A genomic perspective on protein tyrosine phosphatase genetic disease linkage

FASEB Journal

18, 8-30

DOI: 10.1096/fj.02-1212rev

Citation Report

#	Article	IF	CITATIONS
1	Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13844-13849.	3.3	102
2	VHY, a Novel Myristoylated Testis-restricted Dual Specificity Protein Phosphatase Related to VHX. Journal of Biological Chemistry, 2004, 279, 32586-32591.	1.6	20
3	Structure-based Design of Selective and Potent Inhibitors of Protein-tyrosine Phosphatase \hat{l}^2 . Journal of Biological Chemistry, 2004, 279, 24226-24235.	1.6	35
4	Tyrosine phosphatase activity in mitochondria: presence of Shp-2 phosphatase in mitochondria. Cellular and Molecular Life Sciences, 2004, 61, 2393-404.	2.4	71
5	PhosphaBase: An ontology-driven database resource for protein phosphatases. Proteins: Structure, Function and Bioinformatics, 2004, 58, 290-294.	1.5	17
6	Functional significance of the LAR receptor protein tyrosine phosphatase family in development and diseases. Biochemistry and Cell Biology, 2004, 82, 664-675.	0.9	135
7	Regulation of Insulin Signaling through Reversible Oxidation of the Protein-tyrosine Phosphatases TC45 and PTP1B. Journal of Biological Chemistry, 2004, 279, 37716-37725.	1.6	242
8	Protein Tyrosine Phosphatases in the Human Genome. Cell, 2004, 117, 699-711.	13.5	1,697
9	Cloning of hOST-PTP: the only example of a protein-tyrosine-phosphatase the function of which has been lost between rodent and human. Biochemical and Biophysical Research Communications, 2004, 321, 259-265.	1.0	37
10	Protein tyrosine phosphatase hPTPN20a is targeted to sites of actin polymerization. Biochemical Journal, 2005, 389, 343-354.	1.7	17
11	Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: From diabetes, obesity to cell cycle, and cancer. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 108-117.	1.1	109
12	The functional genetic variation in the PTPN22 gene has a negligible effect on the susceptibility to develop inflammatory bowel disease. Tissue Antigens, 2005, 66, 314-317.	1.0	32
13	Protein tyrosine phosphatases and the immune response. Nature Reviews Immunology, 2005, 5, 43-57.	10.6	322
14	Epigenetic regulation of protein tyrosine phosphatases: potential molecular targets for cancer therapy. Cancer Gene Therapy, 2005, 12, 665-672.	2.2	52
15	Vitamin E and immune response in the aged: molecular mechanisms and clinical implications. Immunological Reviews, 2005, 205, 269-284.	2.8	184
16	A SHPing tale: Perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cellular Signalling, 2005, 17, 1323-1332.	1.7	162
17	New vision from Eyes absent: transcription factors as enzymes. Trends in Genetics, 2005, 21, 163-171.	2.9	82
18	Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis and Rheumatism, 2005, 52, 219-224.	6.7	275

#	Article	IF	CITATIONS
19	Protein phosphatases and their potential implications in neuroprotective processes. Cellular and Molecular Life Sciences, 2005, 62, 1120-1130.	2.4	33
20	A Bioinformatics Analysis of Protein Tyrosine Phosphatases in Humans. DNA Research, 2005, 12, 79-89.	1.5	18
21	Differential Oxidation of Protein-tyrosine Phosphatases. Journal of Biological Chemistry, 2005, 280, 10298-10304.	1.6	113
22	Genetic Ablation of Protein Tyrosine Phosphatase 1B Accelerates Lymphomagenesis of p53-Null Mice through the Regulation of B-Cell Development. Cancer Research, 2005, 65, 10088-10095.	0.4	91
23	Receptor-type Protein-tyrosine Phosphatase-κ Regulates Epidermal Growth Factor Receptor Function. Journal of Biological Chemistry, 2005, 280, 42694-42700.	1.6	96
24	Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. Journal of Molecular Endocrinology, 2005, 34, 339-351.	1.1	124
25	Gene expression in midgut carcinoid tumors: Potential targets for immunotherapy. Acta Oncol \tilde{A}^3 gica, 2005, 44, 32-40.	0.8	26
26	Phosphoproteomics for oncology discovery and treatment. Expert Opinion on Therapeutic Targets, 2005, 9, 851-860.	1.5	9
27	Structure of the Hematopoietic Tyrosine Phosphatase (HePTP) Catalytic Domain: Structure of a KIM Phosphatase with Phosphate Bound at the Active Site. Journal of Molecular Biology, 2005, 354, 150-163.	2.0	39
28	Involvement of a Mitochondrial Phosphatase in the Regulation of ATP Production and Insulin Secretion in Pancreatic \hat{l}^2 Cells. Molecular Cell, 2005, 19, 197-207.	4.5	138
29	Firing up Mitochondrial Activities with PTPMT1. Molecular Cell, 2005, 19, 291-292.	4.5	4
30	C1858T Functional Variant of PTPN22 Gene Is Not Associated With Celiac Disease Genetic Predisposition. Human Immunology, 2005, 66, 848-852.	1.2	42
31	Mutational analysis of gene families in human cancer. Current Opinion in Genetics and Development, 2005, 15, 5-12.	1.5	47
32	Germ-line and somatic PTPN11 mutations in human disease. European Journal of Medical Genetics, 2005, 48, 81-96.	0.7	128
33	Transmembrane homodimerization of receptor-like protein tyrosine phosphatases. FEBS Letters, 2005, 579, 3855-3858.	1.3	50
34	Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources. Methods, 2005, 35, 90-114.	1.9	40
35	Role of Tyrosine Kinases and Phosphatases in Polycythemia Vera. Seminars in Hematology, 2005, 42, 221-229.	1.8	25
36	Identification of an Acquired JAK2 Mutation in Polycythemia Vera. Journal of Biological Chemistry, 2005, 280, 22788-22792.	1.6	548

