Candida albicans Biofilms: a Developmental State Assoc Expression Patterns

Eukaryotic Cell 3, 536-545 DOI: 10.1128/ec.3.2.536-545.2004

Citation Report

IF CITATIONS

1	Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. Microbiology (United) Tj ETQq0 0 0 r	gBTq lØ verl	ocka880 Tf 5⊓
2	Proteomic Analysis of Candida albicans Cell Walls Reveals Covalently Bound Carbohydrate-Active Enzymes and Adhesins. Eukaryotic Cell, 2004, 3, 955-965.	3.4	246
3	CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Research, 2004, 33, D353-D357.	6.5	79
4	Candida albicans proteinases and host/pathogen interactions. Cellular Microbiology, 2004, 6, 915-926.	1.1	288
5	The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Molecular Microbiology, 2004, 55, 1259-1271.	1.2	119
6	Origins of variation in the fungal cell surface. Nature Reviews Microbiology, 2004, 2, 533-540.	13.6	177
8	biofilm resistance. Drug Resistance Updates, 2004, 7, 301-309.	6.5	186
9	DNA array analysis ofCandida albicansgene expression in response to adherence to polystyrene. FEMS Microbiology Letters, 2005, 245, 25-32.	0.7	34
10	Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p. Current Biology, 2005, 15, 1150-1155.	1.8	424
11	Candida albicans Biofilms: More Than Filamentation. Current Biology, 2005, 15, R453-R455.	1.8	102
12	Recent advances in the genomic analysis of Candida albicans. Revista Iberoamericana De Micologia, 2005, 22, 187-193.	0.4	8
13	Use of genome information for the study of the pathogenesis of fungal infections and the development of diagnostic tools. Revista Iberoamericana De Micologia, 2005, 22, 238-241.	0.4	13
14	Transcriptional profiling of Saccharomyces cerevisiae cells under adhesion-inducing conditions. Molecular Genetics and Genomics, 2005, 273, 382-393.	1.0	22
15	Comparative Gene Expression Analysis by a Differential Clustering Approach: Application to the Candida albicans Transcription Program. PLoS Genetics, 2005, 1, e39.	1.5	124
16	A Human-Curated Annotation of the Candida albicans Genome. PLoS Genetics, 2005, 1, e1.	1.5	293
17	Genome-Wide Transcription Profiling of the Early Phase of Biofilm Formation by Candida albicans. Eukaryotic Cell, 2005, 4, 1562-1573.	3.4	142
18	Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology (United) Tj ETQq0 0 0 rgBT	Overlock	2 19 Jf 50 1

#

ARTICLE

¹⁹ Global Role of the Protein Kinase Gcn2 in the Human Pathogen Candida albicans. Eukaryotic Cell, 2005, 4, 1687-1696. 3.4 58

	CHATON	CEPURI	
#	Article	IF	Citations
20	Yeast wall protein 1 of Candida albicans. Microbiology (United Kingdom), 2005, 151, 1631-1644.	0.7	123
21	Candida albicans Biofilm-Defective Mutants. Eukaryotic Cell, 2005, 4, 1493-1502.	3.4	160
22	cDNA Microarray Analysis of Differential Gene Expression in Candida albicans Biofilm Exposed to Farnesol. Antimicrobial Agents and Chemotherapy, 2005, 49, 584-589.	1.4	212
23	Comprehensive Proteomic Analysis of Saccharomyces cerevisiae Cell Walls. Journal of Biological Chemistry, 2005, 280, 20894-20901.	1.6	168
24	Candida Biofilms: an Update. Eukaryotic Cell, 2005, 4, 633-638.	3.4	612
25	<i>Candida</i> biofilm: a well-designed protected environment. Medical Mycology, 2005, 43, 191-208.	0.3	132
26	Lessons from DNA microarray analysis: the gene expression profile of biofilms. Current Opinion in Microbiology, 2005, 8, 222-227.	2.3	143
27	Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCyclerâ,,¢. Molecular and Cellular Probes, 2005, 19, 153-162.	0.9	46
28	Global analysis of altered gene expression during morphogenesis of Candida albicans in vitro. Biochemical and Biophysical Research Communications, 2005, 334, 1149-1158.		22
29	ALTERNATIVECANDIDA ALBICANSLIFESTYLES: Growth on Surfaces. Annual Review of Microbiology, 2005, 59, 113-133.		224
31	Candida albicans biofilm development, modeling a host–pathogen interaction. Current Opinion in Microbiology, 2006, 9, 340-345.	2.3	190
32	How to build a biofilm: a fungal perspective. Current Opinion in Microbiology, 2006, 9, 588-594.	2.3	453
34	Genomics of Pathogenic Fungi. , 2006, , 389-416.		0
35	Microarrays for Studying Pathogenicity inCandida Albicans. , 0, , 181-209.		18
36	Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Molecular Biology, 2006, 7, 25.	3.0	139
37	Proteomics for the analysis of theCandida albicans biofilm lifestyle. Proteomics, 2006, 6, 5795-5804.	1.3	113
38	Genetics and genomics of Candida albicans biofilm formation. Cellular Microbiology, 2006, 8, 1382-1391.	1.1	237
39	Use of DNA microarray technology and gene expression profiles to investigate the pathogenesis, cell biology, antifungal susceptibility and diagnosis ofCandida albicans. FEMS Yeast Research, 2006, 6, 987-998.	1.1	28

