TOPS: an enhanced database of protein structural topol

Nucleic Acids Research 32, 251D-254 DOI: 10.1093/nar/gkh060

Citation Report

#	Article	IF	CITATIONS
1	The Minimal Essential Core of a Cysteine-based Protein-tyrosine Phosphatase Revealed by a Novel 16-kDa VH1-like Phosphatase, VHZ. Journal of Biological Chemistry, 2004, 279, 35768-35774.	1.6	31
2	TMRPres2D: high quality visual representation of transmembrane protein models. Bioinformatics, 2004, 20, 3258-3260.	1.8	129
3	The beginnings of mucin biosynthesis: The crystal structure of UDP-GalNAc:polypeptide Â-N-acetylgalactosaminyltransferase-T1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15307-15312.	3.3	142
4	PTGLa web-based database application for protein topologies. Bioinformatics, 2004, 20, 3277-3279.	1.8	15
5	MSAT. Applied Bioinformatics, 2004, 3, 149-158.	1.7	4
6	Structure prediction, evolution and ligand interaction of CHASE domain. FEBS Letters, 2004, 576, 287-290.	1.3	28
7	Structural Analysis of Escherichia coli OpgG, a Protein Required for the Biosynthesis of Osmoregulated Periplasmic Glucans. Journal of Molecular Biology, 2004, 342, 195-205.	2.0	32
8	Mycobacterium tuberculosis Protein Tyrosine Phosphatase PtpB Structure Reveals a Diverged Fold and a Buried Active Site. Structure, 2005, 13, 1625-1634.	1.6	72
9	Structure of PIN-domain protein PH0500 fromPyrococcus horikoshii. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 463-468.	0.7	20
10	Natural history of S-adenosylmethionine-binding proteins. BMC Structural Biology, 2005, 5, 19.	2.3	256
11	Protein structure topological comparison, discovery and matching service. Bioinformatics, 2005, 21, 2537-2538.	1.8	16
12	UreG, a Chaperone in the Urease Assembly Process, Is an Intrinsically Unstructured GTPase That Specifically Binds Zn2+. Journal of Biological Chemistry, 2005, 280, 4684-4695.	1.6	91
13	Three-Dimensional Structure Prediction of the Interaction of CD34 with the SH3 Domain of Crk-L. Stem Cells and Development, 2005, 14, 470-477.	1.1	6
14	Solution Structure of the N-terminal Zinc Fingers of the Xenopus laevis double-stranded RNA-binding Protein ZFa. Journal of Molecular Biology, 2005, 351, 718-730.	2.0	18
15	Structure of the Sulfolobus solfataricus α-Glucosidase: Implications for Domain Conservation and Substrate Recognition in GH31. Journal of Molecular Biology, 2006, 358, 1106-1124.	2.0	126
16	Insights into Protein–Protein Interfaces using a Bayesian Network Prediction Method. Journal of Molecular Biology, 2006, 362, 365-386.	2.0	99
17	Bioinformatics and Constraints. Foundations of Artificial Intelligence, 2006, 2, 905-944.	0.9	2
18	Structure of the conserved hypothetical protein MAL13P1.257 fromPlasmodium falciparum. Acta	0.7	9

#	Article	IF	CITATIONS
19	Crystal structure at 1.45-à resolution of the major allergen endo-β-1,3-glucanase of banana as a molecular basis for the latex-fruit syndrome. Proteins: Structure, Function and Bioinformatics, 2006, 63, 235-242.	1.5	40
20	Crystal structure of hypothetical protein TTHB192 fromThermus thermophilusHB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Science, 2006, 15, 1494-1499.	3.1	78
21	Crystal structure of human D-amino acid oxidase: Context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at thesi-face of the flavin ring. Protein Science, 2006, 15, 2708-2717.	3.1	102
22	Azurin, <i>Plasmodium falciparum</i> Malaria and HIV/AIDS: Inhibition of Parasitic and Viral Growth by Azurin. Cell Cycle, 2006, 5, 1642-1648.	1.3	43
23	Strict rules determine arrangements of strands in sandwich proteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4107-4110.	3.3	14
24	â€~Protein Peeling': an approach for splitting a 3D protein structure into compact fragments. Bioinformatics, 2006, 22, 129-133.	1.8	33
25	Crystal structures of Â-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6471-6476.	3.3	156
26	The X-ray Structure of dTDP-4-Keto-6-deoxy-D-glucose-3,4-ketoisomerase. Journal of Biological Chemistry, 2007, 282, 19227-19236.	1.6	21
27	Assessment of the probabilities for evolutionary structural changes in protein folds. Bioinformatics, 2007, 23, 832-841.	1.8	15
28	Crystal Structures of Flax Rust Avirulence Proteins AvrL567-A and -D Reveal Details of the Structural Basis for Flax Disease Resistance Specificity. Plant Cell, 2007, 19, 2898-2912.	3.1	143
29	Local Protein Structures. Current Bioinformatics, 2007, 2, 165-202.	0.7	73
30	Searching for three-dimensional secondary structural patterns in proteins with ProSMoS. Bioinformatics, 2007, 23, 1331-1338.	1.8	34
31	Molecular Characterization of a Novel Family VIII Esterase from <i>Burkholderia multivorans</i> UWC10. Journal of Molecular Microbiology and Biotechnology, 2007, 13, 181-188.	1.0	12
32	The Crystal Structure of the Bifunctional Deaminase/Reductase RibD of the Riboflavin Biosynthetic Pathway in Escherichia coli: Implications for the Reductive Mechanism. Journal of Molecular Biology, 2007, 373, 48-64.	2.0	27
33	Crystal Structure of the Major Malassezia sympodialis Allergen Mala s 1 Reveals a β-Propeller Fold: A Novel Fold Among Allergens. Journal of Molecular Biology, 2007, 369, 1079-1086.	2.0	25
35	A model-based proposal for the role of UreF as a GTPase-activating protein in the urease active site biosynthesis. Proteins: Structure, Function and Bioinformatics, 2007, 68, 749-761.	1.5	36
36	New classification of supersecondary structures of sandwich-like proteins uncovers strict patterns of strand assemblage. Proteins: Structure, Function and Bioinformatics, 2007, 68, 915-921.	1.5	33
37	Characterization and structural modeling of a novel thermostable glycine oxidase from <i>Geobacillus kaustophilus</i> HTA426. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1429-1441.	1.5	18