#	Article	IF	CITATIONS
37	ReviewPTPs versus PTKs: The redox side of the coin. Free Radical Research, 2005, 39, 353-364.	1.5	142
38	Functions and Mechanisms of Redox Regulation of Cysteine-Based Phosphatases. Antioxidants and Redox Signaling, 2005, 7, 560-577.	2.5	268
39	Protein Tyrosine Phosphatases in Human Disease., 2006, 584, 53-72.		7
40	Targeting the PTPome in human disease. Expert Opinion on Therapeutic Targets, 2006, 10, 157-177.	1.5	101
42	Cloning and partial characterization of Entamoeba histolytica PTPases. Biochemical and Biophysical Research Communications, 2006, 342, 1014-1021.	1.0	13
43	Natural compounds as a source of protein tyrosine phosphatase inhibitors: Application to the rational design of small-molecule derivatives. Biochimie, 2006, 88, 1859-1873.	1.3	46
44	A Brief Introduction to the Protein Phosphatase Families. , 2007, 365, 9-22.		31
45	The Redox Regulation of PI 3-Kinase–Dependent Signaling. Antioxidants and Redox Signaling, 2006, 8, 1765-1774.	2.5	134
46	The Human and Mouse Complement of SH2 Domain Proteinsâ€"Establishing the Boundaries of Phosphotyrosine Signaling. Molecular Cell, 2006, 22, 851-868.	4.5	263
47	Roles of genetic variations in signalling/immunoregulatory molecules in susceptibility to systemic lupus erythematosus. Seminars in Immunology, 2006, 18, 224-229.	2.7	14
48	Are other protein tyrosine phosphatases than PTPN22 associated with autoimmunity?. Seminars in Immunology, 2006, 18, 254-260.	2.7	18
49	Synaptic plasticity: one STEP at a time. Trends in Neurosciences, 2006, 29, 452-458.	4.2	116
50	Manzamenones Inhibit T-Cell Protein Tyrosine Phosphatase. Marine Drugs, 2006, 4, 9-14.	2.2	4
51	Protein tyrosine phosphatase receptor–type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell–receptor signaling, and cellular proliferation. Blood, 2006, 108, 3428-3433.	0.6	86
52	Protein tyrosine phosphatases as negative regulators of the immune response. Biochemical Society Transactions, 2006, 34, 1041-1045.	1.6	18
53	PTPN22: a confirmed rheumatoid arthritis susceptibility gene?. Future Rheumatology, 2006, 1, 153-158.	0.2	0
54	Engineering the catalytic domain of human protein tyrosine phosphatase \hat{l}^2 for structure-based drug discovery. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1435-1445.	2.5	23
55	Loss of the VHR dual-specific phosphatase causescell-cycle arrest and senescence. Nature Cell Biology, 2006, 8, 524-531.	4.6	114

#	Article	IF	CITATIONS
56	Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Nature Neuroscience, 2006, 9, 761-769.	7.1	89
57	Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology, 2006, 7, 833-846.	16.1	1,457
58	The whys and wherefores of phosphate removal. EMBO Reports, 2006, 7, 263-268.	2.0	1
59	PTP-PEST phosphatase variations in human cancer. Cancer Genetics and Cytogenetics, 2006, 170, 48-53.	1.0	36
60	Do transposable elements really contribute to proteomes?. Trends in Genetics, 2006, 22, 260-267.	2.9	81
61	Molecular profiling of signalling proteins for effects induced by the anti-cancer compound GSAO with 400 antibodies. BMC Cancer, 2006, 6, 155.	1.1	5
62	Protein classification using ontology classification. Bioinformatics, 2006, 22, e530-e538.	1.8	44
63	Tyrosine Phosphatases $\hat{l}\mu$ and $\hat{l}\pm$ Perform Specific and Overlapping Functions in Regulation of Voltage-gated Potassium Channels in Schwann Cells. Molecular Biology of the Cell, 2006, 17, 4330-4342.	0.9	27
64	Role of Protein Tyrosine Phosphatases in Cancer. Progress in Molecular Biology and Translational Science, 2006, 81, 297-329.	1.9	40
65	Protein Tyrosine Phosphatases, New Targets for Cancer Therapy. Current Cancer Drug Targets, 2006, 6, 519-532.	0.8	55
66	The Putative Tumor Suppressor Gene <i>PTPN13/PTPL1</i> Induces Apoptosis through Insulin Receptor Substrate-1 Dephosphorylation. Cancer Research, 2007, 67, 6806-6813.	0.4	59
67	Modeling and Informatics in Designing Anti-Diabetic Agents. Current Pharmaceutical Design, 2007, 13, 3518-3530.	0.9	37
68	Mechanistic Insights Into Diabetes Mellitus and Oxidative Stress. Current Medicinal Chemistry, 2007, 14, 1729-1738.	1.2	184
69	Protein Kinases and Protein Phosphatases in Signal Transduction Pathways. , 2007, , 959-992.		2
70	Genetic variation in receptor protein tyrosine phosphatase $\ddot{l}f$ is associated with type 2 diabetes in Swedish Caucasians. European Journal of Endocrinology, 2007, 157, 459-464.	1.9	10
71	Association of Tyrosine Phosphatase Epsilon with Microtubules Inhibits Phosphatase Activity and Is Regulated by the Epidermal Growth Factor Receptor. Molecular and Cellular Biology, 2007, 27, 7102-7112.	1.1	31
72	T-Cell Protein Tyrosine Phosphatase, Distinctively Expressed in Activated-B-Cell-Like Diffuse Large B-Cell Lymphomas, Is the Nuclear Phosphatase of STAT6. Molecular and Cellular Biology, 2007, 27, 2166-2179.	1.1	78
7 3	N-Cadherin Is an In Vivo Substrate for Protein Tyrosine Phosphatase Sigma (PTP $\ddot{l}f$) and Participates in PTP $\ddot{l}f$ -Mediated Inhibition of Axon Growth. Molecular and Cellular Biology, 2007, 27, 208-219.	1.1	53

