LaeA, a Regulator of Secondary Metabolism in Aspergill

Eukaryotic Cell 3, 527-535 DOI: 10.1128/ec.3.2.527-535.2004

Citation Report

#	Article	IF	CITATIONS
1	Aspergillus flavus expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops. FEMS Microbiology Letters, 2004, 237, 333-340.	1.8	76
2	Mitochondrial β-oxidation in Aspergillus nidulans. Molecular Microbiology, 2004, 54, 1173-1185.	2.5	128
3	Chapter ten Aspergillus nidulans as a model system to study secondary metabolism. Recent Advances in Phytochemistry, 2004, 38, 197-222.	0.5	3
4	expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops. FEMS Microbiology Letters, 2004, 237, 333-340.	1.8	77
5	Fungal secondary metabolism — from biochemistry to genomics. Nature Reviews Microbiology, 2005, 3, 937-947.	28.6	1,425
6	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
7	Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Revista Iberoamericana De Micologia, 2005, 22, 194-202.	0.9	141
8	Genomics of Aspergillus fumigatus. Revista Iberoamericana De Micologia, 2005, 22, 223-228.	0.9	41
9	Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genomics, 2005, 6, 177.	2.8	96
10	Examination of fungal stress response genes using Saccharomyces cerevisiae as a model system: targeting genes affecting aflatoxin biosynthesis by Aspergillus flavus Link. Applied Microbiology and Biotechnology, 2005, 67, 807-815.	3.6	88
11	Restoration of Gibberellin Production in Fusarium proliferatum by Functional Complementation of Enzymatic Blocks. Applied and Environmental Microbiology, 2005, 71, 6014-6025.	3.1	38
12	TheAspergillus fumigatusStuA Protein Governs the Up-Regulation of a Discrete Transcriptional Program during the Acquisition of Developmental Competence. Molecular Biology of the Cell, 2005, 16, 5866-5879.	2.1	114
13	LaeA, a Regulator of Morphogenetic Fungal Virulence Factors. Eukaryotic Cell, 2005, 4, 1574-1582.	3.4	298
14	Aspergillus Cyclooxygenase-Like Enzymes Are Associated with Prostaglandin Production and Virulence. Infection and Immunity, 2005, 73, 4548-4559.	2.2	112
15	Physiology and Biotechnology of Aspergillus. Advances in Applied Microbiology, 2005, 58C, 1-75.	2.4	91
16	Aspergillusmycotoxins and their effect on the host. Medical Mycology, 2005, 43, 95-99.	0.7	96
17	Aspergillus fumigatus: saprophyte or pathogen?. Current Opinion in Microbiology, 2005, 8, 385-392.	5.1	346
18	Effect of cadmium on gene expression in the liverwort Lunularia cruciata. Gene, 2005, 356, 153-159.	2.2	18

# 19	ARTICLE Regulation of Secondary Metabolism in Filamentous Fungi. Annual Review of Phytopathology, 2005, 43, 437-458.	IF 7.8	Citations 454
20	Growth and Developmental Control in the Model and Pathogenic Aspergilli. Eukaryotic Cell, 2006, 5, 1577-1584.	3.4	80
21	LaeA, a global regulator ofAspergillustoxins. Medical Mycology, 2006, 44, 83-85.	0.7	47
22	Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genetics and Biology, 2006, 43, 295-310.	2.1	40
23	A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genetics and Biology, 2006, 43, 679-693.	2.1	172
24	Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Molecular Microbiology, 2006, 59, 882-892.	2.5	144
25	Secondary metabolic gene cluster silencing in Aspergillus nidulans. Molecular Microbiology, 2006, 61, 1636-1645.	2.5	200
26	Signalling pathways connecting mycotoxin production and sporulation. Molecular Plant Pathology, 2006, 7, 285-301.	4.2	122
27	Genomic Mining for Aspergillus Natural Products. Chemistry and Biology, 2006, 13, 31-37.	6.0	324
28	A Clobal View of Metabolites. Chemistry and Biology, 2006, 13, 5-6.	6.0	10
29	Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia, 2006, 162, 143-153.	3.1	107
30	Understanding the genetics of regulation of aflatoxin production and Aspergillus flavus development. Mycopathologia, 2006, 162, 155-166.	3.1	134
31	Genetic basis of the ovc phenotype of Neurospora: identification and analysis of a 77Åkb deletion. Current Genetics, 2006, 51, 19-30.	1.7	12
32	Aspergillus flavus expressed sequence tags and microarray as tools in understanding aflatoxin biosynthesis. Mycotoxin Research, 2006, 22, 16-21.	2.3	12
33	Targeted disruption of the genes, mlcR and ariB, which encode GAL4-type proteins in Penicillium citrinum. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 410-416.	2.4	11
34	The Fumitremorgin Gene Cluster of Aspergillus fumigatus : Identification of a Gene Encoding Brevianamide F Synthetase. ChemBioChem, 2006, 7, 1062-1069.	2.6	171
35	Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Research, 2006, 34, 4685-4701.	14.5	98
36	Calcineurin Controls Growth, Morphology, and Pathogenicity in Aspergillus fumigatus. Eukaryotic Cell, 2006, 5, 1091-1103.	3.4	262

#	Article	IF	CITATIONS
37	Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays. Microbiology (United Kingdom), 2006, 152, 3305-3317.	1.8	74
38	Molecular Analysis of an Inactive Aflatoxin Biosynthesis Gene Cluster in Aspergillus oryzae RIB Strains. Applied and Environmental Microbiology, 2006, 72, 484-490.	3.1	117
39	The Phosducin-Like Protein PhnA Is Required for Gβγ-Mediated Signaling for Vegetative Growth, Developmental Control, and Toxin Biosynthesis in Aspergillus nidulans. Eukaryotic Cell, 2006, 5, 400-410.	3.4	59
40	Effects of the Principal Nutrients on Lovastatin Production byMonascus pilosus. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1154-1159.	1.3	48
41	GliZ, a Transcriptional Regulator of Gliotoxin Biosynthesis, Contributes to Aspergillus fumigatus Virulence. Infection and Immunity, 2006, 74, 6761-6768.	2.2	203
42	Repression of Secondary Metabolite Production by Exogenous cAMP inMonascus. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1521-1523.	1.3	22
43	Disruption of a Nonribosomal Peptide Synthetase in Aspergillus fumigatus Eliminates Gliotoxin Production. Eukaryotic Cell, 2006, 5, 972-980.	3.4	208
44	Analysis of aflatoxin regulatory factors in serial transfer-induced non-aflatoxigenicAspergillus parasiticus. Food Additives and Contaminants, 2007, 24, 1061-1069.	2.0	13
45	Silencing of the Aflatoxin Gene Cluster in a Diploid Strain of Aspergillus flavus Is Suppressed by Ectopic aflR Expression. Genetics, 2007, 176, 2077-2086.	2.9	27
46	Defining Paxilline Biosynthesis in Penicillium paxilli. Journal of Biological Chemistry, 2007, 282, 16829-16837.	3.4	65
47	Role of <i>laeA</i> in the Regulation of <i>alb1</i> , <i>gliP</i> , Conidial Morphology, and Virulence in <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2007, 6, 1552-1561.	3.4	104
48	Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by LaeA. PLoS Pathogens, 2007, 3, e50.	4.7	326
49	New Insights in Medical Mycology. , 2007, , .		5
50	From Genes to Genomes: A New Paradigm for Studying Fungal Pathogenesis in Magnaporthe oryzae. Advances in Genetics, 2007, 57, 175-218.	1.8	47
51	Association of ergot alkaloids with conidiation in Aspergillus fumigatus. Mycologia, 2007, 99, 804-811.	1.9	45
52	The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia, 2007, 99, 232-239.	1.9	90
53	A Complex Ergovaline Gene Cluster in Epichloel̀ Endophytes of Grasses. Applied and Environmental Microbiology, 2007, 73, 2571-2579.	3.1	123
54	Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology (United) Tj ETQq1 1 0.7	84314 rgB	T /Qyerlock 1

#	Article	IF	Citations
55	The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia, 2007, 99, 232-239.	1.9	136
56	Association of ergot alkaloids with conidiation in <i>Aspergillus fumigatus</i> . Mycologia, 2007, 99, 804-811.	1.9	48
57	Genome Sequence of Aspergillus oryzae. Mycology, 2007, , 75-84.	0.5	1
58	Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genetics and Biology, 2007, 44, 1134-1145.	2.1	99
59	Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. Fungal Genetics and Biology, 2007, 44, 830-844.	2.1	54
60	Natural products of filamentous fungi: enzymes, genes, and their regulation. Natural Product Reports, 2007, 24, 393-416.	10.3	519
61	Aflatoxin formation and gene expression in response to carbon source media shift in <i>Aspergillus parasiticus</i> . Food Additives and Contaminants, 2007, 24, 1051-1060.	2.0	30
62	Histone Deacetylase Activity Regulates Chemical Diversity in <i>Aspergillus</i> . Eukaryotic Cell, 2007, 6, 1656-1664.	3.4	403
63	Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen <i>Stagonospora nodorum</i> . Plant Cell, 2007, 19, 3347-3368.	6.6	235
64	Polyketide Biosynthesis in Fungi. ACS Symposium Series, 2007, , 68-80.	0.5	1
65	Searching for Polyketides in Insect Pathogenic Fungi. ACS Symposium Series, 2007, , 48-67.	0.5	1
67	Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins. Studies in Mycology, 2007, 59, 31-37.	7.2	111
68	Secondary chemicals protect mould from fungivory. Biology Letters, 2007, 3, 523-525.	2.3	143
69	A One-Pot Chemoenzymatic Synthesis for the Universal Precursor of Antidiabetes and Antiviral Bis-Indolylquinones. Chemistry and Biology, 2007, 14, 635-644.	6.0	51
70	Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Molecular Microbiology, 2007, 64, 755-770.	2.5	97
71	The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster. Molecular Microbiology, 2007, 66, 713-726.	2.5	111
72	Fungal Pathogenesis: Gene Clusters Unveiled as Secrets within the Ustilago maydis Code. Current Biology, 2007, 17, R87-R90.	3.9	10
73	Systems biology of antibiotic production by microorganisms. Natural Product Reports, 2007, 24, 1262.	10.3	151

#	Article	IF	CITATIONS
74	Aflatoxins: Detection, toxicity, and biosynthesis. Biotechnology and Bioprocess Engineering, 2007, 12, 585-593.	2.6	80
75	Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Applied Microbiology and Biotechnology, 2007, 73, 1158-1168.	3.6	223
76	Genes differentially expressed by Aspergillus flavus strains after loss of aflatoxin production by serial transfers. Applied Microbiology and Biotechnology, 2007, 77, 917-925.	3.6	34
77	Of patterns and pathways: microarray technologies for the analysis of filamentous fungi. Fungal Biology Reviews, 2007, 21, 171-178.	4.7	18
78	Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiology Reviews, 2008, 32, 409-439.	8.6	171
79	Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nature Biotechnology, 2008, 26, 1161-1168.	17.5	427
80	Identification of the novel penicillin biosynthesis gene <i>aatB</i> of <i>Aspergillus nidulans</i> and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Molecular Microbiology, 2008, 70, 445-461.	2.5	40
81	Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genomics, 2008, 9, 147.	2.8	59
82	Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis. International Journal of Food Microbiology, 2008, 122, 49-60.	4.7	139
83	Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Mycological Research, 2008, 112, 207-215.	2.5	113
84	Biosynthetic gene clusters for epipolythiodioxopiperazines in filamentous fungi. Mycological Research, 2008, 112, 162-169.	2.5	76
85	The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycological Research, 2008, 112, 231-240.	2.5	294
86	Regulation of secondary metabolite production in filamentous ascomycetes. Mycological Research, 2008, 112, 225-230.	2.5	140
87	Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. Journal of Plant Interactions, 2008, 3, 75-93.	2.1	123
88	VelB/VeA/LaeA Complex Coordinates Light Signal with Fungal Development and Secondary Metabolism. Science, 2008, 320, 1504-1506.	12.6	843
89	Secondary metabolism: regulation and role in fungal biology. Current Opinion in Microbiology, 2008, 11, 481-487.	5.1	387
90	Transcriptional regulation of genes on the non-syntenic blocks of Aspergillus oryzae and its functional relationship to solid-state cultivation. Fungal Genetics and Biology, 2008, 45, 139-151.	2.1	48
91	The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genetics and Biology, 2008, 45, 705-718.	2.1	99

#	Article	IF	CITATIONS
92	The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genetics and Biology, 2008, 45, 1053-1061.	2.1	226
93	Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genetics and Biology, 2008, 45, 1422-1429.	2.1	201
94	REGULATION OFASPERGILLUSMYCOTOXIN BIOSYNTHESIS. Toxin Reviews, 2008, 27, 347-370.	3.4	11
95	Production of cercosporin toxin by the phytopathogenic <i>Cercospora</i> fungi is affected by diverse environmental signals. Canadian Journal of Microbiology, 2008, 54, 259-269.	1.7	33
96	Genomics of Aspergillus oryzae: Learning from the History of Koji Mold and Exploration of Its Future. DNA Research, 2008, 15, 173-183.	3.4	328
97	<i>Aspergillus flavus</i> genomics as a tool for studying the mechanism of aflatoxin formation. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 1152-1157.	2.3	38
98	Genomics of industrialAspergilliand comparison with toxigenic relatives. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 1147-1151.	2.3	13
99	Identification and Characterization of the Asperthecin Gene Cluster of <i>Aspergillus nidulans</i> . Applied and Environmental Microbiology, 2008, 74, 7607-7612.	3.1	149
100	<i>Aspergillus nidulans</i> Natural Product Biosynthesis Is Regulated by MpkB, a Putative Pheromone Response Mitogen-Activated Protein Kinase. Applied and Environmental Microbiology, 2008, 74, 3596-3600.	3.1	67
101	Loss of Gibberellin Production in <i>Fusarium verticillioides</i> (<i>Gibberella fujikuroi</i> MP-A) Is Due to a Deletion in the Gibberellic Acid Gene Cluster. Applied and Environmental Microbiology, 2008, 74, 7790-7801.	3.1	27
102	Sex and Poison in the Dark. Science, 2008, 320, 1430-1431.	12.6	30
103	A Sterol-Regulatory Element Binding Protein Is Required for Cell Polarity, Hypoxia Adaptation, Azole Drug Resistance, and Virulence in Aspergillus fumigatus. PLoS Pathogens, 2008, 4, e1000200.	4.7	291
104	Histoplasma Requires SID1, a Member of an Iron-Regulated Siderophore Gene Cluster, for Host Colonization. PLoS Pathogens, 2008, 4, e1000044.	4.7	131
105	Calcineurin Target CrzA Regulates Conidial Germination, Hyphal Growth, and Pathogenesis of <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2008, 7, 1085-1097.	3.4	163
106	Unlocking Fungal Cryptic Natural Products. Natural Product Communications, 2009, 4, 1934578X0900401.	0.5	38
107	Mechanism of Sterigmatocystin Biosynthesis Regulation by pH in Aspergillus nidulans. Brazilian Journal of Microbiology, 2009, 40, 933-942.	2.0	15
108	<i>Aspergillus fumigatus</i> Calcipressin CbpA Is Involved in Hyphal Growth and Calcium Homeostasis. Eukaryotic Cell, 2009, 8, 511-519.	3.4	41
109	Distinct Roles for VeA and LaeA in Development and Pathogenesis of <i>Aspergillus flavus</i> . Eukaryotic Cell, 2009, 8, 1051-1060.	3.4	154