#	Article	IF	CITATIONS
40	Effect of farnesol onCandida dubliniensisbiofilm formation and fluconazole resistance. FEMS Yeast Research, 2006, 6, 1063-1073.	1.1	105
41	Opaque cells signal white cells to form biofilms in Candida albicans. EMBO Journal, 2006, 25, 2240-2252.	3.5	155
42	Candida albicans Biofilms Produce Antifungal-Tolerant Persister Cells. Antimicrobial Agents and Chemotherapy, 2006, 50, 3839-3846.	1.4	436
43	The Opi1p Transcription Factor Affects Expression of FLO11 , Mat Formation, and Invasive Growth in Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 1266-1275.	3.4	31
44	Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni. Microbiology (United Kingdom), 2006, 152, 567-577.	0.7	58
45	Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology (United Kingdom), 2006, 152, 2287-2299.	0.7	155
46	Protein O- Mannosyltransferase Isoforms Regulate Biofilm Formation in Candida albicans. Antimicrobial Agents and Chemotherapy, 2006, 50, 3488-3491.	1.4	34
47	Talking to Themselves: Autoregulation and Quorum Sensing in Fungi. Eukaryotic Cell, 2006, 5, 613-619.	3.4	237
48	Transcriptional Profiling of Cross Pathway Control in Neurospora crassa and Comparative Analysis of the Gcn4 and CPC1 Regulons. Eukaryotic Cell, 2007, 6, 1018-1029.	3.4	73
49	New Insights in Medical Mycology. , 2007, , .		5
49 50	New Insights in Medical Mycology. , 2007, , . Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology (United Kingdom), 2007, 153, 2373-2385.	0.7	5
	Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology	0.7	
50	Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology (United Kingdom), 2007, 153, 2373-2385. Eap1p, an Adhesin That Mediates Candida albicans Biofilm Formation In Vitro and In Vivo. Eukaryotic		121
50 51	Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology (United Kingdom), 2007, 153, 2373-2385. Eap1p, an Adhesin That Mediates Candida albicans Biofilm Formation In Vitro and In Vivo. Eukaryotic Cell, 2007, 6, 931-939. Candida albicans Biofilms Produce More Secreted Aspartyl Protease than the Planktonic Cells.	3.4	121 124
50 51 52	 Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology (United Kingdom), 2007, 153, 2373-2385. Eap1p, an Adhesin That Mediates Candida albicans Biofilm Formation In Vitro and In Vivo. Eukaryotic Cell, 2007, 6, 931-939. Candida albicans Biofilms Produce More Secreted Aspartyl Protease than the Planktonic Cells. Biological and Pharmaceutical Bulletin, 2007, 30, 1813-1815. Genomics and the development of new diagnostics and anti-Candida drugs. Trends in Microbiology, 	3.4 0.6	121 124 43
50 51 52 53	Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology (United Kingdom), 2007, 153, 2373-2385. Eap1p, an Adhesin That Mediates Candida albicans Biofilm Formation In Vitro and In Vivo. Eukaryotic Cell, 2007, 6, 931-939. Candida albicans Biofilms Produce More Secreted Aspartyl Protease than the Planktonic Cells. Biological and Pharmaceutical Bulletin, 2007, 30, 1813-1815. Genomics and the development of new diagnostics and anti-Candida drugs. Trends in Microbiology, 2007, 15, 310-317. Infection-related gene expression in Candida albicans. Current Opinion in Microbiology, 2007, 10,	3.4 0.6 3.5	121 124 43 23
50 51 52 53 54	Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology (United Kingdom), 2007, 153, 2373-2385. Eap1p, an Adhesin That Mediates Candida albicans Biofilm Formation In Vitro and In Vivo. Eukaryotic Cell, 2007, 6, 931-939. Candida albicans Biofilms Produce More Secreted Aspartyl Protease than the Planktonic Cells. Biological and Pharmaceutical Bulletin, 2007, 30, 1813-1815. Genomics and the development of new diagnostics and anti-Candida drugs. Trends in Microbiology, 2007, 15, 310-317. Infection-related gene expression in Candida albicans. Current Opinion in Microbiology, 2007, 10, 307-313. Biofilm formation by fluconazole-resistant Candida albicans strains is inhibited by fluconazole.	3.40.63.52.3	121 124 43 23 136

#	Article		CITATIONS
58	The SUN41 and SUN42 genes are essential for cell separation in Candida albicans. Molecular Microbiology, 2007, 66, 1256-1275.	1.2	52
59	<i>Candida albicans</i> biofilm formation is associated with increased antiâ€oxidative capacities. Proteomics, 2008, 8, 2936-2947.	1.3	86
60	Multidrug Tolerance of Biofilms and Persister Cells. Current Topics in Microbiology and Immunology, 2008, 322, 107-131.	0.7	623
61	Biofilm lifestyle of <i>Candida:</i> a mini review. Oral Diseases, 2008, 14, 582-590.	1.5	269
62	Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Research, 2008, 8, 442-450.	1.1	131
63	Biofilm microbial communities of denture stomatitis. Oral Microbiology and Immunology, 2008, 23, 419-424.	2.8	92
64	Complementary Adhesin Function in C. albicans Biofilm Formation. Current Biology, 2008, 18, 1017-1024.	1.8	293
65	Candida Biofilms: Is Adhesion Sexy?. Current Biology, 2008, 18, R717-R720.	1.8	32
66	Formación de biopelÃculas de Candida albicans en condiciones de flujo utilizando un aparato de Robbins modificado mejorado. Revista Iberoamericana De Micologia, 2008, 25, 37-40.	0.4	40
68	Candida albicans–macrophage interactions: genomic and proteomic insights. Future Microbiology, 2008, 3, 661-681.	1.0	18
69	Discovering the secrets of the <i>Candida albicans</i> agglutinin-like sequence (ALS) gene family – a sticky pursuit. Medical Mycology, 2008, 46, 1-15.	0.3	307
70	Hyphal Growth and Virulence in Candida albicans. , 2008, , 95-114.		1
71	Transcriptomics of the Fungal Pathogens, Focusing on Candida albicans. , 2008, , 187-222.		3
72	Human and Animal Relationships. , 2008, , .		5
73	Bacterial Biofilms. Current Topics in Microbiology and Immunology, 2008, , .	0.7	37
74	<i>Candida albicans</i> Cell Wall Proteins. Microbiology and Molecular Biology Reviews, 2008, 72, 495-544.	2.9	404
75	Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation. Fungal Genetics and Biology, 2008, 45, 861-877.	0.9	53
76	The Yak1 Kinase Is Involved in the Initiation and Maintenance of Hyphal Growth in <i>Candida albicans</i> . Molecular Biology of the Cell, 2008, 19, 2251-2266.	0.9	59