#	Article	IF	Citations
74	Protein tyrosine phosphatase function: the substrate perspective. Biochemical Journal, 2007, 402, 1-15.	1.7	258
75	PTPome-wide functional RNA interference screening methods. Methods, 2007, 42, 306-312.	1.9	1
76	Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases. Methods, 2007, 42, 243-249.	1.9	36
77	Characterization and comparison of the intronic promoter of murine osteoclastic protein-tyrosine phosphatase, PTP-oc, with the human PTP-oc promoter. Archives of Biochemistry and Biophysics, 2007, 465, 72-81.	1.4	10
78	A Novel Phosphatase Family, Structurally Related to Dual-specificity Phosphatases, that Displays Unique Amino Acid Sequence and Substrate Specificity. Journal of Molecular Biology, 2007, 374, 899-909.	2.0	20
80	Protein Tyrosine Phosphorylation and Reversible Oxidation: Two Cross-Talking Posttranslation Modifications. Antioxidants and Redox Signaling, 2007, 9, 1-24.	2.5	161
81	Reversible Oxidation of the Membrane Distal Domain of Receptor PTPα Is Mediated by a Cyclic Sulfenamideâ€. Biochemistry, 2007, 46, 709-719.	1.2	90
82	Nonreceptor Protein-Tyrosine Phosphatases in Immune Cell Signaling. Annual Review of Immunology, 2007, 25, 473-523.	9.5	174
83	Identification of a Potent Inhibitor of Human Dualâ€Specific Phosphatase, VHR, from Computerâ€Aided and NMRâ€Based Screening to Cellular Effects. ChemBioChem, 2007, 8, 2092-2099.	1.3	30
84	2-O-Carboxymethylpyrogallol derivatives as PTP1B inhibitors with antihyperglycemic activity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5357-5360.	1.0	16
85	Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nature Reviews Drug Discovery, 2007, 6, 391-403.	21.5	429
86	Emerging roles of nuclear protein phosphatases. Nature Reviews Molecular Cell Biology, 2007, 8, 234-244.	16.1	332
87	Association study of PTPN22 C1858T polymorphism in Trypanosoma cruzi infection. Tissue Antigens, 2007, 69, 261-264.	1.0	14
88	Differential redox regulation within the PTP superfamily. Cellular Signalling, 2007, 19, 1521-1530.	1.7	89
89	Targeted deletion of the osteoclast protein-tyrosine phosphatase (PTP-oc) promoter prevents RANKL-mediated osteoclastic differentiation of RAW264.7 cells. FEBS Letters, 2007, 581, 2503-2508.	1.3	17
90	PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discovery Today, 2007, 12, 373-381.	3.2	505
91	The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression., 2007, 113, 88-120.		140
92	PTPL1: a large phosphatase with a split personality. Cancer and Metastasis Reviews, 2008, 27, 205-214.	2.7	57

