CD209L (L-SIGN) is a receptor for severe acute respirate

Proceedings of the National Academy of Sciences of the Unite 101, 15748-15753

DOI: 10.1073/pnas.0403812101

Citation Report

#	Article	IF	CITATIONS
1	Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochemical Journal, 2005, 392, 135-143.	1.7	134
2	Pathogenesis of severe acute respiratory syndrome. Current Opinion in Immunology, 2005, 17, 404-410.	2.4	143
3	Levels of complexity in pathogen recognition by C-type lectins. Current Opinion in Immunology, 2005, 17, 345-351.	2.4	72
4	The severe acute respiratory syndrome (SARS). Journal of NeuroVirology, 2005, 11, 455-468.	1.0	13
5	Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clinical Endocrinology, 2005, 63, 197-202.	1.2	228
6	A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Medicine, 2005, 11, 875-879.	15.2	2,986
7	Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO Journal, 2005, 24, 1634-1643.	3.5	892
8	Coronaviral hypothetical and structural proteins were found in the intestinal surface enterocytes and pneumocytes of severe acute respiratory syndrome (SARS). Modern Pathology, 2005, 18, 1432-1439.	2.9	55
9	Development of antiviral therapy for severe acute respiratory syndrome. Antiviral Research, 2005, 66, 81-97.	1.9	62
10	From genome to antivirals: SARS as a test tube. Drug Discovery Today, 2005, 10, 345-352.	3.2	16
11	Structural Basis of Severe Acute Respiratory Syndrome Coronavirus ADP-Ribose-1″-Phosphate Dephosphorylation by a Conserved Domain of nsP3. Structure, 2005, 13, 1665-1675.	1.6	175
12	Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology, 2005, 334, 160-165.	1.1	104
13	Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo. Virology, 2005, 335, 185-197.	1.1	35
14	Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology, 2005, 340, 174-182.	1.1	149
15	LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology, 2005, 340, 224-236.	1.1	192
16	Identification of an alternative 5′-untranslated exon and new polymorphisms of angiotensin-converting enzyme 2 gene: Lack of association with SARS in the Vietnamese population. American Journal of Medical Genetics, Part A, 2005, 136A, 52-57.	0.7	49
17	Recurrent mutations associated with isolation and passage of SARS coronavirus in cells from non-human primates. Journal of Medical Virology, 2005, 76, 435-440.	2.5	27
18	SARS Vaccine Development. Emerging Infectious Diseases, 2005, 11, 1016-1020.	2.0	145

#	Article	IF	CITATIONS
19	Identification of Two Critical Amino Acid Residues of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Its Variation in Zoonotic Tropism Transition via a Double Substitution Strategy. Journal of Biological Chemistry, 2005, 280, 29588-29595.	1.6	152
20	Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases. PLoS Biology, 2005, 3, e324.	2.6	547
21	SARS: Understanding the Virus and Development of Rational Therapy. Current Molecular Medicine, 2005, 5, 677-697.	0.6	23
22	Exogenous ACE2 Expression Allows Refractory Cell Lines To Support Severe Acute Respiratory Syndrome Coronavirus Replication. Journal of Virology, 2005, 79, 3846-3850.	1.5	143
23	ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia. Journal of Virology, 2005, 79, 14614-14621.	1.5	782
24	Interactions Between Virus Proteins and Host Cell Membranes During the Viral Life Cycle. International Review of Cytology, 2005, 245, 171-244.	6.2	50
25	Humanized mice develop coronavirus respiratory disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8073-8074.	3.3	9
26	Severe Acute Respiratory Syndrome and the Innate Immune Responses: Modulation of Effector Cell Function without Productive Infection. Journal of Immunology, 2005, 174, 7977-7985.	0.4	141
27	Single Amino Acid Substitutions in the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Determine Viral Entry and Immunogenicity of a Major Neutralizing Domain. Journal of Virology, 2005, 79, 11638-11646.	1.5	55
28	Apical Entry and Release of Severe Acute Respiratory Syndrome-Associated Coronavirus in Polarized Calu-3 Lung Epithelial Cells. Journal of Virology, 2005, 79, 9470-9479.	1.5	124
29	Comparative Host Gene Transcription by Microarray Analysis Early after Infection of the Huh7 Cell Line by Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus 229E. Journal of Virology, 2005, 79, 6180-6193.	1.5	97
30	Identification and Characterization of the Putative Fusion Peptide of the Severe Acute Respiratory Syndrome-Associated Coronavirus Spike Protein. Journal of Virology, 2005, 79, 7195-7206.	1.5	126
31	Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 797-801.	3.3	252
32	The Heritage of Pathogen Pressures and Ancient Demography in the Human Innate-Immunity CD209/CD209L Region. American Journal of Human Genetics, 2005, 77, 869-886.	2.6	81
33	Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the United States of America, 2005, 102, 14040-14045.	3.3	1,322
34	Assembly of Severe Acute Respiratory Syndrome Coronavirus RNA Packaging Signal into Virus-Like Particles Is Nucleocapsid Dependent. Journal of Virology, 2005, 79, 13848-13855.	1.5	176
35	Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiology and Molecular Biology Reviews, 2005, 69, 635-664.	2.9	951
36	Role of the C-type lectins DC-SIGN and L-SIGN in Leishmania interaction with host phagocytes. Immunobiology, 2005, 210, 185-193.	0.8	38

#	Article	IF	Citations
37	Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells. Biochemical and Biophysical Research Communications, 2005, 336, 417-423.	1.0	70
38	Pneumonitis and Multi-Organ System Disease in Common Marmosets (Callithrix jacchus) Infected with the Severe Acute Respiratory Syndrome-Associated Coronavirus. American Journal of Pathology, 2005, 167, 455-463.	1.9	101
39	Molecular mechanisms of severe acute respiratory syndrome (SARS). Respiratory Research, 2005, 6, 8.	1.4	78
40	The Molecular Biology of Coronaviruses. Advances in Virus Research, 2006, 66, 193-292.	0.9	1,342
42	Architecture of the SARS coronavirus prefusion spike. Nature Structural and Molecular Biology, 2006, 13, 751-752.	3.6	239
43	Mustela Vison ACE2 Functions as a Receptor for Sars-Coronavirus. Advances in Experimental Medicine and Biology, 2006, 581, 507-510.	0.8	12
44	Kinetics and synergistic effects of siRNAs targeting structural and replicase genes of SARS-associated coronavirus. FEBS Letters, 2006, 580, 2414-2420.	1.3	36
45	Template-based coiled-coil antigens elicit neutralizing antibodies to the SARS-coronavirus. Journal of Structural Biology, 2006, 155, 176-194.	1.3	38
46	Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Research, 2006, 120, 146-155.	1.1	66
47	Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants. PLoS Medicine, 2006, 3, e237.	3.9	594
48	SARS: clinical presentation, transmission, pathogenesis and treatment options. Clinical Science, 2006, 110, 193-204.	1.8	43
51	Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). Perspectives in Medical Virology, 2006, 16, 43-95.	0.1	20
52	How the SARS coronavirus causes disease: host or organism?. Journal of Pathology, 2006, 208, 142-151.	2.1	46
53	Hosting the severe acute respiratory syndrome coronavirus: specific cell factors required for infection. Cellular Microbiology, 2006, 8, 1211-1218.	1.1	19
54	Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nature Genetics, 2006, 38, 38-46.	9.4	127
55	Modification of SARS-CoV S1 gene render expression in Pichia pastoris. Virus Genes, 2006, 33, 329-335.	0.7	3
56	Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. Journal of Molecular Medicine, 2006, 84, 814-820.	1.7	120
57	SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology, 2006, 346, 74-85.	1.1	132

#	Article	IF	CITATIONS
58	Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated. Virology, 2006, 347, 410-421.	1.1	62
59	Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology, 2006, 350, 15-25.	1.1	181
60	Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups. BMC Microbiology, 2006, 6, 88.	1.3	54
61	Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention. Medicinal Research Reviews, 2006, 26, 414-433.	5.0	26
62	Highly Conserved Regions within the Spike Proteins of Human Coronaviruses 229E and NL63 Determine Recognition of Their Respective Cellular Receptors. Journal of Virology, 2006, 80, 8639-8652.	1.5	101
63	Drug Design Targeting the Main Protease, the Achilles Heel of Coronaviruses. Current Pharmaceutical Design, 2006, 12, 4573-4590.	0.9	145
64	The Location of Asparagine-linked Glycans on West Nile Virions Controls Their Interactions with CD209 (Dendritic Cell-specific ICAM-3 Grabbing Nonintegrin). Journal of Biological Chemistry, 2006, 281, 37183-37194.	1.6	98
65	Animal Origins of the Severe Acute Respiratory Syndrome Coronavirus: Insight from ACE2-S-Protein Interactions. Journal of Virology, 2006, 80, 4211-4219.	1.5	247
66	Extremely Low Exposure of a Community to Severe Acute Respiratory Syndrome Coronavirus: False Seropositivity due to Use of Bacterially Derived Antigens. Journal of Virology, 2006, 80, 8920-8928.	1.5	15
67	Internalizing Antibodies to the C-Type Lectins, L-SIGN and DC-SIGN, Inhibit Viral Glycoprotein Binding and Deliver Antigen to Human Dendritic Cells for the Induction of T Cell Responses. Journal of Immunology, 2006, 176, 426-440.	0.4	51
68	Emerging Respiratory Viruses: Challenges and Vaccine Strategies. Clinical Microbiology Reviews, 2006, 19, 614-636.	5.7	134
69	Important Role for the Transmembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Protein during Entry. Journal of Virology, 2006, 80, 1302-1310.	1.5	75
71	Identifying Epitopes Responsible for Neutralizing Antibody and DC-SIGN Binding on the Spike Glycoprotein of the Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2006, 80, 10315-10324.	1.5	45
72	Preferential Infection of Mature Dendritic Cells by Mouse Hepatitis Virus Strain JHM. Journal of Virology, 2006, 80, 2506-2514.	1.5	31
73	All but the Shortest Polymorphic Forms of the Viral Receptor DC-SIGNR Assemble into Stable Homo- and Heterotetramers. Journal of Biological Chemistry, 2006, 281, 16794-16798.	1.6	16
74	Respiratory syncytial virus and innate immunity: a complex interplay of exploitation and subversion. Expert Review of Vaccines, 2006, 5, 371-380.	2.0	1
75	Significant Redox Insensitivity of the Functions of the SARS-CoV Spike Glycoprotein. Journal of Biological Chemistry, 2006, 281, 9200-9204.	1.6	49
77	Specific Asparagine-Linked Glycosylation Sites Are Critical for DC-SIGN- and L-SIGN-Mediated Severe Acute Respiratory Syndrome Coronavirus Entry. Journal of Virology, 2007, 81, 12029-12039.	1.5	123