ARTICLE IF CITATIONS # TmpL, a Transmembrane Protein Required for Intracellular Redox Homeostasis and Virulence in a Plant 110 4.7 62 and an Animal Fungal Pathogen. PLoS Pathogens, 2009, 5, e1000653. Biotoxins., 2009, , 91-102. Pathogenesis of <i>Aspergillus fumigatus </i>in Invasive Aspergillosis. Clinical Microbiology Reviews, 112 13.6 885 2009, 22, 447-465. Potential of Aspergillus flavus genomics for applications in biotechnology. Trends in Biotechnology, 2009, 27, 151-157. Developing Aspergillus as a host for heterologous expression. Biotechnology Advances, 2009, 27, 114 11.7 235 53-75. Experimental evolution of resistance against a competing fungus in Drosophila melanogaster. Oecologia, 2009, 161, 781-790. Aspects on evolution of fungal l2-lactam biosynthesis gene clusters and recruitment of trans-acting 116 2.9 78 factors. Phytochemistry, 2009, 70, 1801-1811. Operons. Cellular and Molecular Life Sciences, 2009, 66, 3755-3775. 5.4 179 Improvement of compactin (ML-236B) production by genetic engineering in compactin high-producing 118 3.6 12 Penicillium citrinum. Applied Microbiology and Biotechnology, 2009, 83, 697-704. A novel polyketide biosynthesis gene cluster is involved in fruiting body morphogenesis in the 1.7 filamentous fungi Sordaria macrospora and Neurospora crassa. Current Genetics, 2009, 55, 185-198. Cl²l³-mediated growth and developmental control in Aspergillus fumigatus. Current Genetics, 2009, 55, 120 1.7 30 631-641. The protein kinase ImeB is required for lightâ€mediated inhibition of sexual development and for 121 2.5 mycotoxin production in <i>Aspergillus nidulans</i>. Molecular Microbiology, 2009, 71, 1278-1295. Chromatin-level regulation of biosynthetic gene clusters. Nature Chemical Biology, 2009, 5, 462-464. 122 8.0 358 The ergot alkaloid gene cluster: Functional analyses and evolutionary aspects. Phytochemistry, 2009, 70, 1822-1832. Applying Parallel Factor Analysis models to HPLC diode array detector datasets reveals strain 124 dependent regulation of polyketide biosynthesis in Fusarium graminearum, Fusarium culmorum and 5.40 Fusarium pseudograminearum. Analytica Chimica Acta, 2009, 647, 243-248. Metabolomics of <i>Aspergillus fumigatus </i>. Medical Mycology, 2009, 47, S53-S71. 130 Development and Media Regulate Alternative Splicing of a Methyltransferase Pre-mRNA in Monascus 126 5.219 pilosus. Journal of Agricultural and Food Chemistry, 2009, 57, 4162-4167. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie, 2009, 91, 214-225.

CITATION REPORT IF CITATIONS A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genetics and Biology, 2009, 46, S45-S52. 2.187 Genetic regulation of aflatoxin biosynthesis: From gene to genome. Fungal Genetics and Biology, 2009, 46, 113-125.

130	Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures. Fungal Genetics and Biology, 2009, 46, 517-530.	2.1	16
131	HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genetics and Biology, 2009, 46, 782-790.	2.1	159
132	Non-Ribosomal Peptide Synthetases of Fungi. , 2009, , 305-330.		13
133	Effect of competition on the production and activity of secondary metabolites in <i>Aspergillus</i> species. Medical Mycology, 2009, 47, S88-S96.	0.7	64
134	Recent advances in understanding human opportunistic fungal pathogenesis mechanisms. , 2009, , 15-31.		2
135	Photoactivated Perylenequinone Toxins in Plant Pathogenesis. , 2009, , 201-219.		6
136	Physiology and Genetics. , 2009, , .		4
138	Aspergillus fumigatus inhibits angiogenesis through the production of gliotoxin and other secondary metabolites. Blood, 2009, 114, 5393-5399.	1.4	99
139	Adaptative and Developmental Responses to Stress in Aspergillus nidulans. Current Protein and Peptide Science, 2010, 11, 704-718.	1.4	18
140	Regulation of Aspergillus flavus aflatoxin biosynthesis and development. ACS Symposium Series, 2010, , 183-203.	0.5	2
141	Protoplast Mutation and Genome Shuffling Induce the Endophytic Fungus Tubercularia sp. TF5 to Produce New Compounds. Current Microbiology, 2010, 61, 254-260.	2.2	18
142	Identification of a hybrid PKS–NRPS required for the biosynthesis of NG-391 in Metarhizium robertsii. Current Genetics, 2010, 56, 151-162.	1.7	38
143	Spotlights on advances in mycotoxin research. Applied Microbiology and Biotechnology, 2010, 87, 1-7.	3.6	22
144	Natural functions of mycotoxins and control of their biosynthesis in fungi. Applied Microbiology and Biotechnology, 2010, 87, 899-911.	3.6	236
145	Fungal Secondary Metabolites and Their Fundamental Roles in Human Mycoses. Current Fungal Infection Reports, 2010, 4, 256-265.	2.6	9
146	Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive	12.3	514

46 natural products. Fungal Diversity, 2010, 41, 1-16.

ARTICLE

#

#	Article	IF	CITATIONS
147	Molecular cloning and characterization of the global regulator LaeA in Penicillium citrinum. Biotechnology Letters, 2010, 32, 1733-1737.	2.2	16
148	What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Revista Iberoamericana De Micologia, 2010, 27, 155-182.	0.9	346
149	Fungal toxins affect the fitness and stable isotope fractionation of Collembola. Soil Biology and Biochemistry, 2010, 42, 1766-1773.	8.8	31
150	Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends in Genetics, 2010, 26, 449-457.	6.7	268
151	Analysis of genes early expressed during Aspergillus flavus colonisation of hazelnut. International Journal of Food Microbiology, 2010, 137, 111-115.	4.7	17
152	Regulation and compartmentalization of βâ€lactam biosynthesis. Microbial Biotechnology, 2010, 3, 285-299.	4.2	77
153	A novel homologous dominant selection marker for genetic transformation of Penicillium chrysogenum: Overexpression of squalene epoxidase-encoding ergA. Journal of Biotechnology, 2010, 150, 307-311.	3.8	20
154	Fruit, flies and filamentous fungi - experimental analysis of animal-microbe competition using Drosophila melanogaster and Aspergillus mould as a model system. Oikos, 2010, 119, 1765-1775.	2.7	49
155	Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Molecular Microbiology, 2010, 76, 1376-1386.	2.5	292
156	FfVel1 and FfLae1, components of a <i>velvet</i> â€like complex in <i>Fusarium fujikuroi</i> , affect differentiation, secondary metabolism and virulence. Molecular Microbiology, 2010, 77, 972-994.	2.5	234
157	Functional analysis of fungal polyketide biosynthesis genes. Journal of Antibiotics, 2010, 63, 207-218.	2.0	40
158	Genetics and Genomics of aspergillus Fla VUS. , 2010, , 51-73.		Ο
159	Telomere position effect is regulated by heterochromatin-associated proteins and NkuA in Aspergillus nidulans. Microbiology (United Kingdom), 2010, 156, 3522-3531.	1.8	29
160	Biosynthesis and Toxicological Effects of Patulin. Toxins, 2010, 2, 613-631.	3.4	461
161	Suppressor Mutagenesis Identifies a Velvet Complex Remediator of Aspergillus nidulans Secondary Metabolism. Eukaryotic Cell, 2010, 9, 1816-1824.	3.4	79
162	Two Components of a <i>velvet</i> -Like Complex Control Hyphal Morphogenesis, Conidiophore Development, and Penicillin Biosynthesis in Penicillium chrysogenum. Eukaryotic Cell, 2010, 9, 1236-1250.	3.4	143
163	LaeA Control of Velvet Family Regulatory Proteins for Light-Dependent Development and Fungal Cell-Type Specificity. PLoS Genetics, 2010, 6, e1001226.	3.5	233
164	Elimination and control of aflatoxin contamination in agricultural crops through Aspergillus flavus genomics. ACS Symposium Series, 2010, , 93-106.	0.5	Ο

#	Article	IF	CITATIONS
165	Toxins of Microorganisms. , 2010, , 411-455.		4
166	Identification of the <i>mokH</i> Gene Encoding Transcription Factor for the Upregulation of Monacolin K Biosynthesis in <i>Monascus pilosus</i> . Journal of Agricultural and Food Chemistry, 2010, 58, 287-293.	5.2	50
167	Secondary metabolism in fungi: does chromosomal location matter?. Current Opinion in Microbiology, 2010, 13, 431-436.	5.1	232
168	Development and refinement of a high-efficiency gene-targeting system for Aspergillus flavus. Journal of Microbiological Methods, 2010, 81, 240-246.	1.6	109
169	Involvement of transposon-like elements in penicillin gene cluster regulation. Fungal Genetics and Biology, 2010, 47, 423-432.	2.1	57
170	Spotlight on Aspergillus nidulans photosensory systems. Fungal Genetics and Biology, 2010, 47, 900-908.	2.1	138
171	Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genetics and Biology, 2010, 47, 962-972.	2.1	57
172	Transcriptional responses of Folsomia candida upon exposure to Aspergillus nidulans secondary metabolites in single and mixed diets. Pedobiologia, 2010, 54, 45-52.	1.2	12
173	Aspergillus nidulans asexual development: making the most of cellular modules. Trends in Microbiology, 2010, 18, 569-576.	7.7	181
174	Secondary metabolites from entomopathogenic Hypocrealean fungi. Natural Product Reports, 2010, 27, 1241.	10.3	199
175	Fungal secondary metabolite biosynthesis – a chemical defence strategy against antagonistic animals?. Fungal Ecology, 2010, 3, 107-114.	1.6	35
176	Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Natural Product Reports, 2010, 27, 11-22.	10.3	266
177	Enzymatic Processing of Fumiquinazoline F: A Tandem Oxidative-Acylation Strategy for the Generation of Multicyclic Scaffolds in Fungal Indole Alkaloid Biosynthesis. Biochemistry, 2010, 49, 8564-8576.	2.5	78
178	Mycotoxins in Food, Feed and Bioweapons. , 2010, , .		24
179	Progress in Mycology. , 2010, , .		7
180	<i>Aspergillus fumigatus</i> LaeA-Mediated Phagocytosis Is Associated with a Decreased Hydrophobin Layer. Infection and Immunity, 2010, 78, 823-829.	2.2	60
181	Bacteria-induced natural product formation in the fungus <i>Aspergillus nidulans</i> requires Saga/Ada-mediated histone acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14282-14287.	7.1	322
182	<i>Aspergillus oryzae laeA</i> Regulates Kojic Acid Synthesis Genes. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1832-1834	1.3	55

#	Article	IF	CITATIONS
183	Histone Deacetylase Inhibitors as a Tool to Up-Regulate New Fungal Biosynthetic Products: Isolation of EGM-556, a Cyclodepsipeptide, from <i>Microascus</i> sp Organic Letters, 2011, 13, 410-413.	4.6	66
184	<i>Aspergillus flavus</i> . Annual Review of Phytopathology, 2011, 49, 107-133.	7.8	521
185	10 Evolution of Genes for Secondary Metabolism in Fungi. , 2011, , 231-255.		6
187	A Nonredundant Role for Plasmacytoid Dendritic Cells in Host Defense against the Human Fungal Pathogen Aspergillus fumigatus. Cell Host and Microbe, 2011, 9, 415-424.	11.0	108
188	8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biology, 2011, 115, 393-400.	2.5	80
189	Fungal secondary metabolites – Strategies to activate silent gene clusters. Fungal Genetics and Biology, 2011, 48, 15-22.	2.1	609
190	Compartmentalization and molecular traffic in secondary metabolism: A new understanding of established cellular processes. Fungal Genetics and Biology, 2011, 48, 35-48.	2.1	162
191	Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genetics and Biology, 2011, 48, 62-69.	2.1	217
192	13 Evolution of Special Metabolism in Fungi: Concepts, Mechanisms, and Pathways. , 2011, , 293-329.		4
193	Culturable fungal diversity of shrimp Litopenaeus vannamei boone from breeding farms in Brazil. Brazilian Journal of Microbiology, 2011, 42, 49-56.	2.0	26
194	Modification of c and n sources for enhanced production of cyclosporin 'a' by Aspergillus Terreus. Brazilian Journal of Microbiology, 2011, 42, 1374-1383.	2.0	6
195	Conserved Regulatory Mechanisms Controlling Aflatoxin and Sterigmatocystin Biosynthesis. , 0, , .		0
196	The Integration of Environmental Issues in The Agricultural Policy: The Role of Economic Evaluation. Italian Journal of Agronomy, 2011, 5, 1.	1.0	0
197	Epigenetics of Eukaryotic Microbes. , 2011, , 185-201.		1
198	Aflatoxin Biosynthetic Pathway and Pathway Genes. , 0, , .		6
199	A hypothesis to explain how LaeA specifically regulates certain secondary metabolite biosynthesis gene clusters. World Mycotoxin Journal, 2011, 4, 53-58.	1.4	9
200	Unexplored Gene Resources from Filamentous Fungi. Journal of the Brewing Society of Japan, 2011, 106, 446-456.	0.3	0
201	Metabolic Engineering of Natural Product Biosynthesis. , 2011, , 65-96.		0

		CITATION RE	PORT	
#	Article		IF	Citations
202	Fungal defences against animal antagonists - lectins & more. Molecular Ecology, 2011,	, 20, 2876-2877.	3.9	5
203	The MAP kinase MpkA controls cell wall integrity, oxidative stress response, gliotoxin p iron adaptation in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2011, 82, 39-	roduction and 53.	2.5	125
204	From hormones to secondary metabolism: the emergence of metabolic gene clusters i Journal, 2011, 66, 66-79.	n plants. Plant	5.7	125
205	Olfactory cues associated with fungal grazing intensity and secondary metabolite path Collembola foraging behaviour. Soil Biology and Biochemistry, 2011, 43, 1411-1416.	iway modulate	8.8	41
206	Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)2Cys6 transcription induced by kojic acid at the transcriptional level. Journal of Bioscience and Bioengineer 40-43.	al activator and ing, 2011, 112,	2.2	82
207	Potential of Complementary and Alternative Medicine in Preventive Management of No (Swine Flu) Pandemic: Thwarting Potential Disasters in the Bud. Evidence-based Comp Alternative Medicine, 2011, 2011, 1-16.	ovel H1N1 Flu lementary and	1.2	64
208	Fungal endophytes: unique plant inhabitants with great promises. Applied Microbiolog Biotechnology, 2011, 90, 1829-1845.	y and	3.6	505
209	Regulation of trichothecene biosynthesis in Fusarium: recent advances and new insigh Microbiology and Biotechnology, 2011, 91, 519-528.	ts. Applied	3.6	81
210	Impact of the Penicillium chrysogenum genome on industrial production of metabolite Microbiology and Biotechnology, 2011, 92, 45-53.	s. Applied	3.6	36
211	Transcriptional regulatory elements in fungal secondary metabolism. Journal of Microb 49, 329-339.	iology, 2011,	2.8	150
212	Allergens/Antigens, Toxins and Polyketides of Important Aspergillus Species. Indian Jou Biochemistry, 2011, 26, 104-119.	rnal of Clinical	1.9	26
214	Cytotoxic Pheofungins from an Engineered Fungus Impaired in Posttranslational Prote Modification. Angewandte Chemie - International Edition, 2011, 50, 9843-9847.	in	13.8	42
215	The fungal treasure chest: Spore origins?. Fungal Biology Reviews, 2011, 25, 73-77.		4.7	4
216	Targeted Disruption of Nonribosomal Peptide Synthetase <i>pes3</i> Augments the V Aspergillus fumigatus. Infection and Immunity, 2011, 79, 3978-3992.	irulence of	2.2	55
217	The Small GTPase RacA Mediates Intracellular Reactive Oxygen Species Production, Po and Virulence in the Human Fungal Pathogen Aspergillus fumigatus. Eukaryotic Cell, 20	larized Growth, 311, 10, 174-186.	3.4	42
218	Functional Analysis of the Cyclopiazonic Acid Biosynthesis Gene Cluster inAspergillus o Bioscience, Biotechnology and Biochemistry, 2011, 75, 2249-2252.	oryzaeRIB 40.	1.3	16
219	PcchiB1, encoding a class V chitinase, is affected by PcVelA and PcLaeA, and is respons integrity in Penicillium chrysogenum. Microbiology (United Kingdom), 2011, 157, 303	ible for cell wall 5-3048.	1.8	36
220	Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidom Genetics, 2011, 7, e1002345.	iycosis. PLoS	3.5	164