#	Article	IF	CITATIONS
93	Protein tyrosine phosphatase epsilon and Neu-induced mammary tumorigenesis. Cancer and Metastasis Reviews, 2008, 27, 193-203.	2.7	12
94	Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics, 2008, 8, 4534-4546.	1.3	93
95	Derivatives of 1,4-bis(3-hydroxycarbonyl-4-hydroxyl)styrylbenzene as PTP1B inhibitors with hypoglycemic activity. Bioorganic and Medicinal Chemistry, 2008, 16, 8643-8652.	1.4	16
96	Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS Journal, 2008, 275, 69-88.	2.2	96
97	Protein tyrosine phosphatases: regulatory mechanisms. FEBS Journal, 2008, 275, 831-847.	2.2	112
98	Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS Journal, 2008, 275, 816-830.	2.2	64
99	Redox regulation of dimerization of the receptor proteinâ€tyrosine phosphatases RPTPα, LAR, RPTPμ and CD45. FEBS Journal, 2008, 275, 2597-2604.	2.2	25
100	Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 334-344.	1.9	64
101	Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition. Behavioral and Brain Functions, 2008, 4, 36.	1.4	8
102	A potential role for protein tyrosine phosphatase inhibition by a Rulll–edta complex (edta =) Tj ETQq1 1 0.7843	14 rgBT /0 2.2	Overlock 10
103	The receptor protein-tyrosine phosphatase, Dep1, acts in arterial/venous cell fate decisions in zebrafish development. Developmental Biology, 2008, 324, 122-130.	0.9	20
104	Structural Basis of Substrate Recognition by Hematopoietic Tyrosine Phosphatase,. Biochemistry, 2008, 47, 13336-13345.	1.2	27
105	Somatostatin/somatostatin receptor signalling: Phosphotyrosine phosphatases. Molecular and Cellular Endocrinology, 2008, 286, 40-48.	1.6	70
106	Expression and Activity Analysis of the Catalytic Domain of PTP1B. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 2008, 24, 553-557.	0.2	5
107	Protein Tyrosine Phosphorylation and Protein Tyrosine Nitration in Redox Signaling. Antioxidants and Redox Signaling, 2008, 10, 843-890.	2.5	152
108	Lipidyl Pseudopteranes Aâ^F: Isolation, Biomimetic Synthesis, and PTP1B Inhibitory Activity of a New Class of Pseudopteranoids from the Gorgonian Pseudopterogorgia acerosa. Journal of Natural Products, 2008, 71, 1977-1982.	1.5	41
109	IMMUNOHISTOCHEMICAL ANALYSES OF PHOSPHATASES IN CHILDHOOD B-CELL LYMPHOMA: Lower Expression of PTEN and HePTP and Higher Number of Positive Cells for Nuclear SHP2 in B-Cell Lymphoma Cases Compared to Controls. Pediatric Hematology and Oncology, 2008, 25, 528-540.	0.3	14
110	Structure of the Mature Ectodomain of the Human Receptor-type Protein-tyrosine Phosphatase IA-2. Journal of Biological Chemistry, 2008, 283, 4674-4681.	1.6	21

#	Article	IF	CITATIONS
111	Protein-tyrosine Phosphatase PTPD1 Regulates Focal Adhesion Kinase Autophosphorylation and Cell Migration. Journal of Biological Chemistry, 2008, 283, 10919-10929.	1.6	64
112	PTPN22 C1858T Polymorphism and the Outcome of Hepatitis C Virus Infection. Viral Immunology, 2008, 21, 491-494.	0.6	5
113	Characterization on the alternative splicing, expression and gene phylogenesis of PTPR4 family in Japanese flounder, Paralichthys olivaceus. Genes and Genetic Systems, 2008, 83, 189-197.	0.2	0
114	Molecular Mechanisms that Regulate Epidermal Growth Factor Receptor Inactivation. Clinical Medicine Oncology, 2008, 2, CMO.S498.	0.2	12
115	Human LINE1 endonuclease domain as a putative target of SARS-associated autoantibodies involved in the pathogenesis of severe acute respiratory syndrome. Chinese Medical Journal, 2008, 121, 608-614.	0.9	11
117	GLEPP1/Protein-tyrosine Phosphatase i Inhibitors Block Chemotaxis in Vitro and in Vivo and Improve Murine Ulcerative Colitis. Journal of Biological Chemistry, 2009, 284, 11385-11395.	1.6	16
118	Targeted Transgenic Expression of an Osteoclastic Transmembrane Protein-tyrosine Phosphatase in Cells of Osteoclastic Lineage Increases Bone Resorption and Bone Loss in Male Young Adult Mice. Journal of Biological Chemistry, 2009, 284, 11531-11545.	1.6	23
119	Physiological Signaling Specificity by Protein Tyrosine Phosphatases. Physiology, 2009, 24, 281-289.	1.6	52
120	Reduced Expression of CD45 Protein-tyrosine Phosphatase Provides Protection against Anthrax Pathogenesis. Journal of Biological Chemistry, 2009, 284, 12874-12885.	1.6	26
121	Drug Discovery and Protein Tyrosine Phosphatases. Current Medicinal Chemistry, 2009, 16, 2095-2176.	1.2	98
122	PTPRR Protein Tyrosine Phosphatase Isoforms and Locomotion of Vesicles and Mice. Cerebellum, 2009, 8, 80-88.	1.4	36
123	From immune response to cancer: a spot on the low molecular weight protein tyrosine phosphatase. Cellular and Molecular Life Sciences, 2009, 66, 1140-1153.	2.4	51
124	Role of protein-tyrosine phosphatases in regulation of osteoclastic activity. Cellular and Molecular Life Sciences, 2009, 66, 1946-1961.	2.4	14
125	Characterization of novel oxidation products of cysteine in an active site motif peptide of PTP1B. Journal of the American Society for Mass Spectrometry, 2009, 20, 1540-1548.	1.2	20
126	The significance of PTEN's protein phosphatase activity. Advances in Enzyme Regulation, 2009, 49, 190-196.	2.9	47
127	Protein Tyrosine Phosphatases as Mediators of Redox Signaling. , 0, , 197-206.		1
128	Large-Scale Structural Biology of the Human Proteome. Annual Review of Biochemistry, 2009, 78, 541-568.	5.0	49
129	Evolution of protein phosphatases in plants and animals. Biochemical Journal, 2009, 417, 401-409.	1.7	231

