The Arabidopsis JAGGED gene encodes a zinc finger prodevelopment

Development (Cambridge) 131, 1111-1122 DOI: 10.1242/dev.00991

Citation Report

#	Article	IF	CITATIONS
1	PINning down the connections: transcription factors and hormones in leaf morphogenesis. Current Opinion in Plant Biology, 2004, 7, 575-581.	3.5	34
2	Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics, 2004, 5, 39.	1.2	355
3	Cryptic Bracts Exposed. Developmental Cell, 2004, 6, 318-319.	3.1	9
4	TELOMERASE ACTIVATOR1 Induces Telomerase Activity and Potentiates Responses to Auxin in Arabidopsis. Plant Cell, 2004, 16, 2910-2922.	3.1	43
5	Evolution of leaf developmental mechanisms. New Phytologist, 2005, 167, 693-710.	3.5	95
6	Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant Journal, 2005, 41, 744-754.	2.8	185
7	pOp6/LhGR: a stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant Journal, 2005, 41, 919-935.	2.8	110
8	New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant Journal, 2005, 41, 899-918.	2.8	195
9	Improved transcriptional activators and their use in mis-expression traps in Arabidopsis. Plant Journal, 2005, 43, 769-788.	2.8	37
10	The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis. Current Biology, 2005, 15, 303-315.	1.8	312
11	Networks in leaf development. Current Opinion in Plant Biology, 2005, 8, 59-66.	3.5	91
12	Genetic control of floral size and proportions. International Journal of Developmental Biology, 2005, 49, 513-525.	0.3	57
13	Leaf shape: genetic controls and environmental factors. International Journal of Developmental Biology, 2005, 49, 547-555.	0.3	235
14	Gene network analysis in plant development by genomic technologies. International Journal of Developmental Biology, 2005, 49, 745-759.	0.3	33
15	The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development (Cambridge), 2005, 132, 2203-2213.	1.2	207
16	BLADE-ON-PETIOLE–Dependent Signaling Controls Leaf and Floral Patterning in Arabidopsis. Plant Cell, 2005, 17, 1434-1448.	3.1	276
17	Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development (Cambridge), 2005, 132, 429-438.	1.2	335
18	A genetic framework for fruit patterning in Arabidopsis thaliana. Development (Cambridge), 2005, 132, 4687-4696.	1.2	141

#	Article	IF	CITATIONS
19	Developmental Gene Evolution and the Origin of Grass Inflorescence Diversity. Advances in Botanical Research, 2006, , 425-481.	0.5	74
20	Genetic and Molecular Control of Embryogenesis — Role of Nonzygotic and Zygotic Genes. , 2006, , 101-129.		0
21	Fine mapping of a pistilloid-stamen (PS) gene on the short arm of chromosome 1 in rice. Genome, 2006, 49, 1016-1022.	0.9	9
22	MECHANISM OF LEAF-SHAPE DETERMINATION. Annual Review of Plant Biology, 2006, 57, 477-496.	8.6	329
23	trans meets cis in MADS science. Trends in Plant Science, 2006, 11, 224-231.	4.3	173
24	Transactivated and chemically inducible gene expression in plants. Plant Journal, 2006, 45, 651-683.	2.8	157
25	Something on the Side: Axillary Meristems and Plant Development. Plant Molecular Biology, 2006, 60, 843-854.	2.0	98
26	Expression of Cell Cycle Genes in Shoot Apical Meristems. Plant Molecular Biology, 2006, 60, 947-961.	2.0	14
27	GmZFP1 encoding a single zinc finger protein is expressed with enhancement in reproductive organs and late seed development in soybean (Glycine max). Molecular Biology Reports, 2006, 33, 279-285.	1.0	25
28	Molecules and morphology: comparative developmental genetics of the Brassicaceae. Plant Systematics and Evolution, 2006, 259, 199-215.	0.3	20
29	The E3 Ubiquitin Ligase BIG BROTHER Controls Arabidopsis Organ Size in a Dosage-Dependent Manner. Current Biology, 2006, 16, 272-279.	1.8	310
30	Keeping it together: co-ordinating plant growth. Current Opinion in Plant Biology, 2006, 9, 12-20.	3.5	68
31	Plant separation: 50 ways to leave your mother. Current Opinion in Plant Biology, 2006, 9, 59-65.	3.5	156
32	Genome-Wide Analysis of Gene Expression during Early Arabidopsis Flower Development. PLoS Genetics, 2006, 2, e117.	1.5	192
33	Patterning the female side of Arabidopsis: the importance of hormones. Journal of Experimental Botany, 2006, 57, 3457-3469.	2.4	79
34	A Membrane-Bound NAC Transcription Factor Regulates Cell Division in Arabidopsis. Plant Cell, 2006, 18, 3132-3144.	3.1	344
35	NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development (Cambridge), 2006, 133, 1645-1655.	1.2	128
36	The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development (Cambridge), 2006, 133, 1673-1682.	1.2	163