~	_	
Citati	12 E D C	DT
CITAT	NLFC	

#	Article	IF	CITATIONS
38	The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO Journal, 2007, 26, 5153-5166.	3.5	200
39	Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B12 biosynthesis, and CbiL in complex with S-adenosylhomocysteineâ€fâ^'â€fimplications for the reaction mechanism. FEBS Journal, 2007, 274, 563-573.	2.2	9
40	YesT: A new rhamnogalacturonan acetyl esterase from <i>Bacillus subtilis</i> . Proteins: Structure, Function and Bioinformatics, 2008, 71, 379-388.	1.5	27
41	Solution structure of human DESR1, a CSL zincâ€binding protein. Proteins: Structure, Function and Bioinformatics, 2008, 71, 514-518.	1.5	3
42	Comparison of TOPS strings based on LZ complexity. Journal of Theoretical Biology, 2008, 251, 159-166.	0.8	12
43	Crystal structure of enoyl–acyl carrier protein reductase (FabK) from <i>Streptococcus pneumoniae</i> reveals the binding mode of an inhibitor. Protein Science, 2008, 17, 691-699.	3.1	51
44	An Intersubunit Active Site between Supercoiled Parallel β Helices in the Trimeric Tailspike Endorhamnosidase of Shigella flexneri Phage Sf6. Structure, 2008, 16, 766-775.	1.6	83
45	Structure of the N-Terminal Oligomerization Domain of DnaD Reveals a Unique Tetramerization Motif and Provides Insights into Scaffold Formation. Journal of Molecular Biology, 2008, 376, 1237-1250.	2.0	26
46	A Ligand-Induced Switch in the Periplasmic Domain of Sensor Histidine Kinase CitA. Journal of Molecular Biology, 2008, 377, 512-523.	2.0	110
47	Solution Structures and Backbone Dynamics of Escherichia coli Rhodanese PspE in Its Sulfur-Free and Persulfide-Intermediate Forms: Implications for the Catalytic Mechanism of Rhodanese [,] . Biochemistry, 2008, 47, 4377-4385.	1.2	12
48	Structural Characterization and Reversal of the Natural Organophosphate Resistance of a D-Type Esterase, Saccharomyces cerevisiae S-Formylglutathione Hydrolase. Biochemistry, 2008, 47, 9592-9601.	1.2	32
49	Three-Dimensional Structure of DesVI from <i>Streptomyces venezuelae</i> : A Sugar <i>N</i> , <i>N</i> -Dimethyltransferase Required for dTDP-Desosamine Biosynthesis. Biochemistry, 2008, 47, 3982-3988.	1.2	21
50	Structure-based function prediction: approaches and applications. Briefings in Functional Genomics & Proteomics, 2008, 7, 291-302.	3.8	67
51	A novel method for comparing topological models of protein structures enhanced with ligand information. Bioinformatics, 2008, 24, 2698-2705.	1.8	15
52	Characterization of a New Rhamnogalacturonan Acetyl Esterase from Bacillus halodurans C-125 with a New Putative Carbohydrate Binding Domain. Journal of Bacteriology, 2008, 190, 1375-1382.	1.0	30
53	2D molecular graphics: a flattened world of chemistry and biology. Briefings in Bioinformatics, 2008, 10, 247-258.	3.2	12
54	Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11170-11175.	3.3	44
55	Alternative splicing and protein structure evolution. Nucleic Acids Research, 2008, 36, 550-558.	6.5	100

CITATION REPORT

#	Article	IF	CITATIONS
56	Structural search and retrieval using a tableau representation of protein folding patterns. Bioinformatics, 2008, 24, 645-651.	1.8	30
58	Zinc-Independent Folate Biosynthesis: Genetic, Biochemical, and Structural Investigations Reveal New Metal Dependence for GTP Cyclohydrolase IB. Journal of Bacteriology, 2009, 191, 6936-6949.	1.0	61
59	Characterization of a Novel Thermostable Carboxylesterase from <i>Geobacillus kaustophilus</i> HTA426 Shows the Existence of a New Carboxylesterase Family. Journal of Bacteriology, 2009, 191, 3076-3085.	1.0	50
60	Description and recognition of regular and distorted secondary structures in proteins using the automated protein structure analysis method. Proteins: Structure, Function and Bioinformatics, 2009, 76, 418-438.	1.5	10
61	Analysis of loop boundaries using different local structure assignment methods. Protein Science, 2009, 18, 1869-1881.	3.1	27
62	Structure and heme binding properties of <i>Escherichia coli</i> O157:H7 ChuX. Protein Science, 2009, 18, 825-838.	3.1	18
63	Structural model of the amino propeptide of collagen XI α1 chain with similarity to the LNS domains. Protein Science, 2009, 14, 1526-1537.	3.1	28
64	An optimized TOPS+ comparison method for enhanced TOPS models. BMC Bioinformatics, 2010, 11, 138.	1.2	2
65	A fast indexing approach for protein structure comparison. BMC Bioinformatics, 2010, 11, S46.	1.2	11
66	Structural studies on the fullâ€length LysRâ€≺i>type regulator TsaR from <i>Comamonas testosteroni</i> Tâ€2 reveal a novel open conformation of the tetrameric LTTR fold. Molecular Microbiology, 2010, 75, 1199-1214.	1.2	72
67	PTGL: a database for secondary structure-based protein topologies. Nucleic Acids Research, 2010, 38, D326-D330.	6.5	13
68	Protein Structure Analysis. , 2010, , 63-105.		3
71	Molecular Characterization of a Novel <i>N</i> -Acetylneuraminate Lyase from <i>Lactobacillus plantarum</i> WCFS1. Applied and Environmental Microbiology, 2011, 77, 2471-2478.	1.4	39
72	SiteBinder: An Improved Approach for Comparing Multiple Protein Structural Motifs. Journal of Chemical Information and Modeling, 2012, 52, 343-359.	2.5	10
73	Molecular Characterization of a Novel Arylesterase from the Wine-Associated Acetic Acid Bacterium <i>Gluconobacter oxidans</i> 621H. Journal of Agricultural and Food Chemistry, 2012, 60, 10789-10795.	2.4	7
74	Computational Prediction of Secondary and Supersecondary Structures. Methods in Molecular Biology, 2012, 932, 63-86.	0.4	13
75	Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: New insights into the bacterial SDR sorbitol dehydrogenases family. Biochimie, 2012, 94, 2407-2415.	1.3	3
76	New enumeration algorithm for protein structure comparison and classification. BMC Genomics, 2013, 14, S1.	1.2	6

#	Article	IF	CITATIONS
77	Overexpression, Purification, and Biochemical Characterization of the Esterase Est0796 from Lactobacillus plantarum WCFS1. Molecular Biotechnology, 2013, 54, 651-660.	1.3	21
78	Structureâ€based barcoding of proteins. Protein Science, 2014, 23, 117-120.	3.1	1
79	The new protein topology graph library web server. Bioinformatics, 2016, 32, 474-476.	1.8	7
80	Comparative visualization of protein secondary structures. BMC Bioinformatics, 2017, 18, 23.	1.2	11
81	ProLego: tool for extracting and visualizing topological modules in protein structures. BMC Bioinformatics, 2018, 19, 167.	1.2	3
82	Applying graph theory to protein structures: an Atlas of coiled coils. Bioinformatics, 2018, 34, 3316-3323.	1.8	17
83	Protein super-secondary structure and quaternary structure topology: theoretical description and application. Current Opinion in Structural Biology, 2018, 50, 134-143.	2.6	7
84	Protein Structure Visualization. , 2019, , 520-538.		1
85	Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences. Methods in Molecular Biology, 2019, 1958, 73-100.	0.4	11
86	Protein Contact Map Prediction. , 2007, , 255-277.		5
87	Structural insights into Wcbl, a novel polysaccharide-biosynthesis enzyme. IUCrJ, 2014, 1, 28-38.	1.0	5
88	HBNC: Graph theory-based visualization of hydrogen bond networks in protein structures. Bioinformation, 2007, 2, 28-30.	0.2	2
89	Handbook of Constraint Programming. Foundations of Artificial Intelligence, 2006, , .	0.9	154
90	Resources and Infrastructure for Structural Bioinformatics. Biological and Medical Physics Series, 2007, , 207-227.	0.3	Ο
91	Relationship between Amino Acids Sequences and Protein Structures: Folding Patterns and Sequence Patterns. Lecture Notes in Computer Science, 2009, , 124-134.	1.0	0
93	Design of Self-Assembling Molecules and Boundary Value Problem for Flows on a Space of <i>n</i> -Simplices. Applied Mathematics, 2019, 10, 907-946.	0.1	2
94	On the Defining Equations of Protein's Shape from a Category Theoretical Point of View. Applied Mathematics, 2020, 11, 890-916.	0.1	1

CITATION REPORT