Pharmacokinetics in mice and growth-inhibitory proper chemopreventive agent resveratrol and the synthetic ar 3,4,5,4â€²-tetramethoxystilbene

British Journal of Cancer 90, 736-744 DOI: 10.1038/sj.bjc.6601568

Citation Report

#	Article	IF	CITATIONS
1	Induction of the Paraoxonase-1 Gene Expression by Resveratrol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2378-2383.	1.1	84
2	Analysis of resveratrol as a lung cancer chemopreventive agent in A/J mice exposed to benzo[a]pyrene. British Journal of Cancer, 2004, 91, 1380-1383.	2.9	58
3	Protective effect of resveratrol against 6-hydroxydopamine-induced impairment of renal p-aminohippurate transport. Archives of Toxicology, 2004, 78, 525-32.	1.9	9
4	Chemotherapeutic potential of the chemopreventive phytoalexin resveratrol. Drug Resistance Updates, 2004, 7, 333-344.	6.5	73
5	Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analogtrans 3,4,5,4?-tetramethoxystilbene (DMU-212) on adenoma development in the ApcMin+ mouse and cyclooxygenase-2 in human-derived colon cancer cells. International Journal of Cancer, 2005, 115, 194-201.	2.3	162
6	Bioactivity and metabolism oftrans-resveratrol orally administered to Wistar rats. Molecular Nutrition and Food Research, 2005, 49, 482-494.	1.5	216
7	Metabolism and bioavailability oftrans-resveratrol. Molecular Nutrition and Food Research, 2005, 49, 472-481.	1.5	583
8	Inhibition of cyclo-oxygenase-2 expression in mouse macrophages by 4-(3-methyl-but-1-enyl)-3,5,3′,4′-tetrahydroxystilbene, a resveratrol derivative from peanuts. Phytotherapy Research, 2005, 19, 552-555.	2.8	13
9	Effect of Resveratrol on Angiogenesis and Platelet/Fibrin-Accelerated Tumor Growth in the Chick Chorioallantoic Membrane Model. Nutrition and Cancer, 2005, 52, 59-65.	0.9	35
10	Divergent effects of resveratrol, a polyphenolic phytostilbene, on free radical levels and type of cell death induced by the histone deacetylase inhibitors butyrate and trichostatin A. Journal of Steroid Biochemistry and Molecular Biology, 2005, 94, 39-47.	1.2	9
11	Effect of natural analogues oftrans-resveratrol on cytochromes P4501A2 and 2E1 catalytic activities. Xenobiotica, 2006, 36, 269-285.	0.5	33
12	An improved synthesis of resveratrol. Natural Product Research, 2006, 20, 247-252.	1.0	44
13	Resveratrol Is Rapidly Metabolized in Athymic (Nu/Nu) Mice and Does Not Inhibit Human Melanoma Xenograft Tumor Growth. Journal of Nutrition, 2006, 136, 2542-2546.	1.3	86
14	Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery, 2006, 5, 493-506.	21.5	3,283
15	Inhibition of cardiac voltage-gated sodium channels by grape polyphenols. British Journal of Pharmacology, 2006, 149, 657-665.	2.7	67
16	Oxazoline chemistry. Part 12: A metal-mediated synthesis of DMU-212; X-ray diffraction studies of an important anti-cancer agent. Tetrahedron Letters, 2006, 47, 2245-2247.	0.7	17
17	Resveratrol induces apoptotic cell death in rat H4IIE hepatoma cells but necrosis in C6 glioma cells. Toxicology, 2006, 225, 173-182.	2.0	58
18	The Red Wine Polyphenol Resveratrol Displays Bilevel Inhibition on Aromatase in Breast Cancer Cells. Toxicological Sciences, 2006, 92, 71-77.	1.4	112