#	Article	IF	CITATIONS
78	Heparan Sulfate Is a Selective Attachment Factor for the Avian Coronavirus Infectious Bronchitis Virus Beaudette. Avian Diseases, 2007, 51, 45-51.	0.4	69
79	Cell Entry by Enveloped Viruses: Redox Considerations for HIV and SARS-Coronavirus. Antioxidants and Redox Signaling, 2007, 9, 1009-1034.	2.5	84
81	SARS-CoV accessory protein 7a directly interacts with human LFA-1. Biological Chemistry, 2007, 388, 1325-1332.	1.2	24
82	The C-type lectin L-SIGN differentially recognizes glycan antigens on egg glycosphingolipids and soluble egg glycoproteins from Schistosoma mansoni. Glycobiology, 2007, 17, 1104-1119.	1.3	24
83	Severe Acute Respiratory Syndrome Coronavirus Infection of Mice Transgenic for the Human Angiotensin-Converting Enzyme 2 Virus Receptor. Journal of Virology, 2007, 81, 1162-1173.	1.5	222
84	Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection. Clinical Microbiology Reviews, 2007, 20, 660-694.	5.7	886
85	The Cytoplasmic Tail of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Contains a Novel Endoplasmic Reticulum Retrieval Signal That Binds COPI and Promotes Interaction with Membrane Protein. Journal of Virology, 2007, 81, 2418-2428.	1.5	168
86	Association of ICAM3 Genetic Variant with Severe Acute Respiratory Syndrome. Journal of Infectious Diseases, 2007, 196, 271-280.	1.9	33
87	Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate Fcl³RII-dependent entry into B cells in vitro. Vaccine, 2007, 25, 729-740.	1.7	197
88	Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses. Vaccine, 2007, 25, 6981-6991.	1.7	61
89	The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages. Immunobiology, 2007, 212, 201-211.	0.8	107
90	Molecular Pathology in the Lungs of Severe Acute Respiratory Syndrome Patients. American Journal of Pathology, 2007, 170, 538-545.	1.9	74
91	Pathology and Pathogenesis of Severe Acute Respiratory Syndrome. American Journal of Pathology, 2007, 170, 1136-1147.	1.9	504
92	The Immunobiology of SARS. Annual Review of Immunology, 2007, 25, 443-472.	9.5	242
93	Metabonomic Evaluation of Schaedler Altered Microflora Rats. Chemical Research in Toxicology, 2007, 20, 1388-1392.	1.7	25
95	Quantitative temporalâ€spatial distribution of severe acute respiratory syndromeâ€associated coronavirus (SARS oV) in postâ€mortem tissues. Journal of Medical Virology, 2007, 79, 1245-1253.	2.5	36
96	Molecular pathogenesis of severe acute respiratory syndrome. Microbes and Infection, 2007, 9, 119-126.	1.0	11
97	The emerging role of ACE2 in physiology and disease. Journal of Pathology, 2007, 212, 1-11.	2.1	380

#	Article	IF	CITATIONS
98	Lack of support for an association between CLEC4M homozygosity and protection against SARS coronavirus infection. Nature Genetics, 2007, 39, 692-693.	9.4	19
99	Exosomal vaccines containing the S protein of the SARS coronavirus induce high levels of neutralizing antibodies. Virology, 2007, 362, 26-37.	1.1	142
100	Heterologous viral RNA export elements improve expression of severe acute respiratory syndrome (SARS) coronavirus spike protein and protective efficacy of DNA vaccines against SARS. Virology, 2007, 363, 288-302.	1.1	17
101	Angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Cellular and Molecular Life Sciences, 2007, 64, 2006-2012.	2.4	124
102	Structural proteomics of the SARS coronavirus: a model response to emerging infectious diseases. Journal of Structural and Functional Genomics, 2007, 8, 85-97.	1.2	35
103	DC-SIGN and L-SIGN: the SIGNs for infection. Journal of Molecular Medicine, 2008, 86, 861-874.	1.7	127
104	siRNA silencing of angiotensin-converting enzyme 2 reduced severe acute respiratory syndrome-associated coronavirus replications in Vero E6 cells. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27, 709-715.	1.3	23
105	Structural and Dynamic Characterization of the Interaction of the Putative Fusion Peptide of the S2 SARS-CoV Virus Protein with Lipid Membranes. Journal of Physical Chemistry B, 2008, 112, 6997-7007.	1.2	29
106	Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Research, 2008, 133, 4-12.	1.1	150
107	SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. Virus Research, 2008, 133, 33-44.	1.1	111
108	Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochemical and Biophysical Research Communications, 2008, 369, 344-349.	1.0	221
109	Bench-to-bedside review: Rare and common viral infections in the intensive care unit – linking pathophysiology to clinical presentation. Critical Care, 2008, 12, 219.	2.5	17
110	Persistent Replication of Severe Acute Respiratory Syndrome Coronavirus in Human Tubular Kidney Cells Selects for Adaptive Mutations in the Membrane Protein. Journal of Virology, 2008, 82, 5137-5144.	1.5	50
111	Mechanisms of Zoonotic Severe Acute Respiratory Syndrome Coronavirus Host Range Expansion in Human Airway Epithelium. Journal of Virology, 2008, 82, 2274-2285.	1.5	107
112	Pathology of Experimental SARS Coronavirus Infection in Cats and Ferrets. Veterinary Pathology, 2008, 45, 551-562.	0.8	115
113	Mechanisms of Severe Acute Respiratory Syndrome Pathogenesis and Innate Immunomodulation. Microbiology and Molecular Biology Reviews, 2008, 72, 672-685.	2.9	95
114	Utilization of DC-SIGN for Entry of Feline Coronaviruses into Host Cells. Journal of Virology, 2008, 82, 11992-11996.	1.5	50
115	Pathways of Cross-Species Transmission of Synthetically Reconstructed Zoonotic Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2008, 82, 8721-8732.	1.5	63

#	Article	IF	Citations
116	Amiodarone Alters Late Endosomes and Inhibits SARS Coronavirus Infection at a Post-Endosomal Level. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 142-149.	1.4	91
117	Clinical features, pathogenesis and immunobiology of severe acute respiratory syndrome. Current Opinion in Pulmonary Medicine, 2008, 14, 241-247.	1.2	12
118	Pathogenesis of severe acute respiratory syndrome. Chinese Medical Journal, 2008, 121, 1722-1731.	0.9	3
119	SARS vaccines: where are we?. Expert Review of Vaccines, 2009, 8, 887-898.	2.0	165
120	Drug Targets in Severe Acute Respiratory Syndrome (SARS) Virus and other Coronavirus Infections. Infectious Disorders - Drug Targets, 2009, 9, 223-245.	0.4	47
121	Identification of Major Histocompatibility Complex Class I C Molecule as an Attachment Factor That Facilitates Coronavirus HKU1 Spike-Mediated Infection. Journal of Virology, 2009, 83, 1026-1035.	1.5	35
122	The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nature Reviews Microbiology, 2009, 7, 226-236.	13.6	1,405
123	Antibody-mediated synergy and interference in the neutralization of SARS-CoV at an epitope cluster on the spike protein. Biochemical and Biophysical Research Communications, 2009, 390, 1056-1060.	1.0	12
124	Identification of a New Region of SARS-CoV S Protein Critical for Viral Entry. Journal of Molecular Biology, 2009, 394, 600-605.	2.0	31
125	Interaction of a peptide corresponding to the loop domain of the S2 SARS-CoV virus protein with model membranes. Molecular Membrane Biology, 2009, 26, 236-248.	2.0	9
126	Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG. Protein and Cell, 2010, 1, 859-870.	4.8	48
127	TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Research, 2010, 85, 551-555.	1.9	117
128	Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein. Virology, 2010, 399, 257-269.	1.1	100
129	Lectin-like interactions in virus–cell recognition. , 2010, , 567-584.		1
130	A Single Asparagine-Linked Glycosylation Site of the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Facilitates Inhibition by Mannose-Binding Lectin through Multiple Mechanisms. Journal of Virology, 2010, 84, 8753-8764.	1.5	127
131	Upregulation of the Chemokine (C-C Motif) Ligand 2 via a Severe Acute Respiratory Syndrome Coronavirus Spike-ACE2 Signaling Pathway. Journal of Virology, 2010, 84, 7703-7712.	1.5	110
132	Feline Lectin Activity Is Critical for the Cellular Entry of Feline Infectious Peritonitis Virus. Journal of Virology, 2010, 84, 7917-7921.	1.5	31
133	The highly cited SARS research literature. Critical Reviews in Microbiology, 2010, 36, 299-317.	2.7	14