#	Article	IF	CITATIONS
130	Protein Dephosphorylation and Protein Phosphorylation., 2009,, 641-698.		0
131	PTPN22C1858T polymorphism and human brucellosis. Scandinavian Journal of Infectious Diseases, 2009, 41, 109-112.	1.5	8
132	Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities. Journal of Biological Inorganic Chemistry, 2009, 14, 841-851.	1.1	103
133	The dual-specificity phosphatase hYVH1 interacts with Hsp70 and prevents heat-shock-induced cell death. Biochemical Journal, 2009, 418, 391-401.	1.7	29
134	Targeting Protein Tyrosine Phosphatases for Anticancer Drug Discovery. Current Pharmaceutical Design, 2010, 16, 1843-1862.	0.9	141
135	Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases. Seminars in Immunopathology, 2010, 32, 127-136.	2.8	48
136	Functional Impact of Transposable Elements Using Bioinformatic Analysis and a Comparative Genomic Approach. Molecules and Cells, 2010, 30, 77-88.	1.0	2
137	A comprehensive analysis of protein phosphatases in rice and Arabidopsis. Plant Systematics and Evolution, 2010, 289, 111-126.	0.3	7
138	Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH)](GluÂ=Âglutamate). BioMetals, 2010, 23, 1139-1147.	1.8	34
139	Reversible phosphorylation in haematological malignancies: Potential role for protein tyrosine phosphatases in treatment?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 287-303.	3.3	15
140	Receptor tyrosine phosphatase sigma (RPTP If) regulates, p250GAP, a novel substrate that attenuates Rac signaling. Cellular Signalling, 2010, 22, 1626-1633.	1.7	29
141	Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish. PLoS ONE, 2010, 5, e12573.	1.1	20
142	Large-Scale Structural Analysis of Protein Tyrosine Phosphatases. , 2010, , 871-876.		0
143	PTPD1 Supports Receptor Stability and Mitogenic Signaling in Bladder Cancer Cells. Journal of Biological Chemistry, 2010, 285, 39260-39270.	1.6	43
144	Comprehensive Expression Profiles of Genes for Protein Tyrosine Phosphatases in Immune Cells. Science Signaling, 2010, 3, rs1.	1.6	53
145	Expanding the role of Src and protein-tyrosine phosphatases balance in modulating osteoblast metabolism: Lessons from mice. Biochimie, 2010, 92, 327-332.	1.3	44
146	Approaches to the Identification of Protein Tyrosine Phosphatase Substrates., 2010,, 717-725.		0
147	Probing Interaction Requirements in PTP1B Inhibitors: A Comparative Molecular Dynamics Study. Journal of Chemical Information and Modeling, 2010, 50, 1147-1158.	2.5	29

#	Article	IF	CITATIONS
148	Mononuclear copper(ii) complexes with 3,5-substituted-4-salicylidene-amino-3,5-dimethyl-1,2,4-triazole: synthesis, structure and potent inhibition of protein tyrosine phosphatases. Dalton Transactions, 2011, 40, 6532.	1.6	30
149	Optimization of a Cyclic Peptide Inhibitor of Ser/Thr Phosphatase PPM1D (Wip1). Biochemistry, 2011, 50, 4537-4549.	1.2	42
150	Small Molecule Receptor Protein Tyrosine Phosphatase γ (RPTPγ) Ligands That Inhibit Phosphatase Activity via Perturbation of the Tryptophan–Proline–Aspartate (WPD) Loop. Journal of Medicinal Chemistry, 2011, 54, 6548-6562.	2.9	18
151	Phosphatase/temperature responsive poly(2-isopropyl-2-oxazoline). Polymer Chemistry, 2011, 2, 306-308.	1.9	42
152	Spontaneous Insertion of a B2 Element in the Ptpn6 Gene Drives a Systemic Autoinflammatory Disease in Mice Resembling Neutrophilic Dermatosis in Humans. American Journal of Pathology, 2011, 178, 1701-1714.	1.9	43
153	Tyrosine phosphatases as key regulators of StAR induction and cholesterol transport: SHP2 as a potential tyrosine phosphatase involved in steroid synthesis. Molecular and Cellular Endocrinology, 2011, 336, 63-69.	1.6	17
154	Protein-Protein Interactions in Crystals of the Human Receptor-Type Protein Tyrosine Phosphatase ICA512 Ectodomain. PLoS ONE, 2011, 6, e24191.	1.1	6
155	AP-1 elements and TCL1 protein regulate expression of the gene encoding protein tyrosine phosphatase PTPROt in leukemia. Blood, 2011, 118, 6132-6140.	0.6	20
156	Mutation analysis of the tyrosine phosphatase PTPN2 in Hodgkin's lymphoma and T-cell non-Hodgkin's lymphoma. Haematologica, 2011, 96, 1723-1727.	1.7	60
157	Inside the human cancer tyrosine phosphatome. Nature Reviews Cancer, 2011, 11, 35-49.	12.8	427
158	Ternary oxovanadium(IV) complexes with amino acid-Schiff base and polypyridyl derivatives: Synthesis, characterization, and protein tyrosine phosphatase 1B inhibition. Journal of Inorganic Biochemistry, 2011, 105, 1323-1328.	1.5	36
159	Potent inhibition of protein tyrosine phosphatases by copper complexes with multi-benzimidazole derivatives. BioMetals, 2011, 24, 993-1004.	1.8	22
160	Structure of human dual-specificity phosphatase 27 at 2.38â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 471-479.	2.5	17
161	Dinuclear copper complexes of organic claw: Potent inhibition of protein tyrosine phosphatases. Journal of Inorganic Biochemistry, 2011, 105, 1138-1147.	1.5	22
162	Metal-Based Inhibitors of Protein Tyrosine Phosphatases. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 164-171.	0.9	34
163	Surveying the Manifold Divergence of an Entire Protein Class for Statistical Clues to Underlying Biochemical Mechanisms. Statistical Applications in Genetics and Molecular Biology, 2011, 10, Article 36.	0.2	16
164	Identification of New Substrates of the Protein-tyrosine Phosphatase PTP1B by Bayesian Integration of Proteome Evidence. Journal of Biological Chemistry, 2011, 286, 4173-4185.	1.6	41
165	SHP-1 in Cell-Cycle Regulation. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 89-98.	0.9	59