#	Article	IF	CITATIONS
77	Efg1-mediated Recruitment of NuA4 to Promoters Is Required for Hypha-specific Swi/Snf Binding and Activation in <i>Candida albicans</i> . Molecular Biology of the Cell, 2008, 19, 4260-4272.	0.9	72
78	Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology (United Kingdom), 2008, 154, 510-520.	0.7	104
80	The Susceptibility of Candida albicans to Gamma-Radiations and Ketoconazole Depends on Transitional Filamentation. Open Microbiology Journal, 2008, 2, 66-73.	0.2	2
81	Hypoxic Adaptation by Efg1 Regulates Biofilm Formation by <i>Candida albicans</i> . Applied and Environmental Microbiology, 2009, 75, 3663-3672.	1.4	74
82	The Glycosylphosphatidylinositol-Anchored Protease Sap9 Modulates the Interaction of <i>Candida albicans</i> with Human Neutrophils. Infection and Immunity, 2009, 77, 5216-5224.	1.0	43
83	<i>Candida albicans</i> and <i>Staphylococcus aureus</i> Form Polymicrobial Biofilms: Effects on Antimicrobial Resistance. Antimicrobial Agents and Chemotherapy, 2009, 53, 3914-3922.	1.4	445
84	Property Differences among the Four Major <i>Candida albicans</i> Strain Clades. Eukaryotic Cell, 2009, 8, 373-387.	3.4	138
85	Correlation between Biofilm Formation and the Hypoxic Response in <i>Candida parapsilosis</i> . Eukaryotic Cell, 2009, 8, 550-559.	3.4	83
86	Biofilms, Infection, and Parenteral Nutrition Therapy. Journal of Parenteral and Enteral Nutrition, 2009, 33, 397-403.	1.3	44
87	Conserved WCPL and CX4C Domains Mediate Several Mating Adhesin Interactions in Saccharomyces cerevisiae. Genetics, 2009, 182, 173-189.	1.2	16
88	<i>Streptococcus gordonii</i> Modulates <i>Candida albicans</i> Biofilm Formation through Intergeneric Communication. Infection and Immunity, 2009, 77, 3696-3704.	1.0	257
89	Biofilm Matrix Regulation by Candida albicans Zap1. PLoS Biology, 2009, 7, e1000133.	2.6	286
90	Time Course Global Gene Expression Analysis of an In Vivo <i>Candida</i> Biofilm. Journal of Infectious Diseases, 2009, 200, 307-313.	1.9	156
91	The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity. Microbiology (United Kingdom), 2009, 155, 2004-2020.	0.7	56
92	Efflux-Mediated Antifungal Drug Resistance. Clinical Microbiology Reviews, 2009, 22, 291-321.	5.7	483
93	Biofilm Formation by <i>Pneumocystis</i> spp. Eukaryotic Cell, 2009, 8, 197-206.	3.4	92
94	A Candida albicans early stage biofilm detachment event in rich medium. BMC Microbiology, 2009, 9, 25.	1.3	43
96	Monitoring ALS1 and ALS3 Gene Expression During InÂVitro Candida albicans Biofilm Formation Under Continuous Flow Conditions. Mycopathologia, 2009, 167, 9-17.	1.3	43

	Сітатіо	on Report	
#	Article	IF	Citations
97	Design of a Simple Model of Candida albicans Biofilms Formed under Conditions of Flow: Development, Architecture, and Drug Resistance. Mycopathologia, 2009, 168, 101-109.	1.3	70
98	Anticandidal cytotoxicity, antitumor activities, and purified cell wall modulation by novel Schiff base ligand and its metal (II) complexes against some pathogenic yeasts. Archives of Microbiology, 2009, 191, 687-695.	1.0	12
99	Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of <i>Candida albicans</i> . Proteomics, 2009, 9, 2230-2252.	1.3	88
100	Promoter regulation in <i>Candida albicans</i> and related species. FEMS Yeast Research, 2009, 9, 2-15.	1.1	16
101	Covalently linked cell wall proteins of <i>Candida albicans</i> and their role in fitness and virulence. FEMS Yeast Research, 2009, 9, 1013-1028.	1.1	141
102	The expression of genes involved in the ergosterol biosynthesis pathway in <i>Candida albicans</i> and <i>Candida dubliniensis</i> biofilms exposed to fluconazole. Mycoses, 2009, 52, 118-128.	1.8	54
103	Distribution of mutations distinguishing the most prevalent disease-causing Candida albicans genotype from other genotypesâ~†. Infection, Genetics and Evolution, 2009, 9, 493-500.	1.0	11
104	The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends in Microbiology, 2009, 17, 73-87.		481
105	Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. International Journal of Antimicrobial Agents, 2009, 34, 333-339.		38
106	Our Current Understanding of Fungal Biofilms. Critical Reviews in Microbiology, 2009, 35, 340-355.		429
107	Expression ofCgCDR1,CgCDR2, andCgERG11inCandida glabratabiofilms formed by bloodstream isolates. Medical Mycology, 2009, 47, 545-548.	0.3	25
108	Increased Resistance of Contact Lens-Related Bacterial Biofilms to Antimicrobial Activity of Soft Contact Lens Care Solutions. Cornea, 2009, 28, 918-926.	0.9	143
109	Antifungal drug resistance of oral fungi. Odontology / the Society of the Nippon Dental University, 2010, 98, 15-25.	0.9	131
110	Fungal Biofilms: Relevance in the Setting of Human Disease. Current Fungal Infection Reports, 2010, 4, 266-275.	0.9	75
111	Global screening of potential Candida albicans biofilm-related transcription factors via network comparison. BMC Bioinformatics, 2010, 11, 53.	1.2	29
112	Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiology, 2010, 10, 114.	1.3	127
113	Functional genomic profiling of <i>Aspergillus fumigatus</i> biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics, 2010, 10, 3097-3107.	1.3	82
114	Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation. FEMS Immunology and Medical Microbiology, 2010, 59, 239-252.	2.7	39