#	Article	IF	CITATIONS
221	Identification of genes and gene clusters involved in mycotoxin synthesis. , 2011, , 332-348.		2
222	Expression Profiling of Non-Aflatoxigenic Aspergillus parasiticus Mutants Obtained by 5-Azacytosine Treatment or Serial Mycelial Transfer. Toxins, 2011, 3, 932-948.	3.4	28
223	The Aspergillus nidulans MAPK Module AnSte11-Ste50-Ste7-Fus3 Controls Development and Secondary Metabolism. PLoS Genetics, 2012, 8, e1002816.	3.5	182
224	ChLae1 and ChVel1 Regulate T-toxin Production, Virulence, Oxidative Stress Response, and Development of the Maize Pathogen Cochliobolus heterostrophus. PLoS Pathogens, 2012, 8, e1002542.	4.7	145
225	Transcription of Genes in the Biosynthetic Pathway for Fumonisin Mycotoxins Is Epigenetically and Differentially Regulated in the Fungal Maize Pathogen Fusarium verticillioides. Eukaryotic Cell, 2012, 11, 252-259.	3.4	60
226	Dsc Orthologs Are Required for Hypoxia Adaptation, Triazole Drug Responses, and Fungal Virulence in Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 1557-1567.	3.4	54
227	Comparative Genome Analysis Between Aspergillus oryzae Strains Reveals Close Relationship Between Sites of Mutation Localization and Regions of Highly Divergent Genes among Aspergillus Species. DNA Research, 2012, 19, 375-382.	3.4	27
228	Toward Awakening Cryptic Secondary Metabolite Gene Clusters in Filamentous Fungi. Methods in Enzymology, 2012, 517, 303-324.	1.0	116
229	Regulatory Cross Talk and Microbial Induction of Fungal Secondary Metabolite Gene Clusters. Methods in Enzymology, 2012, 517, 325-341.	1.0	18
230	Identification of a Gene Involved in the Synthesis of a Dipeptidyl Peptidase IV Inhibitor in Aspergillus oryzae. Applied and Environmental Microbiology, 2012, 78, 6996-7002.	3.1	15
231	Genome-Based Cluster Deletion Reveals an Endocrocin Biosynthetic Pathway in Aspergillus fumigatus. Applied and Environmental Microbiology, 2012, 78, 4117-4125.	3.1	83
232	Current Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination. Toxins, 2012, 4, 1024-1057.	3.4	258
233	Hydrolase Controls Cellular NAD, Sirtuin, and Secondary Metabolites. Molecular and Cellular Biology, 2012, 32, 3743-3755.	2.3	42
234	Deletion of the Aspergillus flavus Orthologue of <i>A. nidulans fluG</i> Reduces Conidiation and Promotes Production of Sclerotia but Does Not Abolish Aflatoxin Biosynthesis. Applied and Environmental Microbiology, 2012, 78, 7557-7563.	3.1	79
235	Functional Genomics to Improve Meat Quality in Pigs. , 2012, , 300-329.		1
236	Characterization of the <i>velvet</i> regulators in <i><scp>A</scp>spergillus fumigatus</i> . Molecular Microbiology, 2012, 86, 937-953.	2.5	84
237	Fungal chemical defence alters densityâ€dependent foraging behaviour and success in a fungivorous soil arthropod. Ecological Entomology, 2012, 37, 323-329.	2.2	23
238	Overexpression of the <i><scp>A</scp>spergillus nidulans</i> histone 4 acetyltransferase <scp>EsaA</scp> increases activation of secondary metabolite production. Molecular Microbiology, 2012, 86, 314-330.	2.5	116

#	Article	IF	CITATIONS
239	VEA1 is required for cleistothecial formation and virulence in Histoplasma capsulatum. Fungal Genetics and Biology, 2012, 49, 838-846.	2.1	33
240	The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum. Fungal Genetics and Biology, 2012, 49, 866-881.	2.1	22
241	NosA, a transcription factor important in Aspergillus fumigatus stress and developmental response, rescues the germination defect of a laeA deletion. Fungal Genetics and Biology, 2012, 49, 857-865.	2.1	31
242	The inducers 1,3-diaminopropane and spermidine produce a drastic increase in the expression of the penicillin biosynthetic genes for prolonged time, mediated by the LaeA regulator. Fungal Genetics and Biology, 2012, 49, 1004-1013.	2.1	37
243	Advances in Aspergillus secondary metabolite research in the post-genomic era. Natural Product Reports, 2012, 29, 351.	10.3	233
244	NsdC and NsdD Affect Aspergillus flavus Morphogenesis and Aflatoxin Production. Eukaryotic Cell, 2012, 11, 1104-1111.	3.4	109
245	The chromatin code of fungal secondary metabolite gene clusters. Applied Microbiology and Biotechnology, 2012, 95, 1389-1404.	3.6	163
246	Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans—The role of a putative dehydrin. Journal of Proteomics, 2012, 75, 4038-4049.	2.4	30
247	Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. Fungal Genetics and Biology, 2012, 49, 39-47.	2.1	66
248	Fungal S-adenosylmethionine synthetase and the control of development and secondary metabolism in Aspergillus nidulans. Fungal Genetics and Biology, 2012, 49, 443-454.	2.1	25
249	Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genetics and Biology, 2012, 49, 521-532.	2.1	116
250	Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genetics and Biology, 2012, 49, 602-612.	2.1	114
251	Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biology, 2012, 116, 298-307.	2.5	76
252	Fungal Secondary Metabolism. Methods in Molecular Biology, 2012, , .	0.9	5
253	Diversity and Ecological Significance of Fungal Endophyte Natural Products. Studies in Natural Products Chemistry, 2012, 36, 249-296.	1.8	17
255	Molecular Analysis of Fungal Gene Expression upon Interkingdom Competition with Insects. , 2012, 944, 279-286.		2
256	Insect–fungus interference competition – The potential role of global secondary metabolite regulation, pathway-specific mycotoxin expression and formation of oxylipins. Fungal Ecology, 2012, 5, 191-199.	1.6	38
257	Investigation of In Vivo Protein Interactions in Aspergillus Spores. Methods in Molecular Biology, 2012, 944, 251-257.	0.9	2

#	Article	IF	CITATIONS
258	A PKS gene, pks-1, is involved in chaetoglobosin biosynthesis, pigmentation and sporulation in Chaetomium globosum. Science China Life Sciences, 2012, 55, 1100-1108.	4.9	61
259	Use and Discovery of Chemical Elicitors That Stimulate Biosynthetic Gene Clusters in Streptomyces Bacteria. Methods in Enzymology, 2012, 517, 367-385.	1.0	60
260	Genetics of Polyketide Metabolism in Aspergillus nidulans. Metabolites, 2012, 2, 100-133.	2.9	37
261	Effect of Environmental Change on Secondary Metabolite Production in Lichen-Forming Fungi. , 0, , .		18
262	Biosynthetic concepts for the production of βâ€lactam antibiotics in <i>Penicillium chrysogenum</i> . Biotechnology Journal, 2012, 7, 225-236.	3.5	36
263	An <i>Aspergillus nidulans</i> bZIP response pathway hardwired for defensive secondary metabolism operates through <i>aflR</i> . Molecular Microbiology, 2012, 83, 1024-1034.	2.5	93
264	Coordination of secondarymetabolism and development in fungi: the velvet familyof regulatory proteins. FEMS Microbiology Reviews, 2012, 36, 1-24.	8.6	477
265	Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus?. Process Biochemistry, 2012, 47, 843-852.	3.7	41
266	The <i>velvet</i> gene, <i>FgVe1</i> , affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in <i>Fusarium graminearum</i> . Molecular Plant Pathology, 2012, 13, 363-374.	4.2	95
267	The putative protein methyltransferase LAE1 controls cellulase gene expression in <i>Trichoderma reesei</i> . Molecular Microbiology, 2012, 84, 1150-1164.	2.5	232
268	<i>veA</i> â€dependent RNAâ€pol II transcription elongation factorâ€like protein, RtfA, is associated with secondary metabolism and morphological development in <i>Aspergillus nidulans</i> . Molecular Microbiology, 2012, 85, 795-814.	2.5	23
269	Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in <i>Fusarium graminearum</i> . Environmental Microbiology, 2012, 14, 1159-1170.	3.8	68
270	Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Applied Microbiology and Biotechnology, 2012, 93, 2011-2022.	3.6	72
271	Identification and characterization of Penicillium citrinum VeA and LaeA as global regulators for ML-236B production. Current Genetics, 2012, 58, 1-11.	1.7	31
272	A Novel Automethylation Reaction in the Aspergillus nidulans LaeA Protein Generates S-Methylmethionine. Journal of Biological Chemistry, 2013, 288, 14032-14045.	3.4	66
273	Engineering fungal secondary metabolism: A roadmap to novel compounds. Journal of Biotechnology, 2013, 163, 179-183.	3.8	36
275	3 Genetics, Biosynthesis, and Regulation of Aflatoxins and other Aspergillus flavus Secondary Metabolites. , 2013, , 59-74.		1
276	Aspergillus: Genomics of a Cosmopolitan Fungus. Soil Biology, 2013, , 89-126.	0.8	4

#	Article	IF	CITATIONS
277	Oxidative state in idiophase links reactive oxygen species (ROS) and lovastatin biosynthesis: Differences and similarities in submerged- and solid-state fermentations. Fungal Biology, 2013, 117, 85-93.	2.5	38
278	A putative APSES transcription factor is necessary for normal growth and development of Aspergillus nidulans. Journal of Microbiology, 2013, 51, 800-806.	2.8	14
279	Targeted Disruption of Transcriptional Regulators in <i>Chaetomium globosum</i> Activates Biosynthetic Pathways and Reveals Transcriptional Regulator-Like Behavior of Aureonitol. Journal of the American Chemical Society, 2013, 135, 13446-13455.	13.7	52
280	The inducers 1,3-diaminopropane and spermidine cause the reprogramming of metabolism in Penicillium chrysogenum, leading to multiple vesicles and penicillin overproduction. Journal of Proteomics, 2013, 85, 129-159.	2.4	26
281	Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnology Advances, 2013, 31, 79-89.	11.7	60
282	Members of the Penicillium chrysogenum Velvet Complex Play Functionally Opposing Roles in the Regulation of Penicillin Biosynthesis and Conidiation. Eukaryotic Cell, 2013, 12, 299-310.	3.4	75
283	<scp>VeA</scp> and <scp>MvlA</scp> repression of the cryptic orsellinic acid gene cluster in <i><scp>A</scp>spergillus nidulans</i> involves histone 3 acetylation. Molecular Microbiology, 2013, 89, 963-974.	2.5	37
284	Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 2013, 11, 21-32.	28.6	887
285	VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius. International Journal of Food Microbiology, 2013, 166, 479-486.	4.7	88
286	Insights to fungal biology through LaeA sleuthing. Fungal Biology Reviews, 2013, 27, 51-59.	4.7	50
287	Development in Aspergillus. Studies in Mycology, 2013, 74, 1-29.	7.2	281
288	Establishment of Transformation System in Cordyceps Militaris by using Integration Vector with Benomyl Resistance Gene. Procedia Environmental Sciences, 2013, 17, 142-149.	1.4	13
289	Cochliobolus heterostrophus Llm1 – A Lae1-like methyltransferase regulates T-toxin production, virulence, and development. Fungal Genetics and Biology, 2013, 51, 21-33.	2.1	23
290	Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Fungal Genetics and Biology, 2013, 58-59, 71-79.	2.1	72
291	Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings. Fungal Genetics and Biology, 2013, 61, 111-119.	2.1	12
292	Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. FEMS Microbiology Reviews, 2013, 37, 94-109.	8.6	139
293	The velvet complex governs mycotoxin production and virulence of <i><scp>F</scp>usarium oxysporum</i> on plant and mammalian hosts. Molecular Microbiology, 2013, 87, 49-65.	2.5	132
294	Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnology Advances, 2013, 31, 287-311.	11.7	112

ARTICLE IF CITATIONS bZIP transcription factors affecting secondary metabolism, sexual development and stress responses 295 1.8 89 in Aspergillus nidulans. Microbiology (United Kingdom), 2013, 159, 77-88. Bacterium Induces Cryptic Meroterpenoid Pathway in the Pathogenic Fungus <i>Aspergillus 2.6 fumigatus</i>. ChemBioChem, 2013, 14, 938-942 Discovery of Cryptic Polyketide Metabolites from Dermatophytes Using Heterologous Expression in 297 3.8 99 <i>Aspergillus nidulans</i>. ACS Synthetic Biology, 2013, 2, 629-634. Interplay of the fungal sumoylation network for control of multicellular development. Molecular 298 Microbiology, 2013, 90, 1125-1145. Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod 299 2.6 64 fungivory. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131219. Transcriptomic and morphological profiling of Aspergillus fumigatus Af293 in response to antifungal activity produced by Lactobacillus plantarum 16. Microbiology (United Kingdom), 2013, 159, 2014-2024. 1.8 The Fusarium graminearum Histone H3 K27 Methyltransferase KMT6 Regulates Development and 301 3.5 233 Expression of Secondary Metabolite Gene Clusters. PLoS Genetics, 2013, 9, e1003916. RsmA Regulates Aspergillus fumigatus Gliotoxin Cluster Metabolites Including Cyclo(L-Phe-L-Ser), a 2.5 38 Potential New Diagnostic Marker for Invasive Aspergillosis. PLoS ONE, 2013, 8, e62591. The Immune Interplay between the Host and the Pathogen in<i>Aspergillus fumigatus</i>Lung 303 1.9 50 Infection. BioMed Research International, 2013, 2013, 1-14. Small Chemical Chromatin Effectors Alter Secondary Metabolite Production in Aspergillus clavatus. 304 3.4 Toxins, 2013, 5, 1723-1741. Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization 305 3.5 76 in Aspergillus nidulans. PLoS Genetics, 2013, 9, e1003193. Functional Analyses of <i>Trichoderma reesei</i> LAE1 Reveal Conserved and Contrasting Roles of This 1.8 109 Regulator. G3: Genes, Genomes, Genetics, 2013, 3, 369-378. Transcriptional Changes in the Transition from Vegetative Cells to Asexual Development in the Model 307 3.4 40 Fungus Aspergillus nidulans. Eukaryotic Cell, 2013, 12, 311-321. Fungal Genes in Context: Genome Architecture Reflects Regulatory Complexity and Function. Genome Biology and Evolution, 2013, 5, 1336-1352. 308 2.5 Substrate-Induced Transcriptional Activation of the MoCel7C Cellulase Gene Is Associated with 309 Methylation of Histone H3 at Lysine 4 in the Rice Blast Fungus Magnaporthe oryzae. Applied and 3.1 34 Environmental Microbiology, 2013, 79, 6823-6832. Prototype of an intertwined secondary-metabolite supercluster. Proceedings of the National Academy 174 of Sciences of the United States of America, 2013, 110, 17065-17070. Aspergillus., 2013, , 1-51. 3115 Functional Roles of FgLaeA in Controlling Secondary Metabolism, Sexual Development, and Virulence in Fusarium graminearum. PLoS ONE, 2013, 8, e68441.