#	ARTICLE	IF	CITATIONS
166	An osteoclastic protein-tyrosine phosphatase regulates the \hat{l}^2 (sub>3-integrin, syk, and shp1 signaling through respective src-dependent phosphorylation in osteoclasts. American Journal of Physiology - Cell Physiology, 2012, 302, C1676-C1686.	2.1	15
167	Yersinia pestis and Approaches to Targeting its Outer Protein H Protein-Tyrosine Phosphatase (YopH). Current Medicinal Chemistry, 2012, 19, 5726-5734.	1.2	11
168	Rational Design of Selective Organoruthenium Inhibitors of Protein Tyrosine Phosphatase 1B. Inorganic Chemistry, 2012, 51, 12483-12492.	1.9	43
169	The human phosphatase interactome: An intricate family portrait. FEBS Letters, 2012, 586, 2732-2739.	1.3	184
170	Evolution of SH2 domains and phosphotyrosine signalling networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2556-2573.	1.8	74
171	Synthesis and evaluation of oxovanadium(iv) complexes of Schiff-base condensates from 5-substituted-2-hydroxybenzaldehyde and 2-substituted-benzenamine as selective inhibitors of protein tyrosine phosphatase 1B. Dalton Transactions, 2012, 41, 11116.	1.6	38
172	Receptor type protein tyrosine phosphatases (RPTPs) $\hat{a} \in \text{``roles in signal transduction and human disease.}$ Journal of Cell Communication and Signaling, 2012, 6, 125-138.	1.8	63
173	Polyaminecarboxylateruthenium(III) complexes on the mosaic of bioinorganic reactions. Kinetic and mechanistic impact. Advances in Inorganic Chemistry, 2012, 64, 183-217.	0.4	6
174	Intracellular tyrosine phosphatases and kinases in lymphoma. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2012, , .	0.1	0
175	Molecular Dynamics Approach to Probe the Allosteric Inhibition of PTP1B by Chlorogenic and Cichoric Acid. Journal of Chemical Information and Modeling, 2012, 52, 2004-2012.	2.5	46
176	Exploration of biguanido–oxovanadium complexes as potent and selective inhibitors of protein tyrosine phosphatases. BioMetals, 2012, 25, 599-610.	1.8	19
177	Bicyclic benzofuran and indole-based salicylic acids as protein tyrosine phosphatase inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 1940-1946.	1.4	31
178	Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology, 2012, 137, 1-19.	2.0	75
179	Association of <scp>PTPN</scp> 22 rs2476601 and <scp>EGFR</scp> rs17337023 Gene polymorphisms and rheumatoid arthritis in <scp>Z</scp> ahedan, <scp>S</scp> outheast <scp>I</scp> ran. International Journal of Immunogenetics, 2013, 40, 299-305.	0.8	19
180	Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1673-1696.	1.8	90
181	Enzyme responsive materials: design strategies and future developments. Biomaterials Science, 2013, 1, 11-39.	2.6	257
182	HuPho: the human phosphatase portal. FEBS Journal, 2013, 280, 379-387.	2.2	55
183	Protein tyrosine phosphatases in health and disease. FEBS Journal, 2013, 280, 708-730.	2.2	139