#	Article	IF	CITATIONS
134	HIV-1 Transmission by Dendritic Cell-specific ICAM-3-grabbing Nonintegrin (DC-SIGN) Is Regulated by Determinants in the Carbohydrate Recognition Domain That Are Absent in Liver/Lymph Node-SIGN (L-SIGN). Journal of Biological Chemistry, 2010, 285, 2100-2112.	1.6	22
135	Severe Acute Respiratory Syndrome and Coronavirus. Infectious Disease Clinics of North America, 2010, 24, 619-638.	1.9	57
136	Identification of NCAM that interacts with the PHE-CoV spike protein. Virology Journal, 2010, 7, 254.	1.4	22
137	CD209 (DC-SIGN) â^'336A>G promoter polymorphism and severe acute respiratory syndrome in Hong Kong Chinese. Human Immunology, 2010, 71, 702-707.	1.2	37
138	Recombination, Reservoirs, and the Modular Spike: Mechanisms of Coronavirus Cross-Species Transmission. Journal of Virology, 2010, 84, 3134-3146.	1.5	595
139	The cell biology of receptor-mediated virus entry. Journal of Cell Biology, 2011, 195, 1071-1082.	2.3	425
140	SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission. Current Opinion in Virology, 2011, 1, 624-634.	2.6	149
141	Role of DC-SIGN and L-SIGN receptors in HIV-1 vertical transmission. Human Immunology, 2011, 72, 305-311.	1.2	31
142	Genetic determinants of pathogenesis by feline infectious peritonitis virus. Veterinary Immunology and Immunopathology, 2011, 143, 265-268.	0.5	19
143	Intriguing interplay between feline infectious peritonitis virus and its receptors during entry in primary feline monocytes. Virus Research, 2011, 160, 32-39.	1.1	23
144	Different host cell proteases activate the SARS-coronavirus spike-protein for cell–cell and virus–cell fusion. Virology, 2011, 413, 265-274.	1.1	114
145	Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Research, 2011, 90, 22-32.	1.9	71
146	Lectin Switching During Dengue Virus Infection. Journal of Infectious Diseases, 2011, 203, 1775-1783.	1.9	58
147	N-Linked Glycosylation Facilitates Sialic Acid-Independent Attachment and Entry of Influenza A Viruses into Cells Expressing DC-SIGN or L-SIGN. Journal of Virology, 2011, 85, 2990-3000.	1.5	113
148	Anti-Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a pH- and Cysteine Protease-Independent Fcl̂3R Pathway. Journal of Virology, 2011, 85, 10582-10597.	1.5	294
149	Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features. Advances in Virology, 2011, 2011, 1-11.	0.5	56
150	Recombinant Live Vaccines to Protect Against the Severe Acute Respiratory Syndrome Coronavirus. , 2011, , 73-97.		5
151	Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein. Viruses, 2012, 4, 1011-1033.	1.5	1,086

#	Article	IF	CITATIONS
152	Respiratory Syncytial Virus Glycoprotein G Interacts with DC-SIGN and L-SIGN To Activate ERK1 and ERK2. Journal of Virology, 2012, 86, 1339-1347.	1.5	71
153	Receptor-binding domains of spike proteins of emerging or re-emerging viruses as targets for development of antiviral vaccines. Emerging Microbes and Infections, 2012, 1, 1-8.	3.0	36
154	Monitoring of S Protein Maturation in the Endoplasmic Reticulum by Calnexin Is Important for the Infectivity of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2012, 86, 11745-11753.	1.5	63
155	Virus entry: old viruses, new receptors. Current Opinion in Virology, 2012, 2, 4-13.	2.6	28
156	Characterization of cellular furin content as a potential factor determining the susceptibility of cultured human and animal cells to coronavirus infectious bronchitis virus infection. Virology, 2012, 433, 421-430.	1.1	36
157	Milk Derived Peptides with Immune Stimulating Antiviral Properties. , 0, , .		2
158	Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. Reviews in Medical Virology, 2012, 22, 2-17.	3.9	82
159	Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus. Veterinary Microbiology, 2012, 157, 285-293.	0.8	30
160	Interaction of L-SIGN with Hepatitis C Virus Envelope Protein E2 Up-Regulates Raf–MEK–ERK Pathway. Cell Biochemistry and Biophysics, 2013, 66, 589-597.	0.9	5
161	The replication of a mouse adapted SARS-CoV in a mouse cell line stably expressing the murine SARS-CoV receptor mACE2 efficiently induces the expression of proinflammatory cytokines. Journal of Virological Methods, 2013, 193, 639-646.	1.0	15
162	A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virology Journal, 2013, 10, 266.	1.4	127
163	Innate Immune Response of Human Alveolar Type II Cells Infected with Severe Acute Respiratory Syndrome–Coronavirus. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 742-748.	1.4	255
164	Caveolar Endocytosis Is Required for Human PSGL-1-Mediated Enterovirus 71 Infection. Journal of Virology, 2013, 87, 9064-9076.	1.5	41
165	Correlating Cell Line Studies With Tissue Distribution of DPP4/TMPRSS2 and Human Biological Samples May Better Define the Viral Tropism of MERS-CoV. Journal of Infectious Diseases, 2013, 208, 1350-1351.	1.9	9
166	Role of DC-SIGN in Lassa Virus Entry into Human Dendritic Cells. Journal of Virology, 2013, 87, 11504-11515.	1.5	67
167	Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus. , 0, , 313-324.		14
168	Angiotensin-Converting Enzyme 2, the Cellular Receptor for Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63. , 0, , 147-156.		1
169	The avian coronavirus spike protein. Virus Research, 2014, 194, 37-48.	1.1	76

#	Article	IF	CITATIONS
170	<scp>NMR</scp> evidence for oligosaccharide release from the dendriticâ€cell specific intercellular adhesion moleculeÂ3â€grabbing nonâ€integrinâ€related (<scp>CLEC</scp> 4M) carbohydrate recognition domain at low pH. FEBS Journal, 2014, 281, 3739-3750.	2.2	8
171	Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology, 2014, 454-455, 197-205.	1.1	149
172	DC-SIGN, DC-SIGNR and LSECtin: C-Type Lectins for Infection. International Reviews of Immunology, 2014, 33, 54-66.	1.5	55
173	Distinct usage of three C-type lectins by Japanese encephalitis virus: DC-SIGN, DC-SIGNR, and LSECtin. Archives of Virology, 2014, 159, 2023-2031.	0.9	34
174	Influence of HLA gene polymorphisms on susceptibility and outcome post infection with the SARS-CoV virus. Virologica Sinica, 2014, 29, 128-130.	1.2	22
175	Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virology Journal, 2014, 11, 82.	1.4	218
176	The Pathology and Pathogenesis of Experimental Severe Acute Respiratory Syndrome and Influenza in Animal Models. Journal of Comparative Pathology, 2014, 151, 83-112.	0.1	143
177	Single amino acid substitution (G42E) in the receptor binding domain of mouse mammary tumour virus envelope protein facilitates infection of non-murine cells in a transferrin receptor 1-independent manner. Retrovirology, 2015, 12, 43.	0.9	18
178	The Roles of Direct Recognition by Animal Lectins in Antiviral Immunity and Viral Pathogenesis. Molecules, 2015, 20, 2272-2295.	1.7	47
179	Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus. Virology, 2015, 479-480, 247-258.	1.1	80
180	The Evolution of HIV-1 Interactions with Coreceptors and Mannose C-Type Lectin Receptors. Progress in Molecular Biology and Translational Science, 2015, 129, 109-140.	0.9	6
181	Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1. Journal of Virology, 2015, 89, 8816-8827.	1.5	46
182	Severe Acute Respiratory Syndrome-Associated Coronavirus Vaccines Formulated with Delta Inulin Adjuvants Provide Enhanced Protection while Ameliorating Lung Eosinophilic Immunopathology. Journal of Virology, 2015, 89, 2995-3007.	1.5	186
183	SARS coronavirus infections of the lower respiratory tract and their prevention. , 2016, , 45-53.		1
184	Endocytic function is critical for influenza A virus infection via DC-SIGN and L-SIGN. Scientific Reports, 2016, 6, 19428.	1.6	44
185	SARS-CoV fusion peptides induce membrane surface ordering and curvature. Scientific Reports, 2016, 6, 37131.	1.6	55
186	Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins. Journal of Virology, 2016, 90, 5586-5600.	1.5	65
187	Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant. Methods in Molecular Biology, 2016, 1403, 269-284.	0.4	24