#	Article	IF	CITATIONS
115	<i>Aspergillus fumigatus</i> MedA governs adherence, host cell interactions and virulence. Cellular Microbiology, 2010, 12, 473-488.	1.1	124
116	Interaction of <i>Candida albicans</i> Biofilms with Antifungals: Transcriptional Response and Binding of Antifungals to Beta-Glucans. Antimicrobial Agents and Chemotherapy, 2010, 54, 2096-2111.	1.4	165
117	Candida albicans biofilm formation in a new in vivo rat model. Microbiology (United Kingdom), 2010, 156, 909-919.	0.7	97
118	An easy and economical in vitro method for the formation ofCandida albicansbiofilms under continuous conditions of flow. Virulence, 2010, 1, 483-487.	1.8	30
119	Combating Fungal Infections. , 2010, , .		16
120	Gene Annotation and Drug Target Discovery in Candida albicans with a Tagged Transposon Mutant Collection. PLoS Pathogens, 2010, 6, e1001140.	2.1	85
121	Catheter-related bloodstream infections: catheter management according to pathogen. International Journal of Antimicrobial Agents, 2010, 36, S26-S32.	1.1	44
122	Yeast Biofilms. , 2010, , 121-144.		1
123	Non-steroidal anti-inflammatory drugs may modulate the protease activity of Candida albicans. Microbial Pathogenesis, 2010, 49, 315-322.	1.3	22
124	Pathogenic Yeasts. , 2010, , .		8
125	Metabolic Pathways as Drug Targets: Targeting the Sulphur Assimilatory Pathways of Yeast and Fungi for Novel Drug Discovery. , 2010, , 327-346.		8
126	The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genetics and Biology, 2011, 48, 747-763.	0.9	141
127	Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides, 2011, 32, 1741-1747.	1.2	57
129	The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of <i>Candida albicans</i> adhesion. Molecular Microbiology, 2011, 79, 940-953.	1.2	48
130	Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by <i>Candida albicans</i> . Molecular Microbiology, 2011, 80, 995-1013.	1.2	131
131	Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain. FEMS Yeast Research, 2011, 11, 273-284.	1.1	36
132	Pga26 mediates filamentation and biofilm formation and is required for virulence in Candida albicans. FEMS Yeast Research, 2011, 11, 389-397.	1.1	19
133	Genetic control of Candida albicans biofilm development. Nature Reviews Microbiology, 2011, 9, 109-118.	13.6	509

#	Article		CITATIONS
134	Identification and Differential Gene Expression of Adhesin-Like Wall Proteins in Candida glabrata Biofilms. Mycopathologia, 2011, 172, 415-427.		47
135	Aspartic Protease Inhibitors as Potential Anti-Candida albicans Drugs: Impacts on Fungal Biology, Virulence and Pathogenesis. Current Medicinal Chemistry, 2011, 18, 2401-2419.	1.2	54
136	Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. Journal of Medical Microbiology, 2011, 60, 1261-1269.	0.7	103
137	Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLoS Pathogens, 2011, 7, e1002257.	2.1	231
138	Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of <i>Drosophila</i> larvae by <i>Candida albicans</i> . DMM Disease Models and Mechanisms, 2011, 4, 515-525.	1.2	60
139	The NDR/LATS Kinase Cbk1 Controls the Activity of the Transcriptional Regulator Bcr1 during Biofilm Formation in Candida albicans. PLoS Pathogens, 2012, 8, e1002683.	2.1	36
140	Fungal Biofilm Resistance. International Journal of Microbiology, 2012, 2012, 1-14.	0.9	403
141	A sticky situation. Transcription, 2012, 3, 315-322.	1.7	91
142	Fungal Biofilms. PLoS Pathogens, 2012, 8, e1002585.	2.1	347
143	Divergent Targets of Candida albicans Biofilm Regulator Bcr1 <i>In Vitro</i> and <i>In Vivo</i> . Eukaryotic Cell, 2012, 11, 896-904.	3.4	103
144	Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing. Journal of Infectious Diseases, 2012, 206, 1936-1945.	1.9	97
145	Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. Journal of Antimicrobial Chemotherapy, 2012, 67, 618-621.	1.3	136
146	Flexible Survival Strategies of Pseudomonas aeruginosa in Biofilms Result in Increased Fitness Compared with Candida albicans. Molecular and Cellular Proteomics, 2012, 11, 1652-1669.	2.5	55
147	Antifungal Activity against Candida Biofilms. International Journal of Artificial Organs, 2012, 35, 780-791.	0.7	26
148	<i>Candida</i> Biofilms and the Host: Models and New Concepts for Eradication. International Journal of Microbiology, 2012, 2012, 1-16.	0.9	85
149	Carbon sourceâ€induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen <scp> <i>C</i></scp> <i>andida albicans</i> . Proteomics, 2012, 12, 3164-3179.	1.3	142
150	Inhibition of Candida albicans yeast–hyphal transition and biofilm formation by Solidago virgaurea water extracts. Journal of Medical Microbiology, 2012, 61, 1016-1022.	0.7	47
151	Photodynamic inactivation for controlling Candida albicans infections. Fungal Biology, 2012, 116, 1-10.	1.1	112