#	Article	IF	CITATIONS
184	Protein tyrosine phosphatases–Âfrom housekeeping enzymes to master regulators of signal transduction. FEBS Journal, 2013, 280, 346-378.	2.2	370
185	Synthesis and evaluation of copper complexes of Schiff-base condensates from 5-substituted-2-hydroxybenzaldehyde and 2-substituted-benzenamine as selective inhibitors of protein tyrosine phosphatases. Inorganica Chimica Acta, 2013, 405, 91-97.	1.2	8
186	Specifically Deoxyribozyme of the PTPRO Gene as a Potential Gene Therapy Means for Human Hepatocellular Carcinoma. Advanced Materials Research, 2013, 781-784, 1203-1208.	0.3	0
187	Functional evaluation of circulating hematopoietic progenitors in Noonan syndrome. Oncology Reports, 2013, 30, 553-559.	1.2	9
188	RNAi-mediated knockdown of PRL-3 inhibits cell invasion and downregulates ERK 1/2 expression in the human gastric cancer cell line, SGC-7901. Molecular Medicine Reports, 2013, 7, 1805-1811.	1.1	8
189	Association Mapping of the High-Grade Myopia <i>MYP3</i> Locus Reveals Novel Candidates <i>UHRF1BP1L</i> , <i>PTPRR</i> , and <i>PPFIA2</i> , 2013, 54, 2076.		26
190	Reduced Expression of PTPRD Correlates with Poor Prognosis in Gastric Adenocarcinoma. PLoS ONE, 2014, 9, e113754.	1.1	19
191	Metabolic regulation by protein tyrosine phosphatases. Journal of Biomedical Research, 2014, 28, 157-68.	0.7	11
192	Quantitative analysis of robustness of dynamic response and signal transfer in insulin mediated PI3K/AKT pathway. Computers and Chemical Engineering, 2014, 71, 715-727.	2.0	10
193	Redox-based probes as tools to monitor oxidized protein tyrosine phosphatases in living cells. European Journal of Medicinal Chemistry, 2014, 88, 28-33.	2.6	23
194	Carbonic Anhydrase Related Proteins: Molecular Biology and Evolution. Sub-Cellular Biochemistry, 2014, 75, 135-156.	1.0	59
195	EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases. Nucleic Acids Research, 2014, 42, D496-D502.	6.5	52
196	Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Sub-Cellular Biochemistry, 2014, , .	1.0	49
197	Molecular cloning and characterization of a tyrosine phosphatase from Monosiga brevicollis. Biochemical and Biophysical Research Communications, 2014, 453, 761-766.	1.0	5
198	Prediction of substrate sites for protein phosphatases 1B, SHP-1, and SHP-2 based on sequence features. Amino Acids, 2014, 46, 1919-1928.	1.2	8
199	PTP-central: A comprehensive resource of protein tyrosine phosphatases in eukaryotic genomes. Methods, 2014, 65, 156-164.	1.9	16
200	Inputs and outputs of insulin receptor. Protein and Cell, 2014, 5, 203-213.	4.8	36
201	Integrating virtual and biochemical screening for protein tyrosine phosphatase inhibitor discovery. Methods, 2014, 65, 219-228.	1.9	14

#	Article	IF	CITATIONS
202	Identification of a Novel SHP-2 Protein Tyrosine Phosphatase Inhibitor. Bulletin of the Chemical Society of Japan, 2014, 87, 420-424.	2.0	0
203	Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata. Molecules, 2015, 20, 11173-11183.	1.7	42
204	Protein tyrosine phosphatase 1B (PTP1B) is involved in the defective erythropoietic function of carbamylated erythropoietin. International Journal of Biochemistry and Cell Biology, 2015, 61, 63-71.	1.2	9
205	Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase*. Journal of Biological Chemistry, 2015, 290, 15934-15947.	1.6	37
206	Crystal structures of the apo form and a complex of human LMW-PTP with a phosphonic acid provide new evidence of a secondary site potentially related to the anchorage of natural substrates. Bioorganic and Medicinal Chemistry, 2015, 23, 4462-4471.	1.4	14
207	The R3 receptor-like protein tyrosine phosphatase subfamily inhibits insulin signalling by dephosphorylating the insulin receptor at specific sites. Journal of Biochemistry, 2015, 158, 235-243.	0.9	19
208	X-ray structure of the mature ectodomain of phogrin. Journal of Structural and Functional Genomics, 2015, 16, 1-9.	1.2	8
209	PTEN inhibitors: An evaluation of current compounds. Advances in Biological Regulation, 2015, 57, 102-111.	1.4	57
210	The extended human <scp>PTP</scp> ome: a growing tyrosine phosphatase family. FEBS Journal, 2016, 283, 1404-1429.	2.2	90
211	The Extended Family of Protein Tyrosine Phosphatases. Methods in Molecular Biology, 2016, 1447, 1-23.	0.4	24
212	Global RT-PCR and RT-qPCR Analysis of the mRNA Expression of the Human PTPome. Methods in Molecular Biology, 2016, 1447, 25-37.	0.4	6
213	Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family. Molecular and Cellular Proteomics, 2016, 15, 3030-3044.	2.5	41
214	Protein Phosphatases., 2016,, 935-995.		2
215	Biochemical, biophysical, and functional properties of ICA512/IA-2 RESP18 homology domain. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 511-522.	1.1	10
216	Role of PTEN-Akt-CREB Signaling Pathway in Nervous System impairment of Rats with Chronic Arsenite Exposure. Biological Trace Element Research, 2016, 170, 366-372.	1.9	13
217	Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen. ACS Infectious Diseases, 2016, 2, 231-239.	1.8	37
218	Alterations in the phosphoproteomic profile of cells expressing a non-functional form of the SHP2 phosphatase. New Biotechnology, 2016, 33, 524-536.	2.4	7
219	Molecular Pathways: Targeting Protein Tyrosine Phosphatases in Cancer. Clinical Cancer Research, 2017, 23, 2136-2142.	3.2	112