_

#	Article	IF	CITATIONS
37	PEAPOD regulates lamina size and curvature in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13238-13243.	3.3	269
38	The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis. Plant Cell, 2006, 18, 2929-2945.	3.1	513
39	Transcriptional Control of the Plant Cell Cycle. Plant Cell Monographs, 2007, , 13-32.	0.4	3
40	Developmental Morphology of the Shoot in Weddellina squamulosa and Implications for Shoot Evolution in the Podostemaceae. Annals of Botany, 2007, 99, 1121-1130.	1.4	27
41	Common regulatory networks in leaf and fruit patterning revealed by mutations in the <i>Arabidopsis ASYMMETRIC LEAVES1</i> gene. Development (Cambridge), 2007, 134, 2663-2671.	1.2	107
42	Control of Plant Organ Size by KLUH/CYP78A5-Dependent Intercellular Signaling. Developmental Cell, 2007, 13, 843-856.	3.1	334
44	The ins and outs of the plant cell cycle. Nature Reviews Molecular Cell Biology, 2007, 8, 655-665.	16.1	314
45	Growing up to one's standard. Current Opinion in Plant Biology, 2007, 10, 63-69.	3.5	91
46	Developmental processes of leaf morphogenesis inarabidopsis. Journal of Plant Biology, 2007, 50, 282-290.	0.9	20
47	SAZ, a new SUPERMAN-like protein, negatively regulates a subset of ABA-responsive genes in Arabidopsis. Molecular Genetics and Genomics, 2008, 279, 183-192.	1.0	25
48	Auxin can act independently of <i>CRC</i> , <i>LUG</i> , <i>SEU</i> , <i>SPT</i> and <i>STY1</i> in style development but not apicalâ€basal patterning of the <i>Arabidopsis</i> gynoecium. New Phytologist, 2008, 180, 798-808.	3.5	86
49	Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella) Tj ETQq1 1 Genomics, 2008, 9, 154.	0.784314 1.2	rgBT /Over 90
50	The Arabidopsis petal: a model for plant organogenesis. Trends in Plant Science, 2008, 13, 430-436.	4.3	93
51	Arabidopsis Genes <i>AS1</i> , <i>AS2</i> , and <i>JAG</i> Negatively Regulate Boundary-Specifying Genes to Promote Sepal and Petal Development. Plant Physiology, 2008, 146, 323-324.	2.3	93
52	Control of Plant Organ Size. , 2008, , 25-45.		6
53	Arabidopsis Fruit Development. , 0, , 172-203.		5
54	The role of auxin in style development and apical-basal patterning of the <i>Arabidopsis thaliana</i> gynoecium. Plant Signaling and Behavior, 2009, 4, 83-85.	1.2	19
55	<i>LYRATE</i> Is a Key Regulator of Leaflet Initiation and Lamina Outgrowth in Tomato Â. Plant Cell, 2009, 21, 3093-3104.	3.1	48

#	Article	IF	CITATIONS
56	AGAMOUS Controls GIANT KILLER, a Multifunctional Chromatin Modifier in Reproductive Organ Patterning and Differentiation. PLoS Biology, 2009, 7, e1000251.	2.6	83
57	The <i>NGATHA</i> Distal Organ Development Genes Are Essential for Style Specification in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 1373-1393.	3.1	115
58	Meristematic sculpting in fruit development. Journal of Experimental Botany, 2009, 60, 1493-1502.	2.4	61
59	A Defect in Zinc Finger Protein Double B-boxÂ1a (DBB1a) Causes Abnormal Floral Development in Arabidopsis. Journal of Plant Biology, 2009, 52, 543-549.	0.9	12
60	<i>STAMENLESS 1</i> , encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant Journal, 2009, 59, 789-801.	2.8	111
61	Tryptophan deficiency affects organ growth by retarding cell expansion in Arabidopsis. Plant Journal, 2009, 57, 511-521.	2.8	63
62	Rice <i>OPEN BEAK</i> is a negative regulator of class 1 <i>knox</i> genes and a positive regulator of class B floral homeotic gene. Plant Journal, 2009, 58, 724-736.	2.8	41
63	Coordination of cell proliferation and cell expansion mediated by ribosomeâ€related processes in the leaves of <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 59, 499-508.	2.8	162
64	<i>Aquilegia</i> : A New Model for Plant Development, Ecology, and Evolution. Annual Review of Plant Biology, 2009, 60, 261-277.	8.6	95
65	A Conserved Mechanism of Bract Suppression in the Grass Family Â. Plant Cell, 2010, 22, 565-578.	3.1	97
66	<scp>leafprocessor</scp> : a new leaf phenotyping tool using contour bending energy and shape cluster analysis. New Phytologist, 2010, 187, 251-261.	3.5	58
66 67	<scp>leafprocessor</scp> : a new leaf phenotyping tool using contour bending energy and shape cluster analysis. New Phytologist, 2010, 187, 251-261. The flowering of Arabidopsis flower development. Plant Journal, 2010, 61, 1014-1028.	3.5 2.8	58 200
	cluster analysis. New Phytologist, 2010, 187, 251-261.		
67	cluster analysis. New Phytologist, 2010, 187, 251-261. The flowering of Arabidopsis flower development. Plant Journal, 2010, 61, 1014-1028. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene	2.8	200
67 68	 cluster analysis. New Phytologist, 2010, 187, 251-261. The flowering of Arabidopsis flower development. Plant Journal, 2010, 61, 1014-1028. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant Journal, 2010, 62, 807-816. Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously 	2.8 2.8	200 95
67 68 69	 cluster analysis. New Phytologist, 2010, 187, 251-261. The flowering of Arabidopsis flower development. Plant Journal, 2010, 61, 1014-1028. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant Journal, 2010, 62, 807-816. Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. Plant Journal, 2010, 63, 974-989. Variability in the Control of Cell Division Underlies Sepal Epidermal Patterning in Arabidopsis 	2.8 2.8 2.8	200 95 65
67 68 69 70	 cluster analysis. New Phytologist, 2010, 187, 251-261. The flowering of Arabidopsis flower development. Plant Journal, 2010, 61, 1014-1028. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant Journal, 2010, 62, 807-816. Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. Plant Journal, 2010, 63, 974-989. Variability in the Control of Cell Division Underlies Sepal Epidermal Patterning in Arabidopsis thaliana. PLoS Biology, 2010, 8, e1000367. 	2.8 2.8 2.8 2.6	200 95 65 263

#	Article	IF	CITATIONS
74	AhZEP1, a cDNA Encoding C2H2-Type Zinc Finger Protein, Induced by Salt Stress in Peanut (Arachis) Tj ETQq0 0 (International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0 rgBT /O\ 0.0	verlock 10 Tf 5 1
75	The maize SBP-box transcription factor encoded by <i>tasselsheath4</i> regulates bract development and the establishment of meristem boundaries. Development (Cambridge), 2010, 137, 1243-1250.	1.2	217
76	Differentiating Arabidopsis Shoots from Leaves by Combined YABBY Activities Â. Plant Cell, 2010, 22, 2113-2130.	3.1	265
77	Evolution Of Leaf Shape. Current Topics in Developmental Biology, 2010, 91, 169-183.	1.0	32
78	Signaling Sides. Current Topics in Developmental Biology, 2010, 91, 141-168.	1.0	49
79	Control of cell proliferation in <i>Arabidopsis thaliana</i> by microRNA miR396. Development (Cambridge), 2010, 137, 103-112.	1.2	476
80	Genes and functions controlled by floral organ identity genes. Seminars in Cell and Developmental Biology, 2010, 21, 94-99.	2.3	39
81	The ABC model and the diversification of floral organ identity. Seminars in Cell and Developmental Biology, 2010, 21, 129-137.	2.3	177
82	Control of Tissue and Organ Growth in Plants. Current Topics in Developmental Biology, 2010, 91, 185-220.	1.0	73
83	The Mechanism of Cell Cycle Arrest Front Progression Explained by a KLUH/CYP78A5-dependent Mobile Growth Factor in Developing Leaves of Arabidopsis thaliana. Plant and Cell Physiology, 2010, 51, 1046-1054.	1.5	148
84	Increase in fruit size of a spontaneous mutant of â€~Gala' apple (Malus×domestica Borkh.) is facilitated by altered cell production and enhanced cell size. Journal of Experimental Botany, 2010, 61, 3003-3013.	2.4	98
85	Hyperâ€activation of the TCP4 transcription factor in <i>Arabidopsis thaliana</i> accelerates multiple aspects of plant maturation. Plant Journal, 2011, 67, 595-607.	2.8	144
86	Characterization of <i>Linaria KNOX</i> genes suggests a role in petalâ€spur development. Plant Journal, 2011, 68, 703-714.	2.8	44
87	Arabidopsis <i>ORGAN SIZE RELATED1</i> regulates organ growth and final organ size in orchestration with <i>ARGOS</i> and <i>ARL</i> . New Phytologist, 2011, 191, 635-646.	3.5	87
88	Molecular aspects of flower development in grasses. Sexual Plant Reproduction, 2011, 24, 247-282.	2.2	62
89	Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theoretical and Applied Genetics, 2011, 122, 865-874.	1.8	52
90	Control of final organ size by Mediator complex subunit 25 in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2011, 138, 4545-4554.	1.2	115
91	Key Proliferative Activity in the Junction between the Leaf Blade and Leaf Petiole of Arabidopsis Â. Plant Physiology, 2011, 157, 1151-1162.	2.3	108

#	Article	IF	CITATIONS
92	Arabidopsis and Tobacco SUPERMAN regulate hormone signalling and mediate cell proliferation and differentiation. Journal of Experimental Botany, 2011, 62, 949-961.	2.4	54
93	Antagonistic Gene Activities Determine the Formation of Pattern Elements along the Mediolateral Axis of the Arabidopsis Fruit. PLoS Genetics, 2012, 8, e1003020.	1.5	38
94	The Arabidopsis organelle-localized glycyl-tRNA synthetase encoded by EMBRYO DEFECTIVE DEVELOPMENT1 is required for organ patterning. Journal of Experimental Botany, 2012, 63, 5233-5243.	2.4	29
95	The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis. Plant and Cell Physiology, 2012, 53, 1322-1333.	1.5	35
96	Is the lodicule a petal: Molecular evidence?. Plant Science, 2012, 184, 121-128.	1.7	31
97	Transcriptome analysis of rosette and folding leaves in Chinese cabbage using high-throughput RNA sequencing. Genomics, 2012, 99, 299-307.	1.3	48
98	Floral meristem initiation and emergence in plants. Cellular and Molecular Life Sciences, 2012, 69, 3807-3818.	2.4	43
99	What determines cell size?. BMC Biology, 2012, 10, 101.	1.7	196
100	Characterization of temperatureâ€sensitive mutants reveals a role for receptorâ€like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development. Plant Journal, 2012, 72, 707-720.	2.8	36
101	JAGGED Controls Growth Anisotropy and Coordination between Cell Size and Cell Cycle during Plant Organogenesis. Current Biology, 2012, 22, 1739-1746.	1.8	70
102	Plant Growth: Jogging the Cell Cycle with JAG. Current Biology, 2012, 22, R838-R840.	1.8	1
103	Regulation of Leaf Morphology by MicroRNA394 and its Target LEAF CURLING RESPONSIVENESS. Plant and Cell Physiology, 2012, 53, 1283-1294.	1.5	107
104	Control of Organ Size in Plants. Current Biology, 2012, 22, R360-R367.	1.8	162
105	Mutant and Overexpression Analysis of a C2H2 Single Zinc Finger Gene of Arabidopsis. Plant Molecular Biology Reporter, 2012, 30, 99-110.	1.0	6
106	Evidence that an evolutionary transition from dehiscent to indehiscent fruits in <i><scp>L</scp>epidium</i> (<scp>B</scp> rassicaceae) was caused by a change in the control of valve margin identity genes. Plant Journal, 2013, 73, 824-835.	2.8	71
107	Cloning of Ln Gene Through Combined Approach of Map-based Cloning and Association Study in Soybean. Journal of Genetics and Genomics, 2013, 40, 93-96.	1.7	27
108	The <i><scp>WOX</scp>13</i> homeobox gene promotes replum formation in the <i>Arabidopsis thaliana</i> fruit. Plant Journal, 2013, 73, 37-49.	2.8	94
109	Usual and unusual development of the dicot leaf: involvement of transcription factors and hormones. Plant Cell Reports, 2013, 32, 899-922.	2.8	16

#	Article	IF	CITATIONS
110	Physical Interaction of Floral Organs Controls Petal Morphogenesis in Arabidopsis Â. Plant Physiology, 2013, 161, 1242-1250.	2.3	28
111	JAGGED Controls Arabidopsis Petal Growth and Shape by Interacting with a Divergent Polarity Field. PLoS Biology, 2013, 11, e1001550.	2.6	122
112	<i>Ln</i> Is a Key Regulator of Leaflet Shape and Number of Seeds per Pod in Soybean. Plant Cell, 2013, 24, 4807-4818.	3.1	90
113	<i><scp>SIMPLE LEAF</scp>3</i> encodes a ribosomeâ€associated protein required for leaflet development in <i><scp>C</scp>ardamine hirsuta</i> . Plant Journal, 2013, 73, 533-545.	2.8	26
114	The Leaf Adaxial-Abaxial Boundary and Lamina Growth. Plants, 2013, 2, 174-202.	1.6	52
115	The Half-Size ABC Transporter FOLDED PETALS 2/ABCG13 Is Involved in Petal Elongation through Narrow Spaces in Arabidopsis thaliana Floral Buds. Plants, 2014, 3, 348-358.	1.6	14
116	The Arabidopsis ZINC FINGER PROTEIN3 Interferes with Abscisic Acid and Light Signaling in Seed Germination and Plant Development Â. Plant Physiology, 2014, 165, 1203-1220.	2.3	89
117	Arabidopsis JAGCED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2830-2835.	3.3	94
118	Gene networks controlling <i><scp>A</scp>rabidopsis thaliana</i> flower development. New Phytologist, 2014, 201, 16-30.	3.5	233
119	BLADE-ON-PETIOLE genes: Setting boundaries in development and defense. Plant Science, 2014, 215-216, 157-171.	1.7	63
120	A Novel AP2-Type Transcription Factor, SMALL ORGAN SIZE1, Controls Organ Size Downstream of an Auxin Signaling Pathway. Plant and Cell Physiology, 2014, 55, 897-912.	1.5	107
121	Specification of floral organs in Arabidopsis. Journal of Experimental Botany, 2014, 65, 1-9.	2.4	119
122	Leaf development and morphogenesis. Development (Cambridge), 2014, 141, 4219-4230.	1.2	199
123	Genetic Control of Arabidopsis Flower Development. Advances in Botanical Research, 2014, 72, 159-190.	0.5	4
124	Flower Development in Rice. Advances in Botanical Research, 2014, 72, 221-262.	0.5	12
125	<scp>CLAUSA</scp> restricts tomato leaf morphogenesis and <i><scp>GOBLET</scp></i> expression. Plant Journal, 2015, 83, 888-902.	2.8	21
126	Developmental mechanism underpinning leaf shape evolution. Plant Morphology, 2015, 27, 43-50.	0.1	0
127	Gene Expression Differences between High-Growth Populus Allotriploids and Their Diploid Parents. Forests, 2015, 6, 839-857.	0.9	6

#	Article	IF	CITATIONS
128	HANABA TARANU (HAN) Bridges Meristem and Organ Primordia Boundaries through PINHEAD, JAGGED, BLADE-ON-PETIOLE2 and CYTOKININ OXIDASE 3 during Flower Development in Arabidopsis. PLoS Genetics, 2015, 11, e1005479.	1.5	81
129	Behavior of Leaf Meristems and Their Modification. Frontiers in Plant Science, 2015, 6, 1060.	1.7	65
130	The Arabidopsis EIN2 restricts organ growth by retarding cell expansion. Plant Signaling and Behavior, 2015, 10, e1017169.	1.2	28
131	Control of patterning, growth, and differentiation by floral organ identity genes. Journal of Experimental Botany, 2015, 66, 1065-1073.	2.4	73
132	Temporal Control of Plant Organ Growth by TCP Transcription Factors. Current Biology, 2015, 25, 1765-1770.	1.8	75
133	Transcriptional, Posttranscriptional, and Posttranslational Regulation of <i>SHOOT MERISTEMLESS</i> Gene Expression in Arabidopsis Determines Gene Function in the Shoot Apex. Plant Physiology, 2015, 167, 424-442.	2.3	24
134	Transcriptomic insights into antagonistic effects of gibberellin and abscisic acid on petal growth in Gerbera hybrida. Frontiers in Plant Science, 2015, 6, 168.	1.7	35
135	Active Control of Cell Size Generates Spatial Detail during Plant Organogenesis. Current Biology, 2015, 25, 2991-2996.	1.8	59
136	<i>HANABA TARANU</i> regulates the shoot apical meristem and leaf development in cucumber (<i>Cucumis sativus</i> L.). Journal of Experimental Botany, 2015, 66, 7075-7087.	2.4	41
137	The founder-cell transcriptome in the Arabidopsis apetala1 cauliflower inflorescence meristem. BMC Genomics, 2016, 17, 855.	1.2	13
138	Molecular Mechanisms of Floral Boundary Formation in Arabidopsis. International Journal of Molecular Sciences, 2016, 17, 317.	1.8	13
139	Diversification of fruit shape in the Brassicaceae family. Plant Reproduction, 2016, 29, 149-163.	1.3	29
140	Variable Cell Growth Yields Reproducible Organ Development through Spatiotemporal Averaging. Developmental Cell, 2016, 38, 15-32.	3.1	165
141	Enhancing crop yield by optimizing plant developmental features. Development (Cambridge), 2016, 143, 3283-3294.	1.2	134
142	Hormones in tomato leaf development. Developmental Biology, 2016, 419, 132-142.	0.9	65
143	Gene networks controlling petal organogenesis. Journal of Experimental Botany, 2016, 67, 61-68.	2.4	60
144	Growth-Regulating Factors, A Transcription Factor Family Regulating More than Just Plant Growth. , 2016, , 269-280.		8
145	The <i>Aquilegia JAGGED</i> homolog promotes proliferation of adaxial cell types in both leaves and stems. New Phytologist, 2017, 216, 536-548.	3.5	14

#	Article	IF	CITATIONS
146	Genetic analysis of the Lf1 gene that controls leaflet number in soybean. Theoretical and Applied Genetics, 2017, 130, 1685-1692.	1.8	5
147	Chicken Toes-Like Leaf and Petalody Flower (CTP) is a novel regulator that controls leaf and flower development in soybean. Journal of Experimental Botany, 2017, 68, 5565-5581.	2.4	7
148	Floral Organogenesis: When Knowing Your ABCs Is Not Enough. Plant Physiology, 2017, 173, 56-64.	2.3	36
149	Confirmation of the pleiotropic control of leaflet shape and number of seeds per pod by the <i>Ln</i> gene in induced soybean mutants. Breeding Science, 2017, 67, 363-369.	0.9	26
150	Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis. Plant Reproduction, 2018, 31, 89-105.	1.3	33
151	Characterization of a SUPERMAN-like Gene, MdSUP11, in apple (Malus × domestica Borkh.). Plant Physiology and Biochemistry, 2018, 125, 136-142.	2.8	5
152	Quantitative characterization of fruit shape and its differentiation pattern in diverse persimmon (Diospyros kaki) cultivars. Scientia Horticulturae, 2018, 228, 41-48.	1.7	53
159	Phenotypic Characterization, Fine Mapping, and Altered Expression Profiling of Roses1 Mutation That Affects Organ Size and Water Loss Through Regulating Stomatal Density in Rice. Crop Science, 2018, 58, 486-506.	0.8	4
160	Comparative Analysis of Transcriptomes to Identify Genes Associated with Fruit Size in the Early Stage of Fruit Development in Pyrus pyrifolia. International Journal of Molecular Sciences, 2018, 19, 2342.	1.8	18
162	CRISPR/Cas9-Mediated Multiplex Genome Editing of JAGGED Gene in Brassica napus L Biomolecules, 2019, 9, 725.	1.8	35
163	The Roles of Arabidopsis C1-2i Subclass of C2H2-type Zinc-Finger Transcription Factors. Genes, 2019, 10, 653.	1.0	59
164	Brassicaceae flowers: diversity amid uniformity. Journal of Experimental Botany, 2019, 70, 2623-2635.	2.4	21
165	Analysis of Rice Proteins with DLN Repressor Motif/S. International Journal of Molecular Sciences, 2019, 20, 1600.	1.8	8
166	Fine-mapping of a gene for the lobed leaf, BoLl, in ornamental kale (Brassica oleracea L. var. acephala). Molecular Breeding, 2019, 39, 1.	1.0	19
167	Molecular regulation of flower development. Current Topics in Developmental Biology, 2019, 131, 185-210.	1.0	75
168	<scp>tuxnet</scp> : a simple interface to process RNA sequencing data and infer gene regulatory networks. Plant Journal, 2020, 101, 716-730.	2.8	20
169	<i>NONSTOP GLUMES1</i> Encodes a C2H2 Zinc Finger Protein That Regulates Spikelet Development in Rice. Plant Cell, 2020, 32, 392-413.	3.1	36
170	Identification of the Key Regulatory Genes Involved in Elaborate Petal Development and Specialized Character Formation in <i>Nigelladamascena</i> (Ranunculaceae). Plant Cell, 2020, 32, 3095-3112.	3.1	27

#	Article	IF	CITATIONS
171	Genome-wide study of C2H2 zinc finger gene family in Medicago truncatula. BMC Plant Biology, 2020, 20, 401.	1.6	17
172	Mechanism and Regulation of Silique Dehiscence, Which Affects Oil Seed Production. Frontiers in Plant Science, 2020, 11, 580.	1.7	7
173	Specification and regulation of vascular tissue identity in the <i>Arabidopsis</i> embryo. Development (Cambridge), 2020, 147, .	1.2	24
174	The Maize <i>Hairy Sheath Frayed1</i> (<i>Hsf1</i>) Mutation Alters Leaf Patterning through Increased Cytokinin Signaling. Plant Cell, 2020, 32, 1501-1518.	3.1	30
175	Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nature Communications, 2020, 11, 2045.	5.8	107
176	Identification, genomic organization, and expression profiles of single C2H2 zinc finger transcription factors in tomato (Solanum lycopersicum). Journal of Applied Genetics, 2021, 62, 1-15.	1.0	8
177	Plant Uâ€box E3 ligases <i>PUB25</i> and <i>PUB26</i> control organ growth in Arabidopsis. New Phytologist, 2021, 229, 403-413.	3.5	16
178	An expedient survey and characterization of the soybean JAGGED 1 (GmJAG1) transcription factor binding preference in the soybean genome by modified ChIPmentation on soybean protoplasts. Genomics, 2021, 113, 344-355.	1.3	5
179	ARF2 represses expression of plant <i>GRF</i> transcription factors in a complementary mechanism to microRNA miR396. Plant Physiology, 2021, 185, 1798-1812.	2.3	18
180	Arabidopsis QWRF1 and QWRF2 Redundantly Modulate Cortical Microtubule Arrangement in Floral Organ Growth and Fertility. Frontiers in Cell and Developmental Biology, 2021, 9, 634218.	1.8	4
182	Do Epigenetic Timers Control Petal Development?. Frontiers in Plant Science, 2021, 12, 709360.	1.7	4
183	Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice. Molecular Plant, 2021, 14, 1168-1184.	3.9	35
184	Double Mutant Analysis with the Large Flower Mutant, ohbana1, to Explore the Regulatory Network Controlling the Flower and Seed Sizes in Arabidopsis thaliana. Plants, 2021, 10, 1881.	1.6	2
185	Association mapping reveals genomic regions associated with bienniality and resistance to biotic stresses in arabica coffee. Euphytica, 2021, 217, 1.	0.6	4
187	Gynoecium Patterning in Arabidopsis: A Basic Plan behind a Complex Structure. , 0, , 35-69.		11
188	Grass Flower Development. Methods in Molecular Biology, 2014, 1110, 57-84.	0.4	39
189	The Tomato Leaf as a Model System for Organogenesis. Methods in Molecular Biology, 2013, 959, 1-19.	0.4	13
190	Genome-Wide Analysis of Gene Expression during Early Arabidopsis Flower Development. PLoS Genetics, 2005, preprint, e117.	1.5	105

#	Article	IF	CITATIONS
191	Spatio-temporal orientation of microtubules controls conical cell shape in Arabidopsis thaliana petals. PLoS Genetics, 2017, 13, e1006851.	1.5	35
192	Natural Variation Identifies Multiple Loci Controlling Petal Shape and Size in Arabidopsis thaliana. PLoS ONE, 2013, 8, e56743.	1.1	36
194	<i>Vitis</i> flower types: from the wild to crop plants. PeerJ, 2019, 7, e7879.	0.9	10
195	Expression Characteristics of <i>LSH</i> Genes in <i>Brassica</i> Suggest their Applicability for Modification of Leaf Morphology and the Use of their Promoter for Transgenesis. Plant Breeding and Biotechnology, 2014, 2, 126-138.	0.3	7
196	Transcription Factor Action Orchestrates the Complex Expression Pattern of CRABS CLAW in Arabidopsis. Genes, 2021, 12, 1663.	1.0	5
197	Bract Reduction In Cruciferae: Genetic Control And Evolution. Ecological Genetics, 2006, 4, 29-35.	0.1	0
198	Molecular mechanism of the petal morphogenesis. Plant Morphology, 2013, 25, 95-99.	0.1	0
199	Misexpression Approaches for the Manipulation of Flower Development. Methods in Molecular Biology, 2014, 1110, 383-399.	0.4	1
202	In Silico Functional Prediction and Expression Analysis of C2H2 Zinc-Finger Family Transcription Factor Revealed Regulatory Role of ZmZFP126 in Maize Growth. Frontiers in Genetics, 2021, 12, 770427.	1.1	6
203	Overexpression of Liriodendron tulipifera JAG Gene (LtuJAG) Changes Leaf Shapes in Transgenic Arabidopsis thaliana. International Journal of Molecular Sciences, 2022, 23, 1322.	1.8	3
204	Combining Fine Mapping, Whole-Genome Re-Sequencing, and RNA-Seq Unravels Candidate Genes for a Soybean Mutant with Short Petioles and Weakened Pulvini. Genes, 2022, 13, 185.	1.0	0
206	Genetic Diversity and Selection Footprints in the Genome of Brazilian Soybean Cultivars. Frontiers in Plant Science, 2022, 13, 842571.	1.7	3
207	Petal development and elaboration. Journal of Experimental Botany, 2022, 73, 3308-3318.	2.4	9
208	Meristem Initiation and de novo Stem Cell Formation. Frontiers in Plant Science, 2022, 13, 891228.	1.7	8
209	<i>ABERRANT PANICLE ORGANIZATION2</i> controls multiple steps in panicle formation through common direct-target genes. Plant Physiology, 2022, 189, 2210-2226.	2.3	13
210	Morphological Characterization and Integrated Transcriptome and Proteome Analysis of Organ Development Defective 1 (odd1) Mutant in Cucumis sativus L International Journal of Molecular Sciences, 2022, 23, 5843.	1.8	1
211	Testing candidate genes linked to corolla shape variation of a pollinator shift in Rhytidophyllum (Gesneriaceae). PLoS ONE, 2022, 17, e0267540.	1.1	1
212	Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine) Tj ETQq1 1	0.784314	rgBT /Overlo

IF ARTICLE CITATIONS # Improving seed number per pod of soybean by molecular breeding based on 213 0.1 0 <italic&gt;Ln&lt;/italic&gt; locus. Acta Agronomica Sinica(China), 2022, 48, 565-571. Agronomic Traits of a New Soybean Germplasm with Higher Ratio of Four-seeded Pods. Plant Breeding and Biotechnology, 2022, 10, 197-202. 214 Differential growth dynamics control aerial organ geometry. Current Biology, 2022, 32, 4854-4868.e5. 216 1.8 10 A <scp>GT</scp> $\hat{a}\in 1$ and <scp>PKc</scp> domain $\hat{a}\in c$ ontaining transcription regulator <scp>SIMPLE LEAF1</scp> controls compound leaf development in woodland strawberry. New Phytologist, 2023, 237, 1391-1404. A 21-bp InDel in the promoter of <i>STP1 </i>selected during tomato improvement accounts for soluble 219 2.9 3 solid content in fruits. Horticulture Research, 2023, 10, . Dysfunction of GmVPS8a causes compact plant architecture in soybean. Plant Science, 2023, 331, 111677.

CITATION REPORT