Fruit and vegetable movement on domestic flights in Pa spreading pest fruit-flies (Diptera: Tephritidae)

International Journal of Pest Management

50, 17-22

DOI: 10.1080/09670870310001626329

Citation Report

#	Article	IF	CITATIONS
1	INVASIVE PHYTOPHAGOUS PESTS ARISING THROUGH A RECENT TROPICAL EVOLUTIONARY RADIATION: TheBactrocera dorsalisComplex of Fruit Flies. Annual Review of Entomology, 2005, 50, 293-319.	11.8	489
2	NAPPFAST: An Internet System for the Weather-Based Mapping of Plant Pathogens. Plant Disease, 2007, 91, 336-345.	1.4	109
3	Part of the solution? Stakeholder awareness, information and engagement in tree health issues. Biological Invasions, 2015, 17, 1961-1977.	2.4	57
4	Signatures of invasion: using an integrative approach to infer the spread of melon fly, Zeugodacus cucurbitae (Diptera: Tephritidae), across Southeast Asia and the West Pacific. Biological Invasions, 2017, 19, 1597-1619.	2.4	13
5	Incidence of frugivorous flies (Tephritidae and Lonchaeidae), fruit losses and the dispersal of flies through the transportation of fresh fruit. Journal of Asia-Pacific Entomology, 2021, 24, 50-60.	0.9	12
6	Host plant ranges of fruit flies (Diptera: Tephritidae) in Madagascar. Bulletin of Entomological Research, 2022, 112, 1-12.	1.0	8
7	Area-Wide Management of Fruit Flies (Diptera: Tephritidae) in Hawaii. , 2016, , 673-693.		13
8	Thermal effects on the development of Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) and model validation. Phytoparasitica, 2022, 50, 601-616.	1.2	5
9	Sequential invasions by fruit flies (Diptera: Tephritidae) in Pacific and Indian Ocean islands: A systematic review. Ecology and Evolution, 2022, 12, e8880.	1.9	6
11	Effects of temperature on the fecundity and longevity of <i>Zeugodacus cucurbitae</i> (Coquillet) (Diptera: Tephritidae) on artificial diet. Entomological Research, 2023, 53, 291-301.	1.1	0
12	Priority host plants of the Queensland fruit fly, Bactrocera tryoni (Froggatt), based on the host reproduction number for tephritid management, surveillance and trade. International Journal of Tropical Insect Science, 2023, 43, 1531-1538.	1.0	3
13	Biosecurity and Management Strategies for Economically Important Exotic Tephritid Fruit Fly Species in Australia. Insects, 2023, 14, 801.	2.2	1
14	Host reproduction number as an indicator of reproductive advantage in Bactrocera dorsalis over Bactrocera tryoni – can the concept elucidate the invasive threat in northern Australia?. International Journal of Tropical Insect Science, 2024, 44, 647-656.	1.0	0