#	Article	IF	CITATIONS
220	Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases. Journal of Biological Chemistry, 2017, 292, 4942-4952.	1.6	8
221	An epigenetic modifier induces production of (10′ S)-verruculide B, an inhibitor of protein tyrosine phosphatases by Phoma sp. nov. LG0217, a fungal endophyte of Parkinsonia microphylla. Bioorganic and Medicinal Chemistry, 2017, 25, 1860-1866.	1.4	37
222	Genomics and evolution of protein phosphatases. Science Signaling, 2017, 10, .	1.6	206
223	Multiple functions of protein phosphatases in receptor tyrosine kinase signaling revealed by interactome analysis. Molecular and Cellular Oncology, 2017, 4, e1297101.	0.3	3
224	A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Molecular Cell, 2017, 65, 347-360.	4.5	123
225	Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes and Development, 2017, 31, 1939-1957.	2.7	36
226	EYA1's Conformation Specificity in Dephosphorylating Phosphothreonine in Myc and Its Activity on Myc Stabilization in Breast Cancer. Molecular and Cellular Biology, 2017, 37, .	1.1	21
227	Role of protein phosphatases in genitourinary cancers. International Journal of Urology, 2017, 24, 16-24.	0.5	3
228	Phosphotyrosine phosphatase R3 receptors: Origin, evolution and structural diversification. PLoS ONE, 2017, 12, e0172887.	1.1	9
229	Magnesium Reduces Blood-Brain Barrier Permeability and Regulates Amyloid- \hat{l}^2 Transcytosis. Molecular Neurobiology, 2018, 55, 7118-7131.	1.9	47
230	5.The Double-Domain Receptor Protein Tyrosine Phosphatases. , 2018, , 155-178.		0
231	4.The Receptor Protein Tyrosine Phosphatases: Structure And Function. , 2018, , 119-154.		0
232	6 The Non-Receptor Protein Tyrosine Phosphatases: Part I., 2018,, 179-202.		0
233	Heteronemin, a Marine Sesterterpenoid-Type Metabolite, Induces Apoptosis in Prostate LNcap Cells via Oxidative and ER Stress Combined with the Inhibition of Topoisomerase II and Hsp90. Marine Drugs, 2018, 16, 204.	2.2	43
234	An Isoform-Selective PTP1B Inhibitor Derived from Nitrogen-Atom Augmentation of Radicicol. Biochemistry, 2019, 58, 3225-3231.	1.2	9
235	The role of Tâ€eell protein tyrosine phosphatase in epithelial carcinogenesis. Molecular Carcinogenesis, 2019, 58, 1640-1647.	1.3	7
236	Analysis of the rs2476601 polymorphism of PTPN22 in Mexican mestizo patients with leprosy. Biomedical Reports, 2019, 10, 127-132.	0.9	0
237	Loss of PTPN4 activates STAT3 to promote the tumor growth in rectal cancer. Cancer Science, 2019, 110, 2258-2272.	1.7	18

#	Article	IF	CITATIONS
238	Teachers personalize videos and animations of biochemical processes: results from a professional development workshop. Chemistry Education Research and Practice, 2019, 20, 772-786.	1.4	12
239	The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. Journal of Experimental and Clinical Cancer Research, 2019, 38, 250.	3.5	200
240	Role and mechanism of homocysteine in affecting hepatic protein-tyrosine phosphatase 1B. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 941-949.	1.1	10
241	Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cellular and Molecular Life Sciences, 2019, 76, 2571-2592.	2.4	19
242	Phosphatases in Mitosis: Roles and Regulation. Biomolecules, 2019, 9, 55.	1.8	64
243	iEKPD 2.0: an update with rich annotations for eukaryotic protein kinases, protein phosphatases and proteins containing phosphoprotein-binding domains. Nucleic Acids Research, 2019, 47, D344-D350.	6.5	22
244	Design, synthesis and biological evaluation of imidazolidine-2,4-dione and 2-thioxothiazolidin-4-one derivatives as lymphoid-specific tyrosine phosphatase inhibitors. Bioorganic Chemistry, 2020, 103, 104124.	2.0	7
245	PTPN22 gene polymorphism as a genetic risk factor for primary immune thrombocytopenia in Egyptian children. Expert Review of Hematology, 2021, 14, 877-881.	1.0	3
246	The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS Journal, 2020, 287, 4198-4220.	2.2	22
247	Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. European Journal of Medicinal Chemistry, 2020, 190, 112117.	2.6	55
248	Dual-Specificity Phosphatase 11 Is a Prognostic Biomarker of Intrahepatic Cholangiocarcinoma. Frontiers in Oncology, 2021, 11, 757498.	1.3	0
249	Protein Tyrosine Phosphatases: A new paradigm in an old signaling system?. Advances in Cancer Research, 2021, 152, 263-303.	1.9	9
250	Protein Phosphatases in the Brain: Regulation, Function and Disease., 2011,, 233-257.		1
251	Contribution of Pseudogenes to Sequence Diversity. Methods in Molecular Biology, 2014, 1167, 15-24.	0.4	5
252	The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histology and Histopathology, 2007, 22, 1251-67.	0.5	197
253	Expression of programmed cell death-ligand 1 and its correlation with clinical outcomes in gliomas. Oncotarget, 2016, 7, 8944-8955.	0.8	60
254	Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis. Current Pharmaceutical Design, 2017, 23, 4226-4246.	0.9	38
256	Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Cellular Oncology, 2010, 32, 361-72.	1.9	48

#	ARTICLE	IF	CITATIONS
257	Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development. