Calculating Microbial Survival Parameters and Predictin Non-Isothermal Inactivation Data

Critical Reviews in Food Science and Nutrition 44, 409-418 DOI: 10.1080/10408690490489297

Citation Report

#	Article	IF	CITATIONS
1	Estimation of the non-isothermal inactivation patterns of Bacillus sporothermodurans IC4 spores in soups from their isothermal survival data. International Journal of Food Microbiology, 2004, 95, 205-218.	4.7	53
2	Calculating the efficacy of heat sterilization processes. Journal of Food Engineering, 2005, 67, 59-69.	5.2	48
3	Generating microbial survival curves during thermal processing in real time. Journal of Applied Microbiology, 2005, 98, 406-417.	3.1	82
6	On modeling and simulating transitions between microbial growth and inactivation or vice versa. International Journal of Food Microbiology, 2006, 108, 22-35.	4.7	20
7	Expressing the equivalence of non-isothermal and isothermal heat sterilization processes. Journal of the Science of Food and Agriculture, 2006, 86, 785-792.	3.5	23
8	The non-linear kinetics of microbial inactivation and growth in foods. , 2007, , 129-160.		8
9	A numerical algorithm for calculating microbial survival curves during thermal processing. Food Research International, 2007, 40, 203-208.	6.2	24
10	The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Research International, 2007, 40, 808-818.	6.2	96
11	Letter to the editor of the International Journal of Food Microbiology on software to calculate food safety. International Journal of Food Microbiology, 2007, 118, 97-98.	4.7	2
12	Estimating microbial growth parameters from non-isothermal data: A case study with Clostridium perfringens. International Journal of Food Microbiology, 2007, 118, 294-303.	4.7	17
13	Prediction of an organism's inactivation patterns from three single survival ratios determined at the end of three non-isothermal heat treatments. International Journal of Food Microbiology, 2008, 126, 98-111.	4.7	30
14	Identification of non-linear microbial inactivation kinetics under dynamic conditions. International Journal of Food Microbiology, 2008, 128, 146-152.	4.7	39
15	Food Engineering: Integrated Approaches. Food Engineering Series, 2008, , .	0.7	18
16	Estimating the Heat Resistance Parameters of Bacterial Spores from their Survival Ratios at the End of UHT and other Heat Treatments. Critical Reviews in Food Science and Nutrition, 2008, 48, 634-648.	10.3	37
17	Modeling the Effect of Prior Sublethal Thermal History on the Thermal Inactivation Rate of Salmonella in Ground Turkey. Journal of Food Protection, 2008, 71, 279-285.	1.7	32
18	Theil Error Splitting Method for Selecting the "Best Model―in Microbial Inactivation Studies. Journal of Food Protection, 2009, 72, 843-848.	1.7	2
19	Dynamic Model of Heat Inactivation Kinetics for Bacterial Adaptation. Applied and Environmental Microbiology, 2009, 75, 2590-2597.	3.1	32
20	Modeling the growth, survival and death of microbial pathogens in foods. , 2009, , 66-112.		1