#	Article	IF	CITATIONS
152	Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state. BMC Genomics, 2012, 13, 138.	1.2	67
153	Transcriptional Profiling of a Yeast Colony Provides New Insight into the Heterogeneity of Multicellular Fungal Communities. PLoS ONE, 2012, 7, e46243.	1.1	34
154	Metabolome analysis during the morphological transition of Candida albicans. Metabolomics, 2012, 8, 1204-1217.	1.4	24
155	<i>In Vitro</i> Interactions between Aspirin and Amphotericin B against Planktonic Cells and Biofilm Cells of Candida albicans and C. parapsilosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 3250-3260.	1.4	66
156	Biofilm Formation Studies in Microtiter Plate Format. Methods in Molecular Biology, 2012, 845, 369-377.	0.4	2
157	<i>Candida</i> species: new insights into biofilm formation. Future Microbiology, 2012, 7, 755-771.	1.0	69
158	Ambroxol influences voriconazole resistance of Candida parapsilosis biofilm. FEMS Yeast Research, 2012, 12, 430-438.	1.1	32
159	<i>Candida</i> biofilms associated with CVC and medical devices. Mycoses, 2012, 55, 46-57.	1.8	44
160	De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatumand grapefruit peel. BMC Genomics, 2013, 14, 168.	1.2	79

#	Article	IF	CITATIONS
170	Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates. Brazilian Journal of Microbiology, 2014, 45, 1371-1377.	0.8	17
171	Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans. PLoS Pathogens, 2014, 10, e1004365.	2.1	108
172	Targeted Changes of the Cell Wall Proteome Influence Candida albicans Ability to Form Single- and Multi-strain Biofilms. PLoS Pathogens, 2014, 10, e1004542.	2.1	54
173	Metabolism in Fungal Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019695-a019695.	2.9	98
174	Fungal Biofilms, Drug Resistance, and Recurrent Infection. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019729-a019729.	2.9	196
175	Identification of immunogenic proteins of <i>Candida parapsilosis</i> by serological proteome analysis. Journal of Applied Microbiology, 2014, 116, 999-1009.	1.4	16
176	Characterization of Biofilm Formation and the Role of <i>BCR1</i> in Clinical Isolates of Candida parapsilosis. Eukaryotic Cell, 2014, 13, 438-451.	3.4	34
177	Fungal Genomics. , 2014, , .		2
178	Genetic determinants of virulence – Candida parapsilosis. Revista Iberoamericana De Micologia, 2014, 31, 16-21.	0.4	13
179	Ion-pairing chromatography on a porous graphitic carbon column coupled with time-of-flight mass spectrometry for targeted and untargeted profiling of amino acid biomarkers involved in Candida albicans biofilm formation. Molecular BioSystems, 2014, 10, 74-85.	2.9	22
180	The role of Mss11 in Candida albicans biofilm formation. Molecular Genetics and Genomics, 2014, 289, 807-819.	1.0	13
181	Sexual biofilm formation in <scp><i>C</i></scp> <i>andida tropicalis</i> opaque cells. Molecular Microbiology, 2014, 92, 383-398.	1.2	12
182	Candida albicans Niche Specialization: Features That Distinguish Biofilm Cells from Commensal Cells. Current Fungal Infection Reports, 2014, 8, 179-184.	0.9	17
183	A single inhibitory upstream open reading frame (uORF) is sufficient to regulate <i>Candida albicans GCN4</i> translation in response to amino acid starvation conditions. Rna, 2014, 20, 559-567.	1.6	30
184	Novel role of a family of major facilitator transporters in biofilm development and virulence of <i>Candida albicans</i> . Biochemical Journal, 2014, 460, 223-235.	1.7	62
186	<i>Candida albicans</i> Biofilm Development and Its Genetic Control. , 0, , 99-114.		4
187	<i>Candida albicans</i> Biofilm Development and Its Genetic Control. Microbiology Spectrum, 2015, 3, .	1.2	71
188	Characterization of Cell Wall Proteins in Saccharomyces cerevisiae Clinical Isolates Elucidates Hsp150p in Virulence. PLoS ONE, 2015, 10, e0135174.	1.1	21

#	Article		CITATIONS
189	Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans. PLoS Genetics, 2015, 11, e1005590.		31
190	Functional Divergence of Hsp90 Genetic Interactions in Biofilm and Planktonic Cellular States. PLoS ONE, 2015, 10, e0137947.	1.1	13
191	An expanded regulatory network temporally controls <scp><i>C</i></scp> <i>andida albicans</i> biofilm formation. Molecular Microbiology, 2015, 96, 1226-1239.	1.2	140
192	The impact of growth conditions on biofilm formation and the cell surface hydrophobicity in fluconazole susceptible and tolerant Candida albicans. Folia Microbiologica, 2015, 60, 45-51.	1.1	14
193	A role of <i>Candida albicans</i> CDC4 in the negative regulation of biofilm formation. Canadian Journal of Microbiology, 2015, 61, 247-255.	0.8	6
194	The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans. Fungal Genetics and Biology, 2015, 81, 261-270.	0.9	21
195	Combinatorial drug approaches to tackle <i>Candida albicans</i> biofilms. Expert Review of Anti-Infective Therapy, 2015, 13, 973-984.	2.0	27
196	Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation. Frontiers in Microbiology, 2015, 6, 139.	1.5	36
197	Candida Survival Strategies. Advances in Applied Microbiology, 2015, 91, 139-235.	1.3	126
198	<i>Candida albicans</i> Biofilms and Human Disease. Annual Review of Microbiology, 2015, 69, 71-92.	2.9	768
199	Co-occurence of filamentation defects and impaired biofilms in <i>Candida albicans</i> protein kinase mutants. FEMS Yeast Research, 2015, 15, fov092.	1.1	14
200	RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens <i>In Vivo</i> Applied to the Fungus Candida albicans. MBio, 2015, 6, e00942-15.	1.8	78
201	Human Serum Potentiates the Expression of Genes Associated with Antifungal Drug Resistance in C. albicans Biofilms on Central Venous Catheters. Mycopathologia, 2015, 179, 195-204.	1.3	7
202	Antifungal Therapy. , 0, , .		3
203	Novel Approaches for Fungal Transcriptomics from Host Samples. Frontiers in Microbiology, 2015, 6, 1571.	1.5	4
204	Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade—A Review. Frontiers in Microbiology, 2016, 7, 1925.	1.5	17
205	Transcriptional landscape of transâ€kingdom communication between <i><scp>C</scp>andida</i>		
	albicans and <i><scp>S</scp>treptococcus gordonii</i> . Molecular Oral Microbiology, 2016, 31, 136-161.	1.3	43