#	Article	IF	CITATIONS
188	Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2016, 90, 9114-9127.	1.5	68
189	Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nature Structural and Molecular Biology, 2016, 23, 899-905.	3.6	366
190	DC-SIGN and L-SIGN Are Attachment Factors That Promote Infection of Target Cells by Human Metapneumovirus in the Presence or Absence of Cellular Glycosaminoglycans. Journal of Virology, 2016, 90, 7848-7863.	1.5	9
191	Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates. ACS Infectious Diseases, 2016, 2, 361-376.	1.8	265
192	Surface vimentin is critical for the cell entry of SARS-CoV. Journal of Biomedical Science, 2016, 23, 14.	2.6	130
193	Animal Models of Human Viral Diseases. , 2017, , 853-901.		8
194	Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology, 2018, 517, 3-8.	1.1	251
195	Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. Journal of Virology, 2018, 92, .	1.5	124
196	Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein. International Journal of Biochemistry and Cell Biology, 2018, 101, 103-112.	1.2	6
197	The S2 Subunit of Infectious Bronchitis Virus Beaudette Is a Determinant of Cellular Tropism. Journal of Virology, 2018, 92, .	1.5	47
198	Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells. Journal of Biological Chemistry, 2018, 293, 11709-11726.	1.6	153
199	Exploitation of glycosylation in enveloped virus pathobiology. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1480-1497.	1.1	383
200	Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure. Journal of Membrane Biology, 2019, 252, 261-272.	1.0	47
201	Membrane Cholesterol Modulates Oligomeric Status and Peptide-Membrane Interaction of Severe Acute Respiratory Syndrome Coronavirus Fusion Peptide. Journal of Physical Chemistry B, 2019, 123, 10654-10662.	1.2	101
202	From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses, 2019, 11, 59.	1.5	919
203	Gold nanoparticleâ€adjuvanted S protein induces a strong antigenâ€specific IgG response against severe acute respiratory syndromeâ€related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiology and Immunology, 2020, 64, 33-51.	0.7	140
204	Oxidative Stress and Inflammation in COVID-19-Associated Sepsis: The Potential Role of Anti-Oxidant Therapy in Avoiding Disease Progression. Antioxidants, 2020, 9, 936.	2.2	104
205	Assessing the SARS-CoV-2 threat to wildlife: Potential risk to a broad range of mammals. Perspectives in Ecology and Conservation, 2020, 18, 223-234.	1.0	23

#	Article	IF	CITATIONS
206	From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infection, Genetics and Evolution, 2020, 85, 104502.	1.0	178
207	Immunopathogenesis of Coronavirus-Induced Acute Respiratory Distress Syndrome (ARDS): Potential Infection-Associated Hemophagocytic Lymphohistiocytosis. Clinical Microbiology Reviews, 2020, 34, .	5.7	28
208	Should ACE2 be given a chance in COVID-19 therapeutics: A semi-systematic review of strategies enhancing ACE2. European Journal of Pharmacology, 2020, 887, 173545.	1.7	30
209	Immune Modulatory Effects of Vitamin D on Viral Infections. Nutrients, 2020, 12, 2879.	1.7	66
210	Understand variability of COVID-19 through population and tissue variations in expression of SARS-CoV-2 host genes. Informatics in Medicine Unlocked, 2020, 21, 100443.	1.9	24
211	Mass Spectrometry Analysis of Newly Emerging Coronavirus HCoV-19 Spike Protein and Human ACE2 Reveals Camouflaging Glycans and Unique Post-Translational Modifications. Engineering, 2021, 7, 1441-1451.	3.2	52
212	Immuno-pathogenesis of nCOVID-19 and a possible host-directed therapy including anti-inflammatory and anti-viral prostaglandin (PG J2) for effective treatment and reduction in the death toll. Medical Hypotheses, 2020, 143, 110080.	0.8	3
213	COVID-19 and Inflammatory Bowel Diseases: Risk Assessment, Shared Molecular Pathways, and Therapeutic Challenges. Gastroenterology Research and Practice, 2020, 2020, 1-7.	0.7	7
214	Prominent Receptors of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease. Frontiers in Physiology, 2020, 11, 873.	1.3	61
215	Immune-mediated approaches against COVID-19. Nature Nanotechnology, 2020, 15, 630-645.	15.6	260
216	The role of host genetics in the immune response to SARSâ€CoVâ€2 and COVIDâ€19 susceptibility and severity. Immunological Reviews, 2020, 296, 205-219.	2.8	175
217	COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells, 2020, 9, 1652.	1.8	210
218	A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. International Journal of Biological Macromolecules, 2020, 164, 66-76.	3.6	38
219	A new threat from an old enemy: Re‑emergence of coronavirus (Review). International Journal of Molecular Medicine, 2020, 45, 1631-1643.	1.8	175
220	Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. Future Medicinal Chemistry, 2020, 12, 1647-1656.	1.1	49
221	Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sciences, 2020, 257, 118102.	2.0	248
222	ACE2, the Receptor that Enables Infection by SARSâ€CoVâ€2: Biochemistry, Structure, Allostery and Evaluation of the Potential Development of ACE2 Modulators. ChemMedChem, 2020, 15, 1682-1690.	1.6	34
223	Infectivity, virulence, pathogenicity, host-pathogen interactions of SARS and SARS-CoV-2 in experimental animals: a systematic review. Veterinary Research Communications, 2020, 44, 101-110.	0.6	23

		CITATION REPORT		
#	Article		IF	CITATIONS
224	Mining a GWAS of Severe Covid-19. New England Journal of Medicine, 2020, 383, 258	8-2589.	13.9	20
225	JAK-STAT Pathway Inhibition and their Implications in COVID-19 Therapy. Postgraduate 133, 489-507.	Medicine, 2021,	0.9	110
226	Complete post-mortem data in a fatal case of COVID-19: clinical, radiological and path correlations. International Journal of Legal Medicine, 2020, 134, 2209-2214.	ological	1.2	51
227	Identification of Novel Candidate Epitopes on SARS-CoV-2 Proteins for South America: Frequencies by Country. Frontiers in Immunology, 2020, 11, 2008.	A Review of HLA	2.2	23
228	A comparative overview of COVID-19, MERS and SARS: Review article. International Jou 2020, 81, 1-8.	ırnal of Surgery,	1.1	81
229	Coronaviruses and the central nervous system. Journal of NeuroVirology, 2020, 26, 45	9-473.	1.0	43
230	Naturally occurring SARS-CoV-2 gene deletions close to the spike S1/S2 cleavage site in quasispecies of COVID19 patients. Emerging Microbes and Infections, 2020, 9, 1900-1		3.0	57
231	Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. Advance Experimental Medicine and Biology, 2020, 21, 13-127.	ces in	0.8	29
232	A 21st Century Evil: Immunopathology and New Therapies of COVID-19. Frontiers in In 11, 562264.	ımunology, 2020,	2.2	8
233	Exploring Host Genetic Polymorphisms Involved in SARS-CoV Infection Outcomes: Imp Personalized Medicine in COVID-19. International Journal of Genomics, 2020, 2020, 1-		0.8	19
234	The 2020 Pandemic: Current SARS-CoV-2 Vaccine Development. Frontiers in Immunolo	ygy, 2020, 11, 1880.	2.2	60
235	"A Chain Only as Strong as Its Weakest Link†An Up-to-Date Literature Review on Interaction of Pulmonary Fibrosis and COVID-19. Journal of Proteome Research, 2020,		1.8	33
236	Antivirals Against Coronaviruses: Candidate Drugs for SARS-CoV-2 Treatment?. Frontie Microbiology, 2020, 11, 1818.	rs in	1.5	81
237	Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route Neuroscientist, 2021, 27, 582-603.	to Brain Infection.	2.6	238
238	No small matter: a perspective on nanotechnology-enabled solutions to fight COVID-1 2020, 15, 2411-2427.	9. Nanomedicine,	1.7	19
239	Dendritic Cells and SARS-CoV-2 Infection: Still an Unclarified Connection. Cells, 2020, 9	9, 2046.	1.8	46
240	A Multi-Targeting Approach to Fight SARS-CoV-2 Attachment. Frontiers in Molecular Bi 7, 186.	osciences, 2020,	1.6	24
241	The Enigma of Endothelium in COVID-19. Frontiers in Physiology, 2020, 11, 989.		1.3	70

#	Article	IF	CITATIONS
242	COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathogens, 2020, 16, e1008762.	2.1	194
243	A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction. Nature Communications, 2020, 11, 4198.	5.8	132
244	Deciphering SARS-CoV-2 Virologic and Immunologic Features. International Journal of Molecular Sciences, 2020, 21, 5932.	1.8	28
245	COVID-19 and possible links with Parkinson's disease and parkinsonism: from bench to bedside. Npj Parkinson's Disease, 2020, 6, 18.	2.5	120
246	Current Understanding, Knowledge Gaps and a Perspective on the Future of COVID-19 Infections: A Systematic Review. Indian Journal of Medical Microbiology, 2020, 38, 1-8.	0.3	10
247	Immunohistochemical Study of SARS-CoV-2 Viral Entry Factors in the Cornea and Ocular Surface. Cornea, 2020, 39, 1556-1562.	0.9	54
248	COVID-19: from an acute to chronic disease? Potential long-term health consequences. Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 297-310.	2.7	224
249	The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. American Journal of Human Genetics, 2020, 107, 381-402.	2.6	51
250	The immunology of SARS-CoV-2 infection, the potential antibody based treatments and vaccination strategies. Expert Review of Anti-Infective Therapy, 2020, 19, 1-12.	2.0	10
251	COVID-19;-The origin, genetics,and management of the infection of mothers and babies. Egyptian Journal of Basic and Applied Sciences, 2020, 7, 371-388.	0.2	0
252	Recent updates on COVID-19: A holistic review. Heliyon, 2020, 6, e05706.	1.4	16
253	COVID-19 Pandemic: Epidemiology, Etiology, Conventional and Non-Conventional Therapies. International Journal of Environmental Research and Public Health, 2020, 17, 8155.	1.2	63
254	SARS-CoV-2 mutations and where to find them: an <i>in silico</i> perspective of structural changes and antigenicity of the spike protein. Journal of Biomolecular Structure and Dynamics, 2022, 40, 3336-3346.	2.0	1
255	Dermatological aspects of SARS-CoV-2 infection: mechanisms and manifestations. Archives of Dermatological Research, 2021, 313, 611-622.	1.1	11
256	Seven recommendations to rescue the patients and reduce the mortality from COVID-19 infection: An immunological point of view. Autoimmunity Reviews, 2020, 19, 102570.	2.5	30
257	Letter to the editor: Anti-RAS drugs and SARS-CoV-2 infection. Acta Pharmaceutica Sinica B, 2020, 10, 1251-1252.	5.7	11
258	Expression of the SARS-CoV-2 <i>ACE2</i> Receptor in the Human Airway Epithelium. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 219-229.	2.5	208
259	DC/Lâ€SIGNs of hope in the COVIDâ€19 pandemic. Journal of Medical Virology, 2020, 92, 1396-1398.	2.5	39

#	Article	IF	CITATIONS
260	COVID-19, Angiotensin Receptor Blockers, and the Brain. Cellular and Molecular Neurobiology, 2020, 40, 667-674.	1.7	30
261	Focus on Receptors for Coronaviruses with Special Reference to Angiotensin- Converting Enzyme 2 as a Potential Drug Target - A Perspective. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 807-811.	0.6	146
262	From SARS-CoV to SARS-CoV-2: safety and broad-spectrum are important for coronavirus vaccine development. Microbes and Infection, 2020, 22, 245-253.	1.0	36
263	Infectivity of human coronavirus in the brain. EBioMedicine, 2020, 56, 102799.	2.7	82
264	The ocular surface, coronaviruses and COVIDâ€19. Australasian journal of optometry, The, 2020, 103, 418-424.	0.6	75
265	Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?. PLoS Pathogens, 2020, 16, e1008421.	2.1	318
266	Application of System Biology to Explore the Association of Neprilysin, Angiotensin-Converting Enzyme 2 (ACE2), and Carbonic Anhydrase (CA) in Pathogenesis of SARS-CoV-2. Biological Procedures Online, 2020, 22, 11.	1.4	32
267	Attenuated Interferon and Proinflammatory Response in SARS-CoV-2–Infected Human Dendritic Cells Is Associated With Viral Antagonism of STAT1 Phosphorylation. Journal of Infectious Diseases, 2020, 222, 734-745.	1.9	165
268	Corona virus versus existence of human on the earth: A computational and biophysical approach. International Journal of Biological Macromolecules, 2020, 161, 271-281.	3.6	32
269	Mechanisms involved in the development of thrombocytopenia in patients with COVID-19. Thrombosis Research, 2020, 193, 110-115.	0.8	121
270	Rationale for targeting complement in COVIDâ€19. EMBO Molecular Medicine, 2020, 12, e12642.	3.3	101
271	Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis, 2020, 10, 102-108.	2.4	1,208
272	Cell-Mediated Immune Responses to COVID-19 Infection. Frontiers in Immunology, 2020, 11, 1662.	2.2	48
273	COVID-19 Sepsis and Microcirculation Dysfunction. Frontiers in Physiology, 2020, 11, 747.	1.3	79
274	Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Advances in Biological Regulation, 2020, 77, 100741.	1.4	172
275	SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus–Host Interaction. International Journal of Molecular Sciences, 2020, 21, 4549.	1.8	69
276	C-type Lectins in Immunity to Lung Pathogens. Current Topics in Microbiology and Immunology, 2020, 429, 19-62.	0.7	2
277	Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host and Microbe, 2020, 27, 325-328.	5.1	1,860

#	Article	IF	CITATIONS
278	The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovascular Research, 2020, 116, 1097-1100.	1.8	912
279	COVIDâ€19: Risk groups, mechanistic insights and challenges. International Journal of Clinical Practice, 2020, 74, e13512.	0.8	21
280	Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell, 2020, 181, 905-913.e7.	13.5	1,827
281	COVID-19 pathophysiology: A review. Clinical Immunology, 2020, 215, 108427.	1.4	1,414
282	Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors—lessons from available evidence and insights into COVID-19. Hypertension Research, 2020, 43, 648-654.	1.5	330
283	SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet, The, 2020, 395, 1517-1520.	6.3	936
284	Pathogenesis of COVID-19 from a cell biology perspective. European Respiratory Journal, 2020, 55, 2000607.	3.1	618
285	Human coronavirus spike protein-host receptor recognition. Progress in Biophysics and Molecular Biology, 2021, 161, 39-53.	1.4	34
286	Viral Infections of the Upper Airway in the Setting of COVID-19: A Primer for Rhinologists. American Journal of Rhinology and Allergy, 2021, 35, 122-131.	1.0	5
287	Advances in research on ACE2 as a receptor for 2019-nCoV. Cellular and Molecular Life Sciences, 2021, 78, 531-544.	2.4	87
288	What HIV in the Brain Can Teach Us About SARS-CoV-2 Neurological Complications?. AIDS Research and Human Retroviruses, 2021, 37, 255-265.	0.5	15
289	The immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2: Vaccine design strategies. International Immunopharmacology, 2021, 92, 107051.	1.7	33
290	Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharmaceutica Sinica B, 2021, 11, 1-12.	5.7	93
291	SARS-CoV-2: Targeted managements and vaccine development. Cytokine and Growth Factor Reviews, 2021, 58, 16-29.	3.2	44
292	COVID-19 endocrinopathy with hindsight from SARS. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E139-E150.	1.8	55
293	Clinical characteristics of COVIDâ€19 patients with hepatitis B virus infection — a retrospective study. Liver International, 2021, 41, 720-730.	1.9	46
294	Natural and Synthetic Drugs as Potential Treatment for Coronavirus Disease 2019 (COVID-2019). Chemistry Africa, 2021, 4, 1-13.	1.2	28
295	Evidence-Based Management of the Critically Ill Adult With SARS-CoV-2 Infection. Journal of Intensive Care Medicine, 2021, 36, 18-41.	1.3	7

	CITATION N	LPORT	1
#	Article	IF	CITATIONS
296	Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiology Reviews, 2021, 45, .	3.9	75
297	Immunological imprint of COVIDâ€19 on human peripheral blood leukocyte populations. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 751-765.	2.7	71
298	Tissue Distribution of ACE2 Protein in Syrian Golden Hamster (Mesocricetus auratus) and Its Possible Implications in SARS-CoV-2 Related Studies. Frontiers in Pharmacology, 2020, 11, 579330.	1.6	30
299	Hypercoagulability in COVID-19: A review of the potential mechanisms underlying clotting disorders. SAGE Open Medicine, 2021, 9, 205031212110029.	0.7	18
300	The Fatty Acid Lipid Metabolism Nexus in COVID-19. Viruses, 2021, 13, 90.	1.5	56
301	N- and O-Glycosylation of the SARS-CoV-2 Spike Protein. Analytical Chemistry, 2021, 93, 2003-2009.	3.2	159
302	Novel Targets of SARS-CoV-2 Spike Protein in Human Fetal Brain Development Suggest Early Pregnancy Vulnerability. Frontiers in Neuroscience, 2020, 14, 614680.	1.4	15
303	Spike glycoproteins: Their significance for corona viruses and receptor binding activities for pathogenesis and viral survival. Microbial Pathogenesis, 2021, 150, 104719.	1.3	12
304	Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells?. International Journal of Molecular Sciences, 2021, 22, 992.	1.8	106
305	Oligomerization of Fusion Proteins: A Common Symptom for Class I Viruses. , 2021, , 693-712.		1
306	Nucleocapsid and Spike Proteins of SARS-CoV-2 Drive Neutrophil Extracellular Trap Formation. Immune Network, 2021, 21, e16.	1.6	21
307	COVID-19: Molecular and Cellular Response. Frontiers in Cellular and Infection Microbiology, 2021, 11, 563085.	1.8	31
308	COVID-19: a new emerging respiratory disease from the neurological perspective. Environmental Science and Pollution Research, 2021, 28, 40445-40459.	2.7	21
309	SARS–CoV-2 Immuno-Pathogenesis and Potential for Diverse Vaccines and Therapies: Opportunities and Challenges. Infectious Disease Reports, 2021, 13, 102-125.	1.5	24
310	COVID-19-associated liver injury: from bedside to bench. Journal of Gastroenterology, 2021, 56, 218-230.	2.3	39
311	SARS-CoV-2 and endothelial cell interaction in COVID-19: molecular perspectives. Vascular Biology (Bristol, England), 2021, 3, R15-R23.	1.2	31
312	Two Different Antibody-Dependent Enhancement (ADE) Risks for SARS-CoV-2 Antibodies. Frontiers in Immunology, 2021, 12, 640093.	2.2	93
313	Multi-organ proteomic landscape of COVID-19 autopsies. Cell, 2021, 184, 775-791.e14.	13.5	272