CITATION REPORT

#	Article	IF	CITATIONS
21	Nonisothermal heat resistance determinations with the thermoresistometer Mastia. Journal of Applied Microbiology, 2009, 107, 506-513.	3.1	67
22	Comparing the effectiveness of thermal and non-thermal food preservation processes: the concept of equivalent efficacy. , 2010, , 464-488.		3
23	Theoretical effects of monotonically changing and fluctuating temperature on oscillating biological systems. Ecological Complexity, 2010, 7, 500-505.	2.9	0
24	Modeling thermal degradation of litchi texture: Comparison of WeLL model and conventional methods. Food Research International, 2011, 44, 1970-1976.	6.2	19
25	Cross-protective effects of temperature, pH, and osmotic and starvation stresses in Escherichia coli O157:H7 subjected to pulsed electric fields in milk. International Dairy Journal, 2011, 21, 953-962.	3.0	15
27	Modeling of Pathogen Survival during Simulated Gastric Digestion. Applied and Environmental Microbiology, 2011, 77, 1021-1032.	3.1	42
28	Heat Treatment of Milk Sterilization of Milk and Other Products. , 2011, , 714-724.		6
30	Mathematical modeling of cryoprotectant addition and removal for the cryopreservation of engineered or natural tissues. Cryobiology, 2012, 64, 1-11.	0.7	45
31	Estimating microbial survival parameters under high hydrostatic pressure. Food Research International, 2012, 46, 314-320.	6.2	9
32	On Quantifying Nonthermal Effects on the Lethality of Pressureâ€Assisted Heat Preservation Processes. Journal of Food Science, 2012, 77, R47-56.	3.1	10
33	An optimization algorithm for estimation of microbial survival parameters during thermal processing. International Journal of Food Microbiology, 2012, 154, 52-58.	4.7	11
34	Estimating microbial survival parameters from dynamic survival data using Microsoft Excel. International Journal of Food Science and Technology, 2013, 48, 1841-1846.	2.7	4
35	Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores. Food Microbiology, 2013, 34, 158-163.	4.2	33
36	Parameter Estimation in Food Science. Annual Review of Food Science and Technology, 2013, 4, 401-422.	9.9	68
37	A comparison of two methods for estimating microbial survival parameters from dynamic survival data. International Journal of Food Science and Technology, 2013, 48, 1109-1113.	2.7	3
38	Inactivation kinetics and injury recovery of Bacillus amyloliquefaciens spores in low-acid foods during pressure-assisted thermal processing. Food Science and Biotechnology, 2014, 23, 1851-1857.	2.6	2
39	Mathematical modelling of Aspergillus ochraceus inactivation with supercritical carbon dioxide – A kinetic study. Food and Bioproducts Processing, 2014, 92, 369-375.	3.6	13
40	Inactivation kinetics for Salmonella Enteritidis in potato omelet using microwave heating treatments. Food Control, 2014, 43, 175-182.	5.5	46

	Сітаті	on Report	
#	Article	IF	Citations
41	Comparison of Desiccation Tolerance among Listeria monocytogenes, Escherichia coliO157:H7, Salmonella enterica, and Cronobacter sakazakii in Powdered Infant Formula. Journal of Food Protection, 2015, 78, 104-110.	1.7	66
42	Survival Kinetics of Salmonella enterica and Enterohemorrhagic Escherichia coli on a Plastic Surface at Low Relative Humidity and on Low–Water Activity Foods. Journal of Food Protection, 2016, 79, 1680-1692.	1.7	25
43	Heat Treatment: Principles and Techniques. , 2016, , 316-327.		2
44	Explicit numerical solutions of a microbial survival model under nonisothermal conditions. Food Science and Nutrition, 2016, 4, 284-289.	3.4	1
45	Predicting Salmonella Typhimurium reductions in poultry ground carcasses. Poultry Science, 2016, 95, 2640-2646.	3.4	3
46	Effect of heating rate on highly heat-resistant spore-forming microorganisms. Food Science and Technology International, 2016, 22, 164-172.	2.2	6
47	High Pressure Processing in Combination with High Temperature and Other Preservation Factors. Food Engineering Series, 2016, , 193-215.	0.7	9
48	A Compertz Model Approach to Microbial Inactivation Kinetics by High-Pressure Processing Incorporating the Initial Counts, Microbial Quantification Limit, and Come-Up Time Effects. Food and Bioprocess Technology, 2017, 10, 1495-1508.	4.7	14
49	Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment. Applied and Environmental Microbiology, 2017, 83, .	3.1	20
50	Evaluation of the Gauss-Eyring model to predict thermal inactivation of micro-organisms at short holding times. International Journal of Food Microbiology, 2017, 263, 47-60.	4.7	8
52	Mathematical quantification of the induced stress resistance of microbial populations during non-isothermal stresses. International Journal of Food Microbiology, 2018, 266, 133-141.	4.7	23
53	Thermal inactivation kinetics of Paenibacillus sanguinis 2301083PRC and Clostridium sporogenes JCM1416MGA in full and low fat "requeijão cremoso― Food Control, 2018, 84, 395-402.	5.5	29
54	Kinetics of wheat gluten polymerization at extrusion-like conditions relevant for the production of meat analog products. Food Hydrocolloids, 2018, 85, 102-109.	10.7	47
55	Factors influencing estimation of thermal inactivation parameters in low-moisture foods using a test cell. Journal of Food Engineering, 2019, 262, 100-108.	5.2	5
56	Calculating stochastic inactivation of individual cells in a bacterial population using variability in individual cell inactivation time and initial cell number. Journal of Theoretical Biology, 2019, 469, 172-179.	1.7	17
57	Sterilization of Milk and Other Products. , 2019, , .		0
58	Modeling the inactivation of Bacillus subtilis spores during cold plasma sterilization. Innovative Food Science and Emerging Technologies, 2019, 52, 334-342.	5.6	41
59	High moisture extrusion of wheat gluten: Modeling of the polymerization behavior in the screw section of the extrusion process. Journal of Food Engineering, 2019, 246, 67-74.	5.2	33