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
207	The calcineruin inhibitor cyclosporine a synergistically enhances the susceptibility of Cana albicans biofilms to fluconazole by multiple mechanisms. BMC Microbiology, 2016, 16, 1		1.3	36
208	The synthesis, regulation, and functions of sterols in <i>Candida albicans</i> : Well-known lots to learn. Virulence, 2016, 7, 649-659.	but still	1.8	92
209	Inhibition of Candida albicans biofilm development by unencapsulated Enterococcus faec Journal of Dental Sciences, 2016, 11, 323-330.	alis cps2.	1.2	20
211	Stimulation of superoxide production increases fungicidal action of miconazole against C albicans biofilms. Scientific Reports, 2016, 6, 27463.	andida	1.6	25
212	Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome ma Scientific Reports, 2016, 6, 35436.	pping.	1.6	39
213	Updates on Therapeutic Strategies Against Candida (and Aspergillus) Biofilm Related Infe Advances in Experimental Medicine and Biology, 2016, 931, 95-103.	ctions.	0.8	5
214	Plasticity of Candida albicans Biofilms. Microbiology and Molecular Biology Reviews, 2016	5, 80, 565-595.	2.9	63
215	Control of Candida albicans morphology and pathogenicity by post-transcriptional mechanisms. Cellular and Molecular Life Sciences, 2016, 73, 4265-4278.		2.4	32
216	Antifungal activity of plant-derived essential oils on <i>Candida tropicalis</i> planktonic and biofilms cells. Medical Mycology, 2016, 54, 515-523.		0.3	46
217	Biofilm formation in <i>Candida glabrata</i> : What have we learnt from functional genomics approaches?. FEMS Yeast Research, 2016, 16, fov111.		1.1	32
218	Candida albicans Hom6 is a homoserine dehydrogenase involved in protein synthesis and adhesion. Journal of Microbiology, Immunology and Infection, 2017, 50, 863-871.	cell	1.5	7
219	Identification of proteins involved in the adhesionof Candida species to different medical Microbial Pathogenesis, 2017, 107, 293-303.	devices.	1.3	21
220	Adaptation of <i>Candida albicans</i> to Reactive Sulfur Species. Genetics, 2017, 206, 1	51-162.	1.2	5
221	Yeast Biofilms in the Context of Human Health and Disease. , 2017, , 137-162.			3
222	<i>In Vitro</i> Antibiofilm Activity of Eucarobustol E against Candida albicans. Antimicrol and Chemotherapy, 2017, 61, .	pial Agents	1.4	51
223	Fungal Biofilms: Inside Out. Microbiology Spectrum, 2017, 5, .		1.2	25
224	Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Opportunities and Challenges for Therapeutic Development. Microbiology and Molecular Reviews, 2017, 81, .	Infections: Biology	2.9	93
226	<i>Lactobacillus rhamnosus</i> inhibits <i>Candida albicans</i> virulence factors <i>inÂvitr modulates immune system in<i>Galleria mellonella</i>. Journal of Applied Microbiology, 2 201-211.</i>		1.4	59

#	Article	IF	CITATIONS
227	Fastâ€ŧrack development of a lactase production process with <i>Kluyveromyces lactis</i> by a progressive parameter ontrol workflow. Engineering in Life Sciences, 2017, 17, 1185-1194.	2.0	11
228	Candida Albicans Biofilm as a Clinical Challenge. , 2017, , 247-264.		1
229	Fungal Biofilms: Inside Out. , 2017, , 873-886.		6
230	Organic Nanocarriers for the Delivery of Antiinfective Agents. , 2017, , 369-393.		1
231	Transcriptomics technologies. PLoS Computational Biology, 2017, 13, e1005457.	1.5	677
232	Fungal Biofilms. , 2017, , 326-326.		0
233	Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clinical Microbiology Reviews, 2018, 31, .	5.7	150
234	Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by Candida species. Journal De Mycologie Medicale, 2018, 28, 332-339.	0.7	36
235	Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 2018, 16, 19-31.	13.6	405
237	Omics Approaches, Technologies And Applications. , 2018, , .		6
238	THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida�albicans. International Journal of Molecular Medicine, 2018, 42, 3193-3208.	1.8	11
239	Transcriptomic and Genomic Approaches for Unravelling Candida albicans Biofilm Formation and Drug Resistance—An Update. Genes, 2018, 9, 540.	1.0	37
240	The Significance of Lipids to Biofilm Formation in Candida albicans: An Emerging Perspective. Journal of Fungi (Basel, Switzerland), 2018, 4, 140.	1.5	45
241	<i>Candida albicans</i> Dispersed Cells Are Developmentally Distinct from Biofilm and Planktonic Cells. MBio, 2018, 9, .	1.8	69
242	Cranberry-derived proanthocyanidins induce a differential transcriptomic response within Candida albicans urinary biofilms. PLoS ONE, 2018, 13, e0201969.	1.1	3
243	Serial Systemic Candida albicans Infection Highlighted by Proteomics. Frontiers in Cellular and Infection Microbiology, 2019, 9, 230.	1.8	6
244	Screening of Candida albicans GRACE library revealed a unique pattern of biofilm formation under repression of the essential gene ILS1. Scientific Reports, 2019, 9, 9187.	1.6	6
245	Bioactive Peptides Against Fungal Biofilms. Frontiers in Microbiology, 2019, 10, 2169.	1.5	50