#	Article	IF	CITATIONS
314	Molecular recognition in the infection, replication, and transmission of COVID-19-causing SARS-CoV-2: an emerging interface of infectious disease, biological chemistry, and nanoscience. NPG Asia Materials, 2021, 13, .	3.8	15
315	COVID-19: Immunology, Immunopathogenesis and Potential Therapies. International Reviews of Immunology, 2022, 41, 171-206.	1.5	30
316	Scouting the receptor-binding domain of SARSÂcoronavirusÂ2: aÂcomprehensive immunoinformatics inquisition. Future Virology, 2021, 16, 117-132.	0.9	5
317	Immunotherapeutic strategies to target vulnerabilities in the Ebolavirus glycoprotein. Immunity, 2021, 54, 412-436.	6.6	23
318	An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Viruses, 2021, 13, 560.	1.5	15
319	Evaluation of the safety and efficacy of XAV-19 in patients with COVID-19-induced moderate pneumonia: study protocol for a randomized, double-blinded, placebo-controlled phase 2 (2a and 2b) trial. Trials, 2021, 22, 199.	0.7	14
320	Precision therapeutic targets for COVID-19. Virology Journal, 2021, 18, 66.	1.4	40
321	Coronaviruses in humans and animals: the role of bats in viral evolution. Environmental Science and Pollution Research, 2021, 28, 19589-19600.	2.7	40
322	ACE2, TMPRSS2 and L-SIGN expression in placentae from HIV-positive pregnancies exposed to antiretroviral therapy–implications for SARS-CoV-2 placental infection. Journal of Infectious Diseases, 2021, 224, S631-S641.	1.9	2
323	An Integrated Approach of the Potential Underlying Molecular Mechanistic Paradigms of SARS-CoV-2-Mediated Coagulopathy. Indian Journal of Clinical Biochemistry, 2021, 36, 387-403.	0.9	5
324	Coronavirus disease 2019 respiratory disease in children: clinical presentation and pathophysiology. Current Opinion in Pediatrics, 2021, 33, 302-310.	1.0	2
325	COVID-19 and Alzheimer's disease: how one crisis worsens the other. Translational Neurodegeneration, 2021, 10, 15.	3.6	74
326	Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nature Genetics, 2021, 53, 801-808.	9.4	188
327	Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors. Pathogens, 2021, 10, 448.	1.2	7
328	Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomedicine and Pharmacotherapy, 2021, 136, 111193.	2.5	42
329	The Role of the SARS-CoV-2 S-Protein Glycosylation in the Interaction of SARS-CoV-2/ACE2 and Immunological Responses. Viral Immunology, 2021, 34, 165-173.	0.6	36
330	Kanatlı Koronaviruslarının Zoonotik Potansiyelinin Değerlendirilmesi. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 0, , .	0.1	0
331	Acute Kidney Injury in COVID-19: a Brief Review. Indian Journal of Surgery, 2021, 83, 398-402.	0.2	2

		CITATION REPORT		
#	Article		IF	CITATIONS
332	Human cell receptors: potential drug targets to combat COVID-19. Amino Acids, 2021, 5	53, 813-842.	1.2	21
333	Analysis of COVID-19 on Diagnosis, Vaccine, Treatment, and Pathogenesis with Clinical S Clinics and Practice, 2021, 11, 309-321.	Scenarios.	0.6	6
334	Structural insights on the interaction potential of natural leads against major protein tar SARS-CoV-2: Molecular modelling, docking and dynamic simulation studies. Computers Medicine, 2021, 132, 104325.		3.9	18
335	Complement Proteins as Soluble Pattern Recognition Receptors for Pathogenic Viruses. 13, 824.	Viruses, 2021,	1.5	12
336	Saffron: A potential drug-supplement for severe acute respiratory syndrome coronavirus management. Heliyon, 2021, 7, e07068.	(COVID)	1.4	27
337	DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and c by a glycomimetic antagonist. PLoS Pathogens, 2021, 17, e1009576.	an be inhibited	2.1	133
338	COVID-19 and Hypertension: The What, the Why, and the How. Frontiers in Physiology,	2021, 12, 665064.	1.3	44
339	SARS-CoV-2: From the pathogenesis to potential anti-viral treatments. Biomedicine and Pharmacotherapy, 2021, 137, 111352.		2.5	23
340	Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infection Evolution, 2021, 90, 104773.	n, Genetics and	1.0	72
341	CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Central Scie 1156-1165.	nce, 2021, 7,	5.3	165
342	Naturally Occurring Bioactives as Antivirals: Emphasis on Coronavirus Infection. Frontier Pharmacology, 2021, 12, 575877.	s in	1.6	18
343	Temporal evolution, most influential studies and sleeping beauties of the coronavirus lite Scientometrics, 2021, 126, 7005-7050.	erature.	1.6	12
344	SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lect and Tweety family member 2. Immunity, 2021, 54, 1304-1319.e9.	in receptors	6.6	115
345	Nanotechnologyâ€Based Approach to Combat Pandemic COVID 19: A Review. Macromo 2021, 397, 2000336.	blecular Symposia,	0.4	2
346	Reinforcing our defense or weakening the enemy? A comparative overview of defensive strategies developed to confront COVID-19. Drug Metabolism Reviews, 2021, 53, 508-5		1.5	0
347	In Vitro Models for Studying Entry, Tissue Tropism, and Therapeutic Approaches of Highl Coronaviruses. BioMed Research International, 2021, 2021, 1-21.	y Pathogenic	0.9	9
348	Coronavirus and its terrifying inning around the globe: The pharmaceutical cares at the r frontline. Chemosphere, 2021, 275, 129968.	nain	4.2	7
349	Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens 2021, 11, 1259.	. Diagnostics,	1.3	5

#	Article	IF	Citations
350	Are Lactobacillus Bulgaricus and Bacillus Calmette-Guérin vaccine suitable for patient protection against SARS-CoV-2 infection?. Romanian Journal of Rhinology, 2021, 11, 101-110.	0.1	0
351	A bird's eye view on the role of dendritic cells in SARSâ€CoVâ€2 infection: Perspectives for immuneâ€based vaccines. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 100-110.	2.7	25
352	Expression of SARS-CoV-2 Entry Factors in Human Alveolar Type II Cells in Aging and Emphysema. Biomedicines, 2021, 9, 779.	1.4	3
353	Possible Link between SARS-CoV-2 Infection and Parkinson's Disease: The Role of Toll-Like Receptor 4. International Journal of Molecular Sciences, 2021, 22, 7135.	1.8	23
354	L-SIGN is a receptor on liver sinusoidal endothelial cells for SARS-CoV-2 virus. JCI Insight, 2021, 6, .	2.3	31
355	Future antiviral polymers by plasma processing. Progress in Polymer Science, 2021, 118, 101410.	11.8	31
356	Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua Inhibit Spike Protein of SARS-CoV-2 Binding to ACE2 Receptor: In Silico Approach. Current Pharmacology Reports, 2021, 7, 135-149.	1.5	50
357	COVID-19 Pathogenesis: From Molecular Pathway to Vaccine Administration. Biomedicines, 2021, 9, 903.	1.4	5
359	Original Hosts, Clinical Features, Transmission Routes, and Vaccine Development for Coronavirus Disease (COVID-19). Frontiers in Medicine, 2021, 8, 702066.	1.2	14
360	Virology, Molecular Pathogenesis and Diagnosis of SARS-CoV-2: A Systematic Review. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2021, 23, 352-365.	0.1	1
361	Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. MBio, 2021, 12, e0159021.	1.8	49
362	Comprehensive Analysis of SARS-COV-2 Drug Targets and Pharmacological Aspects in Treating the COVID-19. Current Molecular Pharmacology, 2022, 15, 393-417.	0.7	6
363	SARS-CoV-2 Impairs Dendritic Cells and Regulates DC-SIGN Gene Expression in Tissues. International Journal of Molecular Sciences, 2021, 22, 9228.	1.8	15
364	A Combination of α-Lipoic Acid (ALA) and Palmitoylethanolamide (PEA) Blocks Endotoxin-Induced Oxidative Stress and Cytokine Storm: A Possible Intervention for COVID-19. Journal of Dietary Supplements, 2023, 20, 133-155.	1.4	14
365	SARS-CoV-2 S glycoprotein binding to multiple host receptors enables cell entry and infection. Glycoconjugate Journal, 2021, 38, 611-623.	1.4	17
366	Inhibition of Severe Acute Respiratory Syndrome Coronavirus 2 Replication by Hypertonic Saline Solution in Lung and Kidney Epithelial Cells. ACS Pharmacology and Translational Science, 2021, 4, 1514-1527.	2.5	17
367	A Review on Current COVID-19 Vaccines and Evaluation of Particulate Vaccine Delivery Systems. Vaccines, 2021, 9, 1086.	2.1	19
368	Severe Acute Respiratory Syndrome Coronavirus 2: The Role of the Main Components of the Innate Immune System. Inflammation, 2021, 44, 2151-2169.	1.7	11