#	Article	IF	CITATIONS
19	Resveratrol induces cell death in colorectal cancer cells by a novel pathway involving lysosomal cathepsin D. Carcinogenesis, 2006, 28, 922-931.	1.3	109
20	Resveratrol: From Basic Science to the Clinic. Cell Cycle, 2007, 6, 2495-2510.	1.3	151
21	A study of the formulation design of acoustically active lipospheres as carriers for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 67-75.	2.0	61
22	Oncogenicity evaluation of resveratrol in p53(±) (p53 knockout) mice. Food and Chemical Toxicology, 2007, 45, 55-63.	1.8	31
23	Anti-tumor Properties of Stilbene-based Resveratrol Analogues: Recent Results. Natural Product Communications, 2007, 2, 1934578X0700200.	0.2	16
24	Quinone reductase induction activity of methoxylated analogues of resveratrol. European Journal of Medicinal Chemistry, 2007, 42, 841-850.	2.6	56
25	The effect of oil components on the physicochemical properties and drug delivery of emulsions: Tocol emulsion versus lipid emulsion. International Journal of Pharmaceutics, 2007, 335, 193-202.	2.6	68
26	Effect of wine phenolics on cytokine-induced C-reactive protein expression. Journal of Thrombosis and Haemostasis, 2007, 5, 1309-1317.	1.9	26
27	Predicting the physiological relevance of in vitro cancer preventive activities of phytochemicals. Acta Pharmacologica Sinica, 2007, 28, 1274-1304.	2.8	104
28	Effects of resveratrol, a grape polyphenol, on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Biochemical Pharmacology, 2007, 74, 1608-1618.	2.0	26
29	Enhanced antiâ€proliferative effects of combinatorial treatment of δâ€ŧocopherol and resveratrol in human HMCâ€1 cells. BioFactors, 2007, 30, 67-77.	2.6	17
30	Determination of (E)-3,5,4′-Trimethoxystilbene in Rat Plasma by LC with ESI-MS. Chromatographia, 2007, 66, 251-255.	0.7	2
31	Phytoestrogens as natural prodrugs in cancer prevention: a novel concept. Phytochemistry Reviews, 2008, 7, 431-443.	3.1	20
32	Resveratrol analog trans 3,4,5,4′-tetramethoxystilbene (DMU-212) mediates anti-tumor effects via mechanism different from that of resveratrol. Cancer Chemotherapy and Pharmacology, 2008, 63, 27-35.	1.1	68
33	Resveratrol and trimethylated resveratrol protect from acute liver damage induced by CCl4 in the rat. Journal of Applied Toxicology, 2008, 28, 147-155.	1.4	84
34	Heck arylation of styrenes with arenediazonium salts: short, efficient, and stereoselective synthesis of resveratrol, DMU-212, and analogues. Tetrahedron Letters, 2008, 49, 5668-5671.	0.7	60
35	Grapes and Human Health: A Perspective. Journal of Agricultural and Food Chemistry, 2008, 56, 6777-6784.	2.4	174
36	Resveratrol protects primary rat hepatocytes against necrosis induced by reactive oxygen species. Biomedicine and Pharmacotherapy, 2008, 62, 606-612.	2.5	43

#	Article	IF	CITATIONS
37	Dietary resveratrol administration increases MnSOD expression and activity in mouse brain. Biochemical and Biophysical Research Communications, 2008, 372, 254-259.	1.0	110
38	Resveratrol: A Natural Compound with Pharmacological Potential in Neurodegenerative Diseases. CNS Neuroscience and Therapeutics, 2008, 14, 234-247.	1.9	137
39	Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis, 2008, 29, 381-389.	1.3	98
40	Resveratrol as an Inhibitor of Carcinogenesis. Pharmaceutical Biology, 2008, 46, 443-573.	1.3	83
41	Delivery of Resveratrol, a Red Wine Polyphenol, from Solutions and Hydrogels <i>via</i> the Skin. Biological and Pharmaceutical Bulletin, 2008, 31, 955-962.	0.6	101
44	Antiangiogenic Resveratrol Analogues by Mild m-CPBA Aromatic Hydroxylation of 3,5-Dimethoxystilbenes. Natural Product Communications, 2009, 4, 1934578X0900400.	0.2	3
45	Editorial. Journal of Biomaterials Applications, 2009, 24, 5-5.	1.2	0
46	Nutrition and the Prevention and Treatment of Cancer: Association of Cytochrome P450 CYP1B1 With the Role of Fruit and Fruit Extracts. Integrative Cancer Therapies, 2009, 8, 22-28.	0.8	13
47	2,3′,4,4′,5′-Pentamethoxy-trans-stilbene, a resveratrol derivative, is a potent inducer of apoptosis in colon cancer cells via targeting microtubules. Biochemical Pharmacology, 2009, 78, 1224-1232.	2.0	37
48	Elevation of oxidative-damage biomarkers during aging in F2 hybrid mice: Protection by chronic oral intake of resveratrol. Free Radical Biology and Medicine, 2009, 46, 799-809.	1.3	54
49	Highly Stereoselective and General Synthesis of (<i>E</i>)‣tilbenes and Alkenes by Means of an Aqueous Wittig Reaction. European Journal of Organic Chemistry, 2009, 2009, 4031-4035.	1.2	85
50	Wittigâ€Type Olefination of Alcohols Promoted by Nickel Nanoparticles: Synthesis of Polymethoxylated and Polyhydroxylated Stilbenes. European Journal of Organic Chemistry, 2009, 2009, 6034-6042.	1.2	64
51	Antitumor effects of KITC, a new resveratrol derivative, in AsPC-1 and BxPC-3 human pancreatic carcinoma cells. Investigational New Drugs, 2009, 27, 393-401.	1.2	27
52	Synthesis of resveratrol, DMU-212 and analogues through a novel Wittig-type olefination promoted by nickel nanoparticles. Tetrahedron Letters, 2009, 50, 3070-3073.	0.7	32
53	Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food and Chemical Toxicology, 2009, 47, 2170-2182.	1.8	181
54	Study on liver targeting effect of vinegar-baked Radix Bupleuri on resveratrol in mice. Journal of Ethnopharmacology, 2009, 126, 415-420.	2.0	29
55	Resveratrol Protects Mitochondria against Oxidative Stress through AMP-Activated Protein Kinase-Mediated Glycogen Synthase Kinase-3β Inhibition Downstream of Poly(ADP-ribose)polymerase-LKB1 Pathway. Molecular Pharmacology, 2009, 76, 884-895.	1.0	187
56	Resveratrol protects spatial learning in middle-aged C57BL/6 mice from effects of ethanol. Behavioural Pharmacology, 2009, 20, 330-336.	0.8	38

#	Article	IF	CITATIONS
58	Pharmacokinetics of selected stilbenes: rhapontigenin, piceatannol and pinosylvin in ratsâ€. Journal of Pharmacy and Pharmacology, 2010, 58, 1443-1450.	1.2	72
59	Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 391-398.	1.4	154
60	Use of nanoparticles to increase the systemic bioavailability of trans-resveratrol. Pharmaceutical Chemistry Journal, 2010, 44, 74-76.	0.3	18
61	Resveratrol, sirtuins, and the promise of a DR mimetic. Mechanisms of Ageing and Development, 2010, 131, 261-269.	2.2	188
62	Resveratrol and derivatives for the prevention and treatment of cancer. Drug Discovery Today, 2010, 15, 757-765.	3.2	213
63	Microwaveâ€Assisted, Aqueous Wittig Reactions: Organicâ€Solvent―and Protectingâ€Groupâ€Free Chemoselective Synthesis of Functionalized Alkenes. Chemistry - A European Journal, 2010, 16, 6756-6760.	1.7	67
64	Biological effects on granulosa cells of hydroxylated and methylated resveratrol analogues. Molecular Nutrition and Food Research, 2010, 54, S236-43.	1.5	35
65	Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorganic and Medicinal Chemistry, 2010, 18, 3543-3550.	1.4	211
66	In vitro and in vivo studies on stilbene analogs as potential treatment agents for colon cancer. European Journal of Medicinal Chemistry, 2010, 45, 3702-3708.	2.6	48
67	2,3′,4,4′,5′â€Pentamethoxyâ€ <i>trans</i> â€stilbene, a resveratrol derivative, inhibits colitisâ€associated colorectal carcinogenesis in mice. British Journal of Pharmacology, 2010, 160, 1352-1361.	2.7	54
68	Resveratrol and liver disease: from bench to bedside and community. Liver International, 2010, 30, 1103-1114.	1.9	81
69	trans-Resveratrol as A Neuroprotectant. Molecules, 2010, 15, 1196-1212.	1.7	44
70	Akt Downregulation by Flavin Oxidase–Induced ROS Generation Mediates Dose-Dependent Endothelial Cell Damage Elicited by Natural Antioxidants. Toxicological Sciences, 2010, 114, 101-112.	1.4	66
71	4′-Chloro-3,5-dihydroxystilbene, a resveratrol derivative, induces lung cancer cell death. Acta Pharmacologica Sinica, 2010, 31, 81-92.	2.8	12
72	A Highly Tunable Stereoselective Olefination of Semistabilized Triphenylphosphonium Ylides with <i>N</i> -Sulfonyl Imines. Journal of the American Chemical Society, 2010, 132, 5018-5020.	6.6	161
73	Involvement of Breast Cancer Resistance Protein (BCRP1/ABCG2) in the Bioavailability and Tissue Distribution of <i>trans-</i> Resveratrol in Knockout Mice. Journal of Agricultural and Food Chemistry, 2010, 58, 4523-4528.	2.4	45
74	Clinical Pharmacology of Resveratrol and Its Metabolites in Colorectal Cancer Patients. Cancer Research, 2010, 70, 7392-7399.	0.4	511
75	Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. European Neuropsychopharmacology, 2010, 20, 405-413.	0.3	150

#	Article	IF	Citations
76	Inhibitory Effect of Epigallocatechin Gallate (EGCG), Resveratrol, and Curcumin on Proliferation of Human Retinal Pigment Epithelial Cells In Vitro. Current Eye Research, 2010, 35, 1021-1033.	0.7	45
77	Pharmacokinetic Study of <i>trans</i> -Resveratrol in Adult Pigs. Journal of Agricultural and Food Chemistry, 2010, 58, 11165-11171.	2.4	36
78	<i>trans</i> -3,3′,4,5′-Tetramethoxystilbene. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, 01960-01960.	0.2	1
79	Phase I Randomized, Double-Blind Pilot Study of Micronized Resveratrol (SRT501) in Patients with Hepatic Metastases—Safety, Pharmacokinetics, and Pharmacodynamics. Cancer Prevention Research, 2011, 4, 1419-1425.	0.7	319
80	Quantification of <i>trans</i> -3,4,5,4′-Tetramethoxystilbene in Rat Plasma by HPLC: Application to Pharmacokinetic Study. Journal of Agricultural and Food Chemistry, 2011, 59, 1072-1077.	2.4	12
81	Design and Synthesis of Resveratrol-Based Nitrovinylstilbenes as Antimitotic Agents. Journal of Medicinal Chemistry, 2011, 54, 6751-6760.	2.9	81
82	Autophagy Interplay with Apoptosis and Cell Cycle Regulation in the Growth Inhibiting Effect of Resveratrol in Glioma Cells. PLoS ONE, 2011, 6, e20849.	1.1	144
83	Bioavailability of resveratrol. Annals of the New York Academy of Sciences, 2011, 1215, 9-15.	1.8	707
84	Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol. Free Radical Biology and Medicine, 2011, 50, 1447-1457.	1.3	47
85	Population Pharmacokinetic Modeling of trans-Resveratrol and Its Glucuronide and Sulfate Conjugates After Oral and Intravenous Administration in Rats. Pharmaceutical Research, 2011, 28, 1606-1621.	1.7	41
86	Enhancing the bioavailability of resveratrol by combining it with piperine. Molecular Nutrition and Food Research, 2011, 55, 1169-1176.	1.5	261
87	Metabolites and tissue distribution of resveratrol in the pig. Molecular Nutrition and Food Research, 2011, 55, 1154-1168.	1.5	117
88	Amine―and Sulfonamideâ€Promoted Wittig Olefination Reactions in Water. Chemistry - A European Journal, 2011, 17, 8794-8798.	1.7	21
89	Methoxylation of resveratrol: Effects on induction of NAD(P)H Quinone-oxidoreductase 1 (NQO1) activity and growth inhibitory properties. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1032-1035.	1.0	10
90	Anticancer effects of the metabolic products of the resveratrol analogue, DMU-212: Structural requirements for potency. European Journal of Medicinal Chemistry, 2011, 46, 2586-2595.	2.6	57
91	Pharmacokinetics, bioavailability and metabolism of rhaponticin in rat plasma by UHPLC–Q-TOF/MS and UHPLC–DAD–MS ⁿ . Bioanalysis, 2012, 4, 713-723.	0.6	24
92	Natural compounds as anticancer agents: Experimental evidence. World Journal of Experimental Medicine, 2012, 2, 45.	0.9	66
93	Mild Chemical and Biological Synthesis of Donor–Acceptor Flanked Reporter Stilbenes: Demonstration of a Physiological Wittig Olefination Reaction. European Journal of Organic Chemistry, 2012, 2012, 6127-6131.	1.2	10

#	Article	IF	CITATIONS
94	Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOVâ€3 and A-2780 cancer cells. Toxicology and Applied Pharmacology, 2012, 263, 53-60.	1.3	55
95	Drug interaction potential of resveratrol. Drug Metabolism Reviews, 2012, 44, 253-265.	1.5	98
96	Resveratrol protects mouse embryonic stem cells from ionizing radiation by accelerating recovery from DNA strand breakage. Carcinogenesis, 2012, 33, 149-155.	1.3	39
97	Distribution of Resveratrol Metabolites in Liver, Adipose Tissue, and Skeletal Muscle in Rats Fed Different Doses of This Polyphenol. Journal of Agricultural and Food Chemistry, 2012, 60, 4833-4840.	2.4	80
98	Determination of resveratrol and its sulfate and glucuronide metabolites in plasma by LC–MS/MS and their pharmacokinetics in dogs. Journal of Pharmaceutical and Biomedical Analysis, 2012, 59, 201-208.	1.4	63
99	Administration of resveratrol: What formulation solutions to bioavailability limitations?. Journal of Controlled Release, 2012, 158, 182-193.	4.8	500
100	Design, synthesis and in vitro evaluation against human cancer cells of 5-methyl-5-styryl-2,5-dihydrofuran-2-ones, a new series of goniothalamin analogues. Bioorganic and Medicinal Chemistry, 2013, 21, 5107-5117.	1.4	20
101	A Triflate Hydrodeoxygenation Route to Resveratrol from Syringaldehyde. Organic Preparations and Procedures International, 2013, 45, 304-313.	0.6	6
102	Coumaric Acid Induces Mitochondrial Damage and Oxidative-Mediated Cell Death of Human Endothelial Cells. Cardiovascular Toxicology, 2013, 13, 301-306.	1.1	30
103	Tubulin-interactive stilbene derivatives as anticancer agents. Cellular and Molecular Biology Letters, 2013, 18, 368-97.	2.7	77
104	Ethanol Extract of Peanut Sprout Induces Nrf2 Activation and Expression of Antioxidant and Detoxifying Enzymes in Human Dermal Fibroblasts: Implication for its Protection Against <scp>UVB</scp> â€irradiated Oxidative Stress. Photochemistry and Photobiology, 2013, 89, 453-460.	1.3	26
105	Different susceptibility of colon cancer DLD-1 and LOVO cell lines to apoptosis induced by DMU-212, a synthetic resveratrol analogue. Toxicology in Vitro, 2013, 27, 2127-2134.	1.1	21
106	Design, synthesis and structure–activity relationships of some novel, highly potent anti-invasive (E)- and (Z)-stilbenes. Bioorganic and Medicinal Chemistry, 2013, 21, 5054-5063.	1.4	21
107	A scalable process for the synthesis of (E)-pterostilbene involving aqueous Wittig olefination chemistry. Tetrahedron Letters, 2013, 54, 6303-6306.	0.7	17
108	Chemoprevention of benzo(a)pyrene-induced colon polyps in ApcMin mice by resveratrol. Journal of Nutritional Biochemistry, 2013, 24, 713-724.	1.9	34
109	Novel analogues of resveratrol: metabolism and inhibition of colon cancer cell proliferation. Tetrahedron, 2013, 69, 6203-6212.	1.0	3
110	Trans-3,4,5,4′-tetramethoxystilbene, a resveratrol analog, potently inhibits angiogenesis in vitro and in vivo. Acta Pharmacologica Sinica, 2013, 34, 1174-1182.	2.8	24
111	Inhibitory Effects of Acorn Extract on Glutamate-Induced Calcium Signaling in Cultured Rat Hippocampal Neurons. Biological and Pharmaceutical Bulletin, 2013, 36, 331-338.	0.6	1

#	Article	IF	CITATIONS
112	Metabolism of Skin-Absorbed Resveratrol into Its Glucuronized Form in Mouse Skin. PLoS ONE, 2014, 9, e115359.	1.1	29
113	Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation. British Journal of Pharmacology, 2014, 171, 92-106.	2.7	26
114	3,4,5,4′-trans-tetramethoxystilbene (DMU-212) modulates the activation of NF-κB, AP-1, and STAT3 transcription factors in rat liver carcinogenesis induced by initiation-promotion regimen. Molecular and Cellular Biochemistry, 2014, 391, 27-35.	1.4	22
115	Molecular conformational analysis, vibrational spectra and normal coordinate analysis of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene based on density functional theory calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 122, 375-386.	2.0	8
116	Social deficits induced by peripubertal stress in rats are reversed by resveratrol. Journal of Psychiatric Research, 2014, 57, 157-164.	1.5	22
117	Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction. Toxicology and Applied Pharmacology, 2014, 280, 314-322.	1.3	44
118	Optimized PLGA nanoparticle platform for orally dosed <i>trans</i> -resveratrol with enhanced bioavailability potential. Expert Opinion on Drug Delivery, 2014, 11, 647-659.	2.4	96
119	DMU-212 inhibits tumor growth in xenograft model of human ovarian cancer. Biomedicine and Pharmacotherapy, 2014, 68, 397-400.	2.5	22
120	In vitro drug release and ex vivo percutaneous absorption of resveratrol cream using HPLC with zirconized silica stationary phase. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 947-948, 23-31.	1.2	12
121	Review of recent data on the metabolism, biological effects, and toxicity of resveratrol in humans. Molecular Nutrition and Food Research, 2014, 58, 7-21.	1.5	209
122	Resveratrol: challenges in analyzing its biological effects. Annals of the New York Academy of Sciences, 2015, 1348, 161-170.	1.8	20
123	Natural phenolic metabolites with anti-angiogenic properties – a review from the chemical point of view. Beilstein Journal of Organic Chemistry, 2015, 11, 249-264.	1.3	40
124	Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice. Steroids, 2015, 101, 37-42.	0.8	121
125	Resveratrol alters human endothelial cells redox state and causes mitochondrial-dependent cell death. Food and Chemical Toxicology, 2015, 78, 10-16.	1.8	68
126	Permeation profiles of resveratrol cream delivered through porcine vaginal mucosa: Evaluation of different HPLC stationary phases. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1002, 8-12.	1.2	5
127	Resveratrol Protects Against Pathological Preterm Birth by Suppression of Macrophage-Mediated Inflammation. Reproductive Sciences, 2015, 22, 1561-1568.	1.1	19
128	Stabilization of Resveratrol in Blood Circulation by Conjugation to mPEG and mPEG-PLA Polymers: Investigation of Conjugate Linker and Polymer Composition on Stability, Metabolism, Antioxidant Activity and Pharmacokinetic Profile. PLoS ONE, 2015, 10, e0118824.	1.1	22
129	Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. Mechanisms of Ageing and Development, 2015, 146-148, 28-41.	2.2	137

# 130	ARTICLE Spontaneous Resolution of Julia-Kocienski Intermediates Facilitates Phase Separation to Produce <i>Z</i> - and <i>E</i> -Monofluoroalkenes. Journal of the American Chemical Society, 2015, 137, 5199-5203.	IF 6.6	Citations 65
131	Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nature Medicine, 2015, 21, 498-505.	15.2	122
132	Resveratrol-Related Polymethoxystilbene Glycosides: Synthesis, Antiproliferative Activity, and Glycosidase Inhibition. Journal of Natural Products, 2015, 78, 2675-2683.	1.5	23
133	Recapitulating physiological and pathological shear stress and oxygen to model vasculature in health and disease. Scientific Reports, 2014, 4, 4951.	1.6	54
134	Activation of ERK1/2 is required for the antimitotic activity of theÂresveratrol analogue 3,4,5,4′-tetramethoxystilbene (DMU-212) in human melanoma cells. Experimental Dermatology, 2015, 24, 632-634.	1.4	18
135	Current developments of coumarin-based anti-cancer agents in medicinal chemistry. European Journal of Medicinal Chemistry, 2015, 102, 611-630.	2.6	379
136	Design, synthesis, and evaluation of methoxylated resveratrol derivatives as potential antitumor agents. Research on Chemical Intermediates, 2015, 41, 2725-2738.	1.3	7
137	Role of Natural Stilbenes in the Prevention of Cancer. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-15.	1.9	145
138	The Role of Natural Polyphenols in the Prevention and Treatment of Cervical Cancer—An Overview. Molecules, 2016, 21, 1055.	1.7	72
139	Resveratrol mediates therapeutic hepatic effects in acquired and genetic murine models of ironâ€overload. Liver International, 2016, 36, 246-257.	1.9	38
140	Resveratrol Specifically Kills Cancer Cells by a Devastating Increase in the Ca2+ Coupling Between the Greatly Tethered Endoplasmic Reticulum and Mitochondria. Cellular Physiology and Biochemistry, 2016, 39, 1404-1420.	1.1	84
141	Dioxol and dihydrodioxin analogs of 2- and 3-phenylacetonitriles as potent anti-cancer agents with nanomolar activity against a variety of human cancer cells. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2164-2169.	1.0	9
142	Protective effects of resveratrol and its analogs on age-related macular degeneration in vitro. Archives of Pharmacal Research, 2016, 39, 1703-1715.	2.7	27
143	The resveratrol analogue, 3,4,5,4′-trans-tetramethoxystilbene, inhibits the growth of A375 melanoma cells through multiple anticancer modes of action. International Journal of Oncology, 2016, 49, 1305-1314.	1.4	13
144	3′-hydroxy-3,4,5,4′-tetramethoxystilbene, the metabolite of resveratrol analogue DMU-212, inhibits ovarian cancer cell growth in vitro and in a mice xenograft model. Scientific Reports, 2016, 6, 32627.	1.6	26
145	Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism. Molecular Pharmaceutics, 2016, 13, 1278-1288.	2.3	28
146	Non-aqueous self-double-emulsifying drug delivery system: A new approach to enhance resveratrol solubility for effective transdermal delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 360-369.	2.3	31
147	Gene expression profiling of DMU-212-induced apoptosis and anti-angiogenesis in vascular endothelial cells. Pharmaceutical Biology, 2016, 54, 660-666.	1.3	21

#	Article	IF	CITATIONS
148	<i>In vitro</i> assays in natural products research – a matter of concentration and relevance to <i>in vivo</i> administration using resveratrol, α-mangostin/γ-mangostin and xanthohumol as examples. Natural Product Research, 2017, 31, 492-506.	1.0	10
149	Distribution of <i>trans</i> â€resveratrol and its metabolites after acute or sustained administration in mouse heart, brain, and liver. Molecular Nutrition and Food Research, 2017, 61, 1600686.	1.5	25
150	Anticancer Activity of Stilbeneâ€Based Derivatives. ChemMedChem, 2017, 12, 558-570.	1.6	95
151	Development and validation of HPLC–MS/MS procedure for determination of 3,4,4′,5-tetra-methoxystilbene (DMU-212) and its metabolites in ovarian cancer cells and culture medium. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017. 1060. 30-35.	1.2	2
152	Resveratrol and Its Analogues – Is It a New Strategy of Anticancer Therapy?. Advances in Cell Biology, 2017, 5, 32-42.	1.5	4
153	Activity of resveratrol triesters against primary acute lymphoblastic leukemia cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2766-2770.	1.0	6
154	Resveratrol-loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles: Preparation, characterization, and targeting effect on liver tumors. Journal of Biomaterials Applications, 2017, 32, 191-205.	1.2	21
155	Role of CYP1A1 in the biological activity of methylated resveratrol analogue, 3,4,5,4′-tetramethoxystilbene (DMU-212) in ovarian cancer A-2780 and non-cancerous HOSE cells. Toxicology Letters, 2017, 267, 59-66.	0.4	23
156	Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis. Drug Delivery and Translational Research, 2017, 7, 37-52.	3.0	54
157	Resveratrol and its methoxy derivatives modulate the expression of estrogen metabolism enzymes in breast epithelial cells by AhR down-regulation. Molecular and Cellular Biochemistry, 2017, 425, 169-179.	1.4	27
158	Therapeutic Versatility of Resveratrol Derivatives. Nutrients, 2017, 9, 1188.	1.7	115
159	Calorie Restriction Mimetics From Functional Foods. , 2017, , 257-271.		2
160	Oral delivery system enhanced the bioavailability of stilbenes: Resveratrol and pterostilbene. BioFactors, 2018, 44, 5-15.	2.6	52
161	Molecular Mechanisms Underlying the Anti-depressant Effects of Resveratrol: a Review. Molecular Neurobiology, 2018, 55, 4543-4559.	1.9	37
162	Synthesis, in vitro and in silico evaluation of novel trans -stilbene analogues as potential COX-2 inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 141-151.	1.4	22
163	Resveratrol decreases Rad51 expression and sensitizes cisplatin‑resistant MCF‑7 breast cancer cells. Oncology Reports, 2018, 39, 3025-3033.	1.2	27
164	Intranasal administration of resveratrol successfully prevents lung cancer in A/J mice. Scientific Reports, 2018, 8, 14257.	1.6	30
165	trans-Resveratrol Ameliorates Stress-Induced Irritable Bowel Syndrome-Like Behaviors by Regulation of Brain-Gut Axis. Frontiers in Pharmacology, 2018, 9, 631.	1.6	25

#	Article	IF	CITATIONS
166	Integrated systemsâ€genetic analyses reveal a network target for delaying glioma progression. Annals of Clinical and Translational Neurology, 2019, 6, 1616-1638.	1.7	8
167	Recent advances in the targeting of human DNA ligase I as a potential new strategy for cancer treatment. European Journal of Medicinal Chemistry, 2019, 182, 111657.	2.6	16
168	Resveratrol and the Human Retina. , 2019, , 127-145.		0
169	Stilbene compound trans-3,4,5,4´-tetramethoxystilbene, a potential anticancer drug, regulates constitutive androstane receptor (Car) target genes, but does not possess proliferative activity in mouse liver. Toxicology Letters, 2019, 313, 1-10.	0.4	4
170	The synthesis of 4,6-diaryl-2-pyridones and their bioactivation in CYP1 expressing breast cancer cells. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1403-1406.	1.0	3
171	Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. International Journal of Molecular Sciences, 2019, 20, 1381.	1.8	193
172	Synthetic Imine Resveratrol Analog 2-Methoxyl-3,6-Dihydroxyl-IRA Ameliorates Colitis by Activating Protective Nrf2 Pathway and Inhibiting NLRP3 Expression. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	1.9	15
173	Polyphenols and Neuroprotection: The Role of Adenosine Receptors. Journal of Caffeine and Adenosine Research, 2019, 9, 167-179.	0.8	Ο
174	Trans-resveratrol, but not other natural stilbenes occurring in food, carries the risk of drug-food interaction via inhibition of cytochrome P450 enzymes or interaction with xenosensor receptors. Toxicology Letters, 2019, 300, 81-91.	0.4	26
175	A novel tetrazole analogue of resveratrol is a potent anticancer agent. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 172-178.	1.0	31
176	A critical review on grape polyphenols for neuroprotection: Strategies to enhance bioefficacy. Critical Reviews in Food Science and Nutrition, 2020, 60, 597-625.	5.4	58
177	Photocatalytic Isomerization of Styrenyl Halides: Stereodivergent Synthesis of Functionalized Alkenes. European Journal of Organic Chemistry, 2020, 2020, 1472-1477.	1.2	24
178	Whole-cell biocatalytic, enzymatic and green chemistry methods for the production of resveratrol and its derivatives. Biotechnology Advances, 2020, 39, 107461.	6.0	55
179	Pulmonary administration of resveratrol/hydroxypropyl-β-cyclodextrin inclusion complex: in vivo disposition and in vitro metabolic study. Journal of Drug Delivery Science and Technology, 2020, 60, 101995.	1.4	4
180	Adenosine and Metabotropic Glutamate Receptors Are Present in Blood Serum and Exosomes from SAMP8 Mice: Modulation by Aging and Resveratrol. Cells, 2020, 9, 1628.	1.8	7
181	Molecular and biological functions of resveratrol in psychiatric disorders: a review of recent evidence. Cell and Bioscience, 2020, 10, 128.	2.1	23
182	More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules, 2020, 10, 1111.	1.8	80
183	The Effect of 4′-hydroxy-3,4,5-trimetoxystilbene, the Metabolite of Resveratrol Analogue DMU-212, on Growth, Cell Cycle and Apoptosis in DLD-1 and LOVO Colon Cancer Cell Lines. Nutrients, 2020, 12, 1327.	1.7	5

#	Article		CITATIONS
184	Dienedioic acid as a useful diene building block via directed Heck-decarboxylate coupling. Communications Chemistry, 2020, 3, .	2.0	4
185	Potential Adverse Effects of Resveratrol: A Literature Review. International Journal of Molecular Sciences, 2020, 21, 2084.	1.8	330
186	Resveratrol Derivatives as Potential Treatments for Alzheimer's and Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 103.	1.7	79
187	Methoxy-stilbenes downregulate the transcription of Wnt/β-catenin-dependent genes and lead to cell cycle arrest and apoptosis in human T98G glioblastoma cells. Advances in Medical Sciences, 2021, 66, 6-20.	0.9	13
188	Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Natural Product Reports, 2021, 38, 1282-1329.	5.2	56
189	Heterocyclic Resveratrol Analogs. Synthesis and Physiological Activity: Part 1–Analogs Obtained by the Replacement of Aryl Residues with Heterocyclic Fragments. Russian Journal of Bioorganic Chemistry, 2021, 47, 134-148.	0.3	1
190	Resveratrol and Its Analogs as Functional Foods in Periodontal Disease Management. Frontiers in Dental Medicine, 2021, 2, .	0.5	4
191	Resveratrol enhances trans-intestinal cholesterol excretion through selective activation of intestinal liver X receptor alpha. Biochemical Pharmacology, 2021, 186, 114481.	2.0	9
192	Resveratrol Production in Yeast Hosts: Current Status and Perspectives. Biomolecules, 2021, 11, 830.	1.8	10
193	Polyphenols as anticancer agents: Toxicological concern to healthy cells. Phytotherapy Research, 2021, 35, 6063-6079.	2.8	23
194	PD-1/PD-L1 Checkpoints and Resveratrol: A Controversial New Way for a Therapeutic Strategy. Cancers, 2021, 13, 4509.	1.7	10
195	Increasing resveratrol bioavailability: A therapeutic challenge focusing on the mitochondria. , 2021, , 349-384.		2
196	Non-systemic Intestine-Targeted Drugs. Progress in Medicinal Chemistry, 2016, 55, 1-44.	4.1	10
197	Growth-Inhibiting Activity of Resveratrol Imine Analogs on Tumor Cells In Vitro. PLoS ONE, 2017, 12, e0170502.	1.1	10
198	Metabolism of Rhaponticin and Activities of its Metabolite, Rhapontigenin: A Review. Current Medicinal Chemistry, 2020, 27, 3168-3186.	1.2	10
199	Synthesis and Evaluation of 2-Naphthaleno trans-Stilbenes and Cyanostilbenes as Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 556-564.	0.9	7
200	The Effect of 3′-Hydroxy-3,4,5,4′-Tetramethoxy -stilbene, the Metabolite of the Resveratrol Analogue DMU-212, on the Motility and Proliferation of Ovarian Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 1100.	1.8	9
201	Resveratrol as an Antitumor Agent In Vivo. Oxidative Stress and Disease, 2005, , 385-398.	0.3	0

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
202	Resveratrol as a Sensitizer to Apoptosis-Inducing Stimuli. Oxidative Stress and Disease	, 2005, , 399-421.	0.3	1
203	Resveratrol as Inhibitor of Cell Cycle Progression. Oxidative Stress and Disease, 2005, ,	, 119-132.	0.3	1
204	Resveratrol as an Inhibitor of Carcinogenesis. Oxidative Stress and Disease, 2005, , 23	3-383.	0.3	0
205	Resveratrol against Major Pathologies. , 2011, , 339-378.			0
206	Association of Diabetes Mellitus and Alcohol Abuse with Cancer: Molecular Mechanism Significance. Cells, 2021, 10, 3077.	ıs and Clinical	1.8	10
207	Suppressive Effects of Resveratrol Treatment on The Intrinsic Evoked Excitability of CA Neurons. Cell Journal, 2015, 17, 532-9.	1 Pyramidal	0.2	14
209	Subâ€chronic cadmium and lead compound exposure induces reproductive toxicity an testicular germ cell neoplasia in situÂin murine model: Attenuative effects of resverative Biochemical and Molecular Toxicology, 2022, 36, e23058.	d development of ol. Journal of	1.4	6
213	Association Between Wine Consumption and Cognitive Decline in Older People: A Systand Meta-Analysis of Longitudinal Studies. Frontiers in Nutrition, 2022, 9, .	tematic Review	1.6	6
214	Applications of resveratrol in the treatment of gastrointestinal cancer. Biomedicine and Pharmacotherapy, 2022, 153, 113274.	d	2.5	15
215	Short-term resveratrol treatment restored the quality of oocytes in aging mice. Aging, 5628-5640.	2022, 14,	1.4	13
216	Targeting microbiota-host interactions with resveratrol on cancer: Effects and potentia of action. Critical Reviews in Food Science and Nutrition, 2024, 64, 311-333.	al mechanisms	5.4	1
217	Mechanisms involved in prevention of dementia and promotion of healthy aging by res , 197-214.	sveratrol. , 2023,		1
218	Resveratrol derivatives: Synthesis and their biological activities. European Journal of Me Chemistry, 2023, 246, 114962.	edicinal	2.6	15
219	The Role of Flavonoids and other Selected (Poly) Phenols in Cancer Prevention and The on Epigenetics. , 2022, , 384-489.	erapy: A Focus		0
220	Effect of Resveratrol on Pregnancy, Prenatal Complications and Pregnancy-Associated Alterations. Antioxidants, 2023, 12, 341.	Structure	2.2	5
221	Recent progress in nanotechnology-based drug carriers for resveratrol delivery. Drug D 30, .	elivery, 2023,	2.5	20
223	Between the Devil and the Deep Blue Sea—Resveratrol, Sulfotransferases and Sulfata Turbulent Journey from Intestinal Absorption to Target Cells. Molecules, 2023, 28, 329		1.7	2
227	You are what you eat—Or are you? Exploring dietary versus topical antioxidants in sk 1-53.	in aging. , 2023, ,		0

ARTICLE

IF CITATIONS