#	Article	IF	CITATIONS
246	Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. Journal of Fungi (Basel, Switzerland), 2019, 5, 17.	1.5	45
247	Chitosan Nanogel Design on Gymnema sylvestre Essential Oils to Inhibit Growth of Candida albicans Biofilm and Investigation of Gene Expression ALS1, ALS3. Periodica Polytechnica: Chemical Engineering, 2019, 63, 569-581.	0.5	3
248	Antimicrobial activity of intracanal medications against both <i>Enterococcus faecalis</i> and <scp><i>Candida albicans</i></scp> biofilm. Microscopy Research and Technique, 2019, 82, 494-500.	1.2	27
249	Deletion of <i>GLX3</i> in <i>Candida albicans</i> affects temperature tolerance, biofilm formation and virulence. FEMS Yeast Research, 2019, 19, .	1.1	9
250	Efficient License Plate Recognition System with Smarter Interpretation Through IoT. Advances in Intelligent Systems and Computing, 2019, , 207-220.	0.5	7
251	Transcriptional Circuits Regulating Developmental Processes in Candida albicans. Frontiers in Cellular and Infection Microbiology, 2020, 10, 605711.	1.8	26
252	The Transcription Factor Stp2 Is Important for Candida albicans Biofilm Establishment and Sustainability. Frontiers in Microbiology, 2020, 11, 794.	1.5	11
253	Transcriptome Analyses of Candida albicans Biofilms, Exposed to Arachidonic Acid and Fluconazole, Indicates Potential Drug Targets. G3: Genes, Genomes, Genetics, 2020, 10, 3099-3108.	0.8	11
254	Effect of progesterone on Candida albicans biofilm formation under acidic conditions: A transcriptomic analysis. International Journal of Medical Microbiology, 2020, 310, 151414.	1.5	8
255	Integrated proteomic and metabolomic analysis to study the effects of spaceflight on Candida albicans. BMC Genomics, 2020, 21, 57.	1.2	12
256	Transcriptome Profile of Yeast Strain Used for Biological Wine Aging Revealed Dynamic Changes of Gene Expression in Course of Flor Development. Frontiers in Microbiology, 2020, 11, 538.	1.5	11
257	LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth. Microbial Pathogenesis, 2021, 152, 104614.	1.3	8
258	Efg1 and Cas5 Orchestrate Cell Wall Damage Response to Caspofungin in Candida albicans. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	10
259	Modulation of the complex regulatory network for methionine biosynthesis in fungi. Genetics, 2021, 217, .	1.2	8
261	The Lack of SNARE Protein Homolog Syn8 Influences Biofilm Formation of Candida glabrata. Frontiers in Cell and Developmental Biology, 2021, 9, 607188.	1.8	1
262	Evolution of the complex transcription network controlling biofilm formation in Candida species. ELife, 2021, 10, .	2.8	25
263	Kinome analyses of Candida albicans, C. parapsilosis and C. tropicalis enable novel kinases as therapeutic drug targets in candidiasis. Gene, 2021, 780, 145530.	1.0	3
264	Computational Drug Repurposing Resources and Approaches for Discovering Novel Antifungal Drugs against Candida albicans N-Myristoyl Transferase. Journal of Pure and Applied Microbiology, 2021, 15, 556-579.	0.3	2

	C	ITATION REPORT	
#	Article	IF	CITATIONS
265	Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in <i>Candida albicans</i> . Critical Reviews in Microbiology, 2022, 48, 1-20.	2.7	7
266	Candida albicans and Candida glabrata triosephosphate isomerase – a moonlighting protein that ca be exposed on the candidal cell surface and bind to human extracellular matrix proteins. BMC Microbiology, 2021, 21, 199.	an 1.3	8
267	Fungal Biofilms as a Valuable Target for the Discovery of Natural Products That Cope with the Resistance of Medically Important Fungi—Latest Findings. Antibiotics, 2021, 10, 1053.	1.5	16
268	5-hydroxymethyl-2-furaldehyde impairs Candida albicans - Staphylococcus epidermidis interaction in co-culture by suppressing crucial supportive virulence traits. Microbial Pathogenesis, 2021, 158, 104990.	1.3	6
269	Fungal Cell Wall Proteins and Signaling Pathways Form a Cytoprotective Network to Combat Stresses. Journal of Fungi (Basel, Switzerland), 2021, 7, 739.	1.5	24
270	<i>Candida albicans</i> biofilms and polymicrobial interactions. Critical Reviews in Microbiology, 2021, 47, 91-111.	2.7	96
271	Integration of Metabolism with Virulence in Candida albicans. , 2006, , 185-203.		2
272	Candida Biofilm Analysis in the Artificial Throat Using FISH. Methods in Molecular Biology, 2009, 499 45-54.	0.4	5
273	Candida albicans Cell Wall Mediated Virulence. , 2010, , 69-95.		2
274	14 Integration of Metabolism with Virulence in Candida albicans. , 2014, , 349-370.		4
275	A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols, 2008, 3, 1494-1500.	5.5	453
277	Fungal Biofilms: Agents of Disease and Drug Resistance. , 0, , 177-185.		3
278	Toward a Molecular Understanding of <i>Candida albicans</i> Virulence. , 0, , 305-P1.		10
279	The Cell Wall: Glycoproteins, Remodeling, and Regulation. , 0, , 195-223.		5
280	Adhesins in Opportunistic Fungal Pathogens. , 0, , 243-P2.		9
281	Gene Expression during the Distinct Stages of Candidiasis. , 0, , 283-298.		1
282	Candida-Bacteria Interactions: Their Impact on Human Disease. , 0, , 103-136.		3
283	Human Serum Promotes Candida albicans Biofilm Growth and Virulence Gene Expression on Silicone Biomaterial. PLoS ONE, 2013, 8, e62902.	1.1	52