#	Article	IF	Citations
369	Pathophysiology and molecular mechanisms of liver injury in severe forms of COVID-19: An integrative review. Clinics and Research in Hepatology and Gastroenterology, 2021, 45, 101752.	0.7	12
370	COVID-19: Pathogenesis and Pharmacological Basis for Use of Passive Antibody Therapy. Current Drug Therapy, 2021, 15, 448-456.	0.2	1
371	A review on clinical, pathological characteristics and drug designing for COVID-19. Arab Journal of Basic and Applied Sciences, 2021, 28, 172-186.	1.0	1
372	No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Scientific Reports, 2021, 11, 413.	1.6	156
373	Genomic Evidence Provides the Understanding of SARS-CoV-2 Composition, Divergence, and Diagnosis. , 2021, , 63-79.		0
375	Insights from the Association of SARS-CoV S-Protein with its Receptor, ACE2. Advances in Experimental Medicine and Biology, 2006, 581, 209-218.	0.8	20
376	Attachment Factor and Receptor Engagement of Sars Coronavirus and Human Coronavirus NL63. Advances in Experimental Medicine and Biology, 2006, 581, 219-227.	0.8	8
377	Proteolysis of Sars-Associated Coronavirus Spike Glycoprotein. Advances in Experimental Medicine and Biology, 2006, 581, 235-240.	0.8	12
378	Increased Viral Titers and Subtle Changes in Plaque Morphology Upon Passage of SARS-CoV in Cells from Different Species. Advances in Experimental Medicine and Biology, 2006, 581, 259-263.	0.8	3
379	Human Coronavirus 229E can Use CD209L (L-Sign) to Enter Cells. Advances in Experimental Medicine and Biology, 2006, 581, 265-269.	0.8	32
380	Analysis of SARS-CoV Receptor Activity of ACE2 Orthologs. Advances in Experimental Medicine and Biology, 2006, 581, 277-280.	0.8	5
381	RAT Coronavirus Infection of Primary RAT Alveolar Epithelial Cells. Advances in Experimental Medicine and Biology, 2006, 581, 351-356.	0.8	6
382	Infection of Human Airway Epithelia by Sars Coronavirus is Associated with ACE2 Expression and Localization. Advances in Experimental Medicine and Biology, 2006, 581, 479-484.	0.8	27
383	Coronaviruses. , 2014, , 199-223.		18
384	The C Type Lectins DC-SIGN and L-SIGN. Methods in Molecular Biology, 2007, 379, 51-68.	0.4	47
385	Human Acute and Chronic Viruses: Host-Pathogen Interactions and Therapeutics. , 2020, , 1-120.		3
386	Molecular Biology of the SARS-Coronavirus. , 2010, , .		22
387	Cellular Entry of the SARS Coronavirus: Implications for Transmission, Pathogenicity and Antiviral Strategies. , 2010, , 3-22.		3

#	Article	IF	CITATIONS
388	SARS Coronavirus Pathogenesis and Therapeutic Treatment Design. , 2010, , 195-230.		1
389	Host Immune Responses to SARS Coronavirus in Humans. , 2010, , 259-278.		15
390	Attachment of human immunodeficiency virus to cells and its inhibition. , 2007, , 31-47.		4
391	An Overview of the Crystallized Structures of the SARS-CoV-2. Protein Journal, 2020, 39, 600-618.	0.7	32
392	α-glucosidase inhibitors as host-directed antiviral agents with potential for the treatment of COVID-19. Biochemical Society Transactions, 2020, 48, 1287-1295.	1.6	48
393	Antigenic modules in the N-terminal S1 region of the transmissible gastroenteritis virus spike protein. Journal of General Virology, 2011, 92, 1117-1126.	1.3	18
394	Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. Journal of General Virology, 2006, 87, 1953-1960.	1.3	111
410	Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clinical and Experimental Immunology, 2020, 202, 193-209.	1.1	83
411	Developments in the Search for Small-Molecule Inhibitors for Treatment of Severe Acute Respiratory Syndrome Coronavirus. , 0, , 209-222.		1
412	Vaccines for Severe Acute Respiratory Syndrome Virus and Other Coronaviruses. , 0, , 379-407.		3
413	Role of the Spike Glycoprotein of Human Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Virus Entry and Syncytia Formation. PLoS ONE, 2013, 8, e76469.	1.1	210
417	Options for COVID-19 Entry into Pulmonary Cells. Biomedical Journal of Scientific & Technical Research, 2020, 29, 22337-22338.	0.0	1
418	Pathomorphology of a new coronavirus infection COVID-19. Sibirskij žurnal KliniÄeskoj I Ôksperimentalɹnoj Mediciny, 2020, 35, 47-52.	0.1	6
419	COVID-19: Targeting the cytokine storm via cholinergic anti-inflammatory (Pyridostigmine). International Journal of Clinical Virology, 2020, 4, 041-046.	0.1	5
420	A Review of Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Iranian Journal of Medical Microbiology, 2020, 14, 154-161.	0.1	5
421	SARS Vaccine Development. Emerging Infectious Diseases, 2005, 11, 1016-1020.	2.0	174
422	C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. Biology, 2021, 10, 1.	1.3	81
423	Receptor-binding domain of SARS-Cov spike protein: Soluble expression in <i>E.coli</i> , purification and functional characterization. World Journal of Gastroenterology, 2005, 11, 6159.	1.4	32

#	Article	IF	CITATIONS
425	Approaches towards fighting the COVID‑19 pandemic (Review). International Journal of Molecular Medicine, 2020, 47, 3-22.	1.8	48
426	Decreased Proliferation of Mesenchymal Stem Cells in Corticosteroid-induced Osteonecrosis of Femoral Head. Orthopedics, 2008, 31, 444.	0.5	45
427	Decreased Proliferation of Mesenchymal Stem Cells in Corticosteroid-Induced Osteonecrosis of Femoral Head. Orthopedics, 2008, 31, .	0.5	1
428	Drug for corona virus: A systematic review. Indian Journal of Pharmacology, 2020, 52, 56.	0.4	402
429	SARS-CoV-2: A Piece of Bad News. Medeniyet Medical Journal, 2020, 35, 151-160.	0.4	4
430	Virology of SARS-CoV-2 and management of nCOVID-19 utilizing Immunomodulation properties of human mesenchymal stem cells—a literature review. Stem Cell Investigation, 2021, 8, 0-0.	1.3	1
431	Cell Entry of Animal Coronaviruses. Viruses, 2021, 13, 1977.	1.5	12
432	The effect of N-glycosylation of SARS-CoV-2 spike protein on the virus interaction with the host cell ACE2 receptor. IScience, 2021, 24, 103272.	1.9	20
433	Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 2022, 23, 3-20.	16.1	1,532
434	CD13. The AFCS-nature Molecule Pages, 0, , .	0.2	0
435	Evaluation of current strategies to inhibit HIV entry, integration and maturation. , 2006, , 213-254.		0
438	DC-SIGN Family of Receptors. , 2012, , 773-798.		5
439	The Mycobacteria: a Postgenomic View. , 0, , 49-89.		0
440	Emerging Nidovirus Infections. , 0, , 409-418.		1
441	Severe Acute Respiratory Syndrome: Epidemiology, Pathogenesis, and Animal Models. , 0, , 299-311.		0
442	Severe Acute Respiratory Syndrome (SARS). , 0, , 23-50.		1
446	Perspective of molecular immune response of SARS-COV-2 infection. Jurnal Teknologi Laboratorium, 2020, 9, 58-66.	0.4	4
448	A Review of Human Coronaviruses' Receptors: The Host-Cell Targets for the Crown Bearing Viruses. Molecules, 2021, 26, 6455.	1.7	36