#	Article	IF	CITATIONS
313	Functions, Cooperation, and Interplays of the Vegetative Growth Signaling Pathway in the Aspergilli. Journal of Mycology, 2013, 2013, 1-11.	0.5	2
314	Strategies for Accessing Microbial Secondary Metabolites from Silent Biosynthetic Pathways. , 0, , 78-95.		1
318	A fungal prenyltransferase catalyzes the regular di-prenylation at positions 20 and 21 of paxilline. Bioscience, Biotechnology and Biochemistry, 2014, 78, 448-454.	1.3	11
319	Perturbations in small molecule synthesis uncovers an iron-responsive secondary metabolite network in Aspergillus fumigatus. Frontiers in Microbiology, 2014, 5, 530.	3.5	59
320	Penicillins. Fungal Biology, 2014, , 17-42.	0.6	2
321	Regulation of Glycoside Hydrolase Expression in Trichoderma. , 2014, , 291-308.		20
322	Epigenetic Control of Effector Gene Expression in the Plant Pathogenic Fungus Leptosphaeria maculans. PLoS Genetics, 2014, 10, e1004227.	3.5	209
323	Enhancing microbial metabolite and enzyme production: current strategies and challenges. Frontiers in Microbiology, 2014, 5, 718.	3.5	21
324	A Novel C2H2 Transcription Factor that Regulates gliA Expression Interdependently with GliZ in Aspergillus fumigatus. PLoS Genetics, 2014, 10, e1004336.	3.5	36
325	10 Genomics Analysis of Biocontrol biocontrol Species and Industrial Enzyme Producers from the Genus Trichoderma OTrichoderma. , 2014, , 233-264.		7
326	Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Applied Microbiology and Biotechnology, 2014, 98, 8443-8455.	3.6	43
327	Endoplasmic reticulum localized <scp>PerA</scp> is required for cell wall integrity, azole drug resistance, and virulence in <scp><i>A</i></scp> <i>spergillus fumigatus</i> . Molecular Microbiology, 2014, 92, 1279-1298.	2.5	18
328	Illumina identification of RsrA, a conserved C2H2 transcription factor coordinating the NapA mediated oxidative stress signaling pathway in Aspergillus. BMC Genomics, 2014, 15, 1011.	2.8	25
329	RNA-seq reveals the pan-transcriptomic impact of attenuating the gliotoxin self-protection mechanism in Aspergillus fumigatus. BMC Genomics, 2014, 15, 894.	2.8	44
330	5 Fungal Chromatin and Its Role in Regulation of Gene Expression. , 2014, , 99-120.		6
331	Distribution, expression and expansion of Aspergillus fumigatus LINE-like retrotransposon populations in clinical and environmental isolates. Fungal Genetics and Biology, 2014, 64, 36-44.	2.1	4
332	Strategies for mining fungal natural products. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 301-313.	3.0	168
333	Metabolite induction via microorganism co-culture: A potential way to enhance chemical diversity for drug discovery. Biotechnology Advances, 2014, 32, 1180-1204.	11.7	366

#	Article	IF	CITATIONS
334	Fungal Genomics. , 2014, , .		2
335	Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology. Microbiological Research, 2014, 169, 652-665.	5.3	21
336	The rise of operon-like gene clusters in plants. Trends in Plant Science, 2014, 19, 447-459.	8.8	151
337	Iron and copper as virulence modulators in human fungal pathogens. Molecular Microbiology, 2014, 93, 10-23.	2.5	103
338	Reactive oxygen species regulate lovastatin biosynthesis in Aspergillus terreus during submerged and solid-state fermentations. Fungal Biology, 2014, 118, 979-989.	2.5	51
339	Upstream Regulation of Mycotoxin Biosynthesis. Advances in Applied Microbiology, 2014, 86, 251-278.	2.4	21
340	A putative methyltransferase, mtrA, contributes to development, spore viability, protein secretion and virulence in the entomopathogenic fungus Beauveria bassiana. Microbiology (United Kingdom), 2014, 160, 2526-2537.	1.8	24
341	Reconstructing fungal natural product biosynthetic pathways. Natural Product Reports, 2014, 31, 1339-1347.	10.3	60
342	Histone <scp>H</scp> 3 <scp>K</scp> 9 and <scp>H</scp> 3 <scp>K</scp> 27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte–plant symbiosis. Molecular Microbiology, 2014, 92, 413-434.	2.5	161
343	How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genetics and Biology, 2014, 72, 48-63.	2.1	69
344	The role of Aspergillus flavus veA in the production of extracellular proteins during growth on starch substrates. Applied Microbiology and Biotechnology, 2014, 98, 5081-5094.	3.6	27
345	Insights into Monascus biology at the genetic level. Applied Microbiology and Biotechnology, 2014, 98, 3911-3922.	3.6	73
346	The transcriptome of lae1 mutants of Trichoderma reesei cultivated at constant growth rates reveals new targets of LAE1 function. BMC Genomics, 2014, 15, 447.	2.8	21
347	Distinct Innate Immune Phagocyte Responses to Aspergillus fumigatus Conidia and Hyphae in Zebrafish Larvae. Eukaryotic Cell, 2014, 13, 1266-1277.	3.4	82
348	Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery. Fungal Genetics and Biology, 2014, 68, 39-47.	2.1	20
349	Identification of cadmium-induced Agaricus blazei genes through suppression subtractive hybridization. Food and Chemical Toxicology, 2014, 63, 84-90.	3.6	15
350	Combinatorial function of velvet and AreA in transcriptional regulation of nitrate utilization and secondary metabolism. Fungal Genetics and Biology, 2014, 62, 78-84.	2.1	34
351	Variability of chromosome structure in pathogenic fungi—of â€~ends and odds'. Current Opinion in Microbiology, 2014, 20, 19-26.	5.1	78

#	Article	IF	CITATIONS
352	Membrane-Bound Methyltransferase Complex VapA-VipC-VapB Guides Epigenetic Control of Fungal Development. Developmental Cell, 2014, 29, 406-420.	7.0	63
353	Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genetics and Biology, 2014, 66, 11-18.	2.1	195
354	Secondary Metabolism. , 0, , 376-395.		7
355	Aspergillus fumigatus. , 2014, , 695-716.		4
356	Genomics of Aspergillus flavus Mycotoxin Production. , 2014, , 259-270.		0
357	Regulation of <i>Aspergillus</i> Conidiation. , 0, , 557-576.		23
360	Biosynthesis of secondary metabolites in plant pathogenic fungi and their involvement in pathogenicity; a genomics-based approach for understanding their evolution and diversity Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 2014, 80, 207-216.	0.1	0
361	Screening Marine Microbial Libraries. , 2015, , 105-134.		1
363	Antibiotics: Initial Concepts and Considerations. , 0, , 4-15.		0
364	Antibiotic Resistance: Modification or Destruction of the Antibiotic. , 0, , 198-218.		0
365	Antibiotic Resistance via Membrane Efflux Pumps. , 0, , 220-229.		0
366	Resistance via Target Modification. , 0, , 230-251.		0
367	Tuberculosis: A Formidable Challenge for Antibiotic Therapy. , 0, , 252-271.		0
368	Antibiotic Biosynthesis: Principles. , 2015, , 276-287.		0
369	Biosynthesis of Polyketide Antibiotics. , 0, , 320-342.		0
370	Biosynthesis of Oligosaccharide, Isoprenoid, and C-P Antibiotic Classes. , 0, , 344-362.		0
371	Major Classes of Antibiotics and Their Modes of Action. , 0, , 16-32.		0
372	Antibiotics That Disrupt Membrane Integrity. , 2015, , 102-113.		0

#	Article	IF	CITATIONS
373	Antibiotics That Target DNA and RNA Information Transfer. , 0, , 148-162.		0
374	Antibiotics That Block Biosynthesis of the DNA Building Block Deoxythymidylate. , 0, , 164-176.		0
375	Bacterial Antibiotic Resistance: Overview. , 0, , 180-196.		0
376	Deep sequencing analysis of transcriptomes in Aspergillus flavus in response to resveratrol. BMC Microbiology, 2015, 15, 182.	3.3	42
377	Genome Mining for Aflatoxin Biosynthesis. Fungal Genomics & Biology, 2015, 03, .	0.4	2
378	Characterization of the Paracoccidioides Hypoxia Response Reveals New Insights into Pathogenesis Mechanisms of This Important Human Pathogenic Fungus. PLoS Neglected Tropical Diseases, 2015, 9, e0004282.	3.0	32
381	Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Frontiers in Microbiology, 2015, 6, 299.	3.5	299
382	Fungal secondary metabolite dynamics in fungusââ,¬â€œgrazer interactions: novel insights and unanswered questions. Frontiers in Microbiology, 2015, 5, 788.	3.5	40
383	Endogenous cross-talk of fungal metabolites. Frontiers in Microbiology, 2014, 5, 732.	3.5	26
384	Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2015, 463, 428-433.	2.1	25
385	Regulation of the aflatoxin-like toxin dothistromin by AflJ. Fungal Biology, 2015, 119, 503-508.	2.5	4
386	Resistance is not futile: gliotoxin biosynthesis, functionality and utility. Trends in Microbiology, 2015, 23, 419-428.	7.7	96
387	Edible Filamentous Fungi from the Species <i>Monascus</i> : Early Traditional Fermentations, Modern Molecular Biology, and Future Genomics. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 555-567.	11.7	193
388	Transient transmembrane secretion of H ₂ O ₂ : a mechanism for the citral-caused inhibition of aflatoxin production from Aspergillus flavus. Chemical Communications, 2015, 51, 17424-17427.	4.1	8
389	The VELVET Complex in the Gray Mold Fungus <i>Botrytis cinerea</i> : Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. Molecular Plant-Microbe Interactions, 2015, 28, 659-674.	2.6	97
390	Functional Analyses of the Diels-Alderase Gene <i>sol5</i> of <i>Ascochyta rabiei</i> and <i>Alternaria solani</i> Indicate that the Solanapyrone Phytotoxins Are Not Required for Pathogenicity. Molecular Plant-Microbe Interactions, 2015, 28, 482-496.	2.6	43
391	Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species. Molecular Plant-Microbe Interactions, 2015, 28, 635-647.	2.6	152
392	Mating typeâ€dependent partner sensing as mediated by <scp>VEL</scp> 1 in <scp><i>T</i></scp> <i>Tinderma reesei</i> . Molecular Microbiology, 2015, 96, 1103-1118.	2.5	59

	CITATION R		
#	Article	IF	CITATIONS
395	Epigenetics of Fungal Secondary Metabolism Related Genes. Fungal Biology, 2015, , 29-42.	0.6	4
396	Fungal Secondary Metabolism in the Light of Animal–Fungus Interactions: From Mechanism to Ecological Function. Fungal Biology, 2015, , 177-198.	0.6	7
397	Key Players in the Regulation of Fungal Secondary Metabolism. Fungal Biology, 2015, , 13-28.	0.6	11
398	Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Applied Microbiology and Biotechnology, 2015, 99, 6167-6181.	3.6	38
399	Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology, 2015, 13, 509-523.	28.6	762
400	The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger. Eukaryotic Cell, 2015, 14, 602-615.	3.4	19
401	One Juliet and four Romeos: VeA and its methyltransferases. Frontiers in Microbiology, 2015, 6, 1.	3.5	1,444
402	Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genomics, 2015, 16, 343.	2.8	76
403	Regulation of secondary metabolite production in the fungal tomato pathogen Cladosporium fulvum. Fungal Genetics and Biology, 2015, 84, 52-61.	2.1	17
404	Biosynthesis and Regulation of Bioprotective Alkaloids in the Gramineae Endophytic Fungi with Implications for Herbivores Deterrents. Current Microbiology, 2015, 71, 719-724.	2.2	5
405	VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture. Antonie Van Leeuwenhoek, 2015, 107, 187-199.	1.7	13
406	The past, present and future of secondary metabolite research in the <scp>D</scp> othideomycetes. Molecular Plant Pathology, 2015, 16, 92-107.	4.2	49
407	Secondary Metabolite Diversity of the Genus Aspergillus: Recent Advances. , 2016, , 275-292.		13
408	Aflatoxin-Exposure of Vibrio gazogenes as a Novel System for the Generation of Aflatoxin Synthesis Inhibitors. Frontiers in Microbiology, 2016, 7, 814.	3.5	8
409	Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression. Fungal Genetics and Biology, 2016, 94, 32-46.	2.1	35
410	Identification of a Classical Mutant in the Industrial Host <i>Aspergillus niger</i> by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites. G3: Genes, Genomes, Genetics, 2016, 6, 193-204.	1.8	65
411	Behaviours of phoretic mites (Acari) associated with <i>Ips pini</i> and <i>Ips grandicollis</i> (Coleoptera: Curculionidae) during hostâ€tree colonization. Agricultural and Forest Entomology, 2016, 18, 108-118.	1.3	9
412	Marker recycling via 5-fluoroorotic acid and 5-fluorocytosine counter-selection in the white-rot agaricomycete Pleurotus ostreatus. Fungal Biology, 2016, 120, 1146-1155.	2.5	35

# 413	ARTICLE Regulation of Anticancer Styrylpyrone Biosynthesis in the Medicinal Mushroom Inonotus obliquus Requires Thioredoxin Mediated Transnitrosylation of S-nitrosoglutathione Reductase. Scientific Reports, 2016, 6, 37601.	IF 3.3	CITATIONS
414	Expression of Genes by Aflatoxigenic and Nonaflatoxigenic Strains of <i>Aspergillus flavus </i> Isolated from Brazil Nuts. Foodborne Pathogens and Disease, 2016, 13, 434-440.	1.8	14
415	The global regulator LaeA controls production of citric acid and endoglucanases in <i>Aspergillus carbonarius</i> . Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1139-1147.	3.0	27
416	Coordinated and independent functions of velvet-complex genes in fungal development and virulence of the fungal cereal pathogen Cochliobolus sativus. Fungal Biology, 2016, 120, 948-960.	2.5	25
417	Awakening of Fungal Secondary Metabolite Gene Clusters. Fungal Biology, 2016, , 253-273.	0.6	21
419	Role of patulin in post-harvest diseases. Fungal Biology Reviews, 2016, 30, 24-32.	4.7	58
420	Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus. Nature Chemical Biology, 2016, 12, 419-424.	8.0	79
421	The global regulator LaeA controls biosynthesis of host-specific toxins, pathogenicity and development of Alternaria alternata pathotypes. Journal of General Plant Pathology, 2016, 82, 121-131.	1.0	13
422	Familiar Stranger. Advances in Applied Microbiology, 2016, 95, 69-147.	2.4	45
423	Molecular Genetics of Secondary Chemistry in Metarhizium Fungi. Advances in Genetics, 2016, 94, 365-436.	1.8	45
424	Bacteria induce pigment formation in the basidiomycete <i>Serpula lacrymans</i> . Environmental Microbiology, 2016, 18, 5218-5227.	3.8	29
425	Regulation and Role of Fungal Secondary Metabolites. Annual Review of Genetics, 2016, 50, 371-392.	7.6	299
426	Toxicology, biosynthesis, bio-control of aflatoxin and new methods of detection. Asian Pacific Journal of Tropical Biomedicine, 2016, 6, 808-814.	1.2	38
427	The Aspergillus flavus fluP-associated metabolite promotes sclerotial production. Fungal Biology, 2016, 120, 1258-1268.	2.5	5
428	Bacillus mojavensis RRC101 Lipopeptides Provoke Physiological and Metabolic Changes During Antagonism Against Fusarium verticillioides. Molecular Plant-Microbe Interactions, 2016, 29, 713-723.	2.6	38
429	LaeA and VeA are involved in growth morphology, asexual development, and mycotoxin production in Alternaria alternata. International Journal of Food Microbiology, 2016, 238, 153-164.	4.7	49
430	A Bâ€ŧype histone acetyltransferase Hat1 regulates secondary metabolism, conidiation, and cell wall integrity in the taxolâ€producing fungus <i>Pestalotiopsis microspora</i> . Journal of Basic Microbiology, 2016, 56, 1380-1391.	3.3	14
432	Knockâ€down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in <i>Fusarium fujikuroi</i> . Environmental Microbiology, 2016, 18, 4037-4054.	3.8	109

#	Article	IF	CITATIONS
433	Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis of the <i>Penicillium chrysogenum</i> Velvet Protein PcVelA Identifies Methyltransferase PcLImA as a Novel Downstream Regulator of Fungal Development. MSphere, 2016, 1, .	2.9	9
434	LaeA negatively regulates dothistromin production in the pine needle pathogen Dothistroma septosporum. Fungal Genetics and Biology, 2016, 97, 24-32.	2.1	27
435	Overexpression of the Global Regulator LaeA in <i>Chaetomium globosum</i> Leads to the Biosynthesis of Chaetoglobosin Z. Journal of Natural Products, 2016, 79, 2487-2494.	3.0	43
436	Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model. BMC Genomics, 2016, 17, 736.	2.8	36
437	Marine Fungi. , 2016, , 99-153.		8
438	Expression of ustR and the Golgi protease KexB are required for ustiloxin B biosynthesis in Aspergillus oryzae. AMB Express, 2016, 6, 9.	3.0	22
439	Cellulases and beyond: the first 70Âyears of the enzyme producer Trichoderma reesei. Microbial Cell Factories, 2016, 15, 106.	4.0	412
440	Transcriptomic and metabolomic profiling of ionic liquid stimuli unveils enhanced secondary metabolism in Aspergillus nidulans. BMC Genomics, 2016, 17, 284.	2.8	27
441	18 Velvet Regulation of Fungal Development. , 2016, , 475-497.		19
442	Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism. Fungal Biology, 2016, 120, 297-305.	2.5	69
443	3 The Bright and Dark Sides of Fungal Life. , 2016, , 41-77.		8
444	TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. Fungal Genetics and Biology, 2016, 89, 102-113.	2.1	24
445	Isopod grazing induces down-regulation of Aspergillus nidulans anti-fungivore defence marker genes. Fungal Ecology, 2016, 20, 84-87.	1.6	2
446	2 Insight into Fungal Secondary Metabolism from Ten Years of LaeA Research. , 2016, , 21-29.		15
447	Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genetics and Biology, 2016, 87, 30-53.	2.1	56
448	Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiological Research, 2016, 182, 125-140.	5.3	72
449	Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. Journal of Antibiotics, 2017, 70, 25-40.	2.0	97
450	Amhezole, A Novel Fungal Secondary Metabolite from <i>Aspergillus terreus</i> for Treatment of Microbial Mouth Infection. Phytotherapy Research, 2017, 31, 395-402.	5.8	13

#	Article	IF	CITATIONS
451	Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective. World Journal of Microbiology and Biotechnology, 2017, 33, 34.	3.6	39
452	Photoreceptors in the dark: A functional white collar-like complex and other putative light-sensing components encoded by the genome of the subterranean fungus Tuber melanosporum. Fungal Biology, 2017, 121, 253-263.	2.5	5
453	Transcription factor Xpp1 is a switch between primary and secondary fungal metabolism. Proceedings of the United States of America, 2017, 114, E560-E569.	7.1	86
454	The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism. Fungal Genetics and Biology, 2017, 100, 13-21.	2.1	8
455	Comparative Transcriptome Analyses in <i>Zymoseptoria tritici</i> Reveal Significant Differences in Gene Expression Among Strains During Plant Infection. Molecular Plant-Microbe Interactions, 2017, 30, 231-244.	2.6	129
456	Production of taxadiene by engineering of mevalonate pathway in <i>Escherichia coli</i> and endophytic fungus <i>Alternaria alternata</i> TPF6. Biotechnology Journal, 2017, 12, 1600697.	3.5	39
457	Differential Control of Asexual Development and Sterigmatocystin Biosynthesis by a Novel Regulator in Aspergillus nidulans. Scientific Reports, 2017, 7, 46340.	3.3	10
458	Aspergillus as a versatile cell factory for organic acid production. Fungal Biology Reviews, 2017, 31, 33-49.	4.7	100
459	A Three-Way Transcriptomic Interaction Study of a Biocontrol Agent (<i>Clonostachys rosea</i>), a Fungal Pathogen (<i>Helminthosporium solani</i>), and a Potato Host (<i>Solanum tuberosum</i>). Molecular Plant-Microbe Interactions, 2017, 30, 646-655.	2.6	41
461	A scalable platform to identify fungal secondary metabolites and their gene clusters. Nature Chemical Biology, 2017, 13, 895-901.	8.0	154
462	cpsA regulates mycotoxin production, morphogenesis and cell wall biosynthesis in the fungus Aspergillus nidulans. Molecular Microbiology, 2017, 105, 1-24.	2.5	17
463	Diversity, Application, and Synthetic Biology of Industrially Important Aspergillus Fungi. Advances in Applied Microbiology, 2017, 100, 161-202.	2.4	114
464	Identification and characterization of genes involved in kojic acid biosynthesis in Aspergillus flavus. Annals of Microbiology, 2017, 67, 691-702.	2.6	14
465	<i>Aspergillus fumigatus</i> Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity. MBio, 2017, 8, .	4.1	25
466	Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus <i>Aspergillus</i> . MBio, 2017, 8, .	4.1	47
467	Structural modification of cuminaldehyde thiosemicarbazone increases inhibition specificity toward aflatoxin biosynthesis and sclerotia development in Aspergillus flavus. Applied Microbiology and Biotechnology, 2017, 101, 6683-6696.	3.6	17
468	Defensive repertoire of <i>Drosophila</i> larvae in response to toxic fungi. Molecular Ecology, 2017, 26, 5043-5057.	3.9	27
469	The <i>Aspergillus nidulans</i> Velvetâ€interacting protein, VipA, is involved in lightâ€stimulated heme biosynthesis. Molecular Microbiology, 2017, 105, 825-838.	2.5	12

#	Article	IF	CITATIONS
470	Molecular screening of xerophilic Aspergillus strains producing mycophenolic acid. Fungal Biology, 2017, 121, 103-111.	2.5	13
471	Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites. Journal of Biotechnology, 2017, 241, 50-60.	3.8	9
472	Epigenetic regulation of development and pathogenesis in fungal plant pathogens. Molecular Plant Pathology, 2017, 18, 887-898.	4.2	47
473	Discovery of McrA, a master regulator of <i>Aspergillus</i> secondary metabolism. Molecular Microbiology, 2017, 103, 347-365.	2.5	73
474	<i>Aspergillus fumigatus</i> virulence through the lens of transcription factors: Table 1 Medical Mycology, 2017, 55, 24-38.	0.7	34
475	Fluorescent reporter analysis revealed the timing and localization of AVRâ€Pia expression, an avirulence effector of <i>Magnaporthe oryzae</i> . Molecular Plant Pathology, 2017, 18, 1138-1149.	4.2	10
476	LaeA regulation of secondary metabolism modulates virulence in <i>Penicillium expansum</i> and is mediated by sucrose. Molecular Plant Pathology, 2017, 18, 1150-1163.	4.2	93
477	InÂvitro evaluation of essential oils against Aspergillus carbonarius isolates and their effects on Ochratoxin A related gene expression in synthetic grape medium. Food Control, 2017, 73, 71-80.	5.5	25
478	Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in <i>Penicillium chrysogenum</i> : cross-talk regulation of secondary metabolite pathways. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 525-535.	3.0	55
479	Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiology Reviews, 2017, 41, 19-33.	8.6	160
480	The isolation and improvement of industrially important microorganisms. , 2017, , 75-211.		3
481	Fungal Gene Cluster Diversity and Evolution. Advances in Genetics, 2017, 100, 141-178.	1.8	58
482	The effect of ambient pH modulation on ochratoxin A accumulation by Aspergillus carbonarius. World Mycotoxin Journal, 2017, 10, 339-348.	1.4	15
483	Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics, 2017, 18, 667.	2.8	111
484	Analysis of Kojic Acid Biosynthesis in <i>Aspergillus oryzae</i> . Journal of the Brewing Society of Japan, 2017, 112, 9-14.	0.3	0
485	Reply to the Comment on "Melanisation of Aspergillus terreus—Is Butyrolactone I Involved in the Regulation of Both DOPA and DHN Types of Pigments in Submerged Culture? Microorganisms 2017, 5, 22― Microorganisms, 2017, 5, 36.	3.6	0
486	Transcriptomic Complexity of Aspergillus terreus Velvet Gene Family under the Influence of Butyrolactone I. Microorganisms, 2017, 5, 12.	3.6	30
487	The GATA-Type Transcription Factor Csm1 Regulates Conidiation and Secondary Metabolism in Fusarium fujikuroi. Frontiers in Microbiology, 2017, 8, 1175.	3.5	35

#	Article	IF	CITATIONS
488	A Cellular Fusion Cascade Regulated by LaeA Is Required for Sclerotial Development in Aspergillus flavus. Frontiers in Microbiology, 2017, 8, 1925.	3.5	39
489	Characteristics of a Regulator of G-Protein Signaling (RCS) rgsC in Aspergillus fumigatus. Frontiers in Microbiology, 2017, 8, 2058.	3.5	19
490	ATNT: an enhanced system for expression of polycistronic secondary metabolite gene clusters in Aspergillus niger. Fungal Biology and Biotechnology, 2017, 4, 13.	5.1	38
491	Genomic diversity in ochratoxigenic and non ochratoxigenic strains of Aspergillus carbonarius. Scientific Reports, 2018, 8, 5439.	3.3	12
492	Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiology and Molecular Biology Reviews, 2018, 82, .	6.6	231
493	Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp Biotechnology Advances, 2018, 36, 739-783.	11.7	61
494	From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Natural Product Reports, 2018, 35, 147-173.	10.3	132
496	Lysine Succinylation Contributes to Aflatoxin Production and Pathogenicity in Aspergillus flavus. Molecular and Cellular Proteomics, 2018, 17, 457-471.	3.8	59
497	<i>Aspergillus flavus</i> Secondary Metabolites: More than Just Aflatoxins. Food Safety (Tokyo, Japan), 2018, 6, 7-32.	1.8	33
498	Secondary Metabolism and Antimicrobial Metabolites of Penicillium. , 2018, , 47-68.		12
499	Phenotypic responses to microbial volatiles render a mold fungus more susceptible to insect damage. Ecology and Evolution, 2018, 8, 4328-4339.	1.9	16
500	Fusaric acid contributes to virulence of <i>Fusarium oxysporum</i> on plant and mammalian hosts. Molecular Plant Pathology, 2018, 19, 440-453.	4.2	105
501	Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics. Medicinal Research Reviews, 2018, 38, 229-260.	10.5	16
502	Profiling of secondary metabolite gene clusters regulated by LaeA in Aspergillus niger FGSC A1279 based on genome sequencing and transcriptome analysis. Research in Microbiology, 2018, 169, 67-77.	2.1	40
503	Strategies to diversify natural products for drug discovery. Medicinal Research Reviews, 2018, 38, 1255-1294.	10.5	187
504	Analysis of the global regulator Lae1 uncovers a connection between Lae1 and the histone acetyltransferase HAT1 in Fusarium fujikuroi. Applied Microbiology and Biotechnology, 2018, 102, 279-295.	3.6	39
505	The FlbA-regulated predicted transcription factor Fum21 of Aspergillus niger is involved in fumonisin production. Antonie Van Leeuwenhoek, 2018, 111, 311-322.	1.7	24

#	Article	IF	Citations
507	Chromatinâ€level regulation of the fragmented dothistromin gene cluster in the forest pathogen <i>Dothistroma septosporum</i> . Molecular Microbiology, 2018, 107, 508-522.	2.5	13
508	Fluorescent pseudomonads pursue media-dependent strategies to inhibit growth of pathogenic Verticillium fungi. Applied Microbiology and Biotechnology, 2018, 102, 817-831.	3.6	6
509	The HamE scaffold positively regulates MpkB phosphorylation to promote development and secondary metabolism in Aspergillus nidulans. Scientific Reports, 2018, 8, 16588.	3.3	28
510	A new regulator RsdA mediating fungal secondary metabolism has a detrimental impact on asexual development inPestalotiopsis fici. Environmental Microbiology, 2018, 21, 416-426.	3.8	11
511	Aspergillus flavus NRRL 3251 Growth, Oxidative Status, and Aflatoxins Production Ability In Vitro under Different Illumination Regimes. Toxins, 2018, 10, 528.	3.4	11
512	The Zebrafish as a Model Host for Invasive Fungal Infections. Journal of Fungi (Basel, Switzerland), 2018, 4, 136.	3.5	47
513	A Class 1 Histone Deacetylase as Major Regulator of Secondary Metabolite Production in Aspergillus nidulans. Frontiers in Microbiology, 2018, 9, 2212.	3.5	49
514	Genomic characterization of Trichoderma atrobrunneum (T. harzianum species complex) ITEM 908: insight into the genetic endowment of a multi-target biocontrol strain. BMC Genomics, 2018, 19, 662.	2.8	41
515	Matingâ€ŧype factorâ€specific regulation of the fumagillin/pseurotin secondary metabolite supercluster in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2018, 110, 1045-1065.	2.5	15
516	The Effect of Aspergillus Thermomutatus Chrysovirus 1 on the Biology of Three Aspergillus Species. Viruses, 2018, 10, 539.	3.3	20
517	A possible role for fumagillin in cellular damage during host infection by <i>Aspergillus fumigatus</i> . Virulence, 2018, 9, 1548-1561.	4.4	37
518	Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus. BMC Genomics, 2018, 19, 721.	2.8	15
519	Exploitation of Mangrove Endophytic Fungi for Infectious Disease Drug Discovery. Marine Drugs, 2018, 16, 376.	4.6	21
520	Importance of Stress Response Mechanisms in Filamentous Fungi for Agriculture and Industry. , 2018, , 189-222.		2
521	Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Frontiers in Microbiology, 2018, 9, 2768.	3.5	57
522	Stress Response Mechanisms in Fungi. , 2018, , .		6
523	A MYST Histone Acetyltransferase Modulates Conidia Development and Secondary Metabolism in Pestalotiopsis microspora, a Taxol Producer. Scientific Reports, 2018, 8, 8199.	3.3	9
524	Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. International Journal of Food Microbiology, 2018, 284, 1-10.	4.7	81

#	Article	IF	CITATIONS
525	Deletion of a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans. Organic and Biomolecular Chemistry, 2018, 16, 4973-4976.	2.8	46
526	Transcription Factors Controlling Primary and Secondary Metabolism in Filamentous Fungi: The β-Lactam Paradigm. Fermentation, 2018, 4, 47.	3.0	36
527	Velvet domain protein VosA represses the zinc cluster transcription factor SclB regulatory network for Aspergillus nidulans asexual development, oxidative stress response and secondary metabolism. PLoS Genetics, 2018, 14, e1007511.	3.5	29
528	Insight into the global regulation of laeA in Aspergillus flavus based on proteomic profiling. International Journal of Food Microbiology, 2018, 284, 11-21.	4.7	49
529	Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathogens, 2018, 14, e1007229.	4.7	106
530	Darkness: A Crucial Factor in Fungal Taxol Production. Frontiers in Microbiology, 2018, 9, 353.	3.5	27
531	Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae. Frontiers in Microbiology, 2018, 9, 690.	3.5	16
532	Mitotic-Spindle Organizing Protein MztA Mediates Septation Signaling by Suppressing the Regulatory Subunit of Protein Phosphatase 2A-ParA in Aspergillus nidulans. Frontiers in Microbiology, 2018, 9, 988.	3.5	8
533	Distinct Roles of Velvet Complex in the Development, Stress Tolerance, and Secondary Metabolism in Pestalotiopsis microspora, a Taxol Producer. Genes, 2018, 9, 164.	2.4	22
534	Epigenetic and Posttranslational Modifications in Regulating the Biology of Aspergillus Species. Advances in Applied Microbiology, 2018, 105, 191-226.	2.4	16
535	Sterigmatocystin production is restricted to hyphae located in the proximity of hülle cells. Journal of Basic Microbiology, 2018, 58, 590-596.	3.3	7
536	Selenate sensitivity of a laeA mutant is restored by overexpression of the bZIP protein MetR in Aspergillus fumigatus. Fungal Genetics and Biology, 2018, 117, 1-10.	2.1	15
537	Role of acetyl-CoA Synthetase and LovE Regulator Protein of Polyketide Biosynthesis in Lovastatin Production by Wild-Type and Overproducing Aspergillus terreus Strains. Applied Biochemistry and Microbiology, 2018, 54, 188-197.	0.9	16
538	Exploration of the Regulatory Mechanism of Secondary Metabolism by Comparative Transcriptomics in Aspergillus flavus. Frontiers in Microbiology, 2018, 9, 1568.	3.5	27
539	Gene regulation associated with sexual development and female fertility in different isolates of Trichoderma reesei. Fungal Biology and Biotechnology, 2018, 5, 9.	5.1	20
540	Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. Annals of Microbiology, 2018, 68, 419-432.	2.6	19
541	Comprehensive analysis of Verticillium nonalfalfae in silico secretome uncovers putative effector proteins expressed during hop invasion. PLoS ONE, 2018, 13, e0198971.	2.5	51
542	Fungal genotype determines survival of Drosophila melanogaster when competing with Aspergillus nidulans. PLoS ONE, 2018, 13, e0190543.	2.5	4

#	Article	IF	CITATIONS
543	Enhancing the Production of d-Mannitol by an Artificial Mutant of Penicillium sp. T2-M10. Applied Biochemistry and Biotechnology, 2018, 186, 990-998.	2.9	4
544	Secondary Metabolites Production. , 2018, , 257-283.		7
545	Fathoming Aspergillus oryzae metabolomes in formulated growth matrices. Critical Reviews in Biotechnology, 2019, 39, 35-49.	9.0	4
546	Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete?. FEMS Microbiology Reviews, 2019, 43, 591-607.	8.6	56
547	A metabolomics-guided approach to discover Fusarium graminearum metabolites after removal of a repressive histone modification. Fungal Genetics and Biology, 2019, 132, 103256.	2.1	30
548	A polyketide synthase gene cluster associated with the sexual reproductive cycle of the banana pathogen, Pseudocercospora fijiensis. PLoS ONE, 2019, 14, e0220319.	2.5	7
549	Discovery of Two New Sorbicillinoids by Overexpression of the Global Regulator LaeA in a Marine-Derived Fungus Penicillium dipodomyis YJ-11. Marine Drugs, 2019, 17, 446.	4.6	30
550	Protein phosphatases regulate growth, development, cellulases and secondary metabolism in Trichoderma reesei. Scientific Reports, 2019, 9, 10995.	3.3	30
551	1,3-Diaminopropane and Spermidine Upregulate Lovastatin Production and Expression of Lovastatin Biosynthetic Genes in Aspergillus terreus via LaeA Regulation. Applied Biochemistry and Microbiology, 2019, 55, 243-254.	0.9	21
552	COP9 Signalosome Interaction with UspA/Usp15 Deubiquitinase Controls VeA-Mediated Fungal Multicellular Development. Biomolecules, 2019, 9, 238.	4.0	15
553	GPCR-mediated glucose sensing system regulates light-dependent fungal development and mycotoxin production. PLoS Genetics, 2019, 15, e1008419.	3.5	29
554	RgsA Attenuates the PKA Signaling, Stress Response, and Virulence in the Human Opportunistic Pathogen Aspergillus fumigatus. International Journal of Molecular Sciences, 2019, 20, 5628.	4.1	10
555	Aspergillus fumigatus and Aspergillosis in 2019. Clinical Microbiology Reviews, 2019, 33, .	13.6	534
556	In Vitro Activity of Neem (Azadirachta indica) Oil on Growth and Ochratoxin A Production by Aspergillus carbonarius Isolates. Toxins, 2019, 11, 579.	3.4	18
558	Dalestones A and B, two anti-inflammatory cyclopentenones from Daldinia eschscholzii with an edited strong promoter for the global regulator LaeA-like gene. Chinese Journal of Natural Medicines, 2019, 17, 387-393.	1.3	5
559	The Kinetochore Protein Spc105, a Novel Interaction Partner of LaeA, Regulates Development and Secondary Metabolism in Aspergillus flavus. Frontiers in Microbiology, 2019, 10, 1881.	3.5	14
560	Genomic Mushroom Hunting Decrypts Coprinoferrin, A Siderophore Secondary Metabolite Vital to Fungal Cell Development. Organic Letters, 2019, 21, 7582-7586.	4.6	11
561	A newly constructed Agrobacterium-mediated transformation system revealed the influence of nitrogen sources on the function of the LaeA regulator in Penicillium chrysogenum. Fungal Biology, 2019, 123, 830-842.	2.5	6

		15	0
#	Article	IF	CITATIONS
562	Comparison of aflatoxin production of Aspergillus flavus at different temperatures and media: Proteome analysis based on TMT. International Journal of Food Microbiology, 2019, 310, 108313.	4.7	25
563	Dissection of patulin biosynthesis, spatial control and regulation mechanism in <i>Penicillium expansum</i> . Environmental Microbiology, 2019, 21, 1124-1139.	3.8	91
564	RgsD negatively controls development, toxigenesis, stress response, and virulence in Aspergillus fumigatus. Scientific Reports, 2019, 9, 811.	3.3	15
565	Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genetics and Biology, 2019, 130, 107-121.	2.1	64
566	Advances in linking polyketides and non-ribosomal peptides to their biosynthetic gene clusters in Fusarium. Current Genetics, 2019, 65, 1263-1280.	1.7	17
567	Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of <i>Neurospora crassa</i> . Genetics, 2019, 212, 691-710.	2.9	28
568	The LaeA orthologue in Epichloë festucae is required for symbiotic interaction with Lolium perenne. Fungal Genetics and Biology, 2019, 129, 74-85.	2.1	18
569	An Ssd1 Homolog Impacts Trehalose and Chitin Biosynthesis and Contributes to Virulence in Aspergillus fumigatus. MSphere, 2019, 4, .	2.9	21

Recent advances in the genome mining of <i>Aspergillus </i>secondary metabolites (covering) Tj ETQq0 0 0 rgBT /Oyerlock 10, Tf 50 422 $\frac{10}{76}$

571	Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. Biotechnology for Biofuels, 2019, 12, 77.	6.2	92
572	<i>Fusarium graminearum</i> Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. Annual Review of Phytopathology, 2019, 57, 15-39.	7.8	255
573	Search for transcription factors affecting productivity of the polyketide FR901512 in filamentous fungal sp. No. 14919 and identification of Drf1, a novel negative regulator of the biosynthetic gene cluster. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1163-1170.	1.3	2
574	Filamentous fungi for the production of enzymes, chemicals and materials. Current Opinion in Biotechnology, 2019, 59, 65-70.	6.6	76
575	Construction of an Efficient and RobustAspergillus terreusCell Factory for Monacolin J Production. ACS Synthetic Biology, 2019, 8, 818-825.	3.8	19
576	Mapping the Fungal Battlefield: Using in situ Chemistry and Deletion Mutants to Monitor Interspecific Chemical Interactions Between Fungi. Frontiers in Microbiology, 2019, 10, 285.	3.5	35
577	Characterizing the Pathogenic, Genomic, and Chemical Traits of <i>Aspergillus fischeri</i> , a Close Relative of the Major Human Fungal Pathogen <i>Aspergillus fumigatus</i> . MSphere, 2019, 4, .	2.9	42
578	Evolution of Aspergillus oryzae before and after domestication inferred by large-scale comparative genomic analysis. DNA Research, 2019, 26, 465-472.	3.4	26
579	The Role of LaeA and LovE Regulators in Lovastatin Biosynthesis with Exogenous Polyamines in Aspergillus terreus. Applied Biochemistry and Microbiology, 2019, 55, 639-648.	0.9	13

#	Article	IF	CITATIONS
580	The Role of Zinc in Gliotoxin Biosynthesis of Aspergillus fumigatus. International Journal of Molecular Sciences, 2019, 20, 6192.	4.1	30
581	Requirement of LaeA, VeA, and VelB on Asexual Development, Ochratoxin A Biosynthesis, and Fungal Virulence in Aspergillus ochraceus. Frontiers in Microbiology, 2019, 10, 2759.	3.5	44
582	A polyphasic method for the identification of aflatoxigenic Aspergilla from cashew nuts. World Journal of Microbiology and Biotechnology, 2019, 35, 15.	3.6	12
583	<i>Trichoderma atroviride</i> from Predator to Prey: Role of the Mitogen-Activated Protein Kinase Tmk3 in Fungal Chemical Defense against Fungivory by <i>Drosophila melanogaster</i> Larvae. Applied and Environmental Microbiology, 2019, 85, .	3.1	19
584	International Space Station conditions alter genomics, proteomics, and metabolomics in Aspergillus nidulans. Applied Microbiology and Biotechnology, 2019, 103, 1363-1377.	3.6	32
585	Harnessing diverse transcriptional regulators for natural product discovery in fungi. Natural Product Reports, 2020, 37, 6-16.	10.3	70
586	Transcriptomic and Functional Studies of the RGS Protein Rax1 in Aspergillus fumigatus. Pathogens, 2020, 9, 36.	2.8	3
587	Fumagillin, a Mycotoxin of Aspergillus fumigatus: Biosynthesis, Biological Activities, Detection, and Applications. Toxins, 2020, 12, 7.	3.4	57
588	Cellular, physiological and molecular approaches to investigate the antifungal and anti-aflatoxigenic effects of thyme essential oil on Aspergillus flavus. Food Chemistry, 2020, 315, 126096.	8.2	38
589	Sirtuin SirD is involved in α-amylase activity and citric acid production in Aspergillus luchuensis mut. kawachii during a solid-state fermentation process. Journal of Bioscience and Bioengineering, 2020, 129, 454-466.	2.2	10
590	Apc.LaeA and Apc.VeA of the velvet complex govern secondary metabolism and morphological development in the echinocandin-producing fungus <i>Aspergillus pachycristatus</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 155-168.	3.0	14
591	Genetic map and heritability of Aspergillus flavus. Fungal Genetics and Biology, 2020, 144, 103478.	2.1	8
592	The pheromone response module, a mitogen-activated protein kinase pathway implicated in the regulation of fungal development, secondary metabolism and pathogenicity. Fungal Genetics and Biology, 2020, 144, 103469.	2.1	24
593	Influence of Different Light Regimes on the Mycoparasitic Activity and 6-Pentyl-α-pyrone Biosynthesis in Two Strains of Trichoderma atroviride. Pathogens, 2020, 9, 860.	2.8	15
594	In the fungus where it happens: History and future propelling Aspergillus nidulans as the archetype of natural products research. Fungal Genetics and Biology, 2020, 144, 103477.	2.1	46
595	Penicillium oxalicum putative methyltransferase Mtr23B has similarities and differences with LaeA in regulating conidium development and glycoside hydrolase gene expression. Fungal Genetics and Biology, 2020, 143, 103445.	2.1	8
596	Trichoderma in the rhizosphere. , 2020, , 3-38.		4
597	LaeA Controls Virulence and Secondary Metabolism in Apple Canker Pathogen Valsa mali. Frontiers in Microbiology, 2020, 11, 581203.	3.5	23

#	Article	IF	CITATIONS
598	The Conserved MAP Kinase MpkB Regulates Development and Sporulation without Affecting Aflatoxin Biosynthesis in Aspergillus flavus. Journal of Fungi (Basel, Switzerland), 2020, 6, 289.	3.5	6
599	OBSOLETE: Genetic Engineering for Strain Improvement in Filamentous Fungi. , 2020, , .		0
600	Function of PoLAE2, a laeA homolog, in appressorium formation and cAMP signal transduction in Pyricularia oryzae. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2401-2404.	1.3	1
601	Molecular basis and regulation of pathogenicity and patulin biosynthesis in <i>Penicillium expansum</i> . Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3416-3438.	11.7	66
602	The brlA Gene Deletion Reveals That Patulin Biosynthesis Is Not Related to Conidiation in Penicillium expansum. International Journal of Molecular Sciences, 2020, 21, 6660.	4.1	9
603	New knowledge about the biosynthesis of lovastatin and its production by fermentation of Aspergillus terreus. Applied Microbiology and Biotechnology, 2020, 104, 8979-8998.	3.6	23
604	Inhibitory effect of Enterobacter cloacae 3J1EC on Aspergillus flavus 3.4408 growth and aflatoxin production. World Mycotoxin Journal, 2020, 13, 259-266.	1.4	3
605	A review on biosynthesis and genetic regulation of aflatoxin production by major Aspergillus fungi. Oil Crop Science, 2020, 5, 166-173.	2.0	17
606	Regulation of Secondary Metabolism in the Penicillium Genus. International Journal of Molecular Sciences, 2020, 21, 9462.	4.1	31
607	Heteroexpression of Aspergillus nidulans laeA in Marine-Derived Fungi Triggers Upregulation of Secondary Metabolite Biosynthetic Genes. Marine Drugs, 2020, 18, 652.	4.6	8
608	Overexpression of Global Regulator Talae1 Leads to the Discovery of New Antifungal Polyketides From Endophytic Fungus Trichoderma afroharzianum. Frontiers in Microbiology, 2020, 11, 622785.	3.5	14
609	<i>MoLAEA</i> Regulates Secondary Metabolism in Magnaporthe oryzae. MSphere, 2020, 5, .	2.9	18
610	Genetic Underpinnings of Host Manipulation by <i>Ophiocordyceps</i> as Revealed by Comparative Transcriptomics. G3: Genes, Genomes, Genetics, 2020, 10, 2275-2296.	1.8	33
611	An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin. Food and Function, 2020, 11, 5738-5748.	4.6	18
612	Longâ€distance early endosome motility in <i>Aspergillus fumigatus</i> promotes normal hyphal growth behaviors in controlled microenvironments but is dispensable for virulence. Traffic, 2020, 21, 479-487.	2.7	5
613	Gliotoxin, a Known Virulence Factor in the Major Human Pathogen Aspergillus fumigatus, Is Also Biosynthesized by Its Nonpathogenic Relative <i>Aspergillus fischeri</i> . MBio, 2020, 11, .	4.1	32
614	Involvement of PaSNF1 in Fungal Development, Sterigmatocystin Biosynthesis, and Lignocellulosic Degradation in the Filamentous Fungus Podospora anserina. Frontiers in Microbiology, 2020, 11, 1038.	3.5	11
615	The impact of putative methyltransferase overexpression on the Trichoderma harzianum cellulolytic system for biomass conversion. Bioresource Technology, 2020, 313, 123616.	9.6	11

#	Article	IF	CITATIONS
616	Natural products development under epigenetic modulation in fungi. Phytochemistry Reviews, 2020, 19, 1323-1340.	6.5	14
617	Insight into the Genome of Diverse Penicillium chrysogenum Strains: Specific Genes, Cluster Duplications and DNA Fragment Translocations. International Journal of Molecular Sciences, 2020, 21, 3936.	4.1	10
618	Development of cellulolytic strain by genetic engineering approach for enhanced cellulase production. , 2020, , 103-136.		12
619	FKBP12 dimerization mutations effect FK506 binding and differentially alter calcineurin inhibition in the human pathogen Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2020, 526, 48-54.	2.1	5
620	Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins, 2020, 12, 150.	3.4	157
621	The Putative Methyltransferase TlLAE1 Is Involved in the Regulation of Peptaibols Production in the Biocontrol Fungus Trichoderma longibrachiatum SMF2. Frontiers in Microbiology, 2020, 11, 1267.	3.5	11
622	Biotoxins. , 2020, , 117-132.		0
623	Omics Approaches Applied to Penicillium chrysogenum and Penicillin Production: Revealing the Secrets of Improved Productivity. Genes, 2020, 11, 712.	2.4	22
624	Chemical Activation of Natural Product Biosynthesis in Filamentous Fungi. , 2020, , 475-486.		0
625	Identification of Secondary Metabolites from Aspergillus pachycristatus by Untargeted UPLC-ESI-HRMS/MS and Genome Mining. Molecules, 2020, 25, 913.	3.8	4
626	Overexpression of global regulator LaeA increases secondary metabolite production in Monascus purpureus. Applied Microbiology and Biotechnology, 2020, 104, 3049-3060.	3.6	28
627	The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nature Communications, 2020, 11, 427.	12.8	100
628	Survival factor SvfA plays multiple roles in differentiation and is essential for completion of sexual development in Aspergillus nidulans. Scientific Reports, 2020, 10, 5586.	3.3	6
629	The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6003-6013.	7.1	75
630	Comparative Characterization of G Protein α Subunits in Aspergillus fumigatus. Pathogens, 2020, 9, 272.	2.8	7
631	Unraveling the regulation of sophorolipid biosynthesis in Starmerella bombicola. FEMS Yeast Research, 2020, 20, .	2.3	11
632	Effects of Chinese medicines on monacolin K production and related genes transcription of <i>Monascus ruber</i> in red mold rice fermentation. Food Science and Nutrition, 2020, 8, 2134-2142.	3.4	7
633	Fungal evolution: cellular, genomic and metabolic complexity. Biological Reviews, 2020, 95, 1198-1232.	10.4	71

#	Article	IF	CITATIONS
	The putative C2H2 transcription factor RocA is a novel regulator of development and secondary		_
634	metabolism in Aspergillus nidulans. Journal of Microbiology, 2020, 58, 574-587.	2.8	2
635	Transcriptome analysis on fructose as the sole carbon source enhancing perylenequinones production of endophytic fungus Shiraia sp. Slf14. 3 Biotech, 2020, 10, 190.	2.2	4
636	The Biosynthesis of Fungal Secondary Metabolites: From Fundamentals to Biotechnological Applications. , 2021, , 458-476.		26
637	Genetic Engineering for Strain Improvement in Filamentous Fungi. , 2021, , 489-504.		4
638	Bacterial–fungal interactions revealed by genome-wide analysis of bacterial mutant fitness. Nature Microbiology, 2021, 6, 87-102.	13.3	49
639	Trichoderma reesei. Methods in Molecular Biology, 2021, , .	0.9	4
640	Functional roles of LaeA, polyketide synthase, and glucose oxidase in the regulation of ochratoxin A biosynthesis and virulence in <i>Aspergillus carbonarius</i> . Molecular Plant Pathology, 2021, 22, 117-129.	4.2	18
641	Random Mutagenesis of Filamentous Fungi Strains for High-Yield Production of Secondary Metabolites: The Role of Polyamines. , 0, , .		0
642	Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. Advances in Genetics, 2021, 107, 193-284.	1.8	13
643	Heterologous expression of a single fungal HR-PKS leads to the formation of diverse 2-alkenyl-tetrahydropyrans in model fungi. Organic and Biomolecular Chemistry, 2021, 19, 8377-8383.	2.8	1
644	Cleaning the Cellular Factory–Deletion of McrA in Aspergillus oryzae NSAR1 and the Generation of a Novel Kojic Acid Deficient Strain for Cleaner Heterologous Production of Secondary Metabolites. Frontiers in Fungal Biology, 2021, 2, .	2.0	5
646	Mannitol-1-phosphate dehydrogenase, MpdA, is required for mannitol production in vegetative cells and involved in hyphal branching, heat resistance of conidia and sexual development in Aspergillus nidulans. Current Genetics, 2021, 67, 613-630.	1.7	1
647	A natural association of a yeast with <i>Aspergillus terreus</i> and its impact on the host fungal biology. FEMS Microbiology Letters, 2021, 368, .	1.8	2
648	Requirement of LaeA for sporulation, pigmentation and secondary metabolism in Chaetomium globosum. Fungal Biology, 2021, 125, 305-315.	2.5	7
649	Characterization of the mbsA Gene Encoding a Putative APSES Transcription Factor in Aspergillus fumigatus. International Journal of Molecular Sciences, 2021, 22, 3777.	4.1	9
650	Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets?. Microbial Genomics, 2021, 7, .	2.0	6
651	The chemical profile of activated secondary metabolites by overexpressing LaeA in Aspergillus niger. Microbiological Research, 2021, 248, 126735.	5.3	4
652	Deciphering the effect of FUB1 disruption on fusaric acid production and pathogenicity in Fusarium circinatum. Fungal Biology, 2021, 125, 1036-1047.	2.5	11

IF

CITATIONS

H2O2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. Journal of Fungi (Basel,) Tj ETQq0 0 03:gBT /Overdock 10 Tf 653 Cocultivation of Anaerobic Fungi with Rumen Bacteria Establishes an Antagonistic Relationship. MBio, 654 4.1 2021, 12, e0144221. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of 655 3.8 10 Aspergillus species. BMC Biology, 2021, 19, 189. Quantitative Proteomic Analysis for High- and Low-Aflatoxin-Yield Aspergillus flavus Strains Isolated 656 From Natural Environments. Frontiers in Microbiology, 2021, 12, 741875. Fungal social influencers: secondary metabolites as a platform for shaping the plantâ€associated 657 5.7 14 community. Plant Journal, 2021, 108, 632-645. Deletion of the Bcnrps1 Gene Increases the Pathogenicity of Botrytis cinerea and Reduces Its Tolerance to the Exogenous Toxic Substances Spermidine and Pyrimethanil. Journal of Fungi (Basel,) Tj ETQq1 10.78#314 rgBT /Overl Fungal Endophytes: A Promising Frontier for Discovery of Novel Bioactive Compounds. Journal of 659 3.5 42 Fungi (Basel, Switzerland), 2021, 7, 786. The phenomenon of degeneration of industrial Trichoderma reesei strains. Biotechnology for 6.2 Biofuels, 2021, 14, 193. 661 Fungal Secondary Metabolism., 2021, , 54-63. 0 Exploring Endophytes Using "Omics†An Approach for Sustainable Production of Bioactive Metabolites. Fungal Biology, 2021, , 349-376. Genetics of phytopathology: Secondary metabolites as virulence determinants of fungal plant 664 0.3 8 pathogens. Progress in Botany Fortschritte Der Botanik, 2006, , 134-161. The virulence of Aspergillus fumigatus., 2007, , 185-212. Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi. Methods in Molecular Biology, 666 0.9 12 2016, 1401, 149-160. Aflatoxins: Background, Toxicology, and Molecular Biology., 2007, , 355-373. Evolutionary and Ecological Interactions of Mould and Insects., 2009, 131-151. 668 4 Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic 33 pathways. Applied Microbiology and Biotechnology, 2018, 102, 615-630. Genetic Regulation of Aspergillus Secondary Metabolites and Their Role in Fungal Pathogenesis. , 0, , 673 1 185-199. 674 Molecular Determinants of Virulence in Aspergillus fumigatus., 0,, 333-345.

ARTICLE

#

#	Article	IF	CITATIONS
675	Evolution of Human-Pathogenic Fungi: Phylogenies and Species. , 0, , 113-P1.		5
676	Genome Plasticity of <i>Aspergillus</i> Species. , 0, , 326-341.		1
677	LaeA Controls Citric Acid Production through Regulation of the Citrate Exporter-Encoding <i>cexA</i> Gene in Aspergillus luchuensis mut. <i>kawachii</i> . Applied and Environmental Microbiology, 2020, 86, .	3.1	25
678	The Putative APSES Transcription Factor RgdA Governs Growth, Development, Toxigenesis, and Virulence in Aspergillus fumigatus. MSphere, 2020, 5, .	2.9	13
679	A p53-like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans. F1000Research, 2013, 2, 72.	1.6	54
680	Bisulfite Sequencing Reveals That Aspergillus flavus Holds a Hollow in DNA Methylation. PLoS ONE, 2012, 7, e30349.	2.5	74
681	The Putative Protein Methyltransferase LAE1 of Trichoderma atroviride Is a Key Regulator of Asexual Development and Mycoparasitism. PLoS ONE, 2013, 8, e67144.	2.5	53
682	The Putative C2H2 Transcription Factor MtfA Is a Novel Regulator of Secondary Metabolism and Morphogenesis in Aspergillus nidulans. PLoS ONE, 2013, 8, e74122.	2.5	57
683	Induced Fungal Resistance to Insect Grazing: Reciprocal Fitness Consequences and Fungal Gene Expression in the Drosophila-Aspergillus Model System. PLoS ONE, 2013, 8, e74951.	2.5	45
684	The Fumagillin Gene Cluster, an Example of Hundreds of Genes under veA Control in Aspergillus fumigatus. PLoS ONE, 2013, 8, e77147.	2.5	45
685	VelC Positively Controls Sexual Development in Aspergillus nidulans. PLoS ONE, 2014, 9, e89883.	2.5	69
686	Characterization of gprK Encoding a Putative Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus. PLoS ONE, 2016, 11, e0161312.	2.5	32
687	Função hepática e renal de frangos de corte alimentados com dietas com aflatoxinas e clinoptilolita natural. Pesquisa Agropecuaria Brasileira, 2007, 42, 1221-1225.	0.9	7
688	Endophytic Fungi - An Untapped Source of Potential Antioxidants. Current Bioactive Compounds, 2020, 16, 944-964.	0.5	10
689	The Developmental Regulators, FlbB and FlbE, are Involved in the Virulence of Aspergillus fumigatus. Journal of Microbiology and Biotechnology, 2013, 23, 766-770.	2.1	7
690	Strain Improvement by Overexpression of the laeA Gene in Monascus pilosus for the Production of Monascus-Fermented Rice. Journal of Microbiology and Biotechnology, 2013, 23, 959-965.	2.1	37
691	Regulation of Development in <i>Aspergillus nidulans</i> and <i>Aspergillus fumigatus</i> . Mycobiology, 2010, 38, 229.	1.7	108
692	A Putative C2H2 Transcription Factor CgTF6, Controlled by CgTF1, Negatively Regulates Chaetoglobosin A Biosynthesis in Chaetomium globosum. Frontiers in Fungal Biology, 2021, 2, .	2.0	0

	Сітатіон	n Report	
#	Article	IF	CITATIONS
693	Genetic and Biochemical Control of Aflatoxigenic Fungi. , 2007, , 417-448.		3
694	Genetic and Biochemical Control of Aflatoxigenic Fungi. , 2007, , .		0
695	Aflatoxin Biosynthesis and Sclerotial Development in Aspergillus flavus and Aspergillus parasiticus. , 2009, , 77-92.		1
696	Pathogenesis of Invasive Pulmonary Aspergillosis. , 2009, , 345-379.		1
698	Control of Aflatoxin Biosynthesis in Aspergilli. , 0, , .		1
699	13 Functional Genomics to Characterize Opportunistic Pathogens. , 2014, , 321-347.		0
700	<i>Aspergillus nidulans</i> : a Model for Elucidation of <i>Aspergillus fumigatus</i> Secondary Metabolism. , 0, , 235-243.		0
701	Functional Analyses of the Diels-Alderase Genesol5ofAscochyta rabieiandAlternaria solaniIndicate that the Solanapyrone Phytotoxins Are Not Required for Pathogenicity. Molecular Plant-Microbe Interactions, 2015, 2015, 1-15.	2.6	18
702	Impact of Chromatin Changes in Pathogenesis of Infectious Diseases. , 2016, , 347-363.		0
703	Biomolecular Engineering of Microorganisms for Natural Products Production. , 2017, , .		0
704	Aspergillus nidulans â~†. , 2017, , .		2
705	Exploration of Activated Pathways for Improving Antifungal Agent FR901469 Productivity in Fungal Species No.11243 Using Comprehensive Pathway Model. Journal of Biosciences and Medicines, 2017, 05, 16-31.	0.2	0
708	Biotechnological Strategies for Development of Aflatoxin-Free Crops. Concepts and Strategies in Plant Sciences, 2019, , 289-376.	0.5	2
709	Bioinformatics analysis of aflatoxins produced by Aspregillus sp. in basic consumer grain (corn and) Tj ETQq1	1 0.784314 ı 0.6	rgBT /Overlo
714	Genome Mining in Fungi. , 2020, , 34-49.		0
715	11 New Avenues Toward Drug Discovery in Fungi. , 2020, , 267-295.		0
718	The Comprehensive and Reliable Detection of Secondary Metabolites in Trichoderma reesei: A Tool for the Discovery of Novel Substances. Methods in Molecular Biology, 2021, 2234, 271-295.	0.9	0
719	Unlocking fungal cryptic natural products. Natural Product Communications, 2009, 4, 1505-10.	0.5	71

#	Article	IF	CITATIONS
720	Mechanism of Sterigmatocystin Biosynthesis Regulation by pH in Aspergillus nidulans. Brazilian Journal of Microbiology, 2009, 40, 933-42.	2.0	4
721	Modification of c and n sources for enhanced production of cyclosporin 'a' by Aspergillus Terreus. Brazilian Journal of Microbiology, 2011, 42, 1374-83.	2.0	3
722	The regulation of BbLaeA on the production of beauvericin and bassiatin in Beauveria bassiana. World Journal of Microbiology and Biotechnology, 2022, 38, 1.	3.6	30
723	Transcriptomic analysis of inhibition by eugenol of ochratoxin A biosynthesis and growth of Aspergillus carbonarius. Food Control, 2022, 135, 108788.	5.5	13
724	Development of Monascus purpureus monacolin K-hyperproducing mutant strains by synchrotron light irradiation and their comparative genome analysis. Journal of Bioscience and Bioengineering, 2022, , .	2.2	2
725	The complex <scp>Tup1â€Cyc8</scp> bridges transcription factor <scp>ClrB</scp> and putative histone methyltransferase <scp>LaeA</scp> to activate the expression of cellulolytic genes. Molecular Microbiology, 2022, 117, 1002-1022.	2.5	6
726	Functional characterization of the GATA-type transcription factor PaNsdD in the filamentous fungus Podospora anserina and its interplay with the sterigmatocystin pathway. Applied and Environmental Microbiology, 2022, , aem0237821.	3.1	5
727	Development of versatile and efficient genetic tools for the marine-derived fungus Aspergillus terreus RA2905. Current Genetics, 2022, 68, 153-164.	1.7	10
729	Epigenetic Activation of Silent Biosynthetic Gene Clusters in Endophytic Fungi Using Small Molecular Modifiers. Frontiers in Microbiology, 2022, 13, 815008.	3.5	13
730	Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms, 2022, 10, 573.	3.6	26
731	Metabolite profiling reveals overexpression of the global regulator, <i>MoLAEA</i> leads to increased synthesis of metabolites in <i>Magnaporthe oryzae</i> . Journal of Applied Microbiology, 2022, , .	3.1	1
733	The white koji fungus <i>Aspergillus luchuensis</i> mut. <i>kawachii</i> . Bioscience, Biotechnology and Biochemistry, 2022, 86, 574-584.	1.3	5
734	Marine endophytes from the Indian coasts: The untapped sources of sustainable anticancer drug discovery. Sustainable Chemistry and Pharmacy, 2022, 27, 100675.	3.3	5
735	The Toxic Mechanism of Gliotoxins and Biosynthetic Strategies for Toxicity Prevention. International Journal of Molecular Sciences, 2021, 22, 13510.	4.1	8
736	Characterization of the Gene Encoding S-adenosyl-L-methionine (AdoMet) Synthetase in Penicillium chrysogenum; Role in Secondary Metabolism and Penicillin Production. Microorganisms, 2022, 10, 78.	3.6	2
737	Fungal Secondary Metabolism. Encyclopedia, 2022, 2, 1-13.	4.5	22
738	Endophytic Fungi: From Symbiosis to Secondary Metabolite Communications or Vice Versa?. Frontiers in Plant Science, 2021, 12, 791033.	3.6	62
791	Use of microbial inoculants against biotic stress in vegetable crops: physiological and molecular aspect. , 2022, , 263-332.		2

#	Article	IF	CITATIONS
793	Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi. Nature Catalysis, 2022, 5, 277-287.	34.4	33
794	Citric Acid Production by the White Koji Fungus: Transporters Play a Key Role in the Citric Acid Production. Kagaku To Seibutsu, 2021, 59, 241-246.	0.0	0
797	The Lysine Demethylases KdmA and KdmB Differently Regulate Asexual Development, Stress Response, and Virulence in Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2022, 8, 590.	3.5	2
798	Postâ€ŧranslational modifications drive secondary metabolite biosynthesis in <scp><i>Aspergillus</i></scp> : a review. Environmental Microbiology, 2022, 24, 2857-2881.	3.8	17
800	CgVeA, a light signaling responsive regulator, is involved in regulation of chaetoglobosin A biosynthesis and conidia development in Chaetomium globosum. Synthetic and Systems Biotechnology, 2022, 7, 1084-1094.	3.7	1
801	Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	14
802	RimO (SrrB) is required for carbon starvation signaling and production of secondary metabolites in Aspergillus nidulans. Fungal Genetics and Biology, 2022, 162, 103726.	2.1	5
803	LaeA regulates morphological development and ochratoxin A biosynthesis in Aspergillus niger. Mycotoxin Research, 2022, 38, 221-229.	2.3	3
804	First report on the metabolic characterization of Sterigmatocystin production by select Aspergillus species from the Nidulantes section in Foeniculum vulgare. Frontiers in Microbiology, 0, 13, .	3.5	1
805	GTPase Rac Regulates Conidiation, AFB1 Production and Stress Response in Pathogenic Fungus Aspergillus flavus. Toxins, 2022, 14, 581.	3.4	1
806	The BcLAE1 is involved in the regulation of ABA biosynthesis in Botrytis cinerea TB-31. Frontiers in Microbiology, 0, 13, .	3.5	4
808	Functional Roles of LaeA-like Genes in Fungal Growth, Cellulase Activity, and Secondary Metabolism in Pleurotus ostreatus. Journal of Fungi (Basel, Switzerland), 2022, 8, 902.	3.5	4
809	Epipolythiodioxopiperazineâ€Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. ChemBioChem, 2022, 23, .	2.6	14
810	Transcriptional Regulation by the Velvet Protein VE-1 during Asexual Development in the Fungus Neurospora crassa. MBio, 0, , .	4.1	2
811	A histone <scp>H3K9</scp> methyltransferase Dim5 mediates repression of sorbicillinoid biosynthesis in <i>Trichoderma reesei</i> . Microbial Biotechnology, 2022, 15, 2533-2546.	4.2	4
812	Itaconic acid production is regulated by LaeA in Aspergillus pseudoterreus. Metabolic Engineering Communications, 2022, 15, e00203.	3.6	7
813	Implication of VelB in the development, pathogenicity, and secondary metabolism of Penicillium expansum. Postharvest Biology and Technology, 2023, 195, 112121.	6.0	6
814	How to Completely Squeeze a Fungus—Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics, 2022, 14, 1837.	4.5	9

#	Article	IF	CITATIONS
815	Global regulatory factor AaLaeA upregulates the production of antitumor substances in the endophytic fungus <i>Alternaria alstroemeria</i> . Journal of Basic Microbiology, 2022, 62, 1402-1414.	3.3	1
816	Blue Light-Dependent Pre-mRNA Splicing Controls Pigment Biosynthesis in the Mushroom <i>Terana caerulea</i> . Microbiology Spectrum, 2022, 10, .	3.0	5
817	The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis. Nucleic Acids Research, 2022, 50, 9797-9813.	14.5	12
818	Statin Use and Aspergillosis Riskâ \in "More than Meets the Eye?. Clinical Infectious Diseases, 0, , .	5.8	0
819	Regulation of Conidiogenesis in Aspergillus flavus. Cells, 2022, 11, 2796.	4.1	25
820	Manipulation of the Global Regulator <i>mcrA</i> Upregulates Secondary Metabolite Production in <i>Aspergillus wentii</i> Using CRISPR-Cas9 with In Vitro Assembled Ribonucleoproteins. ACS Chemical Biology, 2022, 17, 2828-2835.	3.4	4
821	A methyltransferase LaeA regulates ganoderic acid biosynthesis in Ganoderma lingzhi. Frontiers in Microbiology, 0, 13, .	3.5	2
823	The Gal4-Type Transcription Factor Pro1 Integrates Inputs from Two Different MAPK Cascades to Regulate Development in the Fungal Pathogen Fusarium oxysporum. Journal of Fungi (Basel,) Tj ETQq1 1 0.7843	143 .g BT /(Overlock 10 T
824	Lipo-Chitooligosaccharides Induce Specialized Fungal Metabolite Profiles That Modulate Bacterial Growth. MSystems, 2022, 7, .	3.8	5
825	The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiology and Molecular Biology Reviews, 2022, 86, .	6.6	5
826	Upstream Regulation of Development and Secondary Metabolism in Aspergillus Species. Cells, 2023, 12, 2.	4.1	8
827	Complementary Strategies to Unlock Biosynthesis Gene Clusters Encoding Secondary Metabolites in the Filamentous Fungus Podospora anserina. Journal of Fungi (Basel, Switzerland), 2023, 9, 9.	3.5	Ο
828	Identification and Mechanism of Action of the Global Secondary Metabolism Regulator SaraC in <i>Stereum hirsutum</i> . Microbiology Spectrum, 2022, 10, .	3.0	1
830	Functional Characterization of the GNAT Family Histone Acetyltransferase Elp3 and GcnE in Aspergillus fumigatus. International Journal of Molecular Sciences, 2023, 24, 2179.	4.1	3
831	Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Materials Today Bio, 2023, 19, 100560.	5.5	10
832	Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories. Bioresource Technology, 2023, 379, 128986.	9.6	8
833	Regulation of pseurotin A biosynthesis by GliZ and zinc in Aspergillus fumigatus. Scientific Reports, 2023, 13, .	3.3	4
834	A putative terpene cyclase gene (CcPtc1) is required for fungal development and virulence in Cytospora chrysosperma. Frontiers in Microbiology, 0, 14, .	3.5	1

#	Article	IF	CITATIONS
835	The global regulator FpLaeB is required for the regulation of growth, development, and virulence in Fusarium pseudograminearum. Frontiers in Plant Science, 0, 14, .	3.6	0
836	Advances in synthetic biology of fungi and contributions to the discovery of new molecules. ChemBioChem, 0, , .	2.6	0
837	Unraveling the Gene Regulatory Networks of the Global Regulators VeA and LaeA in Aspergillus nidulans. Microbiology Spectrum, 2023, 11, .	3.0	5
838	Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. Journal of Fungi (Basel, Switzerland), 2023, 9, 362.	3.5	9
839	The putative methyltransferase LaeA regulates mycelium growth and cellulase production in Myceliophthora thermophila. , 2023, 16, .		3
840	Integrated Omics approach for Prediction of Operons like gene clusters in plants: Tools, Techniques, and Future aspects. Research Journal of Pharmacy and Technology, 2023, , 947-954.	0.8	0
841	Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiological Research, 2023, 272, 127385.	5.3	5
842	Epigenetic Approaches to Natural Product Synthesis in Fungi. , 2012, , 198-217.		0
843	Molecular regulation of fungal secondary metabolism. World Journal of Microbiology and Biotechnology, 2023, 39, .	3.6	6
844	Aspergillus fumigatus transcription factor ZfpA regulates hyphal development and alters susceptibility to antifungals and neutrophil killing during infection. PLoS Pathogens, 2023, 19, e1011152.	4.7	5
845	Strategies for Natural Product Discovery by Unlocking Cryptic Biosynthetic Gene Clusters in Fungi. Separations, 2023, 10, 333.	2.4	2
846	Identifying Fungal Secondary Metabolites and Their Role in Plant Pathogenesis. Methods in Molecular Biology, 2023, , 193-218.	0.9	3
847	Histone Acetyltransferase Rtt109 Regulates Development, Morphogenesis, and Citrinin Biosynthesis in Monascus purpureus. Journal of Fungi (Basel, Switzerland), 2023, 9, 530.	3.5	3
848	LaeA-Regulated Fungal Traits Mediate Bacterial Community Assembly. MBio, 2023, 14, .	4.1	4
849	Knowledge-guided data mining on the standardized architecture of NRPS: Subtypes, novel motifs, and sequence entanglements. PLoS Computational Biology, 2023, 19, e1011100.	3.2	5
850	AfLaeA, a Global Regulator of Mycelial Growth, Chlamydospore Production, Pathogenicity, Secondary Metabolism, and Energy Metabolism in the Nematode-Trapping Fungus <i>Arthrobotrys flagrans</i> . Microbiology Spectrum, 2023, 11, .	3.0	2
851	Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. International Journal of Molecular Sciences, 2023, 24, 11184.	4.1	3
852	Efficacy of pterostilbene suppression on Aspergillus flavus growth, aflatoxin B1 biosynthesis and potential mechanisms. International Journal of Food Microbiology, 2023, 404, 110318.	4.7	2

		CHATION REP	ORT	
#	Article		IF	CITATIONS
853	Light regulation of secondary metabolism in fungi. Journal of Biological Engineering, 2023, 17, .		4.7	4
854	PrlaeA Affects the Production of Roquefortine C, Mycophenolic Acid, and Andrastin A in Penicillium roqueforti, but It Has Little Impact on Asexual Development. Journal of Fungi (Basel, Switzerland), 2023, 9, 954.		3.5	2
855	Repurposing the cellulase workhorse <i>Trichoderma reesei</i> as a ROBUST chassis for efficient terpene production. Green Chemistry, 2023, 25, 7362-7371.		9.0	1
856	Fungal carboxylate transporters: recent manipulations and applications. Applied Microbiology and Biotechnology, 2023, 107, 5909-5922.		3.6	0
857	AaLaeA targets AaFla1 to mediate the production of antitumor compound in <i>Alternaria alstroemeria</i> . Journal of Basic Microbiology, 2024, 64, 68-80.		3.3	0
858	Machine Learning-Enabled Genome Mining and Bioactivity Prediction of Natural Products. ACS Synthetic Biology, 2023, 12, 2650-2662.		3.8	3
859	Activation of Secondary Metabolite Production in Fungi. , 2023, , 241-273.			0
860	Conserved copper regulation of the antimicrobial isocyanide brassicicolin A in Alternaria brassicicola. Fungal Genetics and Biology, 2023, 169, 103839.		2.1	0
861	Expression of heterochromatin protein 1 affects citric acid production in Aspergillus luchuensis murkawachii. Journal of Bioscience and Bioengineering, 2023, , .	t.	2.2	0
862	Fungal secondary metabolism is governed by an RNA-binding protein CsdA/RsdA complex. Nature Communications, 2023, 14, .		12.8	0
863	A New Benzaldehyde Derivative Exhibits Antiaflatoxigenic Activity against Aspergillus flavus. Journa of Fungi (Basel, Switzerland), 2023, 9, 1103.	I	3.5	0
864	Different Putative Methyltransferases Have Different Effects on the Expression Patterns of Cellulolytic Genes. Journal of Fungi (Basel, Switzerland), 2023, 9, 1118.		3.5	0
867	Role of the osaA Gene in Aspergillus fumigatus Development, Secondary Metabolism and Virulence Journal of Fungi (Basel, Switzerland), 2024, 10, 103.		3.5	0
868	Construction of a Cosmid-Based Ultraefficient Genomic Library System for Filamentous Fungi of the Genus Aspergillus. Journal of Fungi (Basel, Switzerland), 2024, 10, 188.	2	3.5	0
869	Cryptic piperazine derivatives activated by knocking out the global regulator LaeA in Aspergillus flavipes. Bioorganic and Medicinal Chemistry, 2024, 103, 117685.		3.0	0