells and carotid atheroma. Journal of Molecular Medicine, 2014, 92, 1201-1208.	1.7	11
1180	Influence of atorvastatin on angiotensin I metabolism in resting and TNF-α -activated rat vascular smooth muscle cells. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 378-383.	1.0	21
1181	Induction of angiotensin-converting enzyme after miR-143/145 deletion is critical for impaired smooth muscle contractility. American Journal of Physiology - Cell Physiology, 2014, 307, C1093-C1101.	2.1	30
1182	Altered vascular smooth muscle cell differentiation in the endometrial vasculature in menorrhagia. Human Reproduction, 2014, 29, 1884-1894.	0.4	20
1183	Influence of micropattern width on differentiation of human mesenchymal stem cells to vascular smooth muscle cells. Colloids and Surfaces B: Biointerfaces, 2014, 122, 316-323.	2.5	36
1184	RORα suppresses proliferation of vascular smooth muscle cells through activation of AMP-activated protein kinase. International Journal of Cardiology, 2014, 175, 515-521.	0.8	19
1185	Vascular tissue engineering: from <i>in vitro</i> to <i>in situ</i> . Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 61-76.	6.6	135
1186	The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes and Diseases, 2014, 1, 18-39.	1.5	23
1187	A bioinformatics method for predicting long noncoding RNAs associated with vascular disease. Science China Life Sciences, 2014, 57, 852-857.	2.3	55
1188	Oxidative stress-dependent activation of collagen synthesis is induced in human pulmonary smooth muscle cells by sera from patients with scleroderma-associated pulmonary hypertension. Orphanet Journal of Rare Diseases, 2014, 9, 123.	1.2	35
1189	Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development (Cambridge), 2014, 141, 2139-2149.	1.2	110
1190	Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Review of Proteomics, 2014, 11, 149-165.	1.3	81
1191	Development and pathologies of the arterial wall. Cellular and Molecular Life Sciences, 2014, 71, 1977-1999.	2.4	25
1192	Phenotypic transition of corpus cavernosum smooth muscle cells subjected to hypoxia. Cell and Tissue Research, 2014, 357, 823-833.	1.5	17
1193	Silencing heat shock protein 27 (HSP27) inhibits the proliferation and migration of vascular smooth muscle cells in vitro. Molecular and Cellular Biochemistry, 2014, 390, 115-121.	1.4	12

#	Article	IF	Citations
1194	Structural and functional analysis of the related transcriptional enhancer factor-1 and NF-κB interaction. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H233-H242.	1.5	2
1195	Deletion of Yes-Associated Protein (YAP) Specifically in Cardiac and Vascular Smooth Muscle Cells Reveals a Crucial Role for YAP in Mouse Cardiovascular Development. Circulation Research, 2014, 114, 957-965.	2.0	106
1196	Vascular Smooth Muscle Cells in Cerebral Aneurysm Pathogenesis. Translational Stroke Research, 2014, 5, 338-346.	2.3	126
1197	Fermented soshiho-tang with Lactobacillus plantarum enhances the antiproliferative activity in vascular smooth muscle cell. BMC Complementary and Alternative Medicine, 2014, 14, 78.	3.7	14
1198	Divergent signaling pathways cooperatively regulate TGFÎ ² induction of cysteine-rich protein 2 in vascular smooth muscle cells. Cell Communication and Signaling, 2014, 12, 22.	2.7	16
1199	Endothelial Cells Direct Mesenchymal Stem Cells Toward a Smooth Muscle Cell Fate. Stem Cells and Development, 2014, 23, 2581-2590.	1.1	42
1200	Orf virus <scp>IL</scp> â€10 accelerates wound healing while limiting inflammation and scarring. Wound Repair and Regeneration, 2014, 22, 356-367.	1.5	33
1201	An emerging role for the miR-26 family in cardiovascular disease. Trends in Cardiovascular Medicine, 2014, 24, 241-248.	2.3	65
1202	Adult vascular smooth muscle cells in culture express neural stem cell markers typical of resident multipotent vascular stem cells. Cell and Tissue Research, 2014, 358, 203-216.	1.5	17
1203	Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation. Journal of Molecular and Cellular Cardiology, 2014, 66, 18-26.	0.9	52
1204	Transcriptome profiling reveals that the SM22α-regulated molecular pathways contribute to vascular pathology. Journal of Molecular and Cellular Cardiology, 2014, 72, 263-272.	0.9	23
1205	Three-dimensional multilayers of smooth muscle cells as a new experimental model for vascular elastic fiber formation studies. Atherosclerosis, 2014, 233, 590-600.	0.4	21
1206	Atherosclerosis and interferon-γ: New insights and therapeutic targets. Trends in Cardiovascular Medicine, 2014, 24, 45-51.	2.3	111
1207	Ascending aorta dilation in association with bicuspid aortic valve: AÂmaturation defect of the aortic wall. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1583-1590.	0.4	67
1208	Protein kinase C isoforms in atherosclerosis: Pro- or anti-inflammatory?. Biochemical Pharmacology, 2014, 88, 139-149.	2.0	41
1209	Oxidative activation of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates vascular smooth muscle migration and apoptosis. Vascular Pharmacology, 2014, 60, 75-83.	1.0	32
1210	KV7 potassium channels: a new therapeutic target in smooth muscle disorders. Drug Discovery Today, 2014, 19, 413-424.	3.2	83
1211	Tributyltin contributes in reducing the vascular reactivity to phenylephrine in isolated aortic rings from female rats. Toxicology Letters, 2014, 225, 378-385.	0.4	25

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
1212	Type 2 diabetes impairs venous, but not arterial smooth muscle cell function: Possible role of differential RhoA activity. Cardiovascular Revascularization Medicine, 2014, 15, 141-148.	0	.3	23
1213	Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple dis states. , 2014, 143, 265-274.	ease		46
1214	Microfluidic techniques for development of 3D vascularized tissue. Biomaterials, 2014, 35, 73	308-7325. 5.	.7	254
1215	Diseases of Medium-Sized and Small Vessels. , 2014, , 197-219.			8
1216	Elevated expression levels of miR-143/5 in saphenous vein smooth muscle cells from patients 2 diabetes drive persistent changes in phenotype and function. Journal of Molecular and Cellu Cardiology, 2014, 74, 240-250.	with Type Ilar O	.9	58
1217	Endothelial heterogeneity in the umbilico-placental unit: DNA methylation as an innuendo of epigenetic diversity. Frontiers in Pharmacology, 2014, 5, 49.	1.	.6	21
1218	Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors. Molecular Medicine Reports, 2014, 9, 204-21	0. 1.	.1	23
1219	The effect of zipper-interacting protein kinase on high glucose-stimulated human aortic smoc muscle cells. International Journal of Molecular Medicine, 2014, 33, 1305-1311.	th 1.	.8	1
1220	Generation of a <scp><i>C</i></scp> <i>re</i> knockâ€in into the <scp><i>M</i></scp> <i>you locus to mark early cardiac and smooth muscle cell lineages. Genesis, 2014, 52, 879-887.</i>	ocardin 0	.8	4
1221	Regulatory T cells protect against hypoxia-induced pulmonary arterial hypertension in mice. Molecular Medicine Reports, 2015, 11, 3181-3187.	1.	.1	39
1222	Cyclic nucleotide phosphodiesterase 1 and vascular aging. Clinical Science, 2015, 129, 1077-	1081. 1.	.8	17
1223	An ethanol root extract of Cynanchum wilfordii containing acetophenones suppresses the ex of VCAM-1 and ICAM-1 in TNF-î±-stimulated human aortic smooth muscle cells through the N International Journal of Molecular Medicine, 2015, 35, 915-924.	pression F-κB pathway. 1.	.8	24
1224	Matrix metalloproteinase-12 is an essential mediator of acute and chronic arterial stiffening. Scientific Reports, 2015, 5, 17189.	1.	.6	41
1226	Overexpression of mimecan in human aortic smooth muscle cells inhibits cell proliferation and enhances apoptosis and migration. Experimental and Therapeutic Medicine, 2015, 10, 187-19		.8	16
1227	Leukotriene B4 Inhibits L-Type Calcium Channels via p38 Signaling Pathway in Vascular Smoo Cells. Cellular Physiology and Biochemistry, 2015, 37, 1903-1913.	th Muscle 1.	.1	7
1228	Functional states of resident vascular stem cells and vascular remodeling. Frontiers in Biology 10, 387-397.	, 2015, o	.7	2
1229	Mesoglycan attenuates VSMC proliferation through activation of AMP-activated protein kinas mTOR. Clinical Hypertension, 2015, 22, 2.	e and O	.7	16
1230	Spontaneous activity and stretch-induced contractile differentiation are reduced in vascular s muscle of miR-143/145 knockout mice. Acta Physiologica, 2015, 215, 133-143.	mooth 1.	.8	19

ARTICLE IF CITATIONS Variability in vascular smooth muscle cell stretch-induced responses in 2D culture. Vascular Cell, 1231 0.2 39 2015, 7, 7. Nonâ€receptor tyrosine kinases and the actin cytoskeleton in contractile vascular smooth muscle. 1.3 Journal of Physiology, 2015, 593, 3807-3814. Regulatory mechanism of human vascular smooth muscle cell phenotypic transformation induced by 1233 1.1 8 NELIN. Molecular Medicine Reports, 2015, 12, 7310-7316. Wnt Signaling in Cardiac Disease., 2015, 5, 1183-1209. 1234 43 Proliferative arteriopathy of the nasal philtrum in a Saint Bernard dog: Case report. Archivos De 1235 0.2 2 Medicina Veterinaria, 2015, 47, 255-258. Dihydroaustrasulfone Alcohol Inhibits PDGF-Induced Proliferation and Migration of Human Aortic Smooth Muscle Cells through Inhibition of the Cell Cycle. Marine Drugs, 2015, 13, 2390-2406. 2.2 Intracranial aneurysm risk factor genes: relationship with intracranial aneurysm risk in a Chinese Han 1237 0.3 8 population. Genetics and Molecular Research, 2015, 14, 6865-6878. Chronic kidney disease alters vascular smooth muscle cell phenotype. Frontiers in Bioscience -1238 Landmark, 2015, 20, 784-795. 1239 MicroRNAs: Novel Players in Aortic Aneurysm. BioMed Research International, 2015, 2015, 1-9. 0.9 29 Molecular Pathways Regulating Macrovascular Pathology and Vascular Smooth Muscle Cells 1240 1.8 39 Phenotype in Type 2 Diabetes. International Journal of Molecular Sciences, 2015, 16, 24353-24368. Potential Contribution of Phenotypically Modulated Smooth Muscle Cells and Related Inflammation in the Development of Experimental Obstructive Pulmonary Vasculopathy in Rats. PLoS ONE, 2015, 10, 1241 1.1 31 e0118655. Atorvastatin Calcium Inhibits Phenotypic Modulation of PDGF-BB-Induced VSMCs via Down-Regulation the Akt Signaling Pathway. PLoS ONE, 2015, 10, e0122577. 1.1 34 Myocardin Family Members Drive Formation of Caveolae. PLoS ONE, 2015, 10, e0133931. 1243 1.1 32 MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism. PLoS ONE, 2015, 10, e0141397. 1244 1.1 14 Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene 1245 Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells. PLoS 1.1 26 ONE, 2015, 10, e0145153. Serum Response Factor Is Essential for Prenatal Gastrointestinal Smooth Muscle Development and 1246 Maintenance of Differentiated Phenotype. Journal of Neurogastroenterology and Motility, 2015, 21, 589-602. Panax notoginsengSaponins Attenuate Phenotype Switching of Vascular Smooth Muscle Cells Induced 1247 0.59 by Notch3 Silencing. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-6. Atherogenic Cytokines Regulate VECF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal 1248 1.2 Stem Cells into Endothelial Cells. Stem Cells International, 2015, 2015, 1-13.

	CITATION	CITATION REPORT	
#	Article	IF	Citations
1249	MicroRNAs and Cardiovascular Diseases. BioMed Research International, 2015, 2015, 1-14.	0.9	69
1250	Statins in Asthma: Potential Beneficial Effects and Limitations. Pulmonary Medicine, 2015, 2015, 1-13.	0.5	28
1251	CD137 Regulates NFATc1 Expression in Mouse VSMCs through TRAF6/NF- <i>κ</i> B p65 Signaling Pathway. Mediators of Inflammation, 2015, 2015, 1-10.	1.4	13
1252	Blood Vessel Formation. , 2015, , 421-449.		1
1253	ls Targeting microRNAs the Philosopher's Stone for Vascular Disease?. Current Vascular Pharmacology, 2015, 14, 88-97.	0.8	8
1254	Dynamic Interplay Between Smooth Muscle Cells and Macrophages in Vascular Disease. , 0, , .		2
1255	Myocardin is required for maintenance of vascular and visceral smooth muscle homeostasis during postnatal development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4447-4452.	3.3	79
1256	Vascular smooth muscle cell in atherosclerosis. Acta Physiologica, 2015, 214, 33-50.	1.8	321
1257	KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nature Medicine, 2015, 21, 628-637.	15.2	869
1258	Kaempferol inhibits vascular smooth muscle cell migration by modulating BMP-mediated miR-21 expression. Molecular and Cellular Biochemistry, 2015, 407, 143-149.	1.4	25
1259	Calcium Sensing Receptor Regulating Smooth Muscle Cells Proliferation Through Initiating Cystathionine-Gamma-Lyase/Hydrogen Sulfide Pathway in Diabetic Rat. Cellular Physiology and Biochemistry, 2015, 35, 1582-1598.	1.1	27
1260	Kv1.3 channels modulate human vascular smooth muscle cells proliferation independently of mTOR signaling pathway. Pflugers Archiv European Journal of Physiology, 2015, 467, 1711-1722.	1.3	33
1261	Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1. Biochemical and Biophysical Research Communications, 2015, 464, 57-62.	1.0	45
1262	N-Cadherin Induction by ECM Stiffness and FAK Overrides the Spreading Requirement for Proliferation of Vascular Smooth Muscle Cells. Cell Reports, 2015, 10, 1477-1486.	2.9	61
1263	Role of cAMP-Phosphodiesterase 1C Signaling in Regulating Growth Factor Receptor Stability, Vascular Smooth Muscle Cell Growth, Migration, and Neointimal Hyperplasia. Circulation Research, 2015, 116, 1120-1132.	2.0	80
1264	The short and long of noncoding sequences in the control of vascular cell phenotypes. Cellular and Molecular Life Sciences, 2015, 72, 3457-3488.	2.4	34
1265	Role Played by Prx1â€Dependent Extracellular Matrix Properties in Vascular Smooth Muscle Development in Embryonic Lungs. Pulmonary Circulation, 2015, 5, 382-397.	0.8	16
1266	Developmental origin of age-related coronary artery disease. Cardiovascular Research, 2015, 107, 287-294.	1.8	20

#	Article	IF	CITATIONS
1268	microRNAs in Cerebrovascular Disease. Advances in Experimental Medicine and Biology, 2015, 888, 155-195.	0.8	71
1269	Expression of V3 Versican by Rat Arterial Smooth Muscle Cells Promotes Differentiated and Anti-inflammatory Phenotypes. Journal of Biological Chemistry, 2015, 290, 21629-21641.	1.6	19
1270	Phenotypic switching of vascular smooth muscle cells in animal model of rat thoracic aortic aneurysm. Interactive Cardiovascular and Thoracic Surgery, 2015, 21, 62-70.	0.5	47
1271	An In Vitro Cynomolgus Vascular Surrogate System for Preclinical Drug Assessment and Human Translation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2185-2195.	1.1	9
1272	Intratumoral LIGHT Restores Pericyte Contractile Properties and Vessel Integrity. Cell Reports, 2015, 13, 2687-2698.	2.9	69
1273	Inhibition of Diaphanous Formin Signaling In Vivo Impairs Cardiovascular Development and Alters Smooth Muscle Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2374-2383.	1.1	14
1274	Myristoylated Alanineâ€Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation. Journal of the American Heart Association, 2015, 4, e002255.	1.6	31
1275	AMP-activated protein kinase inhibits transforming growth factor-β-mediated vascular smooth muscle cell growth: implications for a Smad-3-dependent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1251-H1259.	1.5	16
1276	Functions of the bone morphogenetic protein signaling pathway through microRNAs (Review). International Journal of Molecular Medicine, 2015, 35, 563-568.	1.8	22
1277	Soluble epoxide hydrolase is involved in the development of atherosclerosis and arterial neointima formation by regulating smooth muscle cell migration. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1894-H1903.	1.5	26
1278	Cardiac and Vascular Receptors and Signal Transduction. , 2015, , 251-277.		1
1279	Matrix Metalloproteinase 2 as a Potential Mediator of Vascular Smooth Muscle Cell Migration and Chronic Vascular Remodeling in Hypertension. Journal of Vascular Research, 2015, 52, 221-231.	0.6	101
1280	Enteric neural crest cells regulate vertebrate stomach patterning and differentiation. Development (Cambridge), 2015, 142, 331-42.	1.2	38
1281	Overexpression of MicroRNA-145 Promotes Ascending Aortic Aneurysm Media Remodeling through TGF-β1. European Journal of Vascular and Endovascular Surgery, 2015, 49, 52-59.	0.8	30
1282	Virusâ€based scaffolds for tissue engineering applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 534-547.	3.3	21
1283	Autophagic regulation of smooth muscle cell biology. Redox Biology, 2015, 4, 97-103.	3.9	78
1284	Vascular smooth muscle cell phenotypic modulation and the extracellular matrix. Artery Research, 2015, 9, 14.	0.3	12
1285	Extracellular matrix presentation modulates vascular smooth muscle cell mechanotransduction. Matrix Biology, 2015, 41, 36-43.	1.5	68

#	Article	IF	CITATIONS
1286	Ultrastructural Localization of Adiponectin protein in Vasculature of Normal and Atherosclerotic mice. Scientific Reports, 2014, 4, 4895.	1.6	33
1287	Upregulated expression of STIM2, TRPC6, and Orai2 contributes to the transition of pulmonary arterial smooth muscle cells from a contractile to proliferative phenotype. American Journal of Physiology - Cell Physiology, 2015, 308, C581-C593.	2.1	91
1288	Environmental carcinogens and mutational pathways in atherosclerosis. International Journal of Hygiene and Environmental Health, 2015, 218, 293-312.	2.1	25
1289	The Dysfunction of the Trabecular Meshwork During Glaucoma Course. Journal of Cellular Physiology, 2015, 230, 510-525.	2.0	88
1290	Vascular Smooth Muscle Cell Phenotypic Changes in Patients With Marfan Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 960-972.	1.1	116
1291	Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 817-828.	1.1	92
1292	Mesenchymal stromal cells for sphincter regeneration. Advanced Drug Delivery Reviews, 2015, 82-83, 123-136.	6.6	21
1293	Cholesterol Loading Reprograms the MicroRNA-143/145–Myocardin Axis to Convert Aortic Smooth Muscle Cells to a Dysfunctional Macrophage-Like Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 535-546.	1.1	261
1294	<i>Chrysanthemum boreale</i> flower floral water inhibits platelet-derived growth factor-stimulated migration and proliferation in vascular smooth muscle cells. Pharmaceutical Biology, 2015, 53, 725-734.	1.3	15
1295	MEF2B-Nox1 Signaling Is Critical for Stretch-Induced Phenotypic Modulation of Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 430-438.	1.1	78
1296	Differentiated adipose-derived stem cells for bladder bioengineering. Scandinavian Journal of Urology, 2015, 49, 407-414.	0.6	14
1297	Knockout of <i>Adamts7</i> , a Novel Coronary Artery Disease Locus in Humans, Reduces Atherosclerosis in Mice. Circulation, 2015, 131, 1202-1213.	1.6	107
1298	Advanced glycation end products promote proliferation and suppress autophagy via reduction of Cathepsin D in rat vascular smooth muscle cells. Molecular and Cellular Biochemistry, 2015, 403, 73-83.	1.4	22
1299	A Novel Trigger for Cholesterol-Dependent Smooth Muscle Contraction Mediated by the Sphingosylphosphorylcholine-Rho-Kinase Pathway in the Rat Basilar Artery: A Mechanistic Role for Lipid Rafts. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 835-842.	2.4	14
1300	The microRNA miR-34c inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by targeting stem cell factor. Cellular Signalling, 2015, 27, 1056-1065.	1.7	51
1301	Soluble Jagged-1 inhibits restenosis of vein graft by attenuating Notch signaling. Microvascular Research, 2015, 100, 9-16.	1.1	13
1302	Coronary Artery Disease Associated Transcription Factor TCF21 Regulates Smooth Muscle Precursor Cells That Contribute to the Fibrous Cap. PLoS Genetics, 2015, 11, e1005155.	1.5	86
1303	Phenotype and Physiological Significance of the Endocardial Smooth Muscle Cells in Human Failing Hearts. Circulation: Heart Failure, 2015, 8, 149-155.	1.6	6

#	Article	IF	CITATIONS
1304	Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology, 2015, 17, 994-1003.	4.6	463
1305	PI3K signaling in arterial diseases: Non redundant functions of the PI3K isoforms. Advances in Biological Regulation, 2015, 59, 4-18.	1.4	20
1306	H2S does not regulate proliferation via T-type Ca2+ channels. Biochemical and Biophysical Research Communications, 2015, 461, 659-664.	1.0	4
1307	STAT3 Protein Regulates Vascular Smooth Muscle Cell Phenotypic Switch by Interaction with Myocardin. Journal of Biological Chemistry, 2015, 290, 19641-19652.	1.6	65
1308	Adventitia and Perivascular Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e31-5.	1.1	71
1309	PDGFRÎ ² signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nature Communications, 2015, 6, 7770.	5.8	123
1310	Aggravated restenosis and atherogenesis in ApoCIII transgenic mice but lack of protection in ApoCIII knockouts: the effect of authentic triglyceride-rich lipoproteins with and without ApoCIII. Cardiovascular Research, 2015, 107, 579-589.	1.8	50
1311	The relevance of epigenetics to occlusive cerebral and peripheral arterial disease. Clinical Science, 2015, 128, 537-558.	1.8	15
1312	Experimental approaches to vascularisation within tissue engineering constructs. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 683-734.	1.9	52
1313	Deficiency of MMP17/MT4-MMP Proteolytic Activity Predisposes to Aortic Aneurysm in Mice. Circulation Research, 2015, 117, e13-26.	2.0	53
1314	15-Lipoxygenase Promotes Chronic Hypoxia-Induced Phenotype Changes of PASMCs Via Positive Feedback-Loop of BMP4. Journal of Cellular Physiology, 2015, 230, 1489-1502.	2.0	6
1315	Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition. Science Signaling, 2015, 8, ra44.	1.6	39
1316	Circumferentially aligned fibers guided functional neoartery regeneration inÂvivo. Biomaterials, 2015, 61, 85-94.	5.7	94
1317	TRA2β controls Mypt1 exon 24 splicing in the developmental maturation of mouse mesenteric artery smooth muscle. American Journal of Physiology - Cell Physiology, 2015, 308, C289-C296.	2.1	15
1318	Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L287-L300.	1.3	64
1319	Tubular Compressed Collagen Scaffolds for Ureteral Tissue Engineering in a Flow Bioreactor System. Tissue Engineering - Part A, 2015, 21, 2334-2345.	1.6	15
1320	Are reactive oxygen species still the basis for diabetic complications?. Clinical Science, 2015, 129, 199-216.	1.8	74
1321	Lungs at high-altitude: genomic insights into hypoxic responses. Journal of Applied Physiology, 2015, 119, 1-15.	1.2	24

#	Article	IF	CITATIONS
1322	Myeloperoxidase Is Increased in Human Cerebral Aneurysms and Increases Formation and Rupture of Cerebral Aneurysms in Mice. Stroke, 2015, 46, 1651-1656.	1.0	48
1323	p55γ functional mimetic peptide N24 blocks vascular proliferative disorders. Journal of Molecular Medicine, 2015, 93, 1107-1118.	1.7	4
1324	Modulation of Pulmonary Vascular Remodeling in Hypoxia: Role of 15-LOX-2/15-HETE-MAPKs Pathway. Cellular Physiology and Biochemistry, 2015, 35, 2079-2097.	1.1	29
1325	Kruppel-like factors in muscle health and disease. Trends in Cardiovascular Medicine, 2015, 25, 278-287.	2.3	40
1326	Elastin is a Key Regulator of Outward Remodeling in Arteriovenous Fistulas. European Journal of Vascular and Endovascular Surgery, 2015, 49, 480-486.	0.8	29
1327	Lessons Learned About Prostatic Transformation from the Age-Related Methylation of 5α-Reductase Type 2 Gene. American Journal of Pathology, 2015, 185, 614-616.	1.9	3
1328	Surface biocompatible construction of polyurethane by heparinization. Journal of Polymer Research, 2015, 22, 1.	1.2	8
1329	Guidelines for the Isolation and Characterization of Murine Vascular Smooth Muscle Cells. A Report from the International Society of Cardiovascular Translational Research. Journal of Cardiovascular Translational Research, 2015, 8, 158-163.	1.1	35
1330	MicroRNAs in vascular tissue engineering and post-ischemic neovascularization. Advanced Drug Delivery Reviews, 2015, 88, 78-91.	6.6	26
1331	Cell Therapy for Stress Urinary Incontinence. Tissue Engineering - Part B: Reviews, 2015, 21, 365-376.	2.5	40
1332	Dedicator of Cytokinesis 2, A Novel Regulator for Smooth Muscle Phenotypic Modulation and Vascular Remodeling. Circulation Research, 2015, 116, e71-80.	2.0	43
1333	Loss of MicroRNA-17â^¼92 in Smooth Muscle Cells Attenuates Experimental Pulmonary Hypertension via Induction of PDZ and LIM Domain 5. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 678-692.	2.5	67
1334	Characterization of porcine skeletal α-actin gene promoter: expression specificity and regulatory elements. Genes and Genomics, 2015, 37, 587-593.	0.5	0
1335	MicroRNA Regulation of Vascular Smooth Muscle Function and Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2-6.	1.1	46
1336	Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure, physiology, and disease. Developmental Dynamics, 2015, 244, 410-416.	0.8	42
1337	MiRâ€320a contributes to atherogenesis by augmenting multiple risk factors and downâ€regulating <scp>SRF</scp> . Journal of Cellular and Molecular Medicine, 2015, 19, 970-985.	1.6	89
1338	Mineralocorticoid receptors in the heart: lessons from cell-selective transgenic animals. Journal of Endocrinology, 2015, 224, R1-R13.	1.2	48
1339	Regulation of Smooth Muscle Dystrophin and Synaptopodin 2 Expression by Actin Polymerization and Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1489-1497.	1.1	40

		CHAHON RE		
# 1340	ARTICLE Renal Autoregulation in Health and Disease. Physiological Reviews, 2015, 95, 405-511.		IF 13.1	Citations 348
1341	Segmental and age differences in the elastin network, collagen, and smooth muscle pheno tunica media of the porcine aorta. Annals of Anatomy, 2015, 201, 79-90.	otype in the	1.0	32
1342	Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atheros apolipoprotein E knockout mice. Atherosclerosis, 2015, 241, 313-321.	clerosis in	0.4	45
1343	Glucose-Dependent Insulinotropic Polypeptide Stimulates Osteopontin Expression in the Via Endothelin-1 and CREB. Diabetes, 2016, 65, 239-254.	Vasculature	0.3	41
1344	Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth r cells. Redox Biology, 2015, 6, 278-286.	nuscle	3.9	71
1345	Postnatal Deletion of the Type II Transforming Growth Factor-Î ² Receptor in Smooth Musc Causes Severe Aortopathy in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 202 2647-2656.	le Cells 15, 35,	1.1	79
1346	Smooth muscle CaMKIIδ promotes allergen-induced airway hyperresponsiveness and infla Pflugers Archiv European Journal of Physiology, 2015, 467, 2541-2554.	mmation.	1.3	9
1347	Local MicroRNA Modulation Using a Novel Anti-miR-21–Eluting Stent Effectively Preven In-Stent Restenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1945-19		1.1	109
1348	Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2015, 46, 431-44	43.	3.1	127
1349	Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties. Journal of Biomechanics, 2015, 48, 3044-3051.		0.9	66
1350	Myocardin restores erectile function in diabetic rats: phenotypic modulation of corpus cay smooth muscle cells. Andrologia, 2015, 47, 303-309.	vernosum	1.0	19
1351	Functional differences between the arteries perfusing gas exchange and nutritional memb late chicken embryo. Journal of Comparative Physiology B: Biochemical, Systemic, and Env Physiology, 2015, 185, 783-796.		0.7	5
1352	Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular ste into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic muscle cells. Cell and Tissue Research, 2015, 362, 97-113.	m cells smooth	1.5	7
1353	Epigenetic Control of Smooth Muscle Cell Identity and Lineage Memory. Arteriosclerosis, and Vascular Biology, 2015, 35, 2508-2516.	Thrombosis,	1.1	97
1354	Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Sci Translational Medicine, 2015, 7, 308ra159.		5.8	129
1355	Heterogeneous susceptibility for uraemic media calcification and concomitant inflammatic the arterial tree. Nephrology Dialysis Transplantation, 2015, 30, 1995-2005.	on within	0.4	21
1356	Molecular Mechanisms of Smooth Muscle and Fibroblast Phenotype Conversions in the Fa 2015, , 167-179.	-		0
1357	MicroRNA-15b/16 Attenuates Vascular Neointima Formation by Promoting the Contractile Vascular Smooth Muscle Through Targeting YAP. Arteriosclerosis, Thrombosis, and Vascul 2015, 35, 2145-2152.		1.1	68

		CITATION REPORT		
#	ARTICLE MicroRNAs in Cardiovascular Disease: From Pathogenesis to Treatment. , 2015, , 231-2	252.	IF	CITATIONS
1000				0
1359	Vascular Smooth Muscle as a Target for Novel Therapeutics. Current Diabetes Reports,	2015, 15, 72.	1.7	7
1360	Protein kinase Cα inhibits myocardin-induced cardiomyocyte hypertrophy th promotion of myocardin phosphorylation. Acta Biochimica Et Biophysica Sinica, 2015,		0.9	3
1361	Unique gene program of rat small resistance mesenteric arteries as revealed by deep RI Physiological Reports, 2015, 3, e12450.	NA sequencing.	0.7	8
1362	Wnt signaling in atherosclerosis. European Journal of Pharmacology, 2015, 763, 122-1	30.	1.7	42
1363	A conserved MADS-box phosphorylation motif regulates differentiation and mitochond in skeletal, cardiac, and smooth muscle cells. Cell Death and Disease, 2015, 6, e1944-e	Irial function 1944.	2.7	48
1364	Keeping the Balance Right. Progress in Molecular Biology and Translational Science, 20	15, 133, 93-121.	0.9	27
1365	The past, present and future in scaffold-based tendon treatments. Advanced Drug Deliv 2015, 84, 257-277.	very Reviews,	6.6	171
1366	Involvement of BK channel in differentiation of vascular smooth muscle cells induced b stretch. International Journal of Biochemistry and Cell Biology, 2015, 59, 21-29.	y mechanical	1.2	22
1367	Ramalin inhibits VCAM-1 expression and adhesion of monocyte to vascular smooth mu through MAPK and PADI4-dependent NF-kB and AP-1 pathways. Bioscience, Biotechnol Biochemistry, 2015, 79, 539-552.		0.6	33
1368	Activation of the Wnt/Planar Cell Polarity Pathway Is Required for Pericyte Recruitment Pulmonary Angiogenesis. American Journal of Pathology, 2015, 185, 69-84.	: during	1.9	60
1369	Effects of oral administration of tripeptides derived from type I collagen (collagen tripe atherosclerosis development in hypercholesterolemic rabbits. Journal of Bioscience and Bioengineering, 2015, 119, 558-563.		1.1	13
1370	Differential expression of Hedgehog/Notch and transforming growth factor-β in humar aortic aneurysms. Journal of Vascular Surgery, 2015, 62, 464-470.	n abdominal	0.6	31
1371	Vein graft failure. Journal of Vascular Surgery, 2015, 61, 203-216.		0.6	110
1372	TGFβ2 differentially modulates smooth muscle cell proliferation andÂmigration in electing gelatin-fibrinogen constructs. Biomaterials, 2015, 37, 164-173.	trospun	5.7	26
1373	LIM-Only Protein FHL2 Is a Positive Regulator of Liver X Receptors in Smooth Muscle Co Lipid Homeostasis. Molecular and Cellular Biology, 2015, 35, 52-62.	ells Involved in	1.1	19
1375	Altered calcium signaling in cancer cells. Biochimica Et Biophysica Acta - Biomembrane 2502-2511.	s, 2015, 1848,	1.4	256
1376	Adsorption of Fibronectin on Salt-Etched Polyelectrolyte Multilayers and its Roles in Ma Adhesion and Migration of Vascular Smooth Muscle Cells. Macromolecular Bioscience, 241-252.		2.1	14

#	Article	IF	CITATIONS
1377	MicroRNA miR145 Regulates TGFBR2 Expression and Matrix Synthesis in Vascular Smooth Muscle Cells. Circulation Research, 2015, 116, 23-34.	2.0	72
1378	Heme oxygenase-1 regulates cell proliferation via carbon monoxide-mediated inhibition of T-type Ca2+ channels. Pflugers Archiv European Journal of Physiology, 2015, 467, 415-427.	1.3	21
1379	Potential cell-specific functions of CXCR4 in atherosclerosis. Hamostaseologie, 2016, 36, 97-102.	0.9	7
1380	Smooth muscle cell-specific Tgfbr1 deficiency attenuates neointimal hyperplasia but promotes an undesired vascular phenotype for injured arteries. Physiological Reports, 2016, 4, e13056.	0.7	7
1381	Changes in muscularis propria of anterior vaginal wall in women with pelvic organ prolapse. European Journal of Histochemistry, 2016, 60, 2604.	0.6	30
1382	Effects of Glucagon-Like Peptide-1 on Arteriovenous Fistula Remodelling and Vascular Smooth Muscle Cell Phenotype Switching in Diabetic Rats. Cardiovascular Pharmacology: Open Access, 2016, 05, .	0.1	1
1383	The isolation and characterization of systemic sclerosis vascular smooth muscle cells: enhanced proliferation and apoptosis resistance. Journal of Scleroderma and Related Disorders, 2016, 1, 307-315.	1.0	6
1384	The Role of Vascular Smooth Muscle Phenotype in Coronary Artery Disease. , 2016, , 15-22.		1
1385	Multi-phenotypic Role of Serum Response Factor in the Gastrointestinal System. Journal of Neurogastroenterology and Motility, 2016, 22, 193-200.	0.8	11
1386	DNA Methylation Signature of Post-injury Neointimal Cells During Vascular Remodeling in the Rat Balloon Injury Model. Molecular Biology (Los Angeles, Calif), 2016, 5, .	0.0	0
1387	Extracellular Matrix on the Phenotypic Switching of Vascular Smooth Muscle Cells. Current Angiogenesis, 2016, 4, 46-59.	0.1	2
1388	Stromal Cells in Secondary Lymphoid Organs. , 2016, , 473-479.		1
1389	Blockade of Urotensin II Receptor Prevents Vascular Dysfunction. Biomolecules and Therapeutics, 2016, 24, 523-528.	1.1	5
1390	Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIÎ ³ . Stem Cells International, 2016, 2016, 1-9.	1.2	16
1391	Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms. International Journal of Vascular Medicine, 2016, 2016, 1-11.	0.4	39
1392	Artery Tertiary Lymphoid Organs: Powerhouses of Atherosclerosis Immunity. Frontiers in Immunology, 2016, 7, 387.	2.2	76
1393	TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function. International Journal of Molecular Sciences, 2016, 17, 1394.	1.8	33
1394	Intrinsic Deregulation of Vascular Smooth Muscle and Myofibroblast Differentiation in Mesenchymal Stromal Cells from Patients with Systemic Sclerosis. PLoS ONE, 2016, 11, e0153101.	1.1	30

	CHANON		
#	Article	IF	CITATIONS
1395	Uptake of Plasmin-PN-1 Complexes in Early Human Atheroma. Frontiers in Physiology, 2016, 7, 273.	1.3	5
1396	TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus. Frontiers in Plant Science, 2016, 7, 873.	1.7	12
1397	Biology of Saccular Cerebral Aneurysms: A Review of Current Understanding and Future Directions. Frontiers in Surgery, 2016, 3, 43.	0.6	51
1398	The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators. Nucleic Acids Research, 2016, 44, 8933-8950.	6.5	47
1399	Magnetically Responsive Bone Marrow Mesenchymal Stem Cell-Derived Smooth Muscle Cells Maintain Their Benefits to Augmenting Elastic Matrix Neoassembly. Tissue Engineering - Part C: Methods, 2016, 22, 301-311.	1.1	12
1400	Microsomal Prostaglandin E Synthase-1 Expression by Aortic Smooth Muscle Cells Attenuates the Differentiated Phenotype. Journal of Cardiovascular Pharmacology, 2016, 68, 127-142.	0.8	4
1401	Winner of the Young Investigator Award of the Society for Biomaterials (USA) for 2016, 10th World Biomaterials Congress, May 17–22, 2016, Montreal QC, Canada: Aligned microribbonâ€like hydrogels for guiding threeâ€dimensional smooth muscle tissue regeneration. Journal of Biomedical Materials Research - Part A, 2016, 104, 1064-1071.	2.1	10
1402	Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3Kâ^Akt/p-HDAC6 Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1549-1557.	1.1	70
1403	Chronic cerebrovascular dysfunction after traumatic brain injury. Journal of Neuroscience Research, 2016, 94, 609-622.	1.3	97
1404	Inhibition of Polyamine Uptake Potentiates the Antiâ€Proliferative Effect of Polyamine Synthesis Inhibition and Preserves the Contractile Phenotype of Vascular Smooth Muscle Cells. Journal of Cellular Physiology, 2016, 231, 1334-1342.	2.0	26
1405	MicroRNA-153 targeting of KCNQ4 contributes to vascular dysfunction in hypertension. Cardiovascular Research, 2016, 112, 581-589.	1.8	43
1406	Thromboxane A2 Activates YAP/TAZ Protein to Induce Vascular Smooth Muscle Cell Proliferation and Migration. Journal of Biological Chemistry, 2016, 291, 18947-18958.	1.6	88
1407	Imatinib attenuates cerebrovascular injury and phenotypic transformation after intracerebral hemorrhage in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1093-R1104.	0.9	12
1408	Vascular smooth muscle cell contractile protein expression is increased through protein kinase G-dependent and -independent pathways by glucose-6-phosphate dehydrogenase inhibition and deficiency. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H904-H912.	1.5	22
1409	A Novel Protective Function of 5-Methoxytryptophan in Vascular Injury. Scientific Reports, 2016, 6, 25374.	1.6	28
1410	Effects of Long-Term Type I Interferon on the Arterial Wall and Smooth Muscle Progenitor Cells Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 266-273.	1.1	24
1411	Alisol A 24-Acetate, a Triterpenoid Derived from <i>Alisma orientale</i> , Inhibits Ox-LDL-Induced Phenotypic Transformation and Migration of Rat Vascular Smooth Muscle Cells through Suppressing ERK1/2 Signaling. Journal of Vascular Research, 2016, 53, 291-300.	0.6	18
1412	MicroRNA-761 inhibits Angiotensin II-induced vascular smooth muscle cell proliferation and migration by targeting mammalian target of rapamycin. Clinical Hemorheology and Microcirculation, 2016, 63, 45-56.	0.9	21

#	Article	IF	CITATIONS
1413	Smooth muscle <scp>FGF</scp> / <scp>TGF</scp> Î ² cross talk regulates atherosclerosis progression. EMBO Molecular Medicine, 2016, 8, 712-728.	3.3	61
1415	Cardiomyocyte Lineage Specification inÂAdult Human Cardiac Precursor Cells ViaÂModulation of Enhancer-Associated Long Noncoding RNA Expression. JACC Basic To Translational Science, 2016, 1, 472-493.	1.9	33
1416	MicroRNAs for Restenosis and Thrombosis After Vascular Injury. Circulation Research, 2016, 118, 1170-1184.	2.0	109
1417	Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Archives of Cardiovascular Diseases, 2016, 109, 431-443.	0.7	93
1418	TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration. Biochemical and Biophysical Research Communications, 2016, 473, 1205-1210.	1.0	16
1419	Isolation, Culture, and Characterization of Vascular Smooth Muscle Cells. Methods in Molecular Biology, 2016, 1430, 91-105.	0.4	22
1420	Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nature Medicine, 2016, 22, 657-665.	15.2	165
1421	Involvement of gap junctions between smooth muscle cells in sustained hypoxic pulmonary vasoconstriction development: a potential role for 15-HETE and 20-HETE. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L772-L783.	1.3	13
1422	ADAR1-Mediated RNA Editing, A Novel Mechanism Controlling Phenotypic Modulation of Vascular Smooth Muscle Cells. Circulation Research, 2016, 119, 463-469.	2.0	35
1423	High-Throughput RNAi Screening Identifies a Role for the Osteopontin Pathway in Proliferation and Migration of Human Aortic Smooth Muscle Cells. Cardiovascular Drugs and Therapy, 2016, 30, 281-295.	1.3	1
1424	Biphasic alterations in coronary smooth muscle Ca2+ regulation in a repeat cross-sectional study of coronary artery disease severity in metabolic syndrome. Atherosclerosis, 2016, 249, 1-9.	0.4	13
1425	Nitric Oxide Deficit Drives Intimal Hyperplasia in Mouse Models of Hypertension. European Journal of Vascular and Endovascular Surgery, 2016, 51, 733-742.	0.8	21
1426	Magnobovatol inhibits smooth muscle cell migration by suppressing PDGF-Rβ phosphorylation and inhibiting matrix metalloproteinase-2 expression. International Journal of Molecular Medicine, 2016, 37, 1239-1246.	1.8	9
1427	MicroRNA miR-191 targets the zinc finger transcription factor Egr-1 and suppresses intimal thickening after carotid injury. International Journal of Cardiology, 2016, 212, 299-302.	0.8	16
1428	Imatinib treatment attenuates growth and inflammation of angiotensin II induced abdominal aortic aneurysm. Atherosclerosis, 2016, 249, 101-109.	0.4	33
1429	Role of microRNAs in gastrointestinal smooth muscle fibrosis and dysfunction: novel molecular perspectives on the pathophysiology and therapeutic targeting. American Journal of Physiology - Renal Physiology, 2016, 310, C449-G459.	1.6	11
1430	ls increased arterial stiffness a cause or consequence of atherosclerosis?. Atherosclerosis, 2016, 249, 226-227.	0.4	34
1431	Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflugers Archiv European Journal of Physiology, 2016, 468, 1071-1087.	1.3	28

#	Article	IF	CITATIONS
1432	A new paradigm for the role of smooth muscle cells in the human cervix. American Journal of Obstetrics and Gynecology, 2016, 215, 478.e1-478.e11.	0.7	83
1433	The arterial microenvironment: the where and why of atherosclerosis. Biochemical Journal, 2016, 473, 1281-1295.	1.7	138
1434	Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells. Biochemical Pharmacology, 2016, 115, 43-50.	2.0	3
1435	MicroRNA-29a promotes smooth muscle cell differentiation from stem cells by targeting YY1. Stem Cell Research, 2016, 17, 277-284.	0.3	26
1436	Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves. EBioMedicine, 2016, 10, 282-290.	2.7	59
1437	Fibroblast Growth Factor 12 Is a Novel Regulator of Vascular Smooth Muscle Cell Plasticity and Fate. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1928-1936.	1.1	24
1438	Biomaterials patterned with discontinuous microwalls for vascular smooth muscle cell culture: biodegradable small diameter vascular grafts and stable cell culture substrates. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1477-1494.	1.9	9
1439	Proteomic analysis of vascular smooth muscle cells in physiological condition and in pulmonary arterial hypertension: Toward contractile versus synthetic phenotypes. Proteomics, 2016, 16, 2637-2649.	1.3	25
1440	Membraneâ€mediated regulation of vascular identity. Birth Defects Research Part C: Embryo Today Reviews, 2016, 108, 65-84.	3.6	15
1441	Coronary changes in the <scp>A</scp> tlantic salmon <i><scp>S</scp>almo salar</i> L: characterization and impact of dietary fatty acid compositions. Journal of Fish Diseases, 2016, 39, 41-54.	0.9	6
1442	Highly aligned core–shell structured nanofibers for promoting phenotypic expression of vSMCs for vascular regeneration. Nanoscale, 2016, 8, 16307-16322.	2.8	62
1443	Intracellular calcium increases in vascular smooth muscle cells with progression of chronic kidney disease in a rat model. Nephrology Dialysis Transplantation, 2016, 32, gfw274.	0.4	20
1444	Inhibition of hydrogen sulfide on the proliferation of vascular smooth muscle cells involved in the modulation of calcium sensing receptor in high homocysteine. Experimental Cell Research, 2016, 347, 184-191.	1.2	27
1445	Irisin reverses platelet derived growth factor-BB-induced vascular smooth muscle cells phenotype modulation through STAT3 signaling pathway. Biochemical and Biophysical Research Communications, 2016, 479, 139-145.	1.0	16
1446	Matrix metalloproteinase (MMP)-2 decreases calponin-1 levels and contributes to arterial remodeling in early hypertension. Biochemical Pharmacology, 2016, 118, 50-58.	2.0	24
1447	Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nature Communications, 2016, 7, 12092.	5.8	123
1448	Responses of adventitial CD34+ vascular wall-resident stem/progenitor cells and medial smooth muscle cells to carotid injury in rats. Experimental and Molecular Pathology, 2016, 101, 332-340.	0.9	9
1449	Modulatory Effects of Egg White Ovotransferrin-Derived Tripeptide IRW (Ile-Arg-Trp) on Vascular Smooth Muscle Cells against Angiotensin II Stimulation. Journal of Agricultural and Food Chemistry, 2016, 64, 7342-7347.	2.4	47

#	Article	IF	CITATIONS
1450	NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis. Free Radical Biology and Medicine, 2016, 97, 556-567.	1.3	55
1451	Evaluation and Application of Dimethylated Amino Acids as Isobaric Tags for Quantitative Proteomics of the TGF-β/Smad3 Signaling Pathway. Journal of Proteome Research, 2016, 15, 3420-3431.	1.8	18
1452	<i>MYOSLID</i> Is a Novel Serum Response Factor–Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2088-2099.	1.1	93
1453	High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells. European Journal of Pharmacology, 2016, 791, 703-710.	1.7	6
1454	Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation. Nature Communications, 2016, 7, 10830.	5.8	53
1455	MicroRNA-30 inhibits neointimal hyperplasia by targeting Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ). Scientific Reports, 2016, 6, 26166.	1.6	25
1456	Assessing the contribution of thrombospondin-4 induction and ATF6α activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Scientific Reports, 2016, 6, 32449.	1.6	12
1457	Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature, 2016, 539, 575-578.	13.7	52
1458	miR-145 mediated the role of aspirin in resisting VSMCs proliferation and anti-inflammation through CD40. Journal of Translational Medicine, 2016, 14, 211.	1.8	38
1459	Activation of Protein Kinase G (PKG) Reduces Neointimal Hyperplasia, Inhibits Platelet Aggregation, and Facilitates Re-endothelialization. Scientific Reports, 2016, 6, 36979.	1.6	11
1460	Mammalian Actins: Isoform-Specific Functions and Diseases. Handbook of Experimental Pharmacology, 2016, 235, 1-37.	0.9	28
1461	NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacological Research, 2016, 114, 110-120.	3.1	110
1462	Matrix metalloproteinases: an emerging role in regulation of actin microfilament system. Biomolecular Concepts, 2016, 7, 321-329.	1.0	11
1463	Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation. Scientific Reports, 2016, 6, 33407.	1.6	65
1464	Rab5a-mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells. Molecular Medicine Reports, 2016, 14, 4445-4453.	1.1	12
1465	MicroRNA-133: Biomarker and Mediator of Cardiovascular Diseases. , 2016, , 285-317.		2
1466	Altered PPARγ Coactivator-1 Alpha Expression in Abdominal Aortic Aneurysm: Possible Effects on Mitochondrial Biogenesis. Journal of Vascular Research, 2016, 53, 17-26.	0.6	15
1467	Measuring the Stiffness of Ex Vivo Mouse Aortas Using Atomic Force Microscopy. Journal of Visualized Experiments, 2016, , .	0.2	14

#	Article	IF	CITATIONS
1468	Regulation of Podosomes in Vascular Smooth Muscle Cell Invasion of the Extracellular Matrix. , 2016, , 183-211.		0
1469	Exogenous H2S modulates mitochondrial fusion–fission to inhibit vascular smooth muscle cell proliferation in a hyperglycemic state. Cell and Bioscience, 2016, 6, 36.	2.1	29
1470	Effects of cell seeding density on real-time monitoring of anti-proliferative effects of transient gene silencing. Journal of Biological Research, 2016, 23, 20.	2.2	4
1471	Isolation of Murine Coronary Vascular Smooth Muscle Cells. Journal of Visualized Experiments, 2016,	0.2	4
1472	So Much Cholesterol. Current Opinion in Lipidology, 2016, 27, 155-161.	1.2	65
1473	Leptin augments coronary vasoconstriction and smooth muscle proliferation via a Rho-kinase-dependent pathway. Basic Research in Cardiology, 2016, 111, 25.	2.5	23
1474	Platelet-Derived Growth Factor Receptor-β Regulates Vascular Smooth Muscle Cell Phenotypic Transformation and Neuroinflammation After Intracerebral Hemorrhage in Mice. Critical Care Medicine, 2016, 44, e390-e402.	0.4	18
1475	PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation. American Journal of Physiology - Cell Physiology, 2016, 310, C983-C992.	2.1	38
1476	Epithelial Splicing Regulatory Protein 1 (ESRP1) is a new regulator of stomach smooth muscle development and plasticity. Developmental Biology, 2016, 414, 207-218.	0.9	11
1477	LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors. BMC Biology, 2016, 14, 34.	1.7	26
1478	Smooth Muscle Cell Differentiation: Model Systems, Regulatory Mechanisms, and Vascular Diseases. Journal of Cellular Physiology, 2016, 231, 777-787.	2.0	78
1479	miR-126-3p Promotes Matrix-Dependent Perivascular Cell Attachment, Migration and Intercellular Interaction. Stem Cells, 2016, 34, 1297-1309.	1.4	33
1480	Marker profile for the evaluation of human umbilical artery smooth muscle cell quality obtained by different isolation and culture methods. Cytotechnology, 2016, 68, 701-711.	0.7	10
1481	Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nature Communications, 2016, 7, 10184.	5.8	133
1482	Long-term effect of PROLI/NO on cellular proliferation and phenotype after arterial injury. Free Radical Biology and Medicine, 2016, 90, 272-286.	1.3	7
1483	Purinergic P2Y ₆ receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin II–induced hypertension. Science Signaling, 2016, 9, ra7.	1.6	63
1484	Delivery of a Cell Patch of Cocultured Endothelial Cells and Smooth Muscle Cells Using Thermoresponsive Hydrogels for Enhanced Angiogenesis. Tissue Engineering - Part A, 2016, 22, 182-193.	1.6	18
1485	Pioglitazone, a PPARÎ ³ agonist, attenuates PDGF-induced vascular smooth muscle cell proliferation through AMPK-dependent and AMPK-independent inhibition of mTOR/p70S6K and ERK signaling. Biochemical Pharmacology, 2016, 101, 54-70.	2.0	50

#	Article	IF	Citations
1486	The role of bifurcation angles on collective smooth muscle cell biomechanics and the implication in atherosclerosis development. Biomaterials Science, 2016, 4, 430-438.	2.6	5
1487	Choice of xenogenic-free expansion media significantly influences the myogenic differentiation potential of human bone marrow–derived mesenchymal stromal cells. Cytotherapy, 2016, 18, 344-359.	0.3	21
1488	Orai channel-mediated Ca ²⁺ signals in vascular and airway smooth muscle. American Journal of Physiology - Cell Physiology, 2016, 310, C402-C413.	2.1	45
1489	Vascular endothelium – Gatekeeper of vessel health. Atherosclerosis, 2016, 248, 97-109.	0.4	371
1490	Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing. American Journal of Physiology - Renal Physiology, 2016, 310, F477-F491.	1.3	45
1491	Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1519-1533.	1.9	16
1492	The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs. Progress in Polymer Science, 2016, 57, 153-178.	11.8	47
1493	Endothelial p110γPl3K Mediates Endothelial Regeneration and Vascular Repair After Inflammatory Vascular Injury. Circulation, 2016, 133, 1093-1103.	1.6	58
1494	Integrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis. Journal of Experimental Medicine, 2016, 213, 451-463.	4.2	46
1495	Vascular Smooth Muscle Cells in Atherosclerosis. Circulation Research, 2016, 118, 692-702.	2.0	1,473
1496	Autoregulatory Control of Smooth Muscle Myosin Light Chain Kinase Promoter by Notch Signaling. Journal of Biological Chemistry, 2016, 291, 2988-2999.	1.6	10
1497	Thrombomodulin Induces a Quiescent Phenotype and Inhibits Migration in Vascular Smooth Muscle Cells InÂVitro. Annals of Vascular Surgery, 2016, 30, 149-156.	0.4	3
1498	Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials, 2016, 85, 180-194.	5.7	39
1499	Preexisting smooth muscle cells contribute to neointimal cell repopulation at an incidence varying widely among individual lesions. Surgery, 2016, 159, 602-612.	1.0	16
1500	The roles of autophagy in vascular smooth muscle cells. International Journal of Cardiology, 2016, 211, 1-6.	0.8	76
1501	A crosstalk between TGF-î²/Smad3 and Wnt/î²-catenin pathways promotes vascular smooth muscle cell proliferation. Cellular Signalling, 2016, 28, 498-505.	1.7	83
1502	T-cadherin promotes vascular smooth muscle cell dedifferentiation via a GSK3β-inactivation dependent mechanism. Cellular Signalling, 2016, 28, 516-530.	1.7	14
1503	Rosa hybrida extract suppresses vascular smooth muscle cell responses by the targeting of signaling pathways, cell cycle regulation and matrix metalloproteinase-9 expression. International Journal of Molecular Medicine, 2016, 37, 1119-1126.	1.8	7

щ	Article	IF	CITATIONS
#	Caspase-1 Plays a Critical Role in Accelerating Chronic Kidney Disease-Promoted Neointimal Hyperplasia	IF	CITATIONS
1504	in the Carotid Artery. Journal of Cardiovascular Translational Research, 2016, 9, 135-144.	1.1	63
1505	Vascular Calcification in Uremia: New-Age Concepts about an Old-Age Problem. Methods in Molecular Biology, 2016, 1397, 175-208.	0.4	30
1506	An overview of potential molecular mechanisms involved in VSMC phenotypic modulation. Histochemistry and Cell Biology, 2016, 145, 119-130.	0.8	73
1507	The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System. Circulation Research, 2016, 118, 994-1007.	2.0	149
1508	Evidence of deregulated cholesterol efflux in abdominal aortic aneurysm. Acta Histochemica, 2016, 118, 97-108.	0.9	13
1509	Nestin-expressing vascular wall cells drive development of pulmonary hypertension. European Respiratory Journal, 2016, 47, 876-888.	3.1	33
1510	Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Research International, 2016, 81, 1-16.	2.9	127
1511	Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype. Acta Biomaterialia, 2016, 31, 156-166.	4.1	107
1512	Spatial Patterning of Stem Cells to Engineer Microvascular Networks. , 2016, , 143-166.		1
1513	Histopathology of aortic complications in bicuspid aortic valve versus Marfan syndrome: relevance for therapy?. Heart and Vessels, 2016, 31, 795-806.	0.5	40
1514	Cellular and Molecular Mechanisms of Phenotypic Switch in Gastrointestinal Smooth Muscle. Journal of Cellular Physiology, 2016, 231, 295-302.	2.0	31
1515	Microscale Technologies for Cell Engineering. , 2016, , .		3
1516	Vascular calcification in chronic kidney disease: an update. Nephrology Dialysis Transplantation, 2016, 31, 31-39.	0.4	203
1517	Pro-elastogenic effects of bone marrow mesenchymal stem cell-derived smooth muscle cells on cultured aneurysmal smooth muscle cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 679-693.	1.3	31
1518	Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy. Blood Pressure, 2017, 26, 2-8.	0.7	21
1519	5â€Aminoimidazoleâ€4â€carboxamide 1â€Î²â€Dâ€ribofuranoside reduces intimal hyperplasia of tissue engineerin blood vessel by inhibiting phenotype switch of vascular smooth muscle cell. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 744-752.	g 1.6	6
1520	A spleen tyrosine kinase inhibitor attenuates the proliferation and migration of vascular smooth muscle cells. Biological Research, 2017, 50, 1.	1.5	34
1521	Olfactomedin 2 Regulates Smooth Muscle Phenotypic Modulation and Vascular Remodeling Through Mediating Runt-Related Transcription Factor 2 Binding to Serum Response Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 446-454.	1.1	25

#	Article	IF	CITATIONS
1522	Heterotrimeric G Stimulatory Protein α Subunit Is Required forÂIntestinal Smooth Muscle Contraction in Mice. Gastroenterology, 2017, 152, 1114-1125.e5.	0.6	12
1523	Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. European Heart Journal, 2017, 38, ehw567.	1.0	94
1524	Adiponectin association with Tâ $\in \epsilon$ adherin protects against neointima proliferation and atherosclerosis. FASEB Journal, 2017, 31, 1571-1583.	0.2	95
1525	Notch Signaling in Vascular Smooth Muscle Cells. Advances in Pharmacology, 2017, 78, 351-382.	1.2	69
1526	Ca2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle. Advances in Pharmacology, 2017, 78, 171-202.	1.2	27
1527	Modeling of the mechanobiological adaptation in muscular arteries. European Journal of Mechanics, A/Solids, 2017, 64, 165-177.	2.1	3
1528	Effect of Testosterone on the Phenotypic Modulation of Corpus Cavernosum Smooth Muscle Cells in a Castrated Rat Model. Urology, 2017, 103, 273.e1-273.e6.	0.5	8
1529	Sulforaphane inhibits platelet-derived growth factor-induced vascular smooth muscle cell proliferation by targeting mTOR/p70S6kinase signaling independent of Nrf2 activation. Pharmacological Research, 2017, 119, 251-264.	3.1	48
1530	Contribution of p62 to Phenotype Transition of Coronary Arterial Myocytes with Defective Autophagy. Cellular Physiology and Biochemistry, 2017, 41, 555-568.	1.1	6
1531	Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology. Nature Reviews Cardiology, 2017, 14, 342-360.	6.1	114
1532	Vesicle miR-195 derived from Endothelial Cells Inhibits Expression of Serotonin Transporter in Vessel Smooth Muscle Cells. Scientific Reports, 2017, 7, 43546.	1.6	27
1533	Downregulation of microRNA-34b is responsible for the elevation of blood pressure in spontaneously hypertensive rats. Molecular Medicine Reports, 2017, 15, 1031-1036.	1.1	16
1534	Integrin signaling in atherosclerosis. Cellular and Molecular Life Sciences, 2017, 74, 2263-2282.	2.4	99
1535	TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022269.	2.3	86
1536	Angiogenic Factor With G Patch and FHA Domains 1 Is a Novel Regulator of Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 675-684.	1.1	21
1537	7-cyclopentyl-5-(4-phenoxyphenyl)â^'7H-pyrrolo[2,3-d] pyrimidin-4-ylamine inhibits the proliferation and migration of vascular smooth muscle cells by suppressing ERK and Akt pathways. European Journal of Pharmacology, 2017, 798, 35-42.	1.7	8
1538	Placental Stem Villus Arterial Remodeling Associated with Reduced Hydrogen Sulfide Synthesis Contributes to Human Fetal Growth Restriction. American Journal of Pathology, 2017, 187, 908-920.	1.9	42
1539	Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGFâ€Î²1/SMAD and myocardin/serum response factor. FASEB Journal, 2017, 31, 2576-2591.	0.2	27

#	Article	IF	CITATIONS
1540	P38 MAPK Signaling Pathway Mediates Angiotensin II-Induced miR143/145 Gene Cluster Downregulation during Aortic Dissection Formation. Annals of Vascular Surgery, 2017, 40, 262-273.	0.4	19
1541	Long noncoding RNA LINC00305 promotes inflammation by activating the AHRR-NF-κB pathway in human monocytes. Scientific Reports, 2017, 7, 46204.	1.6	53
1542	Evaluation of contractile phenotype in airway smooth muscle cells isolated from endobronchial biopsy and tissue specimens from horses. American Journal of Veterinary Research, 2017, 78, 359-370.	0.3	5
1543	Influence of cell confluence on the cAMP signalling pathway in vascular smooth muscle cells. Cellular Signalling, 2017, 35, 118-128.	1.7	7
1544	MicroRNA-26a targets MAPK6 to inhibit smooth muscle cell proliferation and vein graft neointimal hyperplasia. Scientific Reports, 2017, 7, 46602.	1.6	34
1545	Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering. Engineering, 2017, 3, 3-15.	3.2	16
1546	Myostatin mediates abdominal aortic atherosclerosis progression by inducing vascular smooth muscle cell dysfunction and monocyte recruitment. Scientific Reports, 2017, 7, 46362.	1.6	39
1547	Micro-anatomical changes in major blood vessel caused by dengue virus (serotype 2) infection. Acta Tropica, 2017, 171, 213-219.	0.9	5
1548	The Impact of Radiation and Its Timing on Donor Internal Mammary Vessel Histopathology at the Time of Autologous Microvascular Breast Reconstruction. Journal of Reconstructive Microsurgery, 2017, 33, 509-517.	1.0	5
1549	Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells and Development, 2017, 26, 1020-1041.	1.1	12
1550	Pioglitazone Attenuates Injury-Induced Neointima Formation in Mouse Femoral Artery Partially through the Activation of AMP-Activated Protein Kinase. Pharmacology, 2017, 100, 64-73.	0.9	6
1551	EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis. Circulation, 2017, 136, 566-582.	1.6	50
1552	Advanced glycation end products and strontium ranelate promote osteogenic differentiation of vascular smooth muscle cells inÂvitro: Preventive role of vitamin D. Molecular and Cellular Endocrinology, 2017, 450, 94-104.	1.6	16
1553	Janus Kinase 3, a Novel Regulator for Smooth Muscle Proliferation and Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1352-1360.	1.1	17
1554	Advanced glycation end products promote the proliferation and migration of primary rat vascular smooth muscle cells via the upregulation of BAG3. International Journal of Molecular Medicine, 2017, 39, 1242-1254.	1.8	12
1555	Editorial commentary: Endothelial-to-mesenchymal transition: When the good one goes bad. Trends in Cardiovascular Medicine, 2017, 27, 394-396.	2.3	0
1556	Current progress in antivascular tumor therapy. Drug Discovery Today, 2017, 22, 1503-1515.	3.2	35
1557	Single-cell profiling reveals heterogeneity and functional patterning of GPCR expression in the vascular system. Nature Communications, 2017, 8, 15700.	5.8	80

#	Article	IF	CITATIONS
1558	miR-125a-5p Modulates Phenotypic Switch of Vascular Smooth Muscle Cells by Targeting ETS-1. Journal of Molecular Biology, 2017, 429, 1817-1828.	2.0	33
1559	Transcoronary Concentration Gradient of microRNA-133a and Outcome in Patients With Coronary Artery Disease. American Journal of Cardiology, 2017, 120, 15-24.	0.7	49
1560	Exposure of Induced Pluripotent Stem Cell-Derived Vascular Endothelial and Smooth Muscle Cells in Coculture to Hemodynamics Induces Primary Vascular Cell-Like Phenotypes. Stem Cells Translational Medicine, 2017, 6, 1673-1683.	1.6	32
1561	Mechanisms of aortic dissection smooth muscle cell phenotype switch. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 1511-1521.e6.	0.4	39
1562	RNAseq based transcriptomics study of SMCs from carotid atherosclerotic plaque: BMP2 and IDs proteins are crucial regulators of plaque stability. Scientific Reports, 2017, 7, 3470.	1.6	21
1563	Phenotypic switching prevention and proliferation/migration inhibition of vascular smooth muscle		

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
1577	Cilia Control Vascular Mural Cell Recruitment in Vertebrates. Cell Reports, 2017, 18, 10)33-1047.	2.9	60
1578	<scp>TGF</scp> î²â€ <scp>TAZ</scp> / <scp>SRF</scp> signalling regulates vascular sm differentiation. FEBS Journal, 2017, 284, 1644-1656.	nooth muscle cell	2.2	22
1579	RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular sm cells. American Journal of Physiology - Renal Physiology, 2017, 312, F565-F576.	iooth muscle	1.3	15
1580	MicroRNA-182 prevents vascular smooth muscle cell dedifferentiation via FGF9/PDGFR International Journal of Molecular Medicine, 2017, 39, 791-798.	β signaling.	1.8	17
1581	Inhibition of Smooth Muscle β-Catenin Hinders Neointima Formation After Vascular Inj Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 879-888.	jury.	1.1	17
1582	Smart mechanosensing machineries enable migration of vascular smooth muscle cells atherosclerosisâ€relevant 3D matrices. Cell Biology International, 2017, 41, 586-598.	in	1.4	0
1583	miRNA-181a/b Regulates Phenotypes of Vessel Smooth Muscle Cells Through Serum R DNA and Cell Biology, 2017, 36, 127-135.	esponse Factor.	0.9	15
1584	Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. Journal o Physiology, 2017, 232, 3088-3102.	of Cellular	2.0	9
1585	Vascular Cells in Blood Vessel Wall Development and Disease. Advances in Pharmacolo 323-350.	gy, 2017, 78,	1.2	75
1586	Semaphorin-3E attenuates neointimal formation via suppressing VSMCs migration and Cardiovascular Research, 2017, 113, 1763-1775.	proliferation.	1.8	32
1587	Preparation and characterization of polycaprolactone–polyethylene glycol methyl et polycaprolactone–chitosan electrospun mats potential for vascular tissue engineerir Biomaterials Applications, 2017, 32, 648-662.	her and 1g. Journal of	1.2	36
1588	Lactate Promotes Synthetic Phenotype in Vascular Smooth Muscle Cells. Circulation Re 121, 1251-1262.	esearch, 2017,	2.0	87
1589	Comparison of the Inhibitory Mechanisms of Diethyl Citrate, Sodium Citrate, and Phos Acid on Calcification Induced by High Inorganic Phosphate Contents in Mouse Aortic S Cells. Journal of Cardiovascular Pharmacology, 2017, 70, 411-419.		0.8	2
1590	Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging Physiological Reviews, 2017, 97, 1555-1617.	g, and Disease.	13.1	466
1591	Quinic acid inhibits vascular inflammation in TNF-α-stimulated vascular smooth muscle Biomedicine and Pharmacotherapy, 2017, 96, 563-571.	2 cells.	2.5	60
1592	Upregulation of the actin cytoskeleton via myocardin leads to increased expression of Laboratory Investigation, 2017, 97, 1412-1426.	type 1 collagen.	1.7	23
1593	Application of galangin, an active component of Alpinia officinarum Hance (Zingiberac drug-eluting stents. Scientific Reports, 2017, 7, 8207.	eae), for use in	1.6	11
1594	Human induced pluripotent stem cell-derived vascular smooth muscle cells: differentia therapeutic potential. Cardiovascular Research, 2017, 113, 1282-1293.	tion and	1.8	31

#	Article	IF	CITATIONS
1595	Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2017, 967, 13-32.	0.8	5
1596	The pathophysiology of human premature cervical remodeling resulting in spontaneous preterm birth: Where are we now?. Seminars in Perinatology, 2017, 41, 427-437.	1.1	38
1597	Interferon Regulatory Factor 4 Inhibits Neointima Formation by Engaging Krüppel-Like Factor 4 Signaling. Circulation, 2017, 136, 1412-1433.	1.6	33
1598	An Xâ€linked <i>Myh11â€CreER^{T2}</i> mouse line resulting from Y to X chromosomeâ€translocation of the <i>Cre</i> allele. Genesis, 2017, 55, e23054.	0.8	18
1599	Mir-22-3p Inhibits Arterial Smooth Muscle Cell Proliferation and Migration and Neointimal Hyperplasia by Targeting HMGB1 in Arteriosclerosis Obliterans. Cellular Physiology and Biochemistry, 2017, 42, 2492-2506.	1.1	71
1600	Chebulinic acid inhibits smooth muscle cell migration by suppressing PDGF-Rβ phosphorylation and inhibiting matrix metalloproteinase-2 expression. Scientific Reports, 2017, 7, 11797.	1.6	16
1601	Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders. Advances in Experimental Medicine and Biology, 2017, 993, 425-452.	0.8	25
1602	Hypoxia decrease expression of cartilage oligomeric matrix protein to promote phenotype switching of pulmonary arterial smooth muscle cells. International Journal of Biochemistry and Cell Biology, 2017, 91, 37-44.	1.2	10
1603	Biomimetic microenvironment complexity to redress the balance between biodegradation and de novo matrix synthesis during early phase of vascular tissue engineering. Materials Science and Engineering C, 2017, 81, 39-47.	3.8	3
1604	Wnt signaling in cardiovascular disease: opportunities and challenges. Current Opinion in Lipidology, 2017, 28, 387-396.	1.2	90
1605	Phospholipase Cγ1 Mediates Intima Formation Through Aktâ€Notch1 Signaling Independent of the Phospholipase Activity. Journal of the American Heart Association, 2017, 6, .	1.6	15
1606	Membraneâ€Tethered Metalloproteinase Expressed by Vascular Smooth Muscle Cells Limits the Progression of Proliferative Atherosclerotic Lesions. Journal of the American Heart Association, 2017, 6, .	1.6	12
1607	Wheat-Puccinia striiformis Interactions. , 2017, , 155-282.		7
1608	Laminar shear stress suppresses vascular smooth muscle cell proliferation through nitric oxide-AMPK pathway. Biochemical and Biophysical Research Communications, 2017, 490, 1369-1374.	1.0	20
1609	Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic syndrome. Pharmacological Research, 2017, 123, 114-121.	3.1	55
1610	Transdifferentiated Human Vascular Smooth Muscle Cells are a New Potential Cell Source for Endothelial Regeneration. Scientific Reports, 2017, 7, 5590.	1.6	32
1611	Uremia does not affect neointima formation in mice. Scientific Reports, 2017, 7, 6496.	1.6	4
1612	Visualization of Synthetic Vascular Smooth Muscle Cells in Atherosclerotic Carotid Rat Arteries by F-18 FDG PET. Scientific Reports, 2017, 7, 6989.	1.6	25

#	Article	IF	CITATIONS
1613	Towards the Identification of Hemodynamic Parameters Involved in Arteriovenous Fistula Maturation and Failure: A Review. Cardiovascular Engineering and Technology, 2017, 8, 342-356.	0.7	10
1615	Deriving vascular smooth muscle cells from mesenchymal stromal cells: Evolving differentiation strategies and current understanding of their mechanisms. Biomaterials, 2017, 145, 9-22.	5.7	38
1616	The effects of miRNA-145 on the phenotypic modulation of rat corpus cavernosum smooth muscle cells. International Journal of Impotence Research, 2017, 29, 229-234.	1.0	2
1617	SRSF1 promotes vascular smooth muscle cell proliferation through a Δ133p53/EGR1/KLF5 pathway. Nature Communications, 2017, 8, 16016.	5.8	67
1618	Contribution of human smooth muscle cells to amyloid angiopathy in AL (light-chain) amyloidosis. Ultrastructural Pathology, 2017, 41, 358-368.	0.4	9
1619	Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiological Reviews, 2017, 97, 1235-1294.	13.1	658
1620	Antenatal/early postnatal hypothyroidism alters arterial tone regulation in 2-week-old rats. Journal of Endocrinology, 2017, 235, 137-151.	1.2	9
1621	The Hemoglobin Homolog Cytoglobin in Smooth Muscle Inhibits Apoptosis and Regulates Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1944-1955.	1.1	24
1622	Conserved Gene Microsynteny Unveils Functional Interaction Between Protein Disulfide Isomerase and Rho Guanine-Dissociation Inhibitor Families. Scientific Reports, 2017, 7, 17262.	1.6	16
1623	Differentiation and Use of Induced Pluripotent Stem Cells for Cardiovascular Therapy and Tissue Engineering. Cardiac and Vascular Biology, 2017, , 107-122.	0.2	1
1624	Morphology and Ploidy of Smooth Muscle Cells in Chorionic Arteries under Different Hemodynamic Conditions. Bulletin of Experimental Biology and Medicine, 2017, 162, 507-509.	0.3	1
1625	TGF-β1-induced differentiation of SHED into functional smooth muscle cells. Stem Cell Research and Therapy, 2017, 8, 10.	2.4	34
1626	Involvement of Ca2+-activated K+ channel 3.1 in hypoxia-induced pulmonary arterial hypertension and therapeutic effects of TRAM-34 in rats. Bioscience Reports, 2017, 37, .	1.1	6
1627	miR-21-5p is associated with the regulation of estradiol benzoate and oxytocin induced primary dysmenorrhea in rat uterus: a bioinformatic study. Genes and Genomics, 2017, 39, 1255-1263.	0.5	3
1628	Gene expression profiles and signaling mechanisms in α2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC Systems Biology, 2017, 11, 65.	3.0	15
1629	MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H641-H649.	1.5	57
1630	Pulmonary hypertensive vasculopathy in parenchymal lung diseases and/or hypoxia. European Respiratory Review, 2017, 26, 170003.	3.0	12
1631	Cellular Self-Assembly with Microsphere Incorporation for Growth Factor Delivery Within Engineered Vascular Tissue Rings. Tissue Engineering - Part A, 2017, 23, 143-155.	1.6	24

# 1632	ARTICLE Differentiated Smooth Muscle Cells Generate a Subpopulation of Resident Vascular Progenitor Cells in the Adventitia Regulated by Klf4. Circulation Research, 2017, 120, 296-311.	IF 2.0	Citations
1633	Regulation of Transcription Factors by Reactive Oxygen Species and Nitric Oxide in Vascular Physiology and Pathology. Antioxidants and Redox Signaling, 2017, 26, 679-699.	2.5	39
1634	Comparisons between perivascular adipose tissue and the endothelium in their modulation of vascular tone. British Journal of Pharmacology, 2017, 174, 3388-3397.	2.7	38
1635	TRPV1 attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation in hypertension. Histochemistry and Cell Biology, 2017, 147, 511-521.	0.8	19
1636	Construction and histological analysis of a 3D human arterial wall model containing vasa vasorum using a layerâ€byâ€layer technique. Journal of Biomedical Materials Research - Part A, 2017, 105, 814-823.	2.1	7
1637	Yes-Associated Protein Inhibits Transcription of Myocardin and Attenuates Differentiation of Vascular Smooth Muscle Cell from Cardiovascular Progenitor Cell Lineage. Stem Cells, 2017, 35, 351-361.	1.4	27
1638	High Mobility Group Box 1 Mediates Interferon-Î ³ -Induced Phenotypic Modulation of Vascular Smooth Muscle Cells. Journal of Cellular Biochemistry, 2017, 118, 518-529.	1.2	18
1639	NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression. Stem Cells, 2017, 35, 207-221.	1.4	30
1640	An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nature Genetics, 2017, 49, 97-109.	9.4	149
1641	Differences in TRPC3 and TRPC6 channels assembly in mesenteric vascular smooth muscle cells in essential hypertension. Journal of Physiology, 2017, 595, 1497-1513.	1.3	31
1642	Perivascular cells and tissue engineering: Current applications and untapped potential. , 2017, 171, 83-92.		62
1643	Dicer generates a regulatory microRNA network in smooth muscle cells that limits neointima formation during vascular repair. Cellular and Molecular Life Sciences, 2017, 74, 359-372.	2.4	20
1644	Hemodynamic Influence on Smooth Muscle Cell Kinetics and Phenotype During Early Vein Graft Adaptation. Annals of Biomedical Engineering, 2017, 45, 644-655.	1.3	10
1645	Cell shape information is transduced through tension-independent mechanisms. Nature Communications, 2017, 8, 2145.	5.8	47
1646	Krüppel-like factors and vascular wall homeostasis. Journal of Molecular Cell Biology, 2017, 9, 352-363.	1.5	76
1647	Changes in renal vessels associated with long-term administration of angiotensin converting enzyme inhibitor in Zucker fatty rats. Journal of Smooth Muscle Research, 2017, 53, 20-30.	0.7	1
1648	Effects of Statins and Xuezhikang on the Expression of Secretory Phospholipase A2, Group IIA in Rat Vascular Smooth Muscle Cells. International Heart Journal, 2017, 58, 115-124.	0.5	7
1649	Smooth muscle cell differentiation: Mechanisms and models for vascular diseases. Frontiers in Biology, 2017, 12, 392-405.	0.7	4

#	Article	IF	CITATIONS
1650	MiR-26a contributes to the PDGF-BB-induced phenotypic switch of vascular smooth muscle cells by suppressing Smad1. Oncotarget, 2017, 8, 75844-75853.	0.8	40
1651	Hypoxia and Pulmonary Hypertension. , 2017, , .		3
1652	Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves. Frontiers in Physiology, 2017, 8, 536.	1.3	27
1653	Regulation of vascular smooth muscle phenotype by cross-regulation of krüppel-like factors. Korean Journal of Physiology and Pharmacology, 2017, 21, 37.	0.6	10
1654	Recapitulating and Correcting Marfan Syndrome in a Cellular Model. International Journal of Biological Sciences, 2017, 13, 588-603.	2.6	19
1655	Coordinating Regulation of Gene Expression in Cardiovascular Disease: Interactions between Chromatin Modifiers and Transcription Factors. Frontiers in Cardiovascular Medicine, 2017, 4, 19.	1.1	35
1656	Epigenetics and Vascular Diseases: Influence of Non-coding RNAs and Their Clinical Implications. Frontiers in Cardiovascular Medicine, 2017, 4, 26.	1.1	18
1657	Agonistic Anti-PDGF Receptor Autoantibodies from Patients with Systemic Sclerosis Impact Human Pulmonary Artery Smooth Muscle Cells Function In Vitro. Frontiers in Immunology, 2017, 8, 75.	2.2	25
1658	Obesity Induces Artery-Specific Alterations: Evaluation of Vascular Function and Inflammatory and Smooth Muscle Phenotypic Markers. BioMed Research International, 2017, 2017, 1-10.	0.9	19
1659	Serum Amyloid A Induces a Vascular Smooth Muscle Cell Phenotype Switch through the p38 MAPK Signaling Pathway. BioMed Research International, 2017, 2017, 1-11.	0.9	23
1660	CYP2C19 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mo>âŽ</mml:mo></mml:mrow></mml:mrow </mml:msup></mml:mrow></mml:math> 2 Polymorphism in Chilean Patients with In-Stent Restenosis Development and Controls. BioMed	0.9	5
1661	Research International, 2017, 2017, 1-6. Pri-microRNA-124 rs531564 polymorphism minor allele increases the risk of pulmonary artery hypertension by abnormally enhancing proliferation of pulmonary artery smooth muscle cells. International Journal of COPD, 2017, Volume 12, 1351-1361.	0.9	9
1662	An immunohistochemical identification key for cell types in adult mouse prostatic and urethral tissue sections. PLoS ONE, 2017, 12, e0188413.	1.1	14
1663	Phenotypic characterization of adenomyosis occurring at the inner and outer myometrium. PLoS ONE, 2017, 12, e0189522.	1.1	43
1664	The platelet-derived growth factor receptor/STAT3 signaling pathway regulates the phenotypic transition of corpus cavernosum smooth muscle in rats. PLoS ONE, 2017, 12, e0172191.	1.1	17
1665	MicroRNA-145 regulates the differentiation of human adipose-derived stem cells to smooth muscle cells via targeting Krüppel-like factor 4. Molecular Medicine Reports, 2017, 15, 3787-3795.	1.1	5
1666	Diversity and plasticity in signaling pathways that regulate smooth muscle responsiveness: Paradigms and paradoxes for the myosin phosphatase, the master regulator of smooth muscle contraction. Journal of Smooth Muscle Research, 2017, 53, 1-19.	0.7	32
1667	Primary Culture of Rat Aortic Vascular Smooth Muscle Cells: A New Method. Medical Science Monitor, 2017, 23, 4014-4020.	0.5	24

	Сітатіс	on Report	
# 1668	ARTICLE Development and Function of the Cerebrovascular System. , 2017, , 841-847.	IF	CITATIONS
1669	Identification of SRF-E2F1 fusion transcript in EWSR-negative myoepithelioma of the soft tissue. Oncotarget, 2017, 8, 60036-60045.	0.8	17
1670	Cyclic stretch-induced Crp3 sensitizes vascular smooth muscle cells to apoptosis during vein arterialization remodeling. Clinical Science, 2018, 132, 449-459.	1.8	7
1671	Redox control of vascular smooth muscle cell function and plasticity. Laboratory Investigation, 2018, 98, 1254-1262.	1.7	46
1672	Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm. Free Radical Biology and Medicine, 2018, 118, 44-58.	1.3	57
1673	Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice. Journal of Biological Chemistry, 2018, 293, 5668-5678.	1.6	7
1674	Vascular Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e17-e24.	1.1	58
1675	Class IIa histone deacetylases link cAMP signaling to the myelin transcriptional program of Schwann cells. Journal of Cell Biology, 2018, 217, 1249-1268.	2.3	23
1676	A Bayesian Framework for Generalized Linear Mixed Modeling Identifies New Candidate Loci for Late-Onset Alzheimer's Disease. Genetics, 2018, 209, 51-64.	1.2	12
1677	Akt modulation by miR-145 during exercise-induced VSMC phenotypic switching in hypertension. Life Sciences, 2018, 199, 71-79.	2.0	21
1678	Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovascular Research, 2018, 114, 513-528.	1.8	153
1679	Balloon-based Injury to Induce Myointimal Hyperplasia in the Mouse Abdominal Aorta. Journal of Visualized Experiments, 2018, , .	0.2	2
1680	DFMG reverses proliferation and migration of vascular smooth muscle cells induced by co-culture with injured vascular endothelial cells via suppression of the TLR4-mediated signaling pathway. Molecular Medicine Reports, 2018, 17, 5692-5699.	1.1	9
1681	P53 Promotes Retinoid Acid-induced Smooth Muscle Cell Differentiation by Targeting Myocardin. Stem Cells and Development, 2018, 27, 534-544.	1.1	12
1682	ARF GTPases control phenotypic switching of vascular smooth muscle cells through the regulation of actin function and actin dependent gene expression. Cellular Signalling, 2018, 46, 64-75.	1.7	9
1683	Niclosamide inhibits vascular smooth muscle cell proliferation and migration and attenuates neointimal hyperplasia in injured rat carotid arteries. British Journal of Pharmacology, 2018, 175, 1707-1718.	2.7	27
1684	Mesenchyme homeobox 1 mediates transforming growth factor-β (TGF-β)–induced smooth muscle cell differentiation from mouse mesenchymal progenitors. Journal of Biological Chemistry, 2018, 293, 8712-8719.	1.6	15
1685	A novel polyurethane modified with biomacromolecules for small-diameter vascular graft applications. Journal of Materials Science, 2018, 53, 9913-9927.	1.7	37

		CITATION REPORT		
#	Article		IF	Citations
1686	Genetics of the extracellular matrix in aortic aneurysmal diseases. Matrix Biology, 2018	, 71-72, 128-143.	1.5	17
1687	MicroRNAâ€ 21 drives the switch to a synthetic phenotype in human saphenous vein sr IUBMB Life, 2018, 70, 649-657.	nooth muscle cells.	1.5	20
1688	MiRâ€135a represses oxidative stress and vascular inflammatory events via targeting to in atherogenesis. Journal of Cellular Biochemistry, 2018, 119, 6154-6161.	ollâ€like receptor 4	1.2	24
1689	Quantification of alignment of vascular smooth muscle cells. Cytometry Part A: the Jou International Society for Analytical Cytology, 2018, 93, 533-539.	rnal of the	1.1	3
1690	MicroRNAâ€dependent regulation of KLF4 by glucose in vascular smooth muscle. Journ Physiology, 2018, 233, 7195-7205.	al of Cellular	2.0	17
1691	Basic Components of Vascular Connective Tissue and Extracellular Matrix. Advances in Pharmacology, 2018, 81, 95-127.		1.2	42
1692	Nesfatin-1 functions as a switch for phenotype transformation and proliferation of VSN hypertensive vascular remodeling. Biochimica Et Biophysica Acta - Molecular Basis of Di 1864, 2154-2168.	ICs in isease, 2018,	1.8	50
1693	Folic acid delays development of atherosclerosis in lowâ€density lipoprotein receptorâ€ Journal of Cellular and Molecular Medicine, 2018, 22, 3183-3191.	E d eficient mice.	1.6	14
1694	Characterization of voiding function and structural bladder changes in a rat model of n underactive bladder disease. Neurourology and Urodynamics, 2018, 37, 1594-1604.	eurogenic	0.8	7
1695	Smoothelins and the Control of Muscle Contractility. Advances in Pharmacology, 2018	, 81, 39-78.	1.2	13
1696	Overexpression of Hepatocyte Growth Factor mRNA Induced by Gene Transfer Attenua Hyperplasia After Balloon Injury. Human Gene Therapy, 2018, 29, 816-827.	tes Neointimal	1.4	0
1697	Pathogenesis of aortic wall complications in Marfan syndrome. Cardiovascular Patholog 62-69.	gy, 2018, 33,	0.7	33
1698	Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovascular R 2018, 114, 601-610.	esearch,	1.8	63
1699	Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovascular Research, 201	8, 114, 540-550.	1.8	322
1700	Vascular smooth muscle contraction in hypertension. Cardiovascular Research, 2018, 1	.14, 529-539.	1.8	393
1701	Nitric Oxide-Delivering High-Density Lipoprotein-like Nanoparticles as a Biomimetic Nar Vascular Diseases. ACS Applied Materials & Interfaces, 2018, 10, 6904-6916.	notherapy for	4.0	42
1702	Gender and cardiovascular disease: are sex-biased microRNA networks a driving force b failure with preserved ejection fraction in women?. Cardiovascular Research, 2018, 114		1.8	67
1703	The IgCAM CLMP is required for intestinal and ureteral smooth muscle contraction by r Connexin43 and 45 expression in mice. DMM Disease Models and Mechanisms, 2018,		1.2	23

	CHATION RE	PORT	
#	Article	IF	CITATIONS
1704	CaMKII in Vascular Signalling: "Friend or Foe�. Heart Lung and Circulation, 2018, 27, 560-567.	0.2	11
1705	WNT Signaling in Cardiac and Vascular Disease. Pharmacological Reviews, 2018, 70, 68-141.	7.1	260
1706	Cellular Mechanisms of Ascending Aortic Aneurysms. , 2018, , 79-84.		1
1707	Exendin-4 improves cardiovascular function and survival in flow-induced pulmonary hypertension. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1661-1669.e4.	0.4	14
1708	Glucocorticoids Regulate the Vascular Remodeling of Aortic Dissection Via the p38 MAPK-HSP27 Pathway Mediated by Soluble TNF-RII. EBioMedicine, 2018, 27, 247-257.	2.7	22
1709	Liuwei Dihuang, a traditional Chinese medicinal formula, inhibits proliferation and migration of vascular smooth muscle cells via modulation of estrogen receptors. International Journal of Molecular Medicine, 2018, 42, 31-40.	1.8	10
1710	Cysteine Protease Cathepsins in Atherosclerotic Cardiovascular Diseases. Journal of Atherosclerosis and Thrombosis, 2018, 25, 111-123.	0.9	75
1711	Alloxan-induced diabetes exacerbates coronary atherosclerosis and calcification in Ossabaw miniature swine with metabolic syndrome. Journal of Translational Medicine, 2018, 16, 58.	1.8	16
1712	Relationship of cardiovascular disease risk factors and noncoding RNAs with hypertension: a case-control study. BMC Cardiovascular Disorders, 2018, 18, 58.	0.7	20
1713	Adipose-derived stem-cell-implanted poly(Ϊμ-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model. Regenerative Medicine, 2018, 13, 331-342.	0.8	13
1714	How is the human umbilical artery regulated?. Journal of Obstetrics and Gynaecology Research, 2018, 44, 1193-1201.	0.6	31
1715	MicroRNA-132 targeting PTEN contributes to cilostazol-promoted vascular smooth muscle cell differentiation. Atherosclerosis, 2018, 274, 1-7.	0.4	13
1716	DNA methylation, through DNMT1, has an essential role in the development of gastrointestinal smooth muscle cells and disease. Cell Death and Disease, 2018, 9, 474.	2.7	20
1717	Egg White-Derived Antihypertensive Peptide IRW (Ile-Arg-Trp) Inhibits Angiotensin Il-Stimulated Migration of Vascular Smooth Muscle Cells via Angiotensin Type I Receptor. Journal of Agricultural and Food Chemistry, 2018, 66, 5133-5138.	2.4	30
1718	PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1271-1282.	1.1	42
1719	Phosphatidylinositol 3â€Kinase–DNA Methyltransferase 1–miRâ€1281–Histone Deacetylase 4 Regulatory Axis Mediates Plateletâ€Derived Growth Factor–Induced Proliferation and Migration of Pulmonary Artery Smooth Muscle Cells. Journal of the American Heart Association, 2018, 7, .	1.6	31
1720	MicroRNA-20b-5p inhibits platelet-derived growth factor-induced proliferation of human fetal airway smooth muscle cells by targeting signal transducer and activator of transcription 3. Biomedicine and Pharmacotherapy, 2018, 102, 34-40.	2.5	10
1721	Increased interleukin-11 levels in thoracic aorta and plasma from patients with acute thoracic aortic dissection. Clinica Chimica Acta, 2018, 481, 193-199.	0.5	30

#	Article	IF	CITATIONS
1722	Downregulation of Lâ€Type Voltageâ€Gated Ca ²⁺ , Voltageâ€Gated K ⁺ , and Largeâ€Conductance Ca ²⁺ â€Activated K ⁺ Channels in Vascular Myocytes From Saltâ€Loading Offspring Rats Exposed to Prenatal Hypoxia. Journal of the American Heart Association, 2018, 7, .	1.6	9
1723	Visualization of vascular mural cells in developing brain using genetically labeled transgenic reporter mice. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 456-468.	2.4	51
1724	TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022210.	2.3	238
1725	Proâ€myogenic and lowâ€oxygen culture increases expression of contractile smooth muscle markers in human fibroblasts. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 572-582.	1.3	2
1726	Actin cytoskeleton regulates functional anchorage-migration switch during T-cadherin-induced phenotype modulation of vascular smooth muscle cells. Cell Adhesion and Migration, 2018, 12, 69-85.	1.1	8
1727	Morphology and contractile gene expression of adipose-derived mesenchymal stem cells in response to short-term cyclic uniaxial strain and TGF-β1. Biomedizinische Technik, 2018, 63, 317-326.	0.9	10
1728	Differential Regulation of Extracellular Matrix Components Using Different Vitamin C Derivatives in Mono- and Coculture Systems. ACS Biomaterials Science and Engineering, 2018, 4, 3768-3778.	2.6	5
1729	Loss of SMAD3 Promotes Vascular Remodeling in Pulmonary Arterial Hypertension via MRTF Disinhibition. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 244-260.	2.5	52
1730	The secret life of ion channels: Kv1.3 potassium channels and proliferation. American Journal of Physiology - Cell Physiology, 2018, 314, C27-C42.	2.1	63
1731	Vascular stem/progenitor cells: functions and signaling pathways. Cellular and Molecular Life Sciences, 2018, 75, 859-869.	2.4	33
1732	Activation of aldehyde dehydrogenase 2 slows down the progression of atherosclerosis via attenuation of ER stress and apoptosis in smooth muscle cells. Acta Pharmacologica Sinica, 2018, 39, 48-58.	2.8	40
1733	A Switch in TGF-Î ² Signaling Explains Contradictory Findings in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 157-159.	2.5	3
1734	The Pericytic Phenotype of Adipose Tissue-Derived Stromal Cells Is Promoted by NOTCH2. Stem Cells, 2018, 36, 240-251.	1.4	30
1735	PDGF-mediated PI3K/AKT/β-catenin signaling regulates gap junctions in corpus cavernosum smooth muscle cells. Experimental Cell Research, 2018, 362, 252-259.	1.2	16
1736	Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFI®B/mTOR/P70S6K signaling cascade. Redox Biology, 2018, 14, 656-668.	3.9	167
1737	Progressive Development of Aberrant Smooth Muscle Cell Phenotype in Abdominal Aortic Aneurysm Disease. Journal of Vascular Research, 2018, 55, 35-46.	0.6	40
1738	Cardiovascular and renal interactions between cyclosporine and NSAIDs: Underlying mechanisms and clinical relevance. Pharmacological Research, 2018, 129, 251-261.	3.1	17
1739	Recombinant Adeno-Associated Virus-Mediated Delivery of MicroRNA-21-3p Lowers Hypertension. Molecular Therapy - Nucleic Acids, 2018, 11, 354-366.	2.3	17

#	Article	IF	CITATIONS
1740	Hypertensionâ€evoked RhoA activity in vascular smooth muscle cells requires RGS5. FASEB Journal, 2018, 32, 2021-2035.	0.2	21
1741	Kv channels and vascular smooth muscle cell proliferation. Microcirculation, 2018, 25, e12427.	1.0	9
1742	Identification of Mature Atherosclerotic Plaque Proteome Signatures Using Data-Independent Acquisition Mass Spectrometry. Journal of Proteome Research, 2018, 17, 164-176.	1.8	24
1743	CD137–CD137L interaction modulates neointima formation and the phenotype transformation of vascular smooth muscle cells via NFATc1 signaling. Molecular and Cellular Biochemistry, 2018, 439, 65-74.	1.4	14
1744	BAG3 promotes the phenotypic transformation of primary rat vascular smooth muscle cells via TRAIL. International Journal of Molecular Medicine, 2018, 41, 2917-2926.	1.8	5
1745	Regulation of angiotensin II-induced B-cell lymphoma-2-associated athanogene 3 expression in vascular smooth muscle cells. Molecular Medicine Reports, 2018, 17, 6156-6162.	1.1	2
1746	The Dichotomy of Vascular Smooth Muscle Differentiation/De- Differentiation in Health and Disease. , 0, , .		1
1747	Small Molecule Tyrosine Kinase Inhibitor Nintedanib Reduces Development of Cardiac Allograft Vasculopathy in Murine Aortic Allografts. Transplantation Direct, 2018, 4, e367.	0.8	7
1748	Monitoring individual cell-signaling activity using combined metal-clad waveguide and surface-enhanced fluorescence imaging. Analyst, The, 2018, 143, 5559-5567.	1.7	6
1749	Semaphorins and Their Receptors: From Axonal Guidance to Atherosclerosis. Frontiers in Physiology, 2018, 9, 1236.	1.3	40
1750	Role of Overexpressed Transcription Factor FOXO1 in Fatal Cardiovascular Septal Defects in Patau Syndrome: Molecular and Therapeutic Strategies. International Journal of Molecular Sciences, 2018, 19, 3547.	1.8	13
1751	Arterial Wall Stress Induces Phenotypic Switching of Arterial Smooth Muscle Cells in Vascular Remodeling by Activating the YAP/TAZ Signaling Pathway. Cellular Physiology and Biochemistry, 2018, 51, 842-853.	1.1	39
1752	Smooth muscle cell differentiation from rabbit amniotic cells. Experimental and Molecular Pathology, 2018, 105, 395-403.	0.9	0
1753	Mechanisms by Which LRP1 (Low-Density Lipoprotein Receptor–Related Protein-1) Maintains Arterial Integrity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2548-2549.	1.1	11
1754	Mechanical Forces and Vascular Injury. , 2018, , 282-296.		0
1755	Teniposide regulates the phenotype switching of vascular smooth muscle cells in a miR-21-dependent manner. Biochemical and Biophysical Research Communications, 2018, 506, 1040-1046.	1.0	9
1756	The effect of intrauterine growth restriction on Ca2+-activated force and contractile protein expression in the mesenteric artery of adult (6-month-old) male and female Wistar-Kyoto rats. Physiological Reports, 2018, 6, e13954.	0.7	6
1757	Deletion of ACTA2 in mice promotes angiotensin II induced pathogenesis of thoracic aortic aneurysms and dissections. Journal of Thoracic Disease, 2018, 10, 4733-4740.	0.6	28

#	Article	IF	CITATIONS
1758	Cholesterol Efflux: Does It Contribute to Aortic Stiffening?. Journal of Cardiovascular Development and Disease, 2018, 5, 23.	0.8	8
1759	The Effect of Myosin Light Chain Kinase on the Occurrence and Development of Intracranial Aneurysm. Frontiers in Cellular Neuroscience, 2018, 12, 416.	1.8	9
1760	Intra-amniotic Sildenafil Treatment Modulates Vascular Smooth Muscle Cell Phenotype in the Nitrofen Model of Congenital Diaphragmatic Hernia. Scientific Reports, 2018, 8, 17668.	1.6	8
1761	Hypoxia/reperfusion predisposes to atherosclerosis. PLoS ONE, 2018, 13, e0205067.	1.1	7
1762	Guidance Molecules in Vascular Smooth Muscle. Frontiers in Physiology, 2018, 9, 1311.	1.3	13
1763	Placental formation in early pregnancy: how is the centre of the placenta made?. Human Reproduction Update, 2018, 24, 750-760.	5.2	88
1764	Epigenetic Regulation of Vascular Aging and Age-Related Vascular Diseases. Advances in Experimental Medicine and Biology, 2018, 1086, 55-75.	0.8	49
1765	Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. Biochemical and Biophysical Research Communications, 2018, 505, 119-125.	1.0	69
1766	Alterations of MEK1/2-ERK1/2, IFNÎ ³ and Smad2/3 associated Signalling pathways during cryopreservation of ASCs affect their differentiation towards VSMC-like cells. Stem Cell Research, 2018, 32, 115-125.	0.3	4
1767	Aortic carboxypeptidase-like protein enhances adipose tissue stromal progenitor differentiation into myofibroblasts and is upregulated in fibrotic white adipose tissue. PLoS ONE, 2018, 13, e0197777.	1.1	13
1768	Loss of HtrA1 serine protease induces synthetic modulation of aortic vascular smooth muscle cells. PLoS ONE, 2018, 13, e0196628.	1.1	12
1769	LRP1 (Low-Density Lipoprotein Receptor–Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca ²⁺ Signaling and Expression of Cytoskeleton-Related Proteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2651-2664.	1.1	37
1770	Promoting vascular healing using nanofibrous ticagrelor-eluting stents. International Journal of Nanomedicine, 2018, Volume 13, 6039-6048.	3.3	8
1771	Ultrastructural and immunohistochemical study of phenotypic switch in gastrointestinal smooth muscle cells. Microscopy Research and Technique, 2018, 81, 1233-1240.	1.2	1
1772	Pregnancy-Induced Physiologic Adaptation of the Abdominal Aorta Is Associated with Changes in Gene Expression and Genomic Methylation. Journal of Vascular Research, 2018, 55, 319-327.	0.6	2
1773	Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, 2018, , .	0.8	6
1774	Mechanobiology and Vascular Remodeling: From Membrane to Nucleus. Advances in Experimental Medicine and Biology, 2018, 1097, 69-82.	0.8	31
1775	Vascular Intervention: From Angioplasty to Bioresorbable Vascular Scaffold. Advances in Experimental Medicine and Biology, 2018, 1097, 181-189.	0.8	3

	Сітл	CITATION REPORT	
#	Article	IF	CITATIONS
1776	The effects of pigment epithelium-derived factor on atherosclerosis: putative mechanisms of the process. Lipids in Health and Disease, 2018, 17, 240.	1.2	27
1777	Klotho Inhibits Proliferation and Migration of Angiotensin II-Induced Vascular Smooth Muscle Cells (VSMCs) by Modulating NF-κB p65, Akt, and Extracellular Signal Regulated Kinase (ERK) Signaling Activities. Medical Science Monitor, 2018, 24, 4851-4860.	0.5	10
1778	Gene expression analysis of nidus of cerebral arteriovenous malformations reveals vascular structures with deficient differentiation and maturation. PLoS ONE, 2018, 13, e0198617.	1.1	18
1779	Dihydromyricetin from ampelopsis grossedentata protects against vascular neointimal formation via induction of TR3. European Journal of Pharmacology, 2018, 838, 23-31.	1.7	5
1780	Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cellular Signalling, 2018, 52, 48-64.	1.7	231
1781	Association of Desmin Gene Variant rs1058261 with Cardiovascular Disease, the TAMRISK Study. Gene Testing and Molecular Biomarkers, 2018, 22, 574-576.	tic 0.3	2
1782	Yesâ€associated protein mediates angiotensin <scp>II</scp> â€induced vascular smooth muscle cell phenotypic modulation and hypertensive vascular remodelling. Cell Proliferation, 2018, 51, e12517.	2.4	28
1783	Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP. Scientific Reports, 2018, 8, 13025.	1.6	18
1784	Next-generation sequencing of idiopathic multicentric and unicentric Castleman disease and follicular dendritic cell sarcomas. Blood Advances, 2018, 2, 481-491.	2.5	41
1785	Role of oxidative stress in the process of vascular remodeling following coronary revascularization. International Journal of Cardiology, 2018, 268, 27-33.	0.8	30
1786	Epigenetic Regulation of Endothelial Function: With Focus on MicroRNAs. , 2018, , 171-187.		0
1787	Smooth Muscle Cells Move With Mitochondria. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1255-1257.	1.1	7
1788	Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle. Acta Biomaterialia, 2018, 74, 121-130.	4.1	26
1789	Quantitative proteomics and systems analysis of cultured H9C2 cardiomyoblasts during differentiation over time supports a †function follows form' model of differentiation. Molecular Omics, 2018, 14, 181-196.	1.4	9
1790	Hyperglycemia does not affect tissue repair responses in shear stress-induced atherosclerotic plaques in ApoEâ~'/â~' mice. Scientific Reports, 2018, 8, 7530.	1.6	1
1791	The CCL5/CCR5 Axis Promotes Vascular Smooth Muscle Cell Proliferation and Atherogenic Phenotype Switching, Cellular Physiology and Biochemistry, 2018, 47, 707-720	1.1	45

1792	Fetal Cerebrovascular Maturation: Effects of Hypoxia. Seminars in Pediatric Neurology, 2018, 28, 17-28.	1.0	16
1793	Glucagon-Like Peptide-1 Mediates the Protective Effect of the Dipeptidyl Peptidase IV Inhibitor on Renal Fibrosis via Reducing the Phenotypic Conversion of Renal Microvascular Cells in	0.9	15

Monocrotaline-Treated Rats. BioMed Research International, 2018, 2018, 1-14.

	Сіт	TATION REPORT	
#	Article	IF	CITATIONS
1794	Dental Pulp Stem Cells Promote Wound Healing and Muscle Regeneration. , 2018, , 221-240.		0
1795	Relaxin receptor deficiency promotes vascular inflammation and impairs outward remodeling in arteriovenous fistulas. FASEB Journal, 2018, 32, 6293-6304.	0.2	12
1796	Endothelial AIP1 Regulates Vascular Remodeling by Suppressing NADPH Oxidase-2. Frontiers in Physiology, 2018, 9, 396.	1.3	11
1797	Proteomic analysis of aortic smooth muscle cell secretions reveals an association of myosin heavy chain 11 with abdominal aortic aneurysm. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1012-H1018.	1.5	13
1798	Extracellular retention of PDGF-B directs vascular remodeling in mouse hypoxia-induced pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L593-L605.	1.3	8
1799	Gestational Hypoxia and Developmental Plasticity. Physiological Reviews, 2018, 98, 1241-1334.	13.1	123
1800	Matrine blocks AGEs- induced HCSMCs phenotypic conversion via suppressing Dll4-Notch pathway. European Journal of Pharmacology, 2018, 835, 126-131.	1.7	16
1801	Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. Immunity, 2018, 49, 326-341.e7.	6.6	235
1802	Inhibitory effect of PDGF-BB and serum-stimulated responses in vascular smooth muscle cell proliferation by hinokitiol via up-regulation of p21 and p53. Archives of Medical Science, 2018, 14, 579-587.	0.4	17
1803	Characterization of Carotid Smooth Muscle Cells during Phenotypic Transition. Cells, 2018, 7, 23.	1.8	21
1804	Aryl Hydrocarbon Receptor Nuclear Translocator in Vascular Smooth Muscle Cells Is Required for Optimal Peripheral Perfusion Recovery. Journal of the American Heart Association, 2018, 7, .	1.6	1
1805	cGMP Signaling and Vascular Smooth Muscle Cell Plasticity. Journal of Cardiovascular Development and Disease, 2018, 5, 20.	0.8	33
1806	The Role of Autophagy in Vascular Biology and Atherosclerosis. , 2018, , 159-169.		0
1807	Transforming growth factor β1 suppresses proinflammatory gene program independent of its regulation on vascular smooth muscle differentiation and autophagy. Cellular Signalling, 2018, 50, 160-170.	1.7	13
1808	THO Complex-Dependent Posttranscriptional Control Contributes to Vascular Smooth Muscle Cell Fate Decision. Circulation Research, 2018, 123, 538-549.	2.0	25
1809	Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Frontiers in Cardiovascular Medicine, 2018, 5, 36.	1.1	69
1810	Vascular extracellular matrix and fibroblasts-coculture directed differentiation of human mesenchymal stem cells toward smooth muscle-like cells for vascular tissue engineering. Materials Science and Engineering C, 2018, 93, 61-69.	3.8	29
1811	Isolation and differential transcriptome of vascular smooth muscle cells and mid-capillary pericytes from the rat brain. Scientific Reports, 2018, 8, 12272.	1.6	55

#	Article	IF	CITATIONS
1812	Long noncoding RNA <i>NEAT1</i> (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8660-E8667.	3.3	107
1813	Epigenetic modification of intestinal smooth muscle cell phenotype during proliferation. American Journal of Physiology - Cell Physiology, 2018, 315, C722-C733.	2.1	13
1814	Identification of differential gene expression patterns in human arteries from patients with chronic kidney disease. American Journal of Physiology - Renal Physiology, 2018, 314, F1117-F1128.	1.3	7
1815	Smooth muscle cell-specific FoxM1 controls hypoxia-induced pulmonary hypertension. Cellular Signalling, 2018, 51, 119-129.	1.7	27
1816	A two-phase model of early fibrous cap formation in atherosclerosis. Journal of Theoretical Biology, 2018, 456, 123-136.	0.8	20
1817	DNA methylation signatures of pulmonary arterial smooth muscle cells in chronic thromboembolic pulmonary hypertension. Physiological Genomics, 2018, 50, 313-322.	1.0	23
1818	Primary prevention of atherosclerosis by pretreatment of low-density lipoprotein receptor knockout mice with sesame oil and its aqueous components. Scientific Reports, 2018, 8, 12270.	1.6	15
1819	Histone Variant H2A.Z Is Required for the Maintenance of Smooth Muscle Cell Identity as Revealed by Single-Cell Transcriptomics. Circulation, 2018, 138, 2274-2288.	1.6	27
1820	COMP-prohibitin 2 interaction maintains mitochondrial homeostasis and controls smooth muscle cell identity. Cell Death and Disease, 2018, 9, 676.	2.7	23
1821	Effect of metabolic syndrome and aging on Ca2+ dysfunction in coronary smooth muscle and coronary artery disease severity in Ossabaw miniature swine. Experimental Gerontology, 2018, 108, 247-255.	1.2	13
1822	Identification of long noncoding RNAs involved in muscle differentiation. PLoS ONE, 2018, 13, e0193898.	1.1	23
1823	Tollip Negatively Regulates Vascular Smooth Muscle Cell–Mediated Neointima Formation by Suppressing Aktâ€Đependent Signaling. Journal of the American Heart Association, 2018, 7, .	1.6	10
1824	Effects of fermented Sorghum bicolor L. Moench extract on inflammation and thickness in a vascular cell and atherosclerotic mice model. Journal of Natural Medicines, 2019, 73, 34-46.	1.1	11
1825	Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing. Biomaterials, 2019, 196, 2-17.	5.7	72
1826	Defective NOTCH signaling drives increased vascular smooth muscle cell apoptosis and contractile differentiation in bicuspid aortic valve aortopathy: A review of the evidence and future directions. Trends in Cardiovascular Medicine, 2019, 29, 61-68.	2.3	21
1827	Redistribution of Mature Smooth Muscle Markers in Brain Arteries in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Translational Stroke Research, 2019, 10, 160-169.	2.3	8
1828	Molecular interactions, bioavailability, and cellular mechanisms of angiotensin-converting enzyme inhibitory peptides. Journal of Food Biochemistry, 2019, 43, e12572.	1.2	71
1829	Current Challenges of Bioprinted Tissues Toward Clinical Translation. Tissue Engineering - Part B: Reviews, 2019, 25, 1-13.	2.5	29

#	Article	IF	Citations
1830	Decreased collagen VI in the tunica media of pulmonary vessels during exposure to hypoxia: a novel step in pulmonary arterial remodeling. Pulmonary Circulation, 2019, 9, 204589401986074.	0.8	8
1831	Cell Biology of Vessels. , 2019, , 23-30.		0
1832	Comparison of Ca ²⁺ Handling for the Regulation of Vasoconstriction between Rat Coronary and Renal Arteries. Journal of Vascular Research, 2019, 56, 191-203.	0.6	3
1833	A facile method for fabricating a three-dimensional aligned fibrous scaffold for vascular application. RSC Advances, 2019, 9, 13054-13064.	1.7	2
1834	Generation of a Purified iPSC-Derived Smooth Muscle-like Population forÂCell Sheet Engineering. Stem Cell Reports, 2019, 13, 499-514.	2.3	17
1835	A novel CD147 inhibitor, SP-8356, reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. Journal of Translational Medicine, 2019, 17, 274.	1.8	17
1836	Spermatozoal mRNAs expression implicated in embryonic development were influenced by dietary folate supplementation of breeder roosters by altering spermatozoal piRNA expression profiles. Theriogenology, 2019, 138, 102-110.	0.9	5
1837	Role of DNA Methylation in the Development and Differentiation of Intestinal Epithelial Cells and Smooth Muscle Cells. Journal of Neurogastroenterology and Motility, 2019, 25, 377-386.	0.8	14
1838	Uterine spiral artery muscle dedifferentiation. Human Reproduction, 2019, 34, 1428-1438.	0.4	50
1839	RhoGDI stability is regulated by SUMOylation and ubiquitination via the AT1 receptor and participates in Ang II-induced smooth muscle proliferation and vascular remodeling. Atherosclerosis, 2019, 288, 124-136.	0.4	23
1840	Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites. Acta Biomaterialia, 2019, 96, 161-174.	4.1	24
1841	Role of integrin-linked kinase in the hypoxia-induced phenotypic transition of pulmonary artery smooth muscle cells: Implications for hypoxic pulmonary hypertension. Experimental Cell Research, 2019, 382, 111476.	1.2	9
1842	The role of smooth muscle cells in plaque stability: Therapeutic targeting potential. British Journal of Pharmacology, 2019, 176, 3741-3753.	2.7	81
1843	MiR-9 promotes the phenotypic switch of vascular smooth muscle cells by targeting KLF5. Turkish Journal of Medical Sciences, 2019, 49, 928-938.	0.4	7
1844	<p>Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-Îμ-caprolactone)/silk fibroin in vitro and in vivo</p> . International Journal of Nanomedicine, 2019, Volume 14, 4261-4276.	3.3	37
1845	Knockdown of GC binding factor 2 by RNA interference inhibits invasion and migration of vascular smooth muscle cells. Molecular Medicine Reports, 2019, 20, 1781-1789.	1.1	0
1846	Tissue-Specific miRNAs Regulate the Development of Thoracic Aortic Aneurysm: the Emerging Role of KLF4 Network. Journal of Clinical Medicine, 2019, 8, 1609.	1.0	18
1847	Review of the Essential Roles of SMCs in ATAA Biomechanics. , 2019, , 95-114.		3

#	Article	IF	CITATIONS
1848	The RNA binding protein QKI controls alternative splicing as a model of vascular therapies. Journal of Cell Science, 2019, 132, .	1.2	19
1849	miRâ€4735â€3p regulates phenotypic modulation of vascular smooth muscle cells by targeting HIFâ€1â€mediated autophagy in intracranial aneurysm. Journal of Cellular Biochemistry, 2019, 120, 19432-19441.	1.2	9
1850	Alterations in phenotype and gene expression of adult human aneurysmal smooth muscle cells by exogenous nitric oxide. Experimental Cell Research, 2019, 384, 111589.	1.2	15
1851	Transcription Factors Targeted by miRNAs Regulating Smooth Muscle Cell Growth and Intimal Thickening after Vascular Injury. International Journal of Molecular Sciences, 2019, 20, 5445.	1.8	14
1852	Mesenchymal Regulation of the Microvascular Niche in Chronic Lung Diseases. , 2019, 9, 1431-1441.		2
1853	Shp2 in myocytes is essential for cardiovascular and neointima development. Journal of Molecular and Cellular Cardiology, 2019, 137, 71-81.	0.9	5
1854	PEGylated Polyethylenimine Derivative-Mediated Local Delivery of the shSmad3 Inhibits Intimal Thickening after Vascular Injury. BioMed Research International, 2019, 2019, 1-15.	0.9	3
1855	Magnesium lithospermate B prevents phenotypic transformation of pulmonary arteries in rats with hypoxic pulmonary hypertension through suppression of NADPH oxidase. European Journal of Pharmacology, 2019, 847, 32-41.	1.7	25
1856	Hydrogen bond enables highly efficient and stable two-dimensional perovskite solar cells based on 4-pyridine-ethylamine. Organic Electronics, 2019, 67, 122-127.	1.4	22
1857	<p>Salvage living donor liver transplantation for posthepatectomy recurrence: a higher incidence of recurrence but promising strategy for long-term survival</p> . Cancer Management and Research, 2019, Volume 11, 7295-7305.	0.9	6
1858	Identification of the intermediate filament protein synemin/SYNM as a target of myocardin family coactivators. American Journal of Physiology - Cell Physiology, 2019, 317, C1128-C1142.	2.1	14
1859	Single-Cell Transcriptomic Map of the Human and Mouse Bladders. Journal of the American Society of Nephrology: JASN, 2019, 30, 2159-2176.	3.0	90
1860	A Secreted Phospholipase A2 Induces Formation of Smooth Muscle Foam Cells Which Transdifferentiate to Macrophage-Like State. Molecules, 2019, 24, 3244.	1.7	18
1861	Role of polypyrimidine tract-binding protein 1/yin yang 2 signaling in regulating vascular smooth muscle cell proliferation and neointima hyperplasia. Toxicology and Applied Pharmacology, 2019, 383, 114747.	1.3	11
1862	Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties. Scientific Reports, 2019, 9, 12934.	1.6	30
1863	Thymine DNA glycosylase is a key regulator of CaMKIIÎ ³ expression and vascular smooth muscle phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H969-H980.	1.5	4
1864	Cortistatin, a novel cardiovascular protective peptide. Cardiovascular Diagnosis and Therapy, 2019, 9, 394-399.	0.7	9
1865	Kinetic studies of K-Cl cotransport in cultured rat vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2019, 316, C274-C284.	2.1	8

#	Article	IF	CITATIONS
1866	Substantial Dysregulation of miRNA Passenger Strands Underlies the Vascular Response to Injury. Cells, 2019, 8, 83.	1.8	10
1867	CTGF regulates cyclic stretch-induced vascular smooth muscle cell proliferation via microRNA-19b-3p. Experimental Cell Research, 2019, 376, 77-85.	1.2	21
1868	An integrative systems approach identifies novel candidates in Marfan syndromeâ€related pathophysiology. Journal of Cellular and Molecular Medicine, 2019, 23, 2526-2535.	1.6	17
1869	Dedicator of cytokinesis 2 silencing therapy inhibits neointima formation and improves blood flow in rat vein grafts. Journal of Molecular and Cellular Cardiology, 2019, 128, 134-144.	0.9	6
1870	Phosphorylated proteomics analysis of human coronary artery endothelial cells stimulated by Kawasaki disease patients serum. BMC Cardiovascular Disorders, 2019, 19, 21.	0.7	7
1871	Visible-light-initiated Sonogashira coupling reactions over CuO/TiO ₂ nanocomposites. Catalysis Science and Technology, 2019, 9, 377-383.	2.1	28
1872	Differentiating human pluripotent stem cells into vascular smooth muscle cells in three dimensional thermoreversible hydrogels. Biomaterials Science, 2019, 7, 347-361.	2.6	7
1873	Long Non-coding RNAs in Vascular Health and Disease. , 2019, , 151-179.		0
1874	The pseudogene PTENP1 regulates smooth muscle cells as a competing endogenous RNA. Clinical Science, 2019, 133, 1439-1455.	1.8	26
1875	Sildenafil Reduces Neointimal Hyperplasia after Angioplasty and Inhibits Platelet Aggregation via Activation of cCMP-dependent Protein Kinase. Scientific Reports, 2019, 9, 7769.	1.6	25
1876	Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1351-1368.	1.1	203
1877	Single-Cell Analysis of the Normal Mouse Aorta Reveals Functionally Distinct Endothelial Cell Populations. Circulation, 2019, 140, 147-163.	1.6	231
1878	Using Epigenetics as a Pharmacological Tool in Heart Regeneration. , 2019, , 287-307.		0
1879	Association between aortic telomere length and cardiac post-transplant allograft function. International Journal of Cardiology, 2019, 290, 129-133.	0.8	2
1880	Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. Journal of Molecular and Cellular Cardiology, 2019, 133, 36-46.	0.9	29
1881	Vascular Smooth Muscle Cells Contribute to Atherosclerosis Immunity. Frontiers in Immunology, 2019, 10, 1101.	2.2	61
1883	TRPC6 regulates phenotypic switching of vascular smooth muscle cells through plasma membrane potentialâ€dependent coupling with PTEN. FASEB Journal, 2019, 33, 9785-9796.	0.2	27
1884	Maternal High‣ucrose Diet Accelerates Vascular Stiffness in Aged Offspring via Suppressing Ca v 1.2 and Contractile Phenotype of Vascular Smooth Muscle Cells. Molecular Nutrition and Food Research, 2019, 63, 1900022.	1.5	6

#	Article	IF	CITATIONS
1885	An overview of the molecular mechanisms underlying development and progression of bicuspid aortic valve disease. Journal of Molecular and Cellular Cardiology, 2019, 132, 146-153.	0.9	23
1886	NFATc1-E2F1-LMCD1–Mediated IL-33 Expression by Thrombin Is Required for Injury-Induced Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1212-1226.	1.1	25
1887	A Human Pluripotent Stem Cell-Based Screen for Smooth Muscle Cell Differentiation and Maturation Identifies Inhibitors of Intimal Hyperplasia. Stem Cell Reports, 2019, 12, 1269-1281.	2.3	23
1888	RhoA inhibitor-eluting stent attenuates restenosis by inhibiting YAP signaling. Journal of Vascular Surgery, 2019, 69, 1581-1589.e1.	0.6	10
1889	MicroRNA26 attenuates vascular smooth muscle maturation via endothelial BMP signalling. PLoS Genetics, 2019, 15, e1008163.	1.5	8
1890	Nuclear Focal Adhesion Kinase Controls Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia Through GATA4-Mediated Cyclin D1 Transcription. Circulation Research, 2019, 125, 152-166.	2.0	47
1891	Collagen hollow structure for bladder tissue engineering. Materials Science and Engineering C, 2019, 102, 228-237.	3.8	9
1892	Optimization of Electrospun Poly(caprolactone) Fiber Diameter for Vascular Scaffolds to Maximize Smooth Muscle Cell Infiltration and Phenotype Modulation. Polymers, 2019, 11, 643.	2.0	31
1893	Is there a role for autophagy in ascending aortopathy associated with tricuspid or bicuspid aortic valve?. Clinical Science, 2019, 133, 805-819.	1.8	2
1894	The role of hemodynamics in bicuspid aortopathy: a histopathologic study. Cardiovascular Pathology, 2019, 41, 29-37.	0.7	23
1895	The expanded roles of Sertoli cells: lessons from Sertoli cell ablation models. Current Opinion in Endocrine and Metabolic Research, 2019, 6, 42-48.	0.6	7
1896	Effects of Blast-induced Neurotrauma on Pressurized Rodent Middle Cerebral Arteries. Journal of Visualized Experiments, 2019, , .	0.2	5
1897	Transcription factor TEAD1 is essential for vascular development by promoting vascular smooth muscle differentiation. Cell Death and Differentiation, 2019, 26, 2790-2806.	5.0	30
1898	Hippo and Hyperplasia. Circulation Research, 2019, 124, 1282-1284.	2.0	3
1899	Quantitative Analysis of Intracellular Ca2+ Release and Contraction in hiPSC-Derived Vascular Smooth Muscle Cells. Stem Cell Reports, 2019, 12, 647-656.	2.3	15
1900	MicroRNAs in brain development and cerebrovascular pathophysiology. American Journal of Physiology - Cell Physiology, 2019, 317, C3-C19.	2.1	36
1901	Rab7‑mediated autophagy regulates phenotypic transformation and behavior of smooth muscle cells via the Ras/Raf/MEK/ERK signaling pathway in human aortic dissection. Molecular Medicine Reports, 2019, 19, 3105-3113.	1.1	10
1902	Cyclic nucleotide signalling compartmentation by PDEs in cultured vascular smooth muscle cells. British Journal of Pharmacology, 2019, 176, 1780-1792.	2.7	20

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1903	Disease-Associated SNPs in Inflammation-Related IncRNAs. Frontiers in Immunology, 2	019, 10, 420.	2.2	74
1904	MicroRNAâ€92a promotes vascular smooth muscle cell proliferation and migration thr ROCK/MLCK signalling pathway. Journal of Cellular and Molecular Medicine, 2019, 23,	ough the 3696-3710.	1.6	31
1905	Photoelasticity-based evaluation of cellular contractile force for phenotypic discriminativa vascular smooth muscle cells. Scientific Reports, 2019, 9, 3960.	tion of	1.6	14
1906	Long non-coding RNA CASC2 suppresses pulmonary artery smooth muscle cell prolifer phenotypic switch in hypoxia-induced pulmonary hypertension. Respiratory Research,	ation and 2019, 20, 53.	1.4	35
1907	Quantitative Analysis of Cellular Composition in Advanced Atherosclerotic Lesions of S Muscle Cell Lineage-Tracing Mice. Journal of Visualized Experiments, 2019, , .	imooth	0.2	1
1908	HMGB1 enhances AGE-mediated VSMC proliferation via an increase in 5-LO-linked RAC Vascular Pharmacology, 2019, 118-119, 106559.	E expression.	1.0	13
1909	Sulfur Dioxide Activates Cl-/HCO3- Exchanger via Sulphenylating AE2 to Reduce Intrace Vascular Smooth Muscle Cells. Frontiers in Pharmacology, 2019, 10, 313.	ellular pH in	1.6	8
1910	Spontaneous differentiation of periodontal ligament stem cells into myofibroblast dur expansion. Journal of Cellular Physiology, 2019, 234, 20377-20391.	ng ex vivo	2.0	11
1911	Amlodipine induces vasodilation via Akt2/Sp1â€activated miRâ€⊋1 in smooth muscle o Pharmacology, 2019, 176, 2306-2320.	cells. British Journal of	2.7	17
1912	Marsdenia tenacissima extract dilated small mesenteric arteries via stimulating endoth oxide synthase and inhibiting calcium influx. Journal of Ethnopharmacology, 2019, 238	elial nitric , 111847.	2.0	4
1913	Pericytes in Skeletal Muscle. Advances in Experimental Medicine and Biology, 2019, 11	.22, 59-72.	0.8	5
1914	Quantifying Ca2+ signaling and contraction in vascular pericytes and smooth muscle o Biochemical and Biophysical Research Communications, 2019, 513, 112-118.	tells.	1.0	9
1915	Cell-Specific Effects of GATA (GATA Zinc Finger Transcription Factor Family)-6 in Vascu Muscle and Endothelial Cells on Vascular Injury Neointimal Formation. Arteriosclerosis, and Vascular Biology, 2019, 39, 888-901.	lar Smooth Thrombosis,	1.1	19
1916	MicroRNA-134-5p Regulates Media Degeneration through Inhibiting VSMC Phenotypic Migration in Thoracic Aortic Dissection. Molecular Therapy - Nucleic Acids, 2019, 16, 2		2.3	44
1917	Alkaloids from Nelumbinis Plumula (AFNP) ameliorate aortic remodeling via RhoA/ROC Biomedicine and Pharmacotherapy, 2019, 112, 108651.	K pathway.	2.5	16
1918	Therapeutic Targeting of the Proinflammatory IL-6-JAK/STAT Signalling Pathways Respo Vascular Restenosis in Type 2 Diabetes Mellitus. Cardiology Research and Practice, 20		0.5	50
1919	ORAI channels in cellular remodeling of cardiorespiratory disease. Cell Calcium, 2019,	79, 1-10.	1.1	27
1920	MicroRNAâ€365 promotes the contractile phenotype of venous smooth muscle cells a neointimal formation in rat vein grafts. IUBMB Life, 2019, 71, 908-916.	nd inhibits	1.5	6

#	Article	IF	CITATIONS
1921	Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart. Cell Reports, 2019, 26, 1934-1950.e5.	2.9	355
1922	Anti-proliferative and anti-migratory effects of Scutellaria strigillosa Hemsley extracts against vascular smooth muscle cells. Journal of Ethnopharmacology, 2019, 235, 155-163.	2.0	14
1923	The Bone—Vasculature Axis: Calcium Supplementation and the Role of Vitamin K. Frontiers in Cardiovascular Medicine, 2019, 6, 6.	1.1	36
1924	TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake. Circulation Research, 2019, 124, 1309-1322.	2.0	57
1925	Differentiation of CD45‑/CD31+ lung side population cells into endothelial and smooth muscle cells in vitro. International Journal of Molecular Medicine, 2019, 43, 1128-1138.	1.8	8
1926	Long non-coding RNA-SRA promotes neointimal hyperplasia and vascular smooth muscle cells proliferation via MEK-ERK-CREB pathway. Vascular Pharmacology, 2019, 116, 16-23.	1.0	19
1927	Spatially selective myosin regulatory light chain regulation is absent in dedifferentiated vascular smooth muscle cells but is partially induced by fibronectin and Klf4. American Journal of Physiology - Cell Physiology, 2019, 316, C509-C521.	2.1	13
1928	Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biology, 2019, 22, 101137.	3.9	46
1929	7-O-methylpunctatin, a Novel Homoisoflavonoid, Inhibits Phenotypic Switch of Human Arteriolar Smooth Muscle Cells. Biomolecules, 2019, 9, 716.	1.8	8
1930	Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells, 2019, 8, 1447.	1.8	37
1931	The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. International Journal of Molecular Sciences, 2019, 20, 5694.	1.8	166
1932	MiR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2. International Journal of Biological Sciences, 2019, 15, 2615-2626.	2.6	52
1933	Role of the Balance of Akt and MAPK Pathways in the Exercise-Regulated Phenotype Switching in Spontaneously Hypertensive Rats. International Journal of Molecular Sciences, 2019, 20, 5690.	1.8	24
1934	Mechanical contribution of vascular smooth muscle cells in the tunica media of artery. Nanotechnology Reviews, 2019, 8, 50-60.	2.6	20
1935	Exploration of Physiological and Pathophysiological Implications of miRNA-143 and miRNA-145 in Cerebral Arteries. Journal of Cardiovascular Pharmacology, 2019, 74, 409-419.	0.8	3
1936	Potential Therapeutic Strategies for Intracranial Aneurysms Targeting Aneurysm Pathogenesis. Frontiers in Neuroscience, 2019, 13, 1238.	1.4	18
1937	Leiomyosarcomas: whole genome sequencing for a whole biology characterization. Current Opinion in Oncology, 2019, 31, 317-321.	1.1	7
1938	Myocardin and Kv1 Channels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2454-2456.	1.1	2

#	Article	IF	CITATIONS
1939	Downregulation of miR-542-3p promotes osteogenic transition of vascular smooth muscle cells in the aging rat by targeting BMP7. Human Genomics, 2019, 13, 67.	1.4	25
1940	TCF7L2 (Transcription Factor 7-Like 2) Regulation of GATA6 (GATA-Binding Protein 6)-Dependent and -Independent Vascular Smooth Muscle Cell Plasticity and Intimal Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 250-262.	1.1	26
1941	Semaphorin-3A protects against neointimal hyperplasia after vascular injury. EBioMedicine, 2019, 39, 95-108.	2.7	19
1942	Engineered Microenvironment for Manufacturing Human Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells. Stem Cell Reports, 2019, 12, 84-97.	2.3	25
1943	Elucidating the contributory role of microRNA to cardiovascular diseases (a review). Vascular Pharmacology, 2019, 114, 31-48.	1.0	42
1944	Central artery stiffness and thoracic aortopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H169-H182.	1.5	44
1945	Clinical Epidemiology: Detrusor Voiding Contraction Maximum Power, Related to Ageing. Urology, 2019, 124, 72-77.	0.5	6
1946	Melatonin attenuates bisphenol A-induced toxicity of the adrenal gland of Wistar rats. Environmental Science and Pollution Research, 2019, 26, 5971-5982.	2.7	20
1947	Myocardin Is Involved in Mesothelial–Mesenchymal Transition of Human Pleural Mesothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 86-96.	1.4	16
1948	Autophagy is involved in the differentiation of epicardial progenitor cells into vascular smooth muscle cells in mice. Experimental Cell Research, 2019, 375, 60-71.	1.2	1
1949	Biochemical Myogenic Differentiation of Adipogenic Stem Cells Is Donor Dependent and Requires Sound Characterization. Tissue Engineering - Part A, 2019, 25, 936-948.	1.6	8
1950	PI3KÎ ³ (Phosphoinositide 3-Kinase Î ³) Regulates Vascular Smooth Muscle Cell Phenotypic Modulation and Neointimal Formation Through CREB (Cyclic AMP-Response Element Binding Protein)/YAP (Yes-Associated Protein) Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e91-e105.	1.1	28
1951	A novel endovenous scaffold for the treatment of chronic venous obstruction in a porcine model: Histological and ultrastructural assessment. Phlebology, 2019, 34, 336-346.	0.6	1
1952	Glycoprotein M6B Interacts with TβRI to Activate TGF-β-Smad2/3 Signaling and Promote Smooth Muscle Cell Differentiation. Stem Cells, 2019, 37, 190-201.	1.4	19
1953	Deletion of IP3R1 by Pdgfrb-Cre in mice results in intestinal pseudo-obstruction and lethality. Journal of Gastroenterology, 2019, 54, 407-418.	2.3	11
1954	Effects of blocking integrin \hat{l}^21 and N-cadherin cellular interactions on mechanical properties of vascular smooth muscle cells. Journal of Biomechanics, 2019, 82, 337-345.	0.9	9
1955	Role of miRâ€223â€3p in pulmonary arterial hypertension <i>via</i> targeting <i>ITGB3</i> in the ECM pathway. Cell Proliferation, 2019, 52, e12550.	2.4	46
1956	Platelet-endothelial cell interactions modulate smooth muscle cell phenotype in an in vitro model of type 2 diabetes mellitus. American Journal of Physiology - Cell Physiology, 2019, 316, C186-C197.	2.1	9

#	Article	IF	CITATIONS
1957	LMO7 Is a Negative Feedback Regulator of Transforming Growth Factor Î ² Signaling and Fibrosis. Circulation, 2019, 139, 679-693.	1.6	63
1958	Circ_Lrp6, a Circular RNA Enriched in Vascular Smooth Muscle Cells, Acts as a Sponge Regulating miRNA-145 Function. Circulation Research, 2019, 124, 498-510.	2.0	140
1959	Liraglutide inhibited AGEs induced coronary smooth muscle cell phenotypic transition through inhibiting the NF-κB signal pathway. Peptides, 2019, 112, 125-132.	1.2	10
1960	Inflammatory Smooth Muscle Cells Induce Endothelial Cell Alterations to Influence Cerebral Aneurysm Progression via Regulation of Integrin and VEGF Expression. Cell Transplantation, 2019, 28, 713-722.	1.2	20
1961	Inhibitory effects of cycloastragenol on abdominal aortic aneurysm and its related mechanisms. British Journal of Pharmacology, 2019, 176, 282-296.	2.7	34
1962	Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: promising tracers on the horizon. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 251-265.	3.3	25
1963	MicroRNA-146a sponge therapy suppresses neointimal formation in rat vein grafts. IUBMB Life, 2019, 71, 125-133.	1.5	6
1964	Magnesium ion leachables induce a conversion of contractile vascular smooth muscle cells to an inflammatory phenotype. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 988-1001.	1.6	12
1965	TRα inhibits arterial renin-angiotensin system expression and prevents cholesterol accumulation in vascular smooth muscle cells. Annales D'Endocrinologie, 2019, 80, 89-95.	0.6	7
1966	LncRNAs in vascular biology and disease. Vascular Pharmacology, 2019, 114, 145-156.	1.0	133
1967	Forkhead box M1 transcription factor: a novel target for pulmonary arterial hypertension therapy. World Journal of Pediatrics, 2020, 16, 113-119.	0.8	4
1968	TSPO ligands prevent the proliferation of vascular smooth muscle cells and attenuate neointima formation through AMPK activation. Acta Pharmacologica Sinica, 2020, 41, 34-46.	2.8	9
1969	Sodium nitroprusside attenuates hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats through the inhibition of overexpression of AT1 receptor, cell cycle proteins, and c-Src/growth factor receptor signaling pathways. Canadian Journal of Physiology and Pharmacology, 2020, 98, 35-43.	0.7	8
1970	Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nature Reviews Cardiology, 2020, 17, 216-228.	6.1	185
1971	Thermal gelation modeling of a pluronicâ€elginate blend following coronary angioplasty. Journal of Applied Polymer Science, 2020, 137, 48539.	1.3	2
1972	Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion. Biofabrication, 2020, 12, 015009.	3.7	43
1973	Redox control of vascular biology. BioFactors, 2020, 46, 246-262.	2.6	15
1974	Prenatal metyrapone treatment modulates neonatal cerebrovascular structure, function, and vulnerability to mild hypoxic-ischemic injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R1-R16.	0.9	1

#	Article	IF	CITATIONS
1975	MicroRNA-150 deficiency accelerates intimal hyperplasia by acting as a novel regulator of macrophage polarization. Life Sciences, 2020, 240, 116985.	2.0	11
1976	Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nature Reviews Cardiology, 2020, 17, 96-115.	6.1	143
1977	Resident multipotent vascular stem cells exhibit amplitude dependent strain avoidance similar to that of vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2020, 521, 762-768.	1.0	5
1978	Impaired vascular smooth muscle cell force-generating capacity and phenotypic deregulation in Marfan Syndrome mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165587.	1.8	25
1979	A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases. Biomaterials, 2020, 230, 119605.	5.7	83
1980	Sauchinone inhibits angiotensin Ilâ€induced proliferation and migration of vascular smooth muscle cells. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 220-226.	0.9	3
1981	Transgenic interleukin 11 expression causes cross-tissue fibro-inflammation and an inflammatory bowel phenotype in mice. PLoS ONE, 2020, 15, e0227505.	1.1	41
1982	Construction of calcitonin gene-related peptide-modified mesenchymal stem cells and analysis of their effects on the migration and proliferation of vascular smooth muscle cells. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 181-191.	0.7	2
1983	New insights into phenotypic switching of VSMCs induced by hyperhomocysteinemia: Role of endothelin-1 signaling. Biomedicine and Pharmacotherapy, 2020, 123, 109758.	2.5	22
1984	Deletion of the FHL2 gene attenuates intimaâ€media thickening in a partially ligated carotid artery ligated mouse model. Journal of Cellular and Molecular Medicine, 2020, 24, 160-173.	1.6	11
1985	Notch signaling in the pathogenesis of thoracic aortic aneurysms: A bridge between embryonic and adult states. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165631.	1.8	15
1986	Role of complement 3 in the pathogenesis of hypertension. Hypertension Research, 2020, 43, 255-262.	1.5	12
1987	Paracrine signalling from monocytes enables desirable extracellular matrix accumulation and temporally appropriate phenotype of vascular smooth muscle cell-like cells derived from adipose stromal cells. Acta Biomaterialia, 2020, 103, 129-141.	4.1	11
1988	Transcriptional control of a novel long noncoding RNA Mymsl in smooth muscle cells by a single Cis-element and its initial functional characterization in vessels. Journal of Molecular and Cellular Cardiology, 2020, 138, 147-157.	0.9	14
1989	Activation of CD137 signaling promotes neointimal formation by attenuating TET2 and transferrring from endothelial cell-derived exosomes to vascular smooth muscle cells. Biomedicine and Pharmacotherapy, 2020, 121, 109593.	2.5	42
1990	Lipopolysaccharide exposure modulates the contractile and migratory phenotypes of vascular smooth muscle cells. Life Sciences, 2020, 241, 117098.	2.0	11
1991	Drugâ€Eluting Stent Targeting Spâ€1â€Attenuated Restenosis by Engaging YAPâ€Mediated Vascular Smooth Muscle Cell Phenotypic Modulation. Journal of the American Heart Association, 2020, 9, e014103.	1.6	16
1992	Effects of aligned electrospun fibers with different diameters on hemocompatibility, cell behaviors and inflammation in vitro. Biomedical Materials (Bristol), 2020, 15, 035005.	1.7	21

#	Article	IF	CITATIONS
1993	Lysine demethylase 1A exacerbates LPS-induced inflammation of vascular smooth muscle cells through modulation of NF-κB activation. Tropical Journal of Pharmaceutical Research, 2020, 19, 481-487.	0.2	1
1994	Down-regulation of IncRNA Gas5 promotes hypoxia-induced pulmonary arterial smooth muscle cell proliferation by regulating KCNK3 expression. European Journal of Pharmacology, 2020, 889, 173618.	1.7	13
1995	Long Non-coding RNA PEBP1P2 Suppresses Proliferative VSMCs Phenotypic Switching and Proliferation in Atherosclerosis. Molecular Therapy - Nucleic Acids, 2020, 22, 84-98.	2.3	48
1996	Interleukin-11 is important for vascular smooth muscle phenotypic switching and aortic inflammation, fibrosis and remodeling in mouse models. Scientific Reports, 2020, 10, 17853.	1.6	43
1997	The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes and Diseases, 2021, 8, 746-758.	1.5	51
1998	Mutual regulation between β-TRCP mediated REST protein degradation and Kv1.3 expression controls vascular smooth muscle cell phenotype switch. Atherosclerosis, 2020, 313, 102-110.	0.4	4
1999	Extracellular vesicle signalling in atherosclerosis. Cellular Signalling, 2020, 75, 109751.	1.7	27
2000	Biomaterials Regulating Bone Hematoma for Osteogenesis. Advanced Healthcare Materials, 2020, 9, e2000726.	3.9	22
2001	Sclerostin and Vascular Pathophysiology. International Journal of Molecular Sciences, 2020, 21, 4779.	1.8	33
2002	The relationship between estrogen-induced phenotypic transformation and proliferation of vascular smooth muscle and hypertensive intracerebral hemorrhage. Annals of Translational Medicine, 2020, 8, 762-762.	0.7	10
2003	Exosomal <scp>LINC01005</scp> derived from oxidized lowâ€density lipoproteinâ€treated endothelial cells regulates vascular smooth muscle cell phenotypic switch. BioFactors, 2020, 46, 743-753.	2.6	25
2004	Intra-Amniotic Sildenafil Treatment Promotes Lung Growth and Attenuates Vascular Remodeling in an Experimental Model of Congenital Diaphragmatic Hernia. Fetal Diagnosis and Therapy, 2020, 47, 787-799.	0.6	2
2005	Early modulation of macrophage ROS-PPARÎ ³ -NF-κB signalling by sonodynamic therapy attenuates neointimal hyperplasia in rabbits. Scientific Reports, 2020, 10, 11638.	1.6	11
2006	Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. Journal of the American Heart Association, 2020, 9, e017094.	1.6	17
2007	Vascular smooth muscle stiffness and its role in aging. Current Topics in Membranes, 2020, 86, 217-253.	0.5	7
2008	Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 604240.	1.8	69
2009	Oxidized Low-Density Lipoprotein Induces WNT5A Signaling Activation in THP-1 Derived Macrophages and a Human Aortic Vascular Smooth Muscle Cell Line. Frontiers in Cardiovascular Medicine, 2020, 7, 567837.	1.1	11
2010	Aortic "Disease-in-a-Dishâ€: Mechanistic Insights and Drug Development Using iPSC-Based Disease Modeling. Frontiers in Cell and Developmental Biology, 2020, 8, 550504.	1.8	13

#	Article	IF	CITATIONS
2011	Perinatal stroke. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 171, 313-326.	1.0	6
2012	Type 5 phosphodiesterase (PDE5) and the vascular tree: From embryogenesis to aging and disease. Mechanisms of Ageing and Development, 2020, 190, 111311.	2.2	13
2013	Metabolism of vascular smooth muscle cells in vascular diseases. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H613-H631.	1.5	152
2014	Long Noncoding RNA Rps4l Mediates the Proliferation of Hypoxic Pulmonary Artery Smooth Muscle Cells. Hypertension, 2020, 76, 1124-1133.	1.3	17
2015	Apoptosis repressor with caspase recruitment domain promotes cell proliferation and phenotypic modulation through 14–3-3lµ/YAP signaling in vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2020, 147, 35-48.	0.9	6
2016	<p>Honokiol-mesoporous Silica Nanoparticles Inhibit Vascular Restenosis via the Suppression of TGF-β Signaling Pathway</p> . International Journal of Nanomedicine, 2020, Volume 15, 5239-5252.	3.3	6
2017	Mechanism of Vascular Toxicity in Rats Subjected to Treatment with a Tyrosine Kinase Inhibitor. Toxics, 2020, 8, 49.	1.6	2
2018	Glycolaldehyde-modified proteins cause adverse functional and structural aortic remodeling leading to cardiac pressure overload. Scientific Reports, 2020, 10, 12220.	1.6	10
2019	Apatinib attenuates phenotypic switching of arterial smooth muscle cells in vascular remodelling by targeting the PDGF Receptorâ€Î². Journal of Cellular and Molecular Medicine, 2020, 24, 10128-10139.	1.6	9
2020	Role of the Ubiquitin Proteasome System in the Regulation of Blood Pressure: A Review. International Journal of Molecular Sciences, 2020, 21, 5358.	1.8	11
2021	Pyrogallol-Phloroglucinol-6,6-Bieckolon Attenuates Vascular Smooth Muscle Cell Proliferation and Phenotype Switching in Hyperlipidemia through Modulation of Chemokine Receptor 5. Marine Drugs, 2020, 18, 393.	2.2	13
2022	<p>TAGLN and High-mobility Group AT-Hook 2 (HMGA2) Complex Regulates TGF-Î2-induced Colorectal Cancer Metastasis</p> . OncoTargets and Therapy, 2020, Volume 13, 10489-10498.	1.0	9
2023	Histone Deacetylase SIRT1, Smooth Muscle Cell Function, and Vascular Diseases. Frontiers in Pharmacology, 2020, 11, 537519.	1.6	13
2024	Cell shape regulates subcellular organelle location to control early Ca2+ signal dynamics in vascular smooth muscle cells. Scientific Reports, 2020, 10, 17866.	1.6	18
2025	Integrin α9 is involved in the pathopoiesis of acute aortic dissection via mediating phenotype switch of vascular smooth muscle cell. Biochemical and Biophysical Research Communications, 2020, 533, 519-525.	1.0	7
2026	MicroRNAs are critical in regulating smooth muscle cell mineralization and apoptosis during vascular calcification. Journal of Cellular and Molecular Medicine, 2020, 24, 13564-13572.	1.6	28
2027	ALK7 Promotes Vascular Smooth Muscle Cells Phenotypic Modulation by Negative Regulating PPARÎ ³ Expression. Journal of Cardiovascular Pharmacology, 2020, 76, 237-245.	0.8	3
2028	Deficiency in Aim2 affects viability and calcification of vascular smooth muscle cells from murine aortas and angiotensin-II induced aortic aneurysms. Molecular Medicine, 2020, 26, 87.	1.9	15

#	Article	IF	CITATIONS
2029	Non oding RNAs in aortic dissection: From biomarkers to therapeutic targets. Journal of Cellular and Molecular Medicine, 2020, 24, 11622-11637.	1.6	33
2030	Exploring the potential of human adipocytes in periodontal regeneration: A review. Journal of Gandaki Medical College-Nepal, 2020, 13, 68-77.	0.0	0
2031	The role of sphingosine 1â€phosphate and its receptors in cardiovascular diseases. Journal of Cellular and Molecular Medicine, 2020, 24, 10290-10301.	1.6	22
2032	Retinal and Choroidal Vasculature in Patients with Marfan Syndrome. Translational Vision Science and Technology, 2020, 9, 5.	1.1	13
2033	Targeting Heme Oxygenase-1 in the Arterial Response to Injury and Disease. Antioxidants, 2020, 9, 829.	2.2	25
2034	Tanshinone II A attenuates vascular remodeling through klf4 mediated smooth muscle cell phenotypic switching. Scientific Reports, 2020, 10, 13858.	1.6	6
2035	YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation. Scientific Reports, 2020, 10, 21781.	1.6	12
2036	YAP/TAZ Are Required to Suppress Osteogenic Differentiation of Vascular Smooth Muscle Cells. IScience, 2020, 23, 101860.	1.9	19
2037	Chemokine mediated signalling within arteries promotes vascular smooth muscle cell recruitment. Communications Biology, 2020, 3, 734.	2.0	30
2038	Computational Study of Growth and Remodeling in Ascending Thoracic Aortic Aneurysms Considering Variations of Smooth Muscle Cell Basal Tone. Frontiers in Bioengineering and Biotechnology, 2020, 8, 587376.	2.0	9
2039	L-type blocker STIMulate Ca2+ entry in synthetic VSMCs. Cell Calcium, 2020, 91, 102279.	1.1	0
2040	Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia. FEBS Journal, 2020, 287, 5260-5283.	2.2	32
2041	Noncatalytic function of PI3K $^{ m 3}$ drives smooth muscle cell proliferation after arterial damage. Journal of Cell Science, 2020, 133, .	1.2	2
2042	SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data. Frontiers in Genetics, 2020, 11, 490.	1.1	88
2043	In Vitro Lineage-Specific Differentiation of Vascular Smooth Muscle Cells in Response to SMAD3 Deficiency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1651-1663.	1.1	32
2044	Combinatorial therapy of sirolimus and heparin by nanocarrier inhibits restenosis after balloon angioplasty ex vivo. Nanomedicine, 2020, 15, 1205-1220.	1.7	3
2045	Circular RNAs in the pathogenesis of atherosclerosis. Life Sciences, 2020, 255, 117837.	2.0	71
2046	Metformin and Vascular Diseases: A Focused Review on Smooth Muscle Cell Function. Frontiers in Pharmacology, 2020, 11, 635.	1.6	36

#	Article	IF	CITATIONS
2047	Motility and function of smooth muscle cells in a silk small-caliber tubular scaffold after replacement of rabbit common carotid artery. Materials Science and Engineering C, 2020, 114, 110977.	3.8	12
2048	Reactive Oxygen-Forming Nox5 Links Vascular Smooth Muscle Cell Phenotypic Switching and Extracellular Vesicle-Mediated Vascular Calcification. Circulation Research, 2020, 127, 911-927.	2.0	104
2049	TNFα and Reactive Oxygen Signaling in Vascular Smooth Muscle Cells in Hypertension and Atherosclerosis. American Journal of Hypertension, 2020, 33, 902-913.	1.0	38
2050	Role of c-Abl in Ang II-induced aortic dissection formation: Potential regulatory efficacy on phenotypic transformation and apoptosis of VSMCs. Life Sciences, 2020, 256, 117882.	2.0	8
2051	Effects of Extracellular Matrix Softening on Vascular Smooth Muscle Cell Dysfunction. Cardiovascular Toxicology, 2020, 20, 548-556.	1.1	15
2052	Metformin inhibits intracranial aneurysm formation and progression by regulating vascular smooth muscle cell phenotype switching via the AMPK/ACC pathway. Journal of Neuroinflammation, 2020, 17, 191.	3.1	26
2053	Long noncoding RNAs: new players regulating vascular calcification?. Renal Failure, 2020, 42, 570-571.	0.8	1
2054	Role of the signal transducer and activator of transcription 3 protein in the proliferation of vascular smooth muscle cells. Vascular, 2020, 28, 821-828.	0.4	4
2055	Kv1.3 blockade inhibits proliferation of vascular smooth muscle cells in vitro and intimal hyperplasia in vivo. Translational Research, 2020, 224, 40-54.	2.2	11
2056	The Role of Estrogen Receptors in Cardiovascular Disease. International Journal of Molecular Sciences, 2020, 21, 4314.	1.8	84
2057	TRIM28 and TRIM27 are required for expressions of PDGFRÎ ² and contractile phenotypic genes by vascular smooth muscle cells. FASEB Journal, 2020, 34, 6271-6283.	0.2	8
2058	Fibroblastâ€specific <scp> <i>Stat1</i> </scp> deletion enhances the myofibroblast phenotype during tissue repair. Wound Repair and Regeneration, 2020, 28, 448-459.	1.5	13
2059	Tissue-Specific Metabolic Regulation of FOXO-Binding Protein: FOXO Does Not Act Alone. Cells, 2020, 9, 702.	1.8	33
2060	Perivascular Adipose Tissue Regulates Vascular Function by Targeting Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1094-1109.	1.1	81
2061	Regulatory Effects of a Pea-Derived Peptide Leu-Arg-Trp (LRW) on Dysfunction of Rat Aortic Vascular Smooth Muscle Cells against Angiotensin II Stimulation. Journal of Agricultural and Food Chemistry, 2020, 68, 3947-3953.	2.4	24
2062	miR-128-3p Is a Novel Regulator of Vascular Smooth Muscle Cell Phenotypic Switch and Vascular Diseases. Circulation Research, 2020, 126, e120-e135.	2.0	88
2063	The Role of Transcription Factor 21 in Epicardial Cell Differentiation and the Development of Coronary Heart Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 457.	1.8	24
2064	Transcriptomic profiling of experimental arterial injury reveals new mechanisms and temporal dynamics in vascular healing response. JVS Vascular Science, 2020, 1, 13-27.	0.4	10

#	Article	IF	CITATIONS
2065	Identification of microRNAs and their target gene networks implicated in arterial wall remodelling in giant cell arteritis. Rheumatology, 2020, 59, 3540-3552.	0.9	7
2066	Remodeling Matrix Synthesis in a Rat Model of Aortocaval Fistula and the Cyclic Stretch: Impaction in Pulmonary Arterial Hypertension-Congenital Heart Disease. International Journal of Molecular Sciences, 2020, 21, 4676.	1.8	4
2067	5-methoxytryptophan: an arsenal against vascular injury and inflammation. Journal of Biomedical Science, 2020, 27, 79.	2.6	22
2068	BMP-Induced MicroRNA-101 Expression Regulates Vascular Smooth Muscle Cell Migration. International Journal of Molecular Sciences, 2020, 21, 4764.	1.8	10
2069	The role of semaphorins in small vessels of the eye and brain. Pharmacological Research, 2020, 160, 105044.	3.1	11
2070	High Throughput Screen Identifies the DNMT1 (DNA Methyltransferase-1) Inhibitor, 5-Azacytidine, as a Potent Inducer of PTEN (Phosphatase and Tensin Homolog). Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1854-1869.	1.1	16
2072	Tripartite factors leading to molecular divergence between human and murine smooth muscle. PLoS ONE, 2020, 15, e0227672.	1.1	3
2073	Lateral induction limits the impact of cell connectivity on Notch signaling in arterial walls. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3323.	1.0	11
2074	Molecular regulation of vascular smooth muscle cell phenotype switching by trophoblast cells at the maternal-fetal interface. Placenta, 2020, 93, 64-73.	0.7	10
2075	Design and comprehensive assessment of a biomimetic tri-layer tubular scaffold via biodegradable polymers for vascular tissue engineering applications. Materials Science and Engineering C, 2020, 110, 110717.	3.8	44
2076	Antagonistic relationship between the unfolded protein response and myocardinâ€driven transcription in smooth muscle. Journal of Cellular Physiology, 2020, 235, 7370-7382.	2.0	8
2077	Early Programming of Adult Systemic Essential Hypertension. International Journal of Molecular Sciences, 2020, 21, 1203.	1.8	28
2078	Engineering anisotropic 3D tubular tissues with flexible thermoresponsive nanofabricated substrates. Biomaterials, 2020, 240, 119856.	5.7	28
2079	Treatment of Peroxidase Derived from Foxtail Millet Bran Attenuates Atherosclerosis by Inhibition of CD36 and STAT3 in Vitro and in Vivo. Journal of Agricultural and Food Chemistry, 2020, 68, 1276-1285.	2.4	12
2080	Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell, 2020, 180, 585-600.e19.	13.5	306
2081	The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacological Research, 2020, 153, 104664.	3.1	64
2082	Hypermethylation of mitochondrial DNA in vascular smooth muscle cells impairs cell contractility. Cell Death and Disease, 2020, 11, 35.	2.7	31
2083	Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. Journal of Inflammation, 2020, 17, 2.	1.5	5

# 2084	ARTICLE Effects of intrauterine growth restriction on Ca2+-activated force and contractile protein expression in the mesenteric artery of 1-year-old Wistar-Kyoto rats. Journal of Physiology and Biochemistry, 2020, 76, 111-121.	IF 1.3	Citations
2085	Cortistatin ameliorates Ang II-induced proliferation of vascular smooth muscle cells by inhibiting autophagy through SSTR3 and SSTR5. Life Sciences, 2020, 253, 117726.	2.0	7
2087	Induced osteogenic differentiation of human smooth muscle cells as a model of vascular calcification. Scientific Reports, 2020, 10, 5951.	1.6	21
2088	microRNA overexpression in slow transit constipation leads to reduced Na _V 1.5 current and altered smooth muscle contractility. Gut, 2020, 69, 868-876.	6.1	18
2089	Tissue Engineering Using Vascular Organoids From Human Pluripotent Stem Cell Derived Mural Cell Phenotypes. Frontiers in Bioengineering and Biotechnology, 2020, 8, 278.	2.0	24
2090	The Development of the Ascending Aortic Wall in Tricuspid and Bicuspid Aortic Valve: A Process from Maturation to Degeneration. Journal of Clinical Medicine, 2020, 9, 908.	1.0	16
2091	Orf Virus IL-10 and VEGF-E Act Synergistically to Enhance Healing of Cutaneous Wounds in Mice. Journal of Clinical Medicine, 2020, 9, 1085.	1.0	13
2092	Regulation of the cerebrovascular smooth muscle cell phenotype by mitochondrial oxidative injury and endoplasmic reticulum stress in simulated microgravity rats via the PERK-eIF2α-ATF4-CHOP pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165799.	1.8	21
2093	Targeted Repair of Vascular Injury by Adiposeâ€Derived Stem Cells Modified with P‧electin Binding Peptide. Advanced Science, 2020, 7, 1903516.	5.6	28
2094	Abnormal Ca2+ handling contributes to the impairment of aortic smooth muscle contractility in Zucker diabetic fatty rats. Journal of Molecular and Cellular Cardiology, 2020, 141, 82-92.	0.9	13
2095	Icotinib Attenuates Monocrotaline-Induced Pulmonary Hypertension by Preventing Pulmonary Arterial Smooth Muscle Cell Dysfunction. American Journal of Hypertension, 2020, 33, 775-783.	1.0	9
2096	A multilayered scaffold for regeneration of smooth muscle and connective tissue layers. Journal of Biomedical Materials Research - Part A, 2021, 109, 733-744.	2.1	10
2097	Metabolic adaptations of cells at the vascular-immune interface during atherosclerosis. Molecular Aspects of Medicine, 2021, 77, 100918.	2.7	13
2098	The dynamic change of phenotypic markers of smooth muscle cells in an animal model of cerebral small vessel disease. Microvascular Research, 2021, 133, 104061.	1.1	10
2099	Nucleolin regulates the proliferation of vascular smooth muscle cells in atherosclerotic via Aurora B. Journal of Cellular and Molecular Medicine, 2021, 25, 751-762.	1.6	7
2100	PDIA1 acts as master organizer of NOX1/NOX4 balance and phenotype response in vascular smooth muscle. Free Radical Biology and Medicine, 2021, 162, 603-614.	1.3	14
2102	Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials, 2021, 269, 120628.	5.7	32
2103	Circular RNA in cardiovascular disease: Expression, mechanisms and clinical prospects. Journal of Cellular and Molecular Medicine, 2021, 25, 1817-1824.	1.6	39

	DT
CITATION REPOR	K I

#	Article	IF	CITATIONS
2104	Variants of Focal Adhesion Scaffold Genes Cause Thoracic Aortic Aneurysm. Circulation Research, 2021, 128, 8-23.	2.0	29
2105	lmatinib improves insulin resistance and inhibits injury-induced neointimal hyperplasia in high fat diet-fed mice. European Journal of Pharmacology, 2021, 890, 173666.	1.7	6
2106	Prostacyclin facilitates vascular smooth muscle cell phenotypic transformation via activating TP receptors when IP receptors are deficient. Acta Physiologica, 2021, 231, e13555.	1.8	8
2107	Serum response factorâ€cofactor interactions and their implications in disease. FEBS Journal, 2021, 288, 3120-3134.	2.2	32
2108	Vascular smooth muscle remodeling in health and disease. Canadian Journal of Physiology and Pharmacology, 2021, 99, 171-178.	0.7	19
2109	Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vascular Science, 2021, 2, 79-94.	0.4	70
2110	Smooth muscle cells in atherosclerosis: Clones but not carbon copies. JVS Vascular Science, 2021, 2, 136-148.	0.4	14
2111	Celastrol ameliorates vascular neointimal hyperplasia through Wnt5a-involved autophagy. International Journal of Biological Sciences, 2021, 17, 2561-2575.	2.6	18
2112	A Chemomechanobiological Model of the Long-Term Healing Response of Arterial Tissue to a Clamping Injury. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589889.	2.0	2
2113	Myeloid differentiation 2 deficiency attenuates Angll-induced arterial vascular oxidative stress, inflammation, and remodeling. Aging, 2021, 13, 4409-4427.	1.4	11
2114	MiR-30c-5p regulates adventitial progenitor cells differentiation to vascular smooth muscle cells through targeting OPG. Stem Cell Research and Therapy, 2021, 12, 67.	2.4	7
2115	Regulation of SMC traction forces in human aortic thoracic aneurysms. Biomechanics and Modeling in Mechanobiology, 2021, 20, 717-731.	1.4	6
2116	Role of Uremic Toxins in Early Vascular Ageing and Calcification. Toxins, 2021, 13, 26.	1.5	18
2117	Human Dental Pulp-Derived Mesenchymal Stem Cell Potential to Differentiate into Smooth Muscle-Like Cells In Vitro. BioMed Research International, 2021, 2021, 1-13.	0.9	11
2118	Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes, 2021, 12, 183.	1.0	31
2119	Proliferative Vascular Smooth Muscle Cells Stimulate Extracellular Matrix Production via Osteopontin/p38 MAPK Signaling Pathway. Cardiology, 2021, 146, 646-655.	0.6	7
2120	Mechanobiology of Arterial Hypertension. Cardiac and Vascular Biology, 2021, , 277-298.	0.2	0
2121	New Kids on the Block: The Emerging Role of YAP/TAZ in Vascular Cell Mechanotransduction. Cardiac and Vascular Biology, 2021, , 69-96.	0.2	2

#	Article	IF	CITATIONS
2122	Rs884225 polymorphism is associated with primary hypertension by compromising interaction between epithelial growth factor receptor (EGFR) and miRâ€214. Journal of Cellular and Molecular Medicine, 2021, 25, 3714-3723.	1.6	3
2123	In vitro extracellular matrix deposition by vascular smooth muscle cells grown in fibroin scaffolds, and the regulation of TGF-l²1. Materials and Design, 2021, 199, 109428.	3.3	9
2124	Novel <i>Myh11</i> Dual Reporter Mouse Model Provides Definitive Labeling and Identification of Smooth Muscle Cells—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 815-821.	1.1	6
2125	Diverse roles of microRNA-145 in regulating smooth muscle (dys)function in health and disease. Biochemical Society Transactions, 2021, 49, 353-363.	1.6	8
2126	Protective role of serpina3c as a novel thrombin inhibitor against atherosclerosis in mice. Clinical Science, 2021, 135, 447-463.	1.8	9
2127	mTOR Signaling in Pulmonary Vascular Disease: Pathogenic Role and Therapeutic Target. International Journal of Molecular Sciences, 2021, 22, 2144.	1.8	29
2128	The VWF/LRP4/αVβ3-axis represents a novel pathway regulating proliferation of human vascular smooth muscle cells. Cardiovascular Research, 2022, 118, 622-637.	1.8	22
2129	Adventitial delivery of nanoparticles encapsulated with $1\hat{l}\pm$, 25-dihydroxyvitamin D3 attenuates restenosis in a murine angioplasty model. Scientific Reports, 2021, 11, 4772.	1.6	8
2130	Modulation of the Vascular-Immune Environment in Metastatic Cancer. Cancers, 2021, 13, 810.	1.7	12
2131	Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. Cyborg and Bionic Systems, 2021, 2021, .	3.7	22
2132	A prediction tool for plaque progression based on patient-specific multi-physical modeling. PLoS Computational Biology, 2021, 17, e1008344.	1.5	6
2133	Role of inflammatory cytokines in genesis and treatment of atherosclerosis. Looking at foam cells through a different lens. Trends in Cardiovascular Medicine, 2021, , .	2.3	2
2134	Emulating Early Atherosclerosis in a Vascular Microphysiological System Using Branched Tissueâ€Engineered Blood Vessels. Advanced Biology, 2021, 5, e2000428.	1.4	14
2135	PRDX2 Protects Against Atherosclerosis by Regulating the Phenotype and Function of the Vascular Smooth Muscle Cell. Frontiers in Cardiovascular Medicine, 2021, 8, 624796.	1.1	7
2136	Anxa1 in smooth muscle cells protects against acute aortic dissection. Cardiovascular Research, 2022, 118, 1564-1582.	1.8	19
2137	GDF11 prevents the formation of thoracic aortic dissection in mice: Promotion of contractile transition of aortic SMCs. Journal of Cellular and Molecular Medicine, 2021, 25, 4623-4636.	1.6	11
2138	Engineering a Human Pluripotent Stem Cell-Based in vitro Microphysiological System for Studying the Metformin Response in Aortic Smooth Muscle Cells. Frontiers in Bioengineering and Biotechnology, 2021, 9, 627877.	2.0	4
2139	G6PD activity contributes to the regulation of histone acetylation and gene expression in smooth muscle cells and to the pathogenesis of vascular diseases. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H999-H1016.	1.5	13

#	Article	IF	CITATIONS
2140	NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells. Scientific Reports, 2021, 11, 5955.	1.6	5
2141	MicroRNA-29b inhibits human vascular smooth muscle cell proliferation via targeting the TGF-β/Smad3 signaling pathway. Experimental and Therapeutic Medicine, 2021, 21, 492.	0.8	5
2142	Phenotypic switch of smooth muscle cells in paediatric chronic intestinal pseudoâ€obstruction syndrome. Journal of Cellular and Molecular Medicine, 2021, 25, 4028-4039.	1.6	6
2143	Testosterone Metabolite 6βâ€Hydroxytestosterone Contributes to Angiotensin IIâ€Induced Abdominal Aortic Aneurysms in <i>Apoe ^{–/–} </i> Male Mice. Journal of the American Heart Association, 2021, 10, e018536.	1.6	6
2144	The origin and mechanisms of smooth muscle cell development in vertebrates. Development (Cambridge), 2021, 148, .	1.2	23
2145	Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells. Circulation Research, 2021, 128, 670-686.	2.0	35
2146	Purine-rich element binding protein B attenuates the coactivator function of myocardin by a novel molecular mechanism of smooth muscle gene repression. Molecular and Cellular Biochemistry, 2021, 476, 2899-2916.	1.4	1
2147	P2X7 receptor-mediated phenotype switching of pulmonary artery smooth muscle cells in hypoxia. Molecular Biology Reports, 2021, 48, 2133-2142.	1.0	4
2148	Sirt7 Deficiency Attenuates Neointimal Formation Following Vascular Injury by Modulating Vascular Smooth Muscle Cell Proliferation. Circulation Journal, 2021, 85, 2232-2240.	0.7	8
2149	Exosome-eluting stents for vascular healing after ischaemic injury. Nature Biomedical Engineering, 2021, 5, 1174-1188.	11.6	98
2150	ORAl1 Ca2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Frontiers in Cell and Developmental Biology, 2021, 9, 653812.	1.8	19
2152	Circ_GRN Promotes the Proliferation, Migration, and Inflammation of Vascular Smooth Muscle Cells in Atherosclerosis Through miR-214-3p/FOXO1 Axis. Journal of Cardiovascular Pharmacology, 2021, 77, 470-479.	0.8	16
2153	<i>CARMN</i> Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice. Circulation Research, 2021, 128, 1258-1275.	2.0	47
2154	Loss of FoxO3a prevents aortic aneurysm formation through maintenance of VSMC homeostasis. Cell Death and Disease, 2021, 12, 378.	2.7	24
2155	Contribution of PDGFRα-positive cells in maintenance and injury responses in mouse large vessels. Scientific Reports, 2021, 11, 8683.	1.6	4
2156	Knockout of the <i>NONO</i> Gene Inhibits Neointima Formation in a Mouse Model of Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1428-1445.	1.1	4
2157	The anatomical sources of neointimal cells in the arteriovenous fistula. Journal of Vascular Access, 2023, 24, 99-106.	0.5	8
2158	Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols. Antioxidants, 2021, 10, 782.	2.2	12

#	Article	IF	CITATIONS
2159	YTHDF1 Regulates Pulmonary Hypertension through Translational Control of MAGED1. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1158-1172.	2.5	62
2160	Effect of luminal surface structure of decellularized aorta on thrombus formation and cell behavior. PLoS ONE, 2021, 16, e0246221.	1.1	8
2161	Lysosome Function in Cardiovascular Diseases. Cellular Physiology and Biochemistry, 2021, 55, 277-300.	1.1	7
2162	Artery Wall Viscoelasticity: Measurement, Assessment, and Clinical Implications. International Journal of Precision Engineering and Manufacturing, 2021, 22, 1157-1168.	1.1	3
2163	Intestinal smooth muscle aberrations in pancreatic cancer patients with sarcopenia. JCSM Rapid Communications, 2021, 4, 187-196.	0.6	2
2164	SMYD3–PARP16 axis accelerates unfolded protein response and mediates neointima formation. Acta Pharmaceutica Sinica B, 2021, 11, 1261-1273.	5.7	11
2165	The YAP/HIF-1α/miR-182/EGR2 axis is implicated in asthma severity through the control of Th17 cell differentiation. Cell and Bioscience, 2021, 11, 84.	2.1	9
2167	Aging Modulates the Effects of Ischemic Injury Upon Mesenchymal Cells within the Renal Interstitium and Microvasculature. Stem Cells Translational Medicine, 2021, 10, 1232-1248.	1.6	7
2168	DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling. Stem Cell Research and Therapy, 2021, 12, 281.	2.4	27
2169	Substrate Stiffness Regulates Cholesterol Efflux in Smooth Muscle Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 648715.	1.8	2
2171	Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. Journal of Clinical Investigation, 2021, 131, .	3.9	12
2172	Inhibition of CDK9 attenuates atherosclerosis by inhibiting inflammation and phenotypic switching of vascular smooth muscle cells. Aging, 2021, 13, 14892-14909.	1.4	5
2173	MicroRNAâ€199aâ€5p aggravates angiotensin II–induced vascular smooth muscle cell senescence by targeting Sirtuinâ€1 in abdominal aortic aneurysm. Journal of Cellular and Molecular Medicine, 2021, 25, 6056-6069.	1.6	15
2174	<i>ABCA1, TCF7, NFATC1, PRKCZ,</i> and <i>PDGFA</i> DNA methylation as potential epigenetic-sensitive targets in acute coronary syndrome <i>via</i> network analysis. Epigenetics, 2022, 17, 547-563.	1.3	9
2175	MFGâ€E8 Regulates Vascular Smooth Muscle Cell Migration Through Doseâ€Dependent Mediation of Actin Polymerization. Journal of the American Heart Association, 2021, 10, e020870.	1.6	5
2176	FMD and SCAD: Sex-Biased Arterial Diseases With Clinical and Genetic Pleiotropy. Circulation Research, 2021, 128, 1958-1972.	2.0	18
2177	Efferocytosis of vascular cells in cardiovascular disease. , 2022, 229, 107919.		6
2178	Single-Cell Transcriptomics Reveals the Cellular Heterogeneity of Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 643519.	1.1	8

#	Article	IF	CITATIONS
2180	miR-195-5p Regulates the Phenotype Switch of CCSM Cells by Targeting Smad7. Sexual Medicine, 2021, 9, 100349-100349.	0.9	3
2181	A differentiated Ca2+ signalling phenotype has minimal impact on myocardin expression in an automated differentiation assay using A7r5 cells. Cell Calcium, 2021, 96, 102369.	1.1	1
2182	Searching for new molecular markers for cells obtained from abdominal aortic aneurysm. Journal of Applied Genetics, 2021, 62, 487-497.	1.0	6
2183	Loss of Transforming Growth Factor Beta Signaling in Aortic Smooth Muscle Cells Causes Endothelial Dysfunction and Aortic Hypercontractility. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1956-1971.	1.1	14
2184	Human coronary microvascular contractile dysfunction associates with viable synthetic smooth muscle cells. Cardiovascular Research, 2022, 118, 1978-1992.	1.8	8
2185	Glutamine switches vascular smooth muscle cells to synthetic phenotype through inhibiting miR-143 expression and upregulating THY1 expression. Life Sciences, 2021, 277, 119365.	2.0	10
2186	Identification of a novel therapeutic target in vascular dysfunction: a showcase of reverse and forward translational research linking bench to bedside. European Heart Journal, 2021, , .	1.0	2
2187	Circular RNAs as Competing Endogenous RNAs in Cardiovascular and Cerebrovascular Diseases: Molecular Mechanisms and Clinical Implications. Frontiers in Cardiovascular Medicine, 2021, 8, 682357.	1.1	17
2188	YAP1/TEAD1 upregulate platelet-derived growth factor receptor beta to promote vascular smooth muscle cell proliferation and neointima formation. Journal of Molecular and Cellular Cardiology, 2021, 156, 20-32.	0.9	10
2189	Exploring the regulatory roles of circular RNAs in the pathogenesis of atherosclerosis. Vascular Pharmacology, 2021, 141, 106898.	1.0	16
2190	Intrauterine Nitric Oxide Deficiency Weakens Differentiation of Vascular Smooth Muscle in Newborn Rats. International Journal of Molecular Sciences, 2021, 22, 8003.	1.8	4
2191	Nidogen-2 Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells and Prevents Neointima Formation via Bridging Jagged1-Notch3 Signaling. Circulation, 2021, 144, 1244-1261.	1.6	33
2192	Potential Role of Protein Kinase C in the Pathophysiology of Diabetes-Associated Atherosclerosis. Frontiers in Pharmacology, 2021, 12, 716332.	1.6	33
2193	Roles of MicroRNAs in Peripheral Artery In-Stent Restenosis after Endovascular Treatment. BioMed Research International, 2021, 2021, 1-11.	0.9	5
2194	A model of atherosclerosis using nicotine with balloon overdilation in a porcine. Scientific Reports, 2021, 11, 13695.	1.6	4
2195	Increased Plasma Levels of Myosin Heavy Chain 11 Is Associated with Atherosclerosis. Journal of Clinical Medicine, 2021, 10, 3155.	1.0	0
2196	Intracellular Ca2+ Dysregulation in Coronary Smooth Muscle Is Similar in Coronary Disease of Humans and Ossabaw Miniature Swine. Journal of Cardiovascular Translational Research, 2021, , 1.	1.1	2
2197	In-depth bioinformatic study of the cadherin 5 interactome in patients with thoracic aortic aneurysm unveils 8 novel biomarkers. European Journal of Cardio-thoracic Surgery, 2021, , .	0.6	5

#	Article	IF	CITATIONS
2198	Vascular Mechanobiology: Homeostasis, Adaptation, and Disease. Annual Review of Biomedical Engineering, 2021, 23, 1-27.	5.7	75
2199	Intracellular glutamine level determines vascular smooth muscle cell-derived thrombogenicity. Atherosclerosis, 2021, 328, 62-73.	0.4	8
2200	The protective effect of HOXA5 on carotid atherosclerosis occurs by modulating the vascular smooth muscle cell phenotype. Molecular and Cellular Endocrinology, 2021, 534, 111366.	1.6	13
2201	The Phenotypic Responses of Vascular Smooth Muscle Cells Exposed to Mechanical Cues. Cells, 2021, 10, 2209.	1.8	27
2202	Paeonol Suppresses Vasculogenesis Through Regulating Vascular Smooth Muscle Phenotypic Switching. Journal of Endovascular Therapy, 2022, 29, 117-131.	0.8	6
2203	Upregulation of Calcium Homeostasis Modulators in Contractile-To-Proliferative Phenotypical Transition of Pulmonary Arterial Smooth Muscle Cells. Frontiers in Physiology, 2021, 12, 714785.	1.3	1
2204	Epigenetic Regulation of Vascular Smooth Muscle Cell Phenotype Switching in Atherosclerotic Artery Remodeling: A Mini-Review. Frontiers in Genetics, 2021, 12, 719456.	1.1	15
2205	The canonical smooth muscle cell marker TAGLN is present in endothelial cells and is involved in angiogenesis. Journal of Cell Science, 2021, 134, .	1.2	20
2206	New mechanistic insights to PLOD1-mediated human vascular disease. Translational Research, 2022, 239, 1-17.	2.2	8
2207	Association of miR-192-5p with Atherosclerosis and its Effect on Proliferation and Migration of Vascular Smooth Muscle Cells. Molecular Biotechnology, 2021, 63, 1244-1251.	1.3	10
2208	MicroRNAs as Biomarkers for Predicting Complications following Aneurysmal Subarachnoid Hemorrhage. International Journal of Molecular Sciences, 2021, 22, 9492.	1.8	11
2209	Mediator Med23 deficiency in smooth muscle cells prevents neointima formation after arterial injury. Cell Discovery, 2021, 7, 59.	3.1	2
2210	Cytokineâ€induced apoptosis inhibitor 1 (CIAPIN1) accelerates vascular remodelling via p53 and JAK2‧TAT3 regulation in vascular smooth muscle cells. British Journal of Pharmacology, 2021, 178, 4533-4551.	2.7	12
2211	The Expanding Role of Alternative Splicing in Vascular Smooth Muscle Cell Plasticity. International Journal of Molecular Sciences, 2021, 22, 10213.	1.8	7
2212	Vascular smooth muscle cell dysfunction contribute to neuroinflammation and Tau hyperphosphorylation in Alzheimer disease. IScience, 2021, 24, 102993.	1.9	21
2213	Salt-Inducible Kinase 3 Promotes Vascular Smooth Muscle Cell Proliferation and Arterial Restenosis by Regulating AKT and PKA-CREB Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2431-2451.	1.1	8
2214	Dynamic Crosstalk between Vascular Smooth Muscle Cells and the Aged Extracellular Matrix. International Journal of Molecular Sciences, 2021, 22, 10175.	1.8	14
2215	Combination of PD98059 and TGF-β1 Efficiently Differentiates Human Urine-Derived Stem Cells into Smooth Muscle Cells. International Journal of Molecular Sciences, 2021, 22, 10532.	1.8	2

#	Article	IF	CITATIONS
2216	Calcification and Aortic Syndromes. , 2022, , 65-93.		0
2217	Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2693-2707.	1.1	106
2218	Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells. Stem Cell Reports, 2021, 16, 2159-2168.	2.3	42
2219	The actin depolymerizing factor destrin serves as a negative feedback inhibitor of smooth muscle cell differentiation. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H893-H904.	1.5	2
2220	Adipocyte factor CTRP6 inhibits homocysteine-induced proliferation, migration, and dedifferentiation of vascular smooth muscle cells through PPARÎ ³ /NLRP3. Biochemistry and Cell Biology, 2021, 99, 1-10.	0.9	7
2221	Postnatal development alters functional compartmentalization of myosin light chain kinase in ovine carotid arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R441-R453.	0.9	1
2222	USP10 exacerbates neointima formation by stabilizing Skp2 protein in vascular smooth muscle cells. Journal of Biological Chemistry, 2021, 297, 101258.	1.6	5
2223	Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis. International Journal of Molecular Sciences, 2021, 22, 10585.	1.8	26
2224	Platelet-Derived Microvesicles Promote VSMC Dedifferentiation After Intimal Injury via Src/Lamtor1/mTORC1 Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 744320.	1.8	8
2226	Macrophages in Atherosclerosis, First or Second Row Players?. Biomedicines, 2021, 9, 1214.	1.4	11
2227	Defective autophagy in vascular smooth muscle cells enhances the healing of abdominal aortic aneurysm. Physiological Reports, 2021, 9, e15000.	0.7	4
2229	Sinomenine in Cardio-Cerebrovascular Diseases: Potential Therapeutic Effects and Pharmacological Evidences. Frontiers in Cardiovascular Medicine, 2021, 8, 749113.	1.1	14
2230	Low-intensity pulsed ultrasound prevents angiotensin II-induced aortic smooth muscle cell phenotypic switch via hampering miR-17-5p and enhancing PPAR-γ. European Journal of Pharmacology, 2021, 911, 174509.	1.7	1
2231	Hydrogels: A potential platform for induced pluripotent stem cell culture and differentiation. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111991.	2.5	13
2232	Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering – Do patient characteristics warrant precision engineering?. Advanced Drug Delivery Reviews, 2021, 178, 113960.	6.6	29
2233	Lumican deficiency promotes pulmonary arterial remodeling. Translational Research, 2021, 237, 63-81.	2.2	4
2234	miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Molecular Metabolism, 2021, 53, 101306.	3.0	4
2235	Bioabsorbable metal zinc differentially affects mitochondria in vascular endothelial and smooth muscle cells. Biomaterials and Biosystems, 2021, 4, 100027.	1.0	3

#	Article	IF	CITATIONS
2236	G protein-coupled receptor kinase 2 is essential to enable vasoconstrictor-mediated arterial smooth muscle proliferation. Cellular Signalling, 2021, 88, 110152.	1.7	2
2237	5′-tiRNA-Cys-GCA regulates VSMC proliferation and phenotypic transition by targeting STAT4 in aortic dissection. Molecular Therapy - Nucleic Acids, 2021, 26, 295-306.	2.3	30
2239	Integrin β3 targeting biomaterial preferentially promotes secretion of bFGF and viability of iPSC-derived vascular smooth muscle cells. Biomaterials Science, 2021, 9, 5319-5329.	2.6	4
2240	Regulation of Macrophage Activation and Differentiation in Atherosclerosis. Journal of Lipid and Atherosclerosis, 2021, 10, 251.	1.1	18
2242	Diet alters age-related remodeling of aortic collagen in mice susceptible to atherosclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H52-H65.	1.5	5
2243	BOP1 Knockdown Attenuates Neointimal Hyperplasia by Activating p53 and Inhibiting Nascent Protein Synthesis. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	1.9	8
2244	Phenotypic Heterogeneity of Smooth Muscle Cells- Implications for Atherosclerosis. , 0, , 325-342.		1
2245	Smooth Muscle Cell-Proteoglycan-Lipoprotein Interactions as Drivers of Atherosclerosis. Handbook of Experimental Pharmacology, 2020, , 1.	0.9	7
2246	Ca2+/Calmodulin-Dependent Protein Kinase II Signaling in Vascular Smooth Muscle. , 2008, , 339-355.		1
2247	Caveolins and Lung Function. Advances in Experimental Medicine and Biology, 2012, 729, 157-179.	0.8	41
2248	Derivation of Contractile Smooth Muscle Cells from Embryonic Stem Cells. Methods in Molecular Biology, 2009, 482, 345-367.	0.4	9
2249	Cardiac and Vascular Receptors and Signal Transduction. , 2009, , 191-218.		2
2250	Vascular Remodeling in Health and Disease. , 2007, , 1541-1565.		3
2251	T-Type Ca2+ Channel Regulation by CO: A Mechanism for Control of Cell Proliferation. Advances in Experimental Medicine and Biology, 2015, 860, 291-300.	0.8	8
2252	Conditional Mouse Models to Study Developmental and Pathophysiological Gene Function in Muscle. , 2007, , 441-468.		18
2253	Prenatal Development of Cardiovascular Regulation in Avian Species. , 2009, , 397-427.		4
2254	miRNA Biology in Pathological Processes. Springer Briefs in Molecular Science, 2015, , 7-22.	0.1	2
2255	Extracellular Matrix and Smooth Muscle Cells. , 2012, , 435-460.		2

#	Article	IF	CITATIONS
2256	Regulation of Stem Cell Functions by Micro-Patterned Structures. Advances in Experimental Medicine and Biology, 2020, 1250, 141-155.	0.8	4
2257	Pathogenesis of Stable and Acute Coronary Syndromes. , 2011, , 42-52.		3
2258	Evidence for the Involvement of Matrix-Degrading Metalloproteinases (MMPs) in Atherosclerosis. Progress in Molecular Biology and Translational Science, 2017, 147, 197-237.	0.9	44
2259	Characterization of the stem cell niche components within the seminiferous tubules in testicular biopsies of Klinefelter patients. Fertility and Sterility, 2020, 113, 1183-1195.e3.	0.5	15
2260	l-Theanine attenuates neointimal hyperplasia via suppression of vascular smooth muscle cell phenotypic modulation. Journal of Nutritional Biochemistry, 2020, 82, 108398.	1.9	9
2261	The elephant in the lung: Integrating lineage-tracing, molecular markers, and single cell sequencing data to identify distinct fibroblast populations during lung development and regeneration. Matrix Biology, 2020, 91-92, 51-74.	1.5	39
2262	FOXO-binding partners: it takes two to tango. , 0, .		1
2263	Smooth Muscle Transcriptome Browser: offering genome-wide references and expression profiles of transcripts expressed in intestinal SMC, ICC, and PDGFRα+ cells. Scientific Reports, 2019, 9, 387.	1.6	16
2264	Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clinical Science, 2019, 133, 2481-2498.	1.8	65
2265	On the biocompatibility of graphene oxide towards vascular smooth muscle cells. Nanotechnology, 2021, 32, 055101.	1.3	12
2266	Coaxial printing of double-layered and free-standing blood vessel analogues without ultraviolet illumination for high-volume vascularised tissue. Biofabrication, 2020, 12, 045033.	3.7	20
2267	CDKN2B-AS1 Aggravates the Pathogenesis of Human Thoracic Aortic Dissection by Sponge to miR-320d. Journal of Cardiovascular Pharmacology, 2020, 76, 592-601.	0.8	10
2273	Chronic hypoxia alters fetal cerebrovascular responses to endothelin-1. American Journal of Physiology - Cell Physiology, 2017, 313, C207-C218.	2.1	9
2274	IgE Contributes to Atherosclerosis and Obesity by Affecting Macrophage Polarization, Macrophage Protein Network, and Foam Cell Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 597-610.	1.1	41
2275	Gambogic Acid Induced Apoptosis through Activation of Caspase-dependent Pathway in Aortic Smooth Muscle Cells. Korean Journal of Physical Anthropology, 2013, 26, 105.	0.2	1
2276	HDAC9 complex inhibition improves smooth muscle–dependent stenotic vascular disease. JCI Insight, 2019, 4, .	2.3	23
2277	Smooth muscle–derived progenitor cell myofibroblast differentiation through KLF4 downregulation promotes arterial remodeling and fibrosis. JCI Insight, 2020, 5, .	2.3	33
2278	Von Hippel-Lindau mutations disrupt vascular patterning and maturation via Notch. JCI Insight, 2018, 3, .	2.3	19

#	Article	IF	CITATIONS
2279	PTEN deficiency promotes pathological vascular remodeling of human coronary arteries. JCI Insight, 2018, 3, .	2.3	29
2280	Proliferative, degradative smooth muscle cells promote aortic disease. Journal of Clinical Investigation, 2020, 130, 1096-1098.	3.9	7
2281	Lost in transdifferentiation. Journal of Clinical Investigation, 2004, 113, 1249-1251.	3.9	42
2282	5′ CArG degeneracy in smooth muscle α-actin is required for injury-induced gene suppression in vivo. Journal of Clinical Investigation, 2005, 115, 418-427.	3.9	91
2283	Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. Journal of Clinical Investigation, 2005, 115, 1210-1220.	3.9	395
2284	Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. Journal of Clinical Investigation, 2005, 116, 36-48.	3.9	231
2285	Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice. Journal of Clinical Investigation, 2008, 118, 515-25.	3.9	124
2286	Junb regulates arterial contraction capacity, cellular contractility, and motility via its target Myl9 in mice. Journal of Clinical Investigation, 2010, 120, 2307-2318.	3.9	41
2287	Myocardin regulates BMP10 expression and is required for heart development. Journal of Clinical Investigation, 2012, 122, 3678-3691.	3.9	87
2288	Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. Journal of Clinical Investigation, 2017, 127, 2262-2276.	3.9	35
2289	Aberrant Expression of microRNA-9 Contributes to Development of Intracranial Aneurysm by Suppressing Proliferation and Reducing Contractility of Smooth Muscle Cells. Medical Science Monitor, 2016, 22, 4247-4253.	0.5	19
2290	Long Noncoding RNA XR007793 Regulates Proliferation and Migration of Vascular Smooth Muscle Cell via Suppressing miR-23b. Medical Science Monitor, 2018, 24, 5895-5903.	0.5	16
2291	Canonical Transient Receptor Potential Channels and Vascular Smooth Muscle Cell Plasticity. Journal of Lipid and Atherosclerosis, 2020, 9, 124.	1.1	16
2292	The Actin Associated Protein Palladin Is Important for the Early Smooth Muscle Cell Differentiation. PLoS ONE, 2010, 5, e12823.	1.1	40
2293	Retinoid-Induced Expression and Activity of an Immediate Early Tumor Suppressor Gene in Vascular Smooth Muscle Cells. PLoS ONE, 2011, 6, e18538.	1.1	10
2294	MicroRNAs Dynamically Remodel Gastrointestinal Smooth Muscle Cells. PLoS ONE, 2011, 6, e18628.	1.1	39
2295	Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function. PLoS ONE, 2011, 6, e18869.	1.1	116
2296	Redox-Induced Src Kinase and Caveolin-1 Signaling in TGF-β1-Initiated SMAD2/3 Activation and PAI-1 Expression. PLoS ONE, 2011, 6, e22896.	1.1	60