#	Article	IF	CITATIONS
284	Rbt1 Protein Domains Analysis in Candida albicans Brings Insights into Hyphal Surface Modifications and Rbt1 Potential Role during Adhesion and Biofilm Formation. PLoS ONE, 2013, 8, e82395.	1.1	26
285	In Vitro Models to Study Candida albicans Biofilms. Journal of Pharmaceutics and Drug Development, 2015, 3, .	0.1	2
286	ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Advanced Biomedical Research, 2016, 5, 105.	0.2	27
287	A Mini Review of Candida Species in Hospital Infection: Epidemiology,Virulence Factor and Drugs Resistance and Prophylaxis. Tropical Medicine & Surgery, 2013, 01, .	0.1	4
288	HIV aspartyl protease inhibitors as promising compounds against <i>Candida albicans</i> André Luis Souza dos Santos. World Journal of Biological Chemistry, 2010, 1, 21.	1.7	30
289	Candida Albicans: New Insights in Infection, Disease, and Treatment. , 2007, , 99-129.		0
290	Fungal Biofilms and Catheter-Associated Infections. , 2009, , 149-162.		0
292	Candida albicans Biofilms, Heterogeneity and Antifungal Drug Tolerance. The Open Mycology Journal, 2011, 5, 21-28.	0.8	1
294	Biofilm Formation in Candida albicans. , 0, , 299-315.		0
295	Postgenomic Strategies for Genetic Analysis: Insight from Saccharomyces cerevisiae and Candida albicans. , 0, , 35-P1.		0
296	Comparative Genomics of Candida Species. , 0, , 27-43.		0
297	<i>Candida</i> Biofilms., 2017, 103-128.		0
302	Regulatory network controls microbial biofilm development, with <i>Candida albicans</i> as a representative: from adhesion to dispersal. Bioengineered, 2022, 13, 253-267.	1.4	9
305	Genomic Analysis of Cellular Morphology in Candida albicans. , 2006, , 147-159.		1
306	Postgenomic Approaches to Analyse Candida albicans Pathogenicity. , 2006, , 163-184.		0
307	The disinfecting efficacy of root canals with laser photodynamic therapy. Journal of Lasers in Medical Sciences, 2014, 5, 19-26.	0.4	31
308	Intravenous Catheter-Associated Candidemia due to Candida membranaefaciens: The First Iranian Case. The Journal of Tehran Heart Center, 2015, 10, 101-5.	0.3	2
309	Inhibitory effect of 405-nm blue LED light on the growth of Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin. Lasers in Medical Science, 2022, 37, 2311-2319.	1.0	3

	CITATION	REPORT	
#	Article	IF	Citations
310	Role of Cellular Metabolism during Candida-Host Interactions. Pathogens, 2022, 11, 184.	1.2	14
311	Design and Matlab Simulation of Persian License Plate Recognition Using Neural Network and Image Filtering for Intelligent Transportation Systems. ASP Transactions on Pattern Recognition and Intelligent Systems, 2022, 2, 1-14.	2.0	9
312	Filament Negative Regulator CDC4 Suppresses Glycogen Phosphorylase Encoded GPH1 That Impacts the Cell Wall-Associated Features in Candida albicans. Journal of Fungi (Basel, Switzerland), 2022, 8, 233.	1.5	0
313	EFG1, Everyone's Favorite Gene in Candida albicans: A Comprehensive Literature Review. Frontiers in Cellular and Infection Microbiology, 2022, 12, 855229.	1.8	22
322	Drug repurposing against <i>Candida auris</i> : A systematic review. Mycoses, 2022, 65, 784-793.	1.8	10
323	Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans. Turkish Journal of Medical Sciences, 0, , .	0.4	6
324	Fungal resilience and host–pathogen interactions: Future perspectives and opportunities. Parasite Immunology, 2023, 45, .	0.7	6
325	A common vesicle proteome drives fungal biofilm development. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
326	The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Computational and Structural Biotechnology Journal, 2022, 20, 5698-5712.	1.9	0
327	Impaired amino acid uptake leads to global metabolic imbalance of Candida albicans biofilms. Npj Biofilms and Microbiomes, 2022, 8, .	2.9	6
329	Cross-kingdom interaction between Candida albicans and oral bacteria. Frontiers in Microbiology, 0, 13, .	1.5	15
330	High throughput bioanalytical techniques for elucidation of Candida albicans biofilm architecture and metabolome. Rendiconti Lincei, 2023, 34, 117-129.	1.0	1
331	Transcript profiling reveals the role of PDB1, a subunit of the pyruvate dehydrogenase complex, in Candida albicans biofilm formation. Research in Microbiology, 2023, 174, 104014.	1.0	2
332	The Pga59 cell wall protein is an amyloid forming protein involved in adhesion and biofilm establishment in the pathogenic yeast Candida albicans. Npj Biofilms and Microbiomes, 2023, 9, .	2.9	6
333	License Plate Recognition via Attention Mechanism. Computers, Materials and Continua, 2023, 75, 1801-1814.	1.5	1
334	Multiplexed target enrichment of coding and non-coding transcriptomes enables studying Candida spp. infections from human derived samples. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	1
335	An integrated transcriptomic and metabolomic approach to investigate the heterogeneous Candida albicans biofilm phenotype. Biofilm, 2023, 5, 100112.	1.5	1
336	Dermatophytic Biofilms: Characteristics, Significance and Treatment Approaches. Journal of Fungi (Basel, Switzerland), 2023, 9, 228.	1.5	1

#	Article	IF	CITATIONS
337	Candida auris biofilm: a review on model to mechanism conservation. Expert Review of Anti-Infective Therapy, 2023, 21, 295-308.	2.0	3
338	Candida parapsilosis Cell Wall Proteome Characterization and Effectiveness against Hematogenously Disseminated Candidiasis in a Murine Model. Vaccines, 2023, 11, 674.	2.1	1
339	Relationships between Secreted Aspartyl Proteinase 2 and General Control Nonderepressible 4 gene in the Candida albicans resistant to itraconazole under planktonic and biofilm conditions. Brazilian Journal of Microbiology, 2023, 54, 619-627.	0.8	0
340	Studying gene expression in biofilms. Methods in Microbiology, 2023, , .	0.4	Ο