#	Article	IF	CITATIONS
60	Stochastic simulation for death probability of bacterial population considering variability in individual cell inactivation time and initial number of cells. International Journal of Food Microbiology, 2019, 290, 125-131.	4.7	14
61	Microwave pasteurization of apple juice: Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium at 80–90°C. Food Microbiology, 2020, 87, 103382.	4.2	29
62	Microbial Modeling Needs for the Nonthermal Processing of Foods. Food Engineering Reviews, 2021, 13, 465-489.	5.9	11
63	The influence of phenolic extract from olive vegetation water and storage temperature on the survival of Salmonella Enteritidis inoculated on mayonnaise. LWT - Food Science and Technology, 2020, 129, 109648.	5.2	10
64	Describing the Individual Spore Variability and the Parameter Uncertainty in Bacterial Survival Kinetics Model by Using Second-Order Monte Carlo Simulation. Frontiers in Microbiology, 2020, 11, 985.	3.5	6
65	Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium in juices by pulsed electric fields: The role of the energy density. Journal of Food Engineering, 2020, 282, 110001.	5.2	28
66	Estimation of parameters in the Weibull model from microbial survival data obtained under constant conditions with come-up times. Journal of Food Engineering, 2021, 292, 110364.	5.2	5
67	Microbial Dose-Response Curves and Disinfection Efficacy Models Revisited. Food Engineering Reviews, 2021, 13, 305-321.	5.9	15
68	Microwave and conventional thermal processing of soymilk: Inactivation kinetics of lipoxygenase and trypsin inhibitors activity. LWT - Food Science and Technology, 2021, 145, 111275.	5.2	17
69	Evaluation of Strain Variability in Inactivation of Campylobacter jejuni in Simulated Gastric Fluid by Using Hierarchical Bayesian Modeling. Applied and Environmental Microbiology, 2021, 87, e0091821.	3.1	5
70	Heat Treatment of Milk: Sterilization. , 2022, , 659-670.		2
71	Nonlinear Kinetics: Principles and Potential Food Applications. Food Engineering Series, 2008, , 47-71.	0.7	2
72	Analyzing the effectiveness of microbial inactivation in thermal processing * *This chapter has been reproduced at the publisher's request , 2004, , 411-426.		2
73	Kinetic evaluation of physiological heterogeneity in bacterial spores during thermal inactivation. Journal of General and Applied Microbiology, 2009, 55, 295-299.	0.7	8
74	Modellazione delle cinetiche di inattivazione cellulare. Food, 2013, , 87-114.	0.0	0
75	Experimentally observed Campylobacter jejuni survival kinetics in chicken meat products during model gastric digestion tended to be lower than model predictions. Food Microbiology, 2021, 102, 103932.	4.2	2
78	The non-linear kinetics of microbial inactivation and growth in foods. , 0, , 129-160.		0
79	Sequential estimation of inactivation parameters and bootstrap confidence intervals in	5.2	0

CITATION REPORT

#	Article	IF	CITATIONS
80	Tolerance variations and mechanisms of <i>Salmonella enterica</i> serovar Newport in response to long-term hypertonic stress. Food Quality and Safety, 2024, 8, .	1.8	0