#	Article	IF	CITATIONS
2297	Chromatin Immunoprecipitation (ChIP): Revisiting the Efficacy of Sample Preparation, Sonication, Quantification of Sheared DNA, and Analysis via PCR. PLoS ONE, 2011, 6, e26015.	1.1	33
2298	3,3′Diindolylmethane Suppresses Vascular Smooth Muscle Cell Phenotypic Modulation and Inhibits Neointima Formation after Carotid Injury. PLoS ONE, 2012, 7, e34957.	1.1	10
2299	Construction of Vascular Tissues with Macro-Porous Nano-Fibrous Scaffolds and Smooth Muscle Cells Enriched from Differentiated Embryonic Stem Cells. PLoS ONE, 2012, 7, e35580.	1.1	18
2300	Notch2 and Notch3 Function Together to Regulate Vascular Smooth Muscle Development. PLoS ONE, 2012, 7, e37365.	1.1	55
2301	IL-1beta Signals through the EGF Receptor and Activates Egr-1 through MMP-ADAM. PLoS ONE, 2012, 7, e39811.	1.1	20
2302	Proteomic Identification of ADAM12 as a Regulator for TGF-Î ² 1-Induced Differentiation of Human Mesenchymal Stem Cells to Smooth Muscle Cells. PLoS ONE, 2012, 7, e40820.	1.1	24
2303	TGFβ1-Induced Baf60c Regulates both Smooth Muscle Cell Commitment and Quiescence. PLoS ONE, 2012, 7, e47629.	1.1	12
2304	Functional Vascular Smooth Muscle-like Cells Derived from Adult Mouse Uterine Mesothelial Cells. PLoS ONE, 2013, 8, e55181.	1.1	25
2305	Characterisation of K+ Channels in Human Fetoplacental Vascular Smooth Muscle Cells. PLoS ONE, 2013, 8, e57451.	1.1	26
2306	Spry1 and Spry4 Differentially Regulate Human Aortic Smooth Muscle Cell Phenotype via Akt/FoxO/Myocardin Signaling. PLoS ONE, 2013, 8, e58746.	1.1	41
2307	Decreased MicroRNA Is Involved in the Vascular Remodeling Abnormalities in Chronic Kidney Disease (CKD). PLoS ONE, 2013, 8, e64558.	1.1	106
2308	Activation of GPER Induces Differentiation and Inhibition of Coronary Artery Smooth Muscle Cell Proliferation. PLoS ONE, 2013, 8, e64771.	1.1	38
2309	Stretch-Sensitive Down-Regulation of the miR-144/451 Cluster in Vascular Smooth Muscle and Its Role in AMP-Activated Protein Kinase Signaling. PLoS ONE, 2013, 8, e65135.	1.1	33
2310	Prostacyclin and PPARα Agonists Control Vascular Smooth Muscle Cell Apoptosis and Phenotypic Switch through Distinct 14-3-3 Isoforms. PLoS ONE, 2013, 8, e69702.	1.1	15
2311	The LDL Receptor-Related Protein 1 (LRP1) Regulates the PDGF Signaling Pathway by Binding the Protein Phosphatase SHP-2 and Modulating SHP-2- Mediated PDGF Signaling Events. PLoS ONE, 2013, 8, e70432.	1.1	15
2312	Cigarette Smoke Modulates Vascular Smooth Muscle Phenotype: Implications for Carotid and Cerebrovascular Disease. PLoS ONE, 2013, 8, e71954.	1.1	47
2313	Dermal Substitutes Support the Growth of Human Skin-Derived Mesenchymal Stromal Cells: Potential Tool for Skin Regeneration. PLoS ONE, 2014, 9, e89542.	1.1	38
2314	TGF-β/Smad3 Stimulates Stem Cell/Developmental Gene Expression and Vascular Smooth Muscle Cell De-Differentiation. PLoS ONE, 2014, 9, e93995.	1.1	36

#	Article	IF	CITATIONS
2315	Mechanical Stretch Suppresses microRNA-145 Expression by Activating Extracellular Signal-Regulated Kinase 1/2 and Upregulating Angiotensin-Converting Enzyme to Alter Vascular Smooth Muscle Cell Phenotype. PLoS ONE, 2014, 9, e96338.	1.1	62
2316	Phenotypic Modulation of Corpus Cavernosum Smooth Muscle Cells in a Rat Model of Cavernous Neurectomy. PLoS ONE, 2014, 9, e105186.	1.1	20
2317	Upregulation of Intermediate-Conductance Ca2+-Activated K+ Channels (KCNN4) in Porcine Coronary Smooth Muscle Requires NADPH Oxidase 5 (NOX5). PLoS ONE, 2014, 9, e105337.	1.1	27
2318	Tetraspanin CD9 Regulates Cell Contraction and Actin Arrangement via RhoA in Human Vascular Smooth Muscle Cells. PLoS ONE, 2014, 9, e106999.	1.1	15
2319	Differential Regulation of Human Aortic Smooth Muscle Cell Proliferation by Monocyte-Derived Macrophages from Diabetic Patients. PLoS ONE, 2014, 9, e113752.	1.1	17
2320	Neuropilin 1 Is Essential for Gastrointestinal Smooth Muscle Contractility and Motility in Aged Mice. PLoS ONE, 2015, 10, e0115563.	1.1	24
2321	Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE, 2015, 10, e0128881.	1.1	42
2322	AMPK Signaling Involvement for the Repression of the IL-1β-Induced Group IIA Secretory Phospholipase A2 Expression in VSMCs. PLoS ONE, 2015, 10, e0132498.	1.1	11
2323	Smooth Muscle Cell Genome Browser: Enabling the Identification of Novel Serum Response Factor Target Genes. PLoS ONE, 2015, 10, e0133751.	1.1	48
2324	Lentivirus Live Cell Array for Quantitative Assessment of Gene and Pathway Activation during Myogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0141365.	1.1	3
2325	Celiac Disease Histopathology Recapitulates Hedgehog Downregulation, Consistent with Wound Healing Processes Activation. PLoS ONE, 2015, 10, e0144634.	1.1	24
2326	Cytoskeletal Expression and Remodeling in Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0145084.	1.1	47
2327	Differentiation of Human Induced-Pluripotent Stem Cells into Smooth-Muscle Cells: Two Novel Protocols. PLoS ONE, 2016, 11, e0147155.	1.1	48
2328	MEF2C-MYOCD and Leiomodin1 Suppression by miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary Arterial Hypertension. PLoS ONE, 2016, 11, e0153780.	1.1	47
2329	Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE, 2016, 11, e0155726.	1.1	22
2330	Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDCF-BB and Collagen. PLoS ONE, 2016, 11, e0156935.	1.1	5
2331	Association of 17-β Estradiol with Adipose-Derived Stem Cells: New Strategy to Produce Functional Myogenic Differentiated Cells with a Nano-Scaffold for Tissue Engineering. PLoS ONE, 2016, 11, e0164918.	1.1	14
2332	Effects of p53-knockout in vascular smooth muscle cells on atherosclerosis in mice. PLoS ONE, 2017, 12, e0175061.	1.1	13

#	Article	IF	CITATIONS
2333	ADAMTS-1 in abdominal aortic aneurysm. PLoS ONE, 2017, 12, e0178729.	1.1	17
2334	Transcriptome analysis of PDGFRα+ cells identifies T-type Ca2+ channel CACNA1G as a new pathological marker for PDGFRα+ cell hyperplasia. PLoS ONE, 2017, 12, e0182265.	1.1	27
2335	Reversible differentiation of immortalized human bladder smooth muscle cells accompanied by actin bundle reorganization. PLoS ONE, 2017, 12, e0186584.	1.1	5
2336	SM22α suppresses cytokine-induced inflammation and the transcription of NF-ήB inducing kinase (Nik) by modulating SRF transcriptional activity in vascular smooth muscle cells. PLoS ONE, 2017, 12, e0190191.	1.1	13
2337	Contribution of oxidative stress and growth factor receptor transactivation in natriuretic peptide receptor C-mediated attenuation of hyperproliferation of vascular smooth muscle cells from SHR. PLoS ONE, 2018, 13, e0191743.	1.1	14
2338	Indazole-Cl inhibits hypoxia-induced cyclooxygenase-2 expression in vascular smooth muscle cells. Journal of Molecular Endocrinology, 2019, 63, 27-38.	1.1	8
2339	Oscillatory fluid-induced mechanobiology in heart valves with parallels to the vasculature. Vascular Biology (Bristol, England), 2020, 2, R59-R71.	1.2	9
2340	Influence of metabolic syndrome on the relationship between fatty acids and the selected parameters in men with benign prostatic hyperplasia. Aging, 2019, 11, 1524-1536.	1.4	3
2341	Tryptophan metabolite 5-methoxytryptophan ameliorates arterial denudation-induced intimal hyperplasia via opposing effects on vascular endothelial and smooth muscle cells. Aging, 2019, 11, 8604-8622.	1.4	11
2342	Association of a novel seven-gene expression signature with the disease prognosis in colon cancer patients. Aging, 2019, 11, 8710-8727.	1.4	25
2343	AMPKα1 deletion in fibroblasts promotes tumorigenesis in athymic nude mice by p52-mediated elevation of erythropoietin and CDK2. Oncotarget, 2016, 7, 53654-53667.	0.8	6
2344	Small molecule-mediated induction of miR-9 suppressed vascular smooth muscle cell proliferation and neointima formation after balloon injury. Oncotarget, 2017, 8, 93360-93372.	0.8	13
2345	Up-regulation of heme oxygenase-1 expression and inhibition of disease-associated features by cannabidiol in vascular smooth muscle cells. Oncotarget, 2018, 9, 34595-34616.	0.8	28
2346	Benefit of SERCA2a Gene Transfer to Vascular Endothelial and Smooth Muscle Cells: A New Aspect in Therapy of Cardiovascular Diseases. Current Vascular Pharmacology, 2013, 11, 465-479.	0.8	20
2347	Vasotrophic Regulation of Age-Dependent Hypoxic Cerebrovascular Remodeling. Current Vascular Pharmacology, 2013, 11, 544-563.	0.8	20
2348	Cerebral Artery Signal Transduction Mechanisms: Developmental Changes in Dynamics and Ca ²⁺ Sensitivity. Current Vascular Pharmacology, 2013, 11, 655-711.	0.8	11
2349	Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology, 2015, 13, 291-304.	0.8	34
2350	MAPK: A Key Player in the Development and Progression of Stroke. CNS and Neurological Disorders - Drug Targets, 2020, 19, 248-256.	0.8	26

#	Article	IF	CITATIONS
2351	Vascular Smooth Muscle Cell Isolation and Culture from Mouse Aorta. Bio-protocol, 2016, 6, .	0.2	14
2352	VISFATIN AND CARDIOVASCULAR PROTECTION. Journal of Drug Delivery and Therapeutics, 2014, 4, .	0.2	1
2353	Cytoglobin overexpression facilitates proliferation and migration of vascular smooth muscle cells. Archives of Biological Sciences, 2020, 72, 165-172.	0.2	1
2354	Potential contribution of bone marrow-derived precursors to vascular repair and lesion formation: lessons from animal models of vascular diseases. Frontiers in Bioscience - Landmark, 2007, 12, 4157.	3.0	26
2355	Co-Cultivation of Human Aortic Smooth Muscle Cells With Epicardial Adipocytes Affects Their Proliferation Rate. Physiological Research, 2014, 63, S419-S427.	0.4	3
2356	Excitation-Contraction Coupling and Excitation-Transcription Coupling in Blood Vessels: Their Possible Interactions in Hypertensive Vascular Remodeling. Physiological Research, 2016, 65, 173-191.	0.4	23
2357	Akt/eNOS and MAPK Signaling Pathways Mediated the Phenotypic Switching of Thoracic Aorta Vascular Smooth Muscle Cells in Aging/Hypertensive Rats. Physiological Research, 2018, 67, 543-553.	0.4	19
2358	A Novel Approach against Vascular Intimal Hyperplasia Through the Suppression of Girdin. Annals of Vascular Diseases, 2015, 8, 69-73.	0.2	12
2359	Maintenance of radiation-induced intestinal fibrosis: Cellular and molecular features. World Journal of Gastroenterology, 2007, 13, 2675.	1.4	31
2360	Lobaric Acid Inhibits VCAM-1 Expression in TNF-α-Stimulated Vascular Smooth Muscle Cells via Modulation of NF-κB and MAPK Signaling Pathways. Biomolecules and Therapeutics, 2016, 24, 25-32.	1.1	22
2361	G-protein-coupled estrogen receptor as a new therapeutic target for treating coronary artery disease. World Journal of Cardiology, 2014, 6, 367.	0.5	14
2362	Transforming growth factor-β and smooth muscle differentiation. World Journal of Biological Chemistry, 2012, 3, 41.	1.7	95
2363	Risky communication in atherosclerosis and thrombus formation. Swiss Medical Weekly, 2012, 142, w13553.	0.8	12
2364	Autotaxin and lysophosphatidic acid signalling in lung pathophysiology. World Journal of Respirology, 2013, 3, 77.	0.5	16
2365	Oxidative stress, NADPH oxidases, and arteries. Hamostaseologie, 2016, 36, 77-88.	0.9	20
2366	miR-15b induced by platelet-derived growth factor signaling is required for vascular smooth muscle cell proliferation. BMB Reports, 2013, 46, 550-554.	1.1	37
2367	Gastrin-releasing peptide promotes the migration of vascular smooth muscle cells through upregulation of matrix metalloproteinase-2 and -9. BMB Reports, 2017, 50, 628-633.	1.1	16
2368	Hypoxia-induced miR-1260b regulates vascular smooth muscle cell proliferation by targeting GDF11. BMB Reports, 2020, 53, 206-211.	1.1	24

#	Article	IF	CITATIONS
2369	α-smooth muscle actin and ACTA2 gene expressions in vasculopathies. Brazilian Journal of Cardiovascular Surgery, 2015, 30, 644-9.	0.2	41
2370	Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. ELife, 2019, 8, .	2.8	25
2371	Mechanisms simultaneously regulate smooth muscle proliferation and differentiation. Journal of Biomedical Research, 2014, 28, 40-6.	0.7	74
2372	Myocardin in biology and disease. Journal of Biomedical Research, 2015, 29, 3-19.	0.7	120
2373	From nerve to blood vessel: a new role of Olfm2 in smoothmuscle differentiation from human embryonic stem cell-derivedmesenchymal cells nerve to blood vessel: a new role of Olfm2 in smooth. Journal of Biomedical Research, 2015, 29, 261-3.	0.7	11
2374	Cell Type Dependent Suppression of Inflammatory Mediators by Myocardin Related Transcription Factors. Frontiers in Physiology, 2021, 12, 732564.	1.3	6
2375	Inhibition of MAD2B alleviates venous neointimal formation by suppressing VSMCs proliferation and migration. FASEB Journal, 2021, 35, e21959.	0.2	2
2376	Mechano-regulated cell–cell signaling in the context of cardiovascular tissue engineering. Biomechanics and Modeling in Mechanobiology, 2022, 21, 5-54.	1.4	6
2377	Buddleoside-Rich Chrysanthemum indicum L. Extract has a Beneficial Effect on Metabolic Hypertensive Rats by Inhibiting the Enteric-Origin LPS/TLR4 Pathway. Frontiers in Pharmacology, 2021, 12, 755140.	1.6	8
2378	Optimal Management of Carotid Artery Restenosis. Current Surgery Reports, 2021, 9, 1.	0.4	0
2379	Inducible Prmt1 ablation in adult vascular smooth muscle leads to contractile dysfunction and aortic dissection. Experimental and Molecular Medicine, 2021, 53, 1569-1579.	3.2	13
2380	<i>CARMN</i> Is an Evolutionarily Conserved Smooth Muscle Cell–Specific LncRNA That Maintains Contractile Phenotype by Binding Myocardin. Circulation, 2021, 144, 1856-1875.	1.6	50
2381	ZIP12 Contributes to Hypoxic Pulmonary Hypertension by Driving Phenotypic Switching of Pulmonary Artery Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2022, 79, 235-243.	0.8	8
2382	Smooth muscle 22 alpha protein inhibits VSMC foam cell formation by supporting normal LXR $\hat{I}\pm$ signaling, ameliorating atherosclerosis. Cell Death and Disease, 2021, 12, 982.	2.7	9
2383	lncRNA RP11â€ʿ531A24.3 inhibits the migration and proliferation of vascular smooth muscle cells by downregulating ANXA2 expression. Experimental and Therapeutic Medicine, 2021, 22, 1439.	0.8	5
2384	Cylindrospermopsin impairs vascular smooth muscle cells by P53-mediated apoptosis due to ROS overproduction. Toxicology Letters, 2021, 353, 83-92.	0.4	6
2385	Aging and the Metabolic Syndrome. , 2005, , 83-99.		0
2386	Troubles With a Transgene: Experiences With SM22α-tTA Mice. Circulation Research, 2005, 97, .	2.0	1

#	Article	IF	CITATIONS
2387	Regulation of PDE Expression in Arteries. , 2006, , .		0
2388	Molecular and Cellular Physiology of Differentiated Vascular Smooth Muscle. , 2007, , 1511-1523.		0
2391	Cell Cycle and Differentiation in Vessels. , 2010, , 203-228.		0
2393	CADASIL: Molecular Mechanisms and Animal Models. Neuromethods, 2011, , 551-576.	0.2	0
2394	Role of Progenitor Cells in Pulmonary Vascular Remodeling. , 2011, , 811-823.		0
2395	Role of Ca2+ in Vascular Smooth Muscle Gene Expression and Proliferation. , 2011, , 335-346.		0
2396	Sphingosine-1-Phosphate-Induced Migration and Differentiation of Human Mesenchymal Stem Cells to Smooth Muscle Cells. Journal of Life Science, 2011, 21, 183-193.	0.2	0
2399	Further application: adult stem cells and tissue regenerations. , 2012, , 137-169.		0
2400	Molecular Control of Smooth Muscle Cell Differentiation Marker Genes by Serum Response Factor and Its Interacting Proteins. , 0, , .		0
2402	The Mechanism of Stem Cell Differentiation into Smooth Muscle Cells. , 2013, , 1-32.		0
2403	TGF-Î ² Signaling Pathway and MicroRNAs in Cardiovascular Disease. , 2013, , 349-368.		0
2404	Blood Vessels in White and Brown Adipose Tissues. , 2013, , 77-102.		2
2405	Down-regulation of Rho-kinases induce tolerance in Ischemic preconditioning model after transient cerebral ischemia/reperfusion in rats. Health, 2013, 05, 7-13.	0.1	0
2407	Role of TRPC and Orai Channels in Vascular Remodeling. , 2014, , 463-490.		0
2408	Reconstruction of Elastic Fibers in Three-Dimensional Smooth Muscle Cells. Nanomedicine and Nanotoxicology, 2014, , 159-174.	0.1	1
2409	Contribution of Cellular Mechanisms in the Development of Thoracic Aortic Aneurysms. Postdoc Journal, 0, , .	0.4	0
2410	miRNAs in Cardiovascular Development. , 2015, , 1331-1342.		0
2411	MicroRNA-133: Biomarker and Mediator of Cardiovascular Diseases. , 2015, , 1-33.		0

			_
#	Article	IF	CITATIONS
2412	Transient Receptor Potential Channels in Metabolic Syndrome-Induced Coronary Artery Disease. , 2016, , 381-396.		0
2413	TRPC and Orai Channels in Store-Operated Calcium Entry and Vascular Remodelling. , 2016, , 275-294.		0
2414	Biomolecular Regulation of Elastic Matrix Regeneration and Repair. , 2016, , 117-164.		0
2415	Vascular Smooth Muscle Cells in the Branching of Renal Arteries. Annals of Circulation, 2017, 2, 008-012.	0.0	0
2417	NADPH Oxidase, Redox Signaling, and Vascular Smooth Muscle Function. , 2018, , 361-404.		0
2421	Pathophysiology of Ascending Aortic Aneurysm and Dissection. , 2019, , 21-43.		0
2422	Anti-malarial Drugs Reduce Vascular Smooth Muscle Cell Proliferation via Activation of AMPK and Inhibition of Smad3 Signaling. Journal of Lipid and Atherosclerosis, 2019, 8, 267.	1.1	3
2424	Atorvastatin suppresses vascular hypersensitivity and remodeling induced by transient adventitial administration of lipopolysaccharide in rats. Annals of Translational Medicine, 2019, 7, 386-386.	0.7	2
2426	miR548ai antagonism attenuates exosome-induced endothelial cell dysfunction. Cell Death Discovery, 2021, 7, 318.	2.0	3
2427	Biological evaluation of linalool on the function of blood vessels. Molecular Medicine Reports, 2021, 24, .	1.1	5
2428	Age and sex dependency of thoracic aortopathy in a mouse model of Marfan syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H44-H56.	1.5	14
2429	FAK Activation Promotes SMC Dedifferentiation via Increased DNA Methylation in Contractile Genes. Circulation Research, 2021, 129, e215-e233.	2.0	12
2430	The role of oxidative stress-related biomarkers in ascending aortic dilatation: Malondialdehyde and paraoxonase-1 activity. Anadolu Kliniği Tıp Bilimleri Dergisi, 0, , .	0.1	0
2431	<p>Ulinastatin Inhibits the Proliferation, Invasion and Phenotypic Switching of PDCF-BB-Induced VSMCs via Akt/eNOS/NO/cGMP Signaling Pathway</p> . Drug Design, Development and Therapy, 2020, Volume 14, 5505-5514.	2.0	8
2432	Lymphotonic activity of Ruscus extract, hesperidin methyl chalcone and vitamin C in human lymphatic smooth muscle cells. Microvascular Research, 2022, 139, 104274.	1.1	5
2434	Multiple flow-related intracranial aneurysms in the setting of contralateral carotid occlusion: Coincidence or association?. Brain Circulation, 2020, 6, 87.	0.7	2
2435	Vascular Biology of Smooth Muscle Cells and Restenosis. , 2020, , 117-139.		1
2436	Calcium Homeostasis Modulator (CALHM1/2) and Pulmonary Arterial Hypertension. FASEB Journal, 2020, 34, 1-1.	0.2	0

#	Article	IF	CITATIONS
2437	Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions. Journal of Cardiovascular Development and Disease, 2021, 8, 148.	0.8	8
2438	Megalencephalic leukoencephalopathy with subcortical cysts is a developmental disorder of the gliovascular unit. ELife, 2021, 10, .	2.8	19
2439	Sex-Specific MicroRNAs in Neurovascular Units in Ischemic Stroke. International Journal of Molecular Sciences, 2021, 22, 11888.	1.8	8
2440	Cold‑pressed oil from <i>Citrus aurantifolia</i> inhibits the proliferation of vascular smooth muscle cells via regulation of PI3K/MAPK signaling pathways. Experimental and Therapeutic Medicine, 2021, 23, 21.	0.8	7
2447	Unilateral renal artery stenosis causes a chronic vascular inflammatory response in ApoE-/- mice. Transactions of the American Clinical and Climatological Association, 2010, 121, 252-64; 264-6.	0.9	9
2448	Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comparative Medicine, 2010, 60, 300-15.	0.4	108
2449	Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thrombosis and Haemostasis, 2008, 100, 976-83.	1.8	56
2453	Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology, 2013, , .	0.8	2
2454	MicroRNA Regulation of Smooth Muscle Phenotype. Molecular and Cellular Pharmacology, 2012, 4, 1-16.	1.7	25
2455	MicroRNA-21 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting activator protein-1. American Journal of Translational Research (discontinued), 2014, 6, 507-16.	0.0	18
2456	Effects of cobalt chloride on phenotypes of normal human saphenous vein smooth muscle cells. International Journal of Clinical and Experimental Medicine, 2014, 7, 4933-41.	1.3	4
2458	TGFÎ ² Signaling-mediated MicroRNA Regulation in Vascular Smooth Muscle Cells. Journal of Lifestyle Medicine, 2013, 3, 80-4.	0.3	0
2459	Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodelling. American Journal of Stem Cells, 2015, 4, 13-21.	0.4	30
2461	The COP9 signalosome and vascular function: intriguing possibilities?. American Journal of Cardiovascular Disease, 2015, 5, 33-52.	0.5	4
2462	RNA interference-mediated NOTCH3 knockdown induces phenotype switching of vascular smooth muscle cells in vitro. International Journal of Clinical and Experimental Medicine, 2015, 8, 12674-84.	1.3	5
2463	YAP is up-regulated in the bronchial airway smooth muscle of the chronic asthma mouse model. International Journal of Clinical and Experimental Pathology, 2015, 8, 11132-9.	0.5	13
2464	Gingipains from Porphyromonas gingivalis promote the transformation and proliferation of vascular smooth muscle cell phenotypes. International Journal of Clinical and Experimental Medicine, 2015, 8, 18327-34.	1.3	4
2465	TGF-β1 induces human aortic vascular smooth muscle cell phenotype switch through PI3K/AKT/ID2 signaling. American Journal of Translational Research (discontinued), 2015, 7, 2764-74.	0.0	28

#	Article	IF	Citations
2466	Gax regulates human vascular smooth muscle cell phenotypic modulation and vascular remodeling. American Journal of Translational Research (discontinued), 2016, 8, 2912-25.	0.0	4
2468	Micrornas and Cardiovascular Diseases: From Bench to Bedside. Translational Medicine @ UniSa, 2017, 17, 12-18.	0.8	1
2469	Downregulation of miR143/145 gene cluster expression promotes the aortic media degeneration process via the TGF-β1 signaling pathway. American Journal of Translational Research (discontinued), 2019, 11, 370-378.	0.0	6
2471	WD Repeat Domain 1 Deficiency Inhibits Neointima Formation in Mice Carotid Artery by Modulation of Smooth Muscle Cell Migration and Proliferation. Molecules and Cells, 2020, 43, 749-762.	1.0	0
2472	EphB4 signaling maintains the contractile phenotype of adult venous smooth muscle cells. American Journal of Translational Research (discontinued), 2020, 12, 4522-4531.	0.0	0
2473	Inhibition of Notch Signaling Alleviated Diabetic Macrovasculopathy in an In Vitro Model. Acta Cardiologica Sinica, 2020, 36, 503-513.	0.1	0
2476	Electroacupuncture Attenuated Phenotype Transformation of Vascular Smooth Muscle Cells via PI3K/Akt and MAPK Signaling Pathways in Spontaneous Hypertensive Rats. Chinese Journal of Integrative Medicine, 2022, 28, 357-365.	0.7	4
2477	Niclosamide downregulates LOX-1 expression in mouse vascular smooth muscle cells and changes the composition of atherosclerotic plaques in ApoEâ^'/â^' mice. Heart and Vessels, 2022, 37, 517-527.	0.5	1
2478	The asymmetric Pitx2 gene regulates gut muscular-lacteal development and protects against fatty liver disease. Cell Reports, 2021, 37, 110030.	2.9	7
2479	Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Molecular Aspects of Medicine, 2022, 87, 101054.	2.7	22
2480	RNO3 QTL Regulates Vascular Structure and Arterial Stiffness in the Spontaneously Hypertensive Rat. Physiological Genomics, 2021, , .	1.0	1
2482	A machine learning pipeline revealing heterogeneous responses to drug perturbations on vascular smooth muscle cell spheroid morphology and formation. Scientific Reports, 2021, 11, 23285.	1.6	11
2483	Mangiferin Inhibits PDGF-BB-Induced Proliferation and Migration of Rat Vascular Smooth Muscle Cells and Alleviates Neointimal Formation in Mice through the AMPK/Drp1 Axis. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	9
2484	Interplay between HTRA1 and classical signalling pathways in organogenesis and diseases. Saudi Journal of Biological Sciences, 2022, 29, 1919-1927.	1.8	6
2485	Angptl2 gene knockdown is critical for abolishing angiotensin II-induced vascular smooth muscle cell proliferation and migration. Biochemistry and Cell Biology, 2022, 100, 59-67.	0.9	6
2486	In Mice and Humans, Brain Vascular Barrier Homeostasis and Contractility Are Acquired Postnatally. SSRN Electronic Journal, 0, , .	0.4	0
2487	Chromodomain Helicase DNA Binding Protein 1-like, a negative regulator of Forkhead box O3a, promotes the proliferation and migration of Angiotensin II-induced vascular smooth muscle cells. Bioengineered, 2022, 13, 2597-2609.	1.4	1
2488	Robust genome editing in adult vascular endothelium by nanoparticle delivery of CRISPR-Cas9 plasmid DNA. Cell Reports, 2022, 38, 110196.	2.9	34

#	Article	IF	CITATIONS
2489	Atomic Force Microscopy Stiffness Mapping in Human Aortic Smooth Muscle Cells. Journal of Biomechanical Engineering, 2022, 144, .	0.6	5
2490	A collagen I derived matricryptin increases aorta vascular wall remodeling after induced thrombosis in mouse. Thrombosis Research, 2022, 209, 59-68.	0.8	2
2491	High shear stress attenuated arterial neointimal hyperplasia accompanied by changes in yes-associated protein/jun N-terminal kinase/vascular cell adhesion protein 1 expression. Vascular, 2022, , 170853812110583.	0.4	0
2492	Calponin 1 contributes to myofibroblast differentiation of human pleural mesothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L348-L364.	1.3	7
2493	Intratesticular xenografting of Klinefelter pre-pubertal testis tissue as potential model to study testicular fibrosis. Reproductive BioMedicine Online, 2022, 44, 896-906.	1.1	2
2494	RIP2 knockdown attenuates vascular smooth muscle cells activation via negative regulating myocardinï€expression. American Journal of Hypertension, 2022, , .	1.0	2
2495	AK098656: a new biomarker of coronary stenosis severity in hypertensive and coronary heart disease patients. Diabetology and Metabolic Syndrome, 2022, 14, 10.	1.2	4
2496	Current Progress in Vascular Engineering and Its Clinical Applications. Cells, 2022, 11, 493.	1.8	11
2497	Abdominal Aortic Aneurysm Formation with a Focus on Vascular Smooth Muscle Cells. Life, 2022, 12, 191.	1.1	22
2498	Legumain Is an Endogenous Modulator of Integrin $\hat{I}\pm\nu\hat{I}^2$ 3 Triggering Vascular Degeneration, Dissection, and Rupture. Circulation, 2022, 145, 659-674.	1.6	50
2499	Chronic Thromboembolic Pulmonary Hypertension: An Update. Diagnostics, 2022, 12, 235.	1.3	16
2500	Myricanol Inhibits Platelet Derived Growth Factor-BB-Induced Vascular Smooth Muscle Cells Proliferation and Migration in vitro and Intimal Hyperplasia in vivo by Targeting the Platelet-Derived Growth Factor Receptor-β and NF-κB Signaling. Frontiers in Physiology, 2021, 12, 790345.	1.3	4
2501	Matrisome changes in Parkinson's disease. Analytical and Bioanalytical Chemistry, 2022, 414, 3005-3015.	1.9	14
2502	Regulation mechanisms of endocrine disruptors on vasodilation and vasoconstriction: Insights from ex vivo models. Biocell, 2022, 46, 1383-1389.	0.4	0
2503	Myostatin: Basic biology to clinical application. Advances in Clinical Chemistry, 2022, 106, 181-234.	1.8	21
2506	Vascular Stem/Progenitor Cells in Vessel Injury and Repair. Frontiers in Cardiovascular Medicine, 2022, 9, 845070.	1.1	11
2507	Ion Channels and Transporters in Muscle Cell Differentiation. International Journal of Molecular Sciences, 2021, 22, 13615.	1.8	9
2508	NLRP3 Inflammasome Activation Controls Vascular Smooth Muscle Cells Phenotypic Switch in Atherosclerosis. International Journal of Molecular Sciences, 2022, 23, 340.	1.8	40

ARTICLE IF CITATIONS Daxx ameliorates abdominal aortic aneurysm through inhibiting the TGF-Î²1-mediated PI3K/AKT/ID2 2509 0.2 2 signaling pathway. European Journal of Inflammation, 2022, 20, 1721727X2210915. MiR-3571 modulates the proliferation and migration of vascular smooth muscle cells by targeting 1.1 claudin 1. International Journal of Medical Sciences, 2022, 19, 511-524. Regulation of bFGF-induced effects on rat aortic smooth muscle cells by Î²3-adrenergic receptors. 2511 1.7 1 Current Research in Pharmacology and Drug Discovery, 2022, 3, 100094. Functional Implications of Intergenic GWAS SNPs in Immune-Related LncRNAs. Advances in 0.8 Experimental Medicine and Biology, 2022, 1363, 147-160. Sox9 Mediates Autophagy-Dependent Vascular Smooth Muscle Cell Phenotypic Modulation and 2513 0.4 0 Transplant Arteriosclerosis. SSRN Electronic Journal, 0, , . The Molecular Mechanism of Aerobic Exercise Improving Vascular Remodeling in Hypertension. Frontiers in Physiology, 2022, 13, 792292. 2514 1.3 Hydrogen Sulphide Release via the Angiotensin Converting Enzyme Inhibitor Zofenopril Prevents 2515 Intimal Hyperplasia in Human Vein Segments and in a Mouse Model of Carotid Artery Stenosis. 0.8 10 European Journal of Vascular and Endovascular Surgery, 2022, 63, 336-346. Progerin mislocalizes myocardin-related transcription factor in Hutchinson–Guilford Progeria 2516 1.2 syndrome. Vascular Biology (Bristol, England), 2022, 4, 1-10. Plaque Evaluation by Ultrasound and Transcriptomics Reveals BCLAF1 as a Regulator of Smooth 2517 Muscle Cell Lipid Transdifferentiation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular 1.1 12 Biology, 2022, 42, 659-676. Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. 1.3 14 American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L737-L760. Assessing serum levels of SM221[±] as a new biomarker for patients with aortic aneurysm/dissection. PLoS 2519 1.1 1 ONE, 2022, 17, e0264942. miRNA/mRNA co-profiling identifies the miR-200 family as a central regulator of SMC quiescence. 2520 IScience, 2022, 25, 104169. Insights into Early-Pregnancy Mechanisms: Mast Cells and Chymase CMA1 Shape the Phenotype and Modulate the Functionality of Human Trophoblast Cells, Vascular Smooth-Muscle Cells and 2521 1.8 4 Endothelial Cells. Cells, 2022, 11, 1158. Time-dependent pathobiological and physiological changes of implanted vein grafts in a canine model. 1.1 Journal of Cardiovascular Translational Research, 2022, , Dynamics and Functional Interplay of Nonhistone Lysine Crotonylome and Ubiquitylome in Vascular 2523 1.1 5 Smooth Muscle Cell Phenotypic Remodeling. Frontiers in Cardiovascular Medicine, 2022, 9, 783739. LncRNA SENCR overexpression attenuated the proliferation, migration and phenotypic switching of vascular smooth muscle cells in aortic dissection via the miR-206/myocardin axis. Nutrition, 2524 1.1 Metabolism and Cardiovascular Diseases, 2022, 32, 1560-1570. Bioartificial pulsatile cuffs fabricated from human induced pluripotent stem cell-derived 2525 2.54 cardiomyocytes using a pre-vascularization technique. Npj Regenerative Medicine, 2022, 7, 22. Natural Flavonoids Derived From Fruits Are Potential Agents Against Atherosclerosis. Frontiers in 1.6 Nutrition, 2022, 9, 862277.

#	Article	IF	CITATIONS
2527	A regulator of G protein signaling 5 marked subpopulation of vascular smooth muscle cells is lost during vascular disease. PLoS ONE, 2022, 17, e0265132.	1.1	4
2528	Preservation of Smooth Muscle Cell Integrity and Function: A Target for Limiting Abdominal Aortic Aneurysm Expansion?. Cells, 2022, 11, 1043.	1.8	0
2529	Sustained Downregulation of Vascular Smooth Muscle Acta2 After Transient Angiotensin II Infusion: A New Model of "Vascular Memory― Frontiers in Cardiovascular Medicine, 2022, 9, 854361.	1.1	1
2530	Advances in Immunomodulation and Immune Engineering Approaches to Improve Healing of Extremity Wounds. International Journal of Molecular Sciences, 2022, 23, 4074.	1.8	6
2531	Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: From physiology and pharmacology. Biochemical Pharmacology, 2022, 199, 115008.	2.0	5
2532	Circular RNAs in atherosclerosis. Clinica Chimica Acta, 2022, 531, 71-80.	0.5	13
2533	An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cellular and Molecular Life Sciences, 2022, 79, 6.	2.4	46
2534	Roles of mTOR in thoracic aortopathy understood by complex intracellular signaling interactions. PLoS Computational Biology, 2021, 17, e1009683.	1.5	16
2535	The Cardiovascular System in Space: Focus on In Vivo and In Vitro Studies. Biomedicines, 2022, 10, 59.	1.4	40
2536	PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. Journal of Cardiovascular Development and Disease, 2022, 9, 4.	0.8	9
2537	Single-Cell RNA Sequencing of the Rat Carotid Arteries Uncovers Potential Cellular Targets of Neointimal Hyperplasia. Frontiers in Cardiovascular Medicine, 2021, 8, 751525.	1.1	5
2538	The Effects of Porphyromonas gingivalis on Atherosclerosis-Related Cells. Frontiers in Immunology, 2021, 12, 766560.	2.2	34
2540	Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling. Journal of Vascular Research, 2022, 59, 90-113.	0.6	26
2541	Cell migration in cardiovascular diseases. , 2022, , 159-175.		0
2542	Epigenetics and Vascular Disease. , 2022, , 475-510.		1
2543	Protein Interaction Network for Identifying Vascular Response of Metformin (Oral Antidiabetic). BioMedInformatics, 2022, 2, 217-233.	1.0	3
2545	Adult stem cell sources for skeletal and smooth muscle tissue engineering. Stem Cell Research and Therapy, 2022, 13, 156.	2.4	7
2546	Clinical Use of Hydrogen Sulfide to Protect Against Intimal Hyperplasia. Frontiers in Cardiovascular Medicine, 2022, 9, 876639.	1.1	4

#	Article	IF	CITATIONS
2547	Cysteine-Rich LIM-Only Protein 4 (CRP4) Promotes Atherogenesis in the ApoEâ^'/â^' Mouse Model. Cells, 2022, 11, 1364.	1.8	3
2568	Inhibition of VRK1 suppresses proliferation and migration of vascular smooth muscle cells and intima hyperplasia after injury via mTORC1/β-catenin axis BMB Reports, 2022, , .	1.1	0
2569	Generation of Embryonic Origin-Specific Vascular Smooth Muscle Cells from Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2429, 233-246.	0.4	3
2570	miR-320a Targeting RGS5 Aggravates Atherosclerosis by Promoting Migration and Proliferation of ox-LDL–Stimulated Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2022, 80, 110-117.	0.8	4
2571	Urine-Derived Stem Cells Versus Their Lysate in Ameliorating Erectile Dysfunction in a Rat Model of Type 2 Diabetes. Frontiers in Physiology, 2022, 13, .	1.3	7
2572	Effect of Extracellular Vesicles From Multiple Cells on Vascular Smooth Muscle Cells in Atherosclerosis. Frontiers in Pharmacology, 2022, 13, .	1.6	6
2573	Reducing Endogenous Labile Zn May Help to Reduce Smooth Muscle Cell Injury around Vascular Stents. International Journal of Molecular Sciences, 2022, 23, 5139.	1.8	1
2574	The Atypical Cadherin FAT1 Limits Mitochondrial Respiration and Proliferation of Vascular Smooth Muscle Cells. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	4
2575	Through the layers: how macrophages drive atherosclerosis across the vessel wall. Journal of Clinical Investigation, 2022, 132, .	3.9	39
2576	Anemoside B4 Inhibits Vascular Smooth Muscle Cell Proliferation, Migration, and Neointimal Hyperplasia. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	6
2577	Peroxynitrous acid-modified extracellular matrix alters gene and protein expression in human coronary artery smooth muscle cells and induces a pro-inflammatory phenotype. Free Radical Biology and Medicine, 2022, 186, 43-52.	1.3	4
2579	Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells, 2022, 11, 1657.	1.8	7
2580	Histone Acetyltransferases p300 and CBP Coordinate Distinct Chromatin Remodeling Programs in Vascular Smooth Muscle Plasticity. Circulation, 2022, 145, 1720-1737.	1.6	27
2581	BMAL1 modulates smooth muscle cells phenotypic switch towards fibroblast-like cells and stabilizes atherosclerotic plaques by upregulating YAP1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166450.	1.8	11
2582	Downregulation of Natriuretic Peptide Receptor-C in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats Contributes to Vascular Remodeling. SSRN Electronic Journal, 0, , .	0.4	0
2583	Shellac: A Bioactive Coating for Surface Engineering of Cardiovascular Devices. Advanced Materials Interfaces, 2022, 9, .	1.9	4
2585	Inhibition of VRK1 suppresses proliferation and migration of vascular smooth muscle cells and intima hyperplasia after injury via mTORC1/β-catenin axis. BMB Reports, 2022, 55, 244-249.	1.1	2
2586	Melatonin as an Anti-Aging Therapy for Age-Related Cardiovascular and Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 0, 14, .	1.7	20

#	Article	IF	CITATIONS
2589	Plasticity in Airway Smooth Muscle Differentiation During Mouse Lung Development. SSRN Electronic Journal, 0, , .	0.4	0
2590	miR-335-5p regulates the proliferation, migration and phenotypic switching of vascular smooth muscle cells in aortic dissection by directly regulating SP1. Acta Biochimica Et Biophysica Sinica, 2022, 54, 961-973.	0.9	8
2591	Single-cell atlas of multilineage cardiac organoids derived from human induced pluripotent stem cells. , 2022, 1, 179-195.		8
2592	Single Cell RNA Sequencing Reveals the Pathogenesis of Aortic Dissection Caused by Hypertension and Marfan Syndrome. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
2593	Integrated analysis of tRNA-derived small RNAs in proliferative human aortic smooth muscle cells. Cellular and Molecular Biology Letters, 2022, 27, .	2.7	5
2594	Beta-Sitosterol Modulates the Migration of Vascular Smooth Muscle Cells via the PPARG/AMPK/mTOR Pathway. Pharmacology, 2022, 107, 495-509.	0.9	2
2595	Nintedanib regulates intestinal smooth muscle hyperplasia and phenotype in vitro and in TNBS colitis in vivo. Scientific Reports, 2022, 12, .	1.6	2
2596	High Sucrose Ingestion during a Critical Period of Vessel Development Promotes the Synthetic Phenotype of Vascular Smooth Muscle Cells and Modifies Vascular Contractility Leading to Hypertension in Adult Rats. International Journal of Hypertension, 2022, 2022, 1-12.	0.5	1
2597	Production of cultured meat by culturing porcine smooth muscle cells in vitro with food grade peanut wire-drawing protein scaffold. Food Research International, 2022, 159, 111561.	2.9	19
2598	Out to the tissues. , 2022, , 89-98.		0
2599	Smooth muscle diversity in the vascular system. , 2022, , 45-55.		1
2600	Extracellular matrix dynamics and contribution to vascular pathologies. , 2022, , 287-300.		0
2601	XBP1: An Adaptor in the Pathogenesis of Atherosclerosis. SSRN Electronic Journal, O, , .	0.4	0
2602	Medial Collagen Type and Quantity Influence Mechanical Properties of Aneurysm Wall in Bicuspid Aortic Valve Patients. Frontiers in Mechanical Engineering, 0, 8, .	0.8	0
2603	Circular RNA circ_0021001 regulates miR-148b-3p/GREM1 axis to modulate proliferation and apoptosis of vascular smooth muscle cells. Metabolic Brain Disease, 2022, 37, 2027-2038.	1.4	2
2604	Diosgenin and Its Analogs: Potential Protective Agents Against Atherosclerosis. Drug Design, Development and Therapy, 0, Volume 16, 2305-2323.	2.0	10
2605	Chimeric blood vessels sustained development of the xenogeneic antler: a unique model for xenogeneic organ generation. , 2023, 2, .		3
2606	Theaflavin-3,3′-Digallate from Black Tea Inhibits Neointima Formation Through Suppression of the PDCFRβ Pathway in Vascular Smooth Muscle Cells. Frontiers in Pharmacology, 0, 13, .	1.6	2

#	Article	IF	CITATIONS
2607	Mural Cell SRF Controls Pericyte Migration, Vessel Patterning and Blood Flow. Circulation Research, 2022, 131, 308-327.	2.0	15
2608	<scp>TNFα</scp> activation and <scp>TGFβ</scp> blockage act synergistically for smooth muscle cell calcification in patients with venous thrombosis via <scp>TGFβ</scp> / <scp>ERK</scp> pathway. Journal of Cellular and Molecular Medicine, 2022, 26, 4479-4491.	1.6	7
2609	The Compatibility of Alisma and Atractylodes Affects the Biological Behaviours of VSMCs by Inhibiting the miR-128-5p/p21 Gene. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-13.	0.5	2
2610	Dantrolene reduces platelet-derived growth factor (PDGF)-induced vascular smooth muscle cell proliferation and neointimal formation following vascular injury in mice. Biochemical and Biophysical Research Communications, 2022, 623, 51-58.	1.0	1
2611	Loss of Jagged1 in mature endothelial cells causes vascular dysfunction with alterations in smooth muscle phenotypes. Vascular Pharmacology, 2022, 145, 107087.	1.0	13
2612	Computational analysis of the role of mechanosensitive Notch signaling in arterial adaptation to hypertension. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105325.	1.5	1
2613	The direct effect of fibroblast growth factor 23 on vascular smooth muscle cell phenotype and function. Nephrology Dialysis Transplantation, 2023, 38, 322-343.	0.4	4
2614	Analysis of miRNA Associated with Coronary Artery Calcification. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-5.	0.7	3
2615	Vascular response to stress: Protective action of the bisphosphonate alendronate. Vascular Medicine, 2022, 27, 425-432.	0.8	0
2616	Phoenixin-14 alleviates inflammatory smooth muscle cell-induced endothelial cell dysfunction in vitro. Cytokine, 2022, 157, 155973.	1.4	0
2617	Role of estrogen receptors in health and disease. Frontiers in Endocrinology, 0, 13, .	1.5	42
2618	Notch signaling regulates strain-mediated phenotypic switching of vascular smooth muscle cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
2620	Endothelial Foxp1 Regulates Neointimal Hyperplasia Via Matrix Metalloproteinaseâ€9/Cyclin Dependent Kinase Inhibitor 1B Signal Pathway. Journal of the American Heart Association, 2022, 11, .	1.6	3
2621	Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function. Atherosclerosis, 2022, 358, 12-28.	0.4	19
2622	Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	6
2624	Vascular peroxidase 1 promotes phenotypic transformation of pulmonary artery smooth muscle cells via ERK pathway in hypoxia-induced pulmonary hypertensive rats. Life Sciences, 2022, 307, 120910.	2.0	3
2625	Bves maintains vascular smooth muscle cell contractile phenotype and protects against transplant vasculopathy via Dusp1-dependent p38MAPK and ERK1/2 signaling. Atherosclerosis, 2022, 357, 20-32.	0.4	1
2626	Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy. Vascular Pharmacology, 2022, 146, 107091.	1.0	8

#	Article	IF	CITATIONS
2627	The link between gestational diabetes and cardiovascular diseases: potential role of extracellular vesicles. Cardiovascular Diabetology, 2022, 21, .	2.7	10
2628	Cellular senescence and abdominal aortic aneurysm: From pathogenesis to therapeutics. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2
2629	Crosstalk between arterial components and bioresorbable, 3-D printed poly- <scp>l</scp> -lactic acid scaffolds. Biomaterials Science, 2022, 10, 5121-5133.	2.6	0
2630	Expanding tubular microvessels on stiff substrates with endothelial cells and pericytes from the same adult tissue. Journal of Tissue Engineering, 2022, 13, 204173142211253.	2.3	2
2631	Therapeutic Strategies for ROS-Dependent Tumor Angiogenesis Using Vascular Stem Cells. , 2022, , 2179-2189.		0
2633	Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Frontiers in Endocrinology, 0, 13, .	1.5	7
2634	The Genetics and Typical Traits of Thoracic Aortic Aneurysm and Dissection. Annual Review of Genomics and Human Genetics, 2022, 23, 223-253.	2.5	17
2636	Inhibitory effects of 6′-sialyllactose on angiotensin II-induced proliferation, migration, and osteogenic switching in vascular smooth muscle cells. Archives of Pharmacal Research, 2022, 45, 658-670.	2.7	3
2637	Long Noncoding RNA TPRG1-AS1 Suppresses Migration of Vascular Smooth Muscle Cells and Attenuates Atherogenesis via Interacting With MYH9 Protein. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 1378-1397.	1.1	10
2638	Increased atherosclerotic plaque in AOC3 knock-out in ApoEâ^'/â^' mice and characterization of AOC3 in atherosclerotic human coronary arteries. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2
2639	Structural abnormalities in the non-dilated ascending aortic wall of bicuspid aortic valve patients. Cardiovascular Pathology, 2023, 62, 107478.	0.7	12
2640	Distinct role of mitochondrial function and protein kinase C in intimal and medial calcification in vitro. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2
2641	MicroRNA-144 silencing attenuates intimal hyperplasia by directly targeting PTEN. Clinical and Experimental Hypertension, 2022, 44, 678-686.	0.5	1
2642	Engineering Smooth Muscle to Understand Extracellular Matrix Remodeling and Vascular Disease. Bioengineering, 2022, 9, 449.	1.6	5
2643	<i>Trypanosoma cruzi</i> Infection Promotes Vascular Remodeling and Coexpression of α-Smooth Muscle Actin and Macrophage Markers in Cells of the Aorta. ACS Infectious Diseases, 2022, 8, 2271-2290.	1.8	1
2644	NCOR1 maintains the homeostasis of vascular smooth muscle cells and protects against aortic aneurysm. Cell Death and Differentiation, 2023, 30, 618-631.	5.0	2
2645	The RNA m6A writer WTAP in diseases: structure, roles, and mechanisms. Cell Death and Disease, 2022, 13, .	2.7	28
2646	Sox9 mediates autophagy-dependent vascular smooth muscle cell phenotypic modulation and transplant arteriosclerosis. IScience, 2022, 25, 105161.	1.9	1

#	Article	IF	CITATIONS
2647	Dexmedetomidine protects cells from Angiotensin II-induced smooth muscle cell phenotype switch and endothelial cell dysfunction. Cell Cycle, 2023, 22, 450-463.	1.3	4
2648	PI3K Isoforms in Vascular Biology, A Focus on the Vascular System-Immune Response Connection. Current Topics in Microbiology and Immunology, 2022, , 289-309.	0.7	0
2649	Multiphasic changes in smooth muscle Ca2+ transporters during the progression of coronary atherosclerosis. Current Topics in Membranes, 2022, , .	0.5	0
2650	The underlying molecular mechanisms and biomarkers of plaque vulnerability based on bioinformatics analysis. European Journal of Medical Research, 2022, 27, .	0.9	1
2651	Exploration the global single-cell ecological landscape of adenomyosis-related cell clusters by single-cell RNA sequencing. Frontiers in Genetics, 0, 13, .	1.1	1
2652	The Impact of Oxidative Stress on Pediatrics Syndromes. Antioxidants, 2022, 11, 1983.	2.2	14
2653	Molecular Mechanism of Mouse Uterine Smooth Muscle Regulation on Embryo Implantation. International Journal of Molecular Sciences, 2022, 23, 12494.	1.8	2
2654	Dexmedetomidine alleviates inflammatory response and oxidative stress injury of vascular smooth muscle cell via α2AR/GSK-3β/MKP-1/NRF2 axis in intracranial aneurysm. BMC Pharmacology & Toxicology, 2022, 23, .	1.0	4
2655	Non-cardiomyocytes in the heart in embryo development, health, and disease, a single-cell perspective. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
2657	Myotubularinâ€Related Protein14 Prevents Neointima Formation and Vascular Smooth Muscle Cell Proliferation by Inhibiting Poloâ€Like Kinase1. Journal of the American Heart Association, 2022, 11, .	1.6	1
2658	Cell-cell contacts via N-cadherin induce a regulatory renin secretory phenotype in As4.1 cells. Korean Journal of Physiology and Pharmacology, 2022, 26, 479-499.	0.6	0
2659	Downregulation of natriuretic peptide receptor-C in vascular smooth muscle cells from spontaneously hypertensive rats contributes to vascular remodeling. Peptides, 2022, 158, 170894.	1.2	0
2660	Cadherins and cardiovascular disease. Swiss Medical Weekly, 0, , .	0.8	14
2661	Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. International Journal of Molecular Sciences, 2022, 23, 13902.	1.8	2
2662	Vascular smooth muscle cell dysfunction in neurodegeneration. Frontiers in Neuroscience, 0, 16, .	1.4	14
2663	Global trends and Frontier topics about vascular smooth muscle cells phenotype switch: A bibliometric analysis from 1999 to 2021. Frontiers in Pharmacology, 0, 13, .	1.6	2
2664	ATIC-Associated De Novo Purine Synthesis Is Critically Involved in Proliferative Arterial Disease. Circulation, 2022, 146, 1444-1460.	1.6	7
2665	Generation and comparative analysis of an Itga8-CreERT2 mouse with preferential activity in vascular smooth muscle cells. , 2022, 1, 1084-1100.		27

ARTICLE

IF CITATIONS

11S Proteasome Activator REGÎ³ Promotes Aortic Dissection by Inhibiting RBM3 (RNA Binding Motif) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{1}{13}$

2667	SRF Rearrangements in Soft Tissue Tumors with Muscle Differentiation. Biomolecules, 2022, 12, 1678.	1.8	Ο
2670	Comparative study of differentiating human pluripotent stem cells into vascular smooth muscle cells in hydrogel-based culture methods. Regenerative Therapy, 2023, 22, 39-49.	1.4	0
2671	Stent or Scaffold Thrombosis: Past, Current, and Future Perspectives. European Medical Journal Interventional Cardiology, 0, , 55-61.	0.0	3
2672	X-box Binding Protein 1: An Adaptor in the Pathogenesis of Atherosclerosis. , 2022, .		0
2673	Phosphorylation of the smooth muscle master splicing regulator RBPMS regulates its splicing activity. Nucleic Acids Research, 2022, 50, 11895-11915.	6.5	3
2674	Resveratrol Inhibits Insulin-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Activating SIRT1. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-12.	0.5	2
2675	Transcription factor GATA6 promotes migration of human coronary artery smooth muscle cells in vitro. Frontiers in Physiology, 0, 13, .	1.3	1
2676	Research progress on the mechanism of phenotypic transformation of pulmonary artery smooth muscle cells induced by hypoxia. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2022, 51, 750-757.	0.1	1
2677	Proteins secreted by brain arteriolar smooth muscle cells are instructive for neural development. Molecular Brain, 2022, 15, .	1.3	2
2678	The Molecular Signature of Human Testicular Peritubular Cells Revealed by Single-Cell Analysis. Cells, 2022, 11, 3685.	1.8	3
2679	How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Communication and Signaling, 2022, 20, .	2.7	53
2681	Bioinformatic Analysis Revealed the Essential Regulatory Genes and Pathways of Early and Advanced Atherosclerotic Plaque in Humans. Cells, 2022, 11, 3976.	1.8	2
2682	Spurious transcription causing innate immune responses is prevented by 5-hydroxymethylcytosine. Nature Genetics, 2023, 55, 100-111.	9.4	10
2683	Adverse effects of ambient fine particulate matter (PM _{2.5}) on vascular smooth muscle cells. Journal of Applied Toxicology, 2023, 43, 1108-1118.	1.4	3
2684	CircRNA circCOL1A1 Acts as a Sponge of miR-30a-5p to Promote Vascular Smooth Cell Phenotype Switch through Regulation of Smad1 Expression. Thrombosis and Haemostasis, 2023, 123, 097-107.	1.8	7
2685	Investigation of Electrical Stimulation on Phenotypic Vascular Smooth Muscle Cells Differentiation in Tissue-Engineered Small-Diameter Vascular Graft. Tissue and Cell, 2022, , 101996.	1.0	2
2686	Peripheral vascular remodeling during ischemia. Frontiers in Pharmacology, 0, 13, .	1.6	4

#	Article	IF	CITATIONS
2687	Myocd regulates airway smooth muscle cell remodeling in response to chronic asthmatic injury. Journal of Pathology, 2023, 259, 331-341.	2.1	3
2688	Large-conductance Ca2 +-activated K+ channel \hat{l}^2 1-subunit maintains the contractile phenotype of vascular smooth muscle cells. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	0
2689	Progerin induces a phenotypic switch in vascular smooth muscle cells and triggers replication stress and an aging-associated secretory signature. GeroScience, 2023, 45, 965-982.	2.1	6
2693	Vascular smooth muscle cells in intimal hyperplasia, an update. Frontiers in Physiology, 0, 13, .	1.3	15
2694	Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Molecular Medicine, 2023, 29, .	1.9	7
2695	Distinct Cellular Origins and Differentiation Process Account for Distinct Oncogenic and Clinical Behaviors of Leiomyosarcomas. Cancers, 2023, 15, 534.	1.7	1
2696	Single-cell RNA sequencing reveals transcriptional changes of human choroidal and retinal pigment epithelium cells during fetal development, in healthy adult and intermediate age-related macular degeneration. Human Molecular Genetics, 2023, 32, 1698-1710.	1.4	7
2697	CCN2 deficiency in smooth muscle cells triggers cell reprogramming and aggravates aneurysm development. JCI Insight, 2023, 8, .	2.3	2
2698	Inhibition of P21-activated kinase 1 promotes vascular smooth muscle cells apoptosis through reduction of phosphorylation of Bad. American Journal of Hypertension, 0, , .	1.0	0
2699	Molecular Mechanisms in Genetic Aortopathy–Signaling Pathways and Potential Interventions. International Journal of Molecular Sciences, 2023, 24, 1795.	1.8	6
2700	Perspective of SGLT2i in the Treatment of Abdominal Aortic Aneurysms. Journal of Cardiovascular Pharmacology, 2023, 81, 241-247.	0.8	1
2701	Glycolysis and <i>de novo</i> fatty acid synthesis cooperatively regulate pathological vascular smooth muscle cell phenotypic switching and neointimal hyperplasia. Journal of Pathology, 2023, 259, 388-401.	2.1	6
2702	Mitogen-Activated Protein Kinases Mediate Adventitial Fibroblast Activation and Neointima Formation via GATA4/Cyclin D1 Axis. Cardiovascular Drugs and Therapy, 0, , .	1.3	1
2703	"Creâ€ating New Tools for Smooth Muscle Analysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 0, , .	1.1	3
2704	Aortic Stress Activates an Adaptive Program in Thoracic Aortic Smooth Muscle Cells That Maintains Aortic Strength and Protects Against Aneurysm and Dissection in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2023, 43, 234-252.	1.1	5
2705	Molecular Characterization of Non-Neurogenic and Neurogenic Lower Urinary Tract Dysfunction (LUTD) in SCI-Induced and Partial Bladder Outlet Obstruction Mouse Models. International Journal of Molecular Sciences, 2023, 24, 2451.	1.8	1
2706	LncRNA RASSF8-AS1 knockdown displayed antiproliferative and proapoptotic effects through miR-188-3p/ATG7 pathway in ox-LDL-treated vascular smooth muscle cells. Annals of Translational Medicine, 2023, 11, 143-143.	0.7	1
2707	Research Progress of MicroRNA in the Pathogenesis of Aortic Dissection. Advances in Clinical Medicine, 2023, 13, 4077-4081.	0.0	0

#	Article	IF	CITATIONS
2708	Integrin α8 and Its Ligand Nephronectin in Health and Disease. Biology of Extracellular Matrix, 2023, , 185-216.	0.3	0
2709	Targeting VCAM-1: a therapeutic opportunity for vascular damage. Expert Opinion on Therapeutic Targets, 2023, 27, 207-223.	1.5	2
2710	Murine Cytomegalovirus Infection Induced miR-1929-3p Down-Regulation Promotes the Proliferation and Apoptosis of Vascular Smooth Muscle Cells in Mice by Targeting Endothelin A Receptor and Downstream NLRP3 Activation Pathway. Molecular Biotechnology, 0, , .	1.3	0
2711	Phenotype-Specific Induced Pluripotent Stem Cell–Derived Vascular Smooth Muscle Cells to Model Vascular Disease: Implications of Differentiation Protocols. Hypertension, 2023, 80, 754-756.	1.3	1
2712	The SNP rs4591246 in pri-miR-1-3p is associated with abdominal aortic aneurysm risk by regulating cell phenotypic transformation via the miR-1-3p/TLR4 axis. International Immunopharmacology, 2023, 118, 110016.	1.7	2
2713	Pulmonary artery smooth muscle cell phenotypic switching: A key event in the early stage of pulmonary artery hypertension. Drug Discovery Today, 2023, 28, 103559.	3.2	8
2714	Interruption of TRPC6-NFATC1 signaling inhibits NADPH oxidase 4 and VSMCs phenotypic switch in in intracranial aneurysm. Biomedicine and Pharmacotherapy, 2023, 161, 114480.	2.5	3
2715	Plasticity in airway smooth muscle differentiation during mouse lung development. Developmental Cell, 2023, 58, 338-347.e4.	3.1	4
2716	Disease-associated non-coding variants alter NKX2-5 DNA-binding affinity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2023, 1866, 194906.	0.9	3
2717	Singleâ€cell transcriptomic survey of cell diversity and functional changes in yak hearts at different altitude. Proteomics, 2023, 23, .	1.3	1
2718	DNA methylation entropy is associated with DNA sequence features and developmental epigenetic divergence. Nucleic Acids Research, 2023, 51, 2046-2065.	6.5	3
2719	Acute injury to the mouse carotid artery provokes a distinct healing response. Frontiers in Physiology, 0, 14, .	1.3	1
2720	Thoracic aortopathy in Marfan syndrome overlaps with mechanisms seen in bicuspid aortic valve disease. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	0
2721	Targeting serotonin receptor 2B inhibits TGFβ induced differentiation of human vascular smooth muscle cells. European Journal of Pharmacology, 2023, 944, 175570.	1.7	0
2723	Experimental conditions and protein markers for redifferentiation of human coronary artery smooth muscle cells. Biomedical Reports, 2023, 18, .	0.9	0
2724	ANGPTL4 stabilizes atherosclerotic plaques and modulates the phenotypic transition of vascular smooth muscle cells through KLF4 downregulation. Experimental and Molecular Medicine, 2023, 55, 426-442.	3.2	10
2726	Age-dependent phenotypic modulation of smooth muscle cells in the normal ascending aorta. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	1
2727	Sotatercept analog improves cardiopulmonary remodeling and pulmonary hypertension in experimental left heart failure. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	4

#	Article	IF	CITATIONS
2729	Triplet-Net Classification of Contiguous Stem Cell Microscopy Images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 2314-2327.	1.9	1
2730	BACH1 deficiency prevents neointima formation and maintains the differentiated phenotype of vascular smooth muscle cells by regulating chromatin accessibility. Nucleic Acids Research, 2023, 51, 4284-4301.	6.5	5
2731	BMPER Improves Vascular Remodeling and the Contractile Vascular SMC Phenotype. International Journal of Molecular Sciences, 2023, 24, 4950.	1.8	1
2732	Reply to "Paeonol Suppresses Vasculogenesis Through Regulating Vascular Smooth Muscle Phenotypic Switchingâ€, Journal of Endovascular Therapy, 0, , 152660282311612.	0.8	0
2733	Transcription factors and potential therapeutic targets for pulmonary hypertension. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
2734	The translational landscape of human vascular smooth muscle cells identifies novel short open reading frame-encoded peptide regulators for phenotype alteration. Cardiovascular Research, 0, , .	1.8	1
2739	A multiscale computational model of arterial growth and remodeling including Notch signaling. Biomechanics and Modeling in Mechanobiology, 0, , .	1.4	1
2740	The emerging role of estrogen's non-nuclear signaling in the cardiovascular disease. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	2
2742	Inflachromene inhibits intimal hyperplasia through the HMGB1/2- regulated TLR4-NF-κB pathway. International Immunopharmacology, 2023, 119, 110198.	1.7	2
2746	The role of transforming growth factor beta in bicuspid aortic valve aortopathy. Indian Journal of Thoracic and Cardiovascular Surgery, 2023, 39, 270-279.	0.2	0
2765	Liquid Biopsy in Coronary Heart Disease. Methods in Molecular Biology, 2023, , 279-293.	0.4	2
2802	Pericytes as a Source of MSCs. , 2024, , 105-125.		0
2817	The role of epigenetics in cardiovascular disease. , 2024, , 717-759.		0

The role of epigenetics in cardiovascular disease. , 2024, , 717-759. 2817