#	Article	IF	CITATIONS
450	Identifying epitopes for cluster of differentiation and design of new peptides inhibitors against human SARS-CoV-2 spike RBD by an in-silico approach. Heliyon, 2020, 6, e05739.	1.4	6
452	COVID-19: A Devastating Pandemic . Pharmaceutical Sciences, 2020, 26, S3-S11.	0.1	4
453	Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Research, 2022, 32, 24-37.	5.7	98
454	COVID-19 and Diabetes: A Comprehensive Review of Angiotensin Converting EnzymeÂ2, Mutual Effects and Pharmacotherapy. Frontiers in Endocrinology, 2021, 12, 772865.	1.5	15
455	Epigenetic glycosylation of SARS-CoV-2 impact viral infection through DC&L-SIGN receptors. IScience, 2021, 24, 103426.	1.9	8
456	Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection (Russian translation). Juvenis Scientia, 2021, 7, 28-59.	0.1	1
457	Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax, 2022, 77, 408-416.	2.7	23
458	Outlook of therapeutic and diagnostic competency of nanobodies against SARS-CoV-2: A systematic review. Analytical Biochemistry, 2022, 640, 114546.	1.1	19
459	Pathologic basis of coronavirus disease 2019 (COVID-19) – An overview of cellular affinities, pathogenesis, clinical manifestations, autopsy findings and sequelae. Annals of Cytology and Pathology, 2020, , 078-083.	0.3	1
460	Pulmonary pathology of COVID-19. Journal of Lung, Pulmonary & Respiratory Research, 2020, 7, 79-83.	0.3	0
461	An insight into SARS-CoV-2 structure, pathogenesis, target hunting for drug development and vaccine initiatives. RSC Medicinal Chemistry, 2022, 13, 647-675.	1.7	3
462	An Updated Review on the Role of Single Nucleotide Polymorphisms in COVID-19 Disease Severity: A Global Aspect. Current Pharmaceutical Biotechnology, 2022, 23, 1596-1611.	0.9	2
464	Immune Profiling of COVID-19 in Correlation with SARS and MERS. Viruses, 2022, 14, 164.	1.5	11
465	COVIDâ€19 immunopathology with emphasis on Th17 response and cellâ€based immunomodulation therapy: Potential targets and challenges. Scandinavian Journal of Immunology, 2022, 95, e13131.	1.3	19
466	Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. Journal of Controlled Release, 2022, 343, 361-378.	4.8	11
467	Proteomic profiling identifies novel proteins for genetic risk of severe COVID-19: the Atherosclerosis Risk in Communities Study. Human Molecular Genetics, 2022, 31, 2452-2461.	1.4	8
468	SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. International Journal of Molecular Sciences, 2022, 23, 1716.	1.8	107
469	Immunopathogenecity in COVID-19. , 2022, 8, 3-13.		0

#	Article	IF	CITATIONS
470	Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses, 2022, 14, 351.	1.5	11
471	COVID-19, liver dysfunction and pathophysiology: A conceptual discussion. World Journal of Gastroenterology, 2022, 28, 683-688.	1.4	3
472	Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Frontiers in Immunology, 2021, 12, 796855.	2.2	63
474	COVIDâ€19: A systematic review and update on prevention, diagnosis, and treatment. MedComm, 2022, 3, e115.	3.1	30
475	COVID-19 Cardiovascular Connection: A Review of Cardiac Manifestations in COVID-19 Infection and Treatment Modalities. Current Problems in Cardiology, 2022, , 101186.	1.1	7
476	Mild COVID-19 imprints a long-term inflammatory eicosanoid- and chemokine memory in monocyte-derived macrophages. Mucosal Immunology, 2022, 15, 515-524.	2.7	37
478	Thymoquinone's Antiviral Effects: It is Time to be Proven in the Covid-19 Pandemic Era and its Omicron Variant Surge. Frontiers in Pharmacology, 2022, 13, 848676.	1.6	6
479	Hypothetical Immunological and Immunogenetic Model of Heterogenous Effects of BCG Vaccination in SARS-CoV-2 Infections: BCG-induced Trained and Heterologous Immunity. Journal of Medical Science, 0, , e551.	0.2	2
480	Coronavirus Entry Inhibitors. Advances in Experimental Medicine and Biology, 2022, 1366, 101-121.	0.8	3
481	SARS-CoV-2 Infection: A Possible Risk Factor for Incidence and Recurrence of Cancers. International Journal of Hematology-Oncology and Stem Cell Research, 0, , .	0.3	4
486	Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs, 2022, 36, 231-323.	2.2	24
487	Mechanisms of Immune Dysregulation in COVID-19 Are Different From SARS and MERS: A Perspective in Context of Kawasaki Disease and MIS-C. Frontiers in Pediatrics, 2022, 10, .	0.9	6
488	Severe Acute Respiratory Syndrome Coronavirus Entry as a Target of Antiviral Therapies. Antiviral Therapy, 2007, 12, 639-650.	0.6	17
489	Endotheliitis, shunts, and Ventilation–Perfusion mismatch in coronavirus disease 2019: A literature review of disease mechanisms. Annals of Medicine and Surgery, 2022, , 103820.	0.5	2
491	Comprehensive Profiling Analysis of CD209 in Malignancies Reveals the Therapeutic Implication for Tumor Patients Infected With SARS-CoV-2. Frontiers in Genetics, 0, 13, .	1.1	1
492	Mechanisms of COVID-19 pathogenesis in diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H403-H420.	1.5	26
493	Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field. Viruses, 2022, 14, 1573.	1.5	0
494	Comprehensive overview of COVID-19-related respiratory failure: focus on cellular interactions. Cellular and Molecular Biology Letters, 2022, 27, .	2.7	6

#	Article	IF	CITATIONS
495	Long-Term Health Consequences of SARS-CoV-2: Assumptions Based on SARS-CoV-1 and MERS-CoV Infections. Diagnostics, 2022, 12, 1852.	1.3	2
496	An evaluation of the 2019 novel coronavirus (COVID-19) disease. Current Trends in Pharmacy and Pharmaceutical Chemistry, 2022, 4, 90-97.	0.1	0
497	Role of aging in Blood–Brain Barrier dysfunction and susceptibility to SARS-CoV-2 infection: impacts on neurological symptoms of COVID-19. Fluids and Barriers of the CNS, 2022, 19, .	2.4	10
498	l've looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Frontiers in Immunology, 0, 13, .	2.2	3
499	CoVM2: Molecular Biological Data Integration of SARS-CoV-2 Proteins in a Macro-to-Micro Method. Biomolecules, 2022, 12, 1067.	1.8	1
500	Multivalent ACE2 engineering—A promising pathway for advanced coronavirus nanomedicine development. Nano Today, 2022, 46, 101580.	6.2	7
501	Research progress on etiology and pathogenesis of MERS-CoV and SARS-CoV. AIP Conference Proceedings, 2022, , .	0.3	0
502	Covid-19, nervous system pathology, and Parkinson's disease: Bench to bedside. International Review of Neurobiology, 2022, , 17-34.	0.9	7
503	The multifaceted roles of NLRP3-modulating proteins in virus infection. Frontiers in Immunology, 0, 13,	2.2	10
504	Murine Hepatitis Virus, a Biosafety Level 2 Model for SARS-CoV-2, Can Remain Viable on Meat and Meat Packaging Materials for at Least 48 Hours. Microbiology Spectrum, 2022, 10, .	1.2	3
505	Immune responses to SARS-CoV-2 infection and COVID-19 vaccines. Exploration of Immunology, 2022, 2, 648-664.	1.7	1
506	Immunology to Immunotherapeutics of SARS-CoV-2: Identification of Immunogenic Epitopes for Vaccine Development. Current Microbiology, 2022, 79, .	1.0	3
507	Current therapeutic strategies and possible effective drug delivery strategies against COVID-19. Current Drug Delivery, 2022, 19, .	0.8	1
508	Exploring the Targets of Novel Corona Virus and Docking-based Screening of Potential Natural Inhibitors to Combat COVID-19. Current Topics in Medicinal Chemistry, 2022, 22, 2410-2434.	1.0	3
509	CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. PLoS Pathogens, 2022, 18, e1010479.	2.1	15
510	Severe acute respiratory syndrome (SARS). , 2023, , 53-124.		0
511	Vascular dysfunction in COVID-19 patients: update on SARS-CoV-2 infection of endothelial cells and the role of long non-coding RNAs. Clinical Science, 2022, 136, 1571-1590.	1.8	7
512	Immunosenescence and ACE2 protein expression: Association with SARS-CoV-2 in older adults. Open Journal of Asthma, 2022, 6, 008-017.	2.0	0

#	Article	IF	CITATIONS
513	COVID-19 and pulmonary manifestations. Gazzetta Medica Italiana Archivio Per Le Scienze Mediche, 2022, 181, .	0.0	0
514	Severe COVID-19 May Impact Hepatic Fibrosis /Hepatic Stellate Cells Activation as Indicated by a Pathway and Population Genetic Study. Genes, 2023, 14, 22.	1.0	3
515	Innate immune recognition against SARS-CoV-2. Inflammation and Regeneration, 2023, 43, .	1.5	8
517	Comprehensive analysis of SARSâ€CoVâ€2 receptor proteins in human respiratory tissues identifies alveolar macrophages as potential virus entry site. Histopathology, 2023, 82, 846-859.	1.6	0
518	Membrane cholesterol regulates the oligomerization and fusogenicity of SARS-CoV fusion peptide: implications in viral entry. Physical Chemistry Chemical Physics, 2023, 25, 7815-7824.	1.3	6
519	Potent NKT cell ligands overcome SARS-CoV-2 immune evasion to mitigate viral pathogenesis in mouse models. PLoS Pathogens, 2023, 19, e1011240.	2.1	6
520	Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry?. International Journal of Molecular Sciences, 2023, 24, 6253.	1.8	3
521	SARS-CoV-2 Receptors and Their Involvement in Cell Infection. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2023, 17, 1-11.	0.3	0
522	COVIDâ€19 and preeclampsia: The unique and the mutually nonexclusive clinical manifestations. American Journal of Reproductive Immunology, 2023, 89, .	1.2	2
523	Effect of coronaviruses on blood vessel permeability: potential therapeutic targets. Therapeutic Advances in Respiratory Disease, 2023, 17, 175346662311622.	1.0	0
534	Coronaviruses: The Common Cold, SARS, and MERS. , 2024, , 1-53.		0
536	Panendothelitis Due to the SARS COV 2 Infection: Consequences on Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection, 2023, , 181-227.	0.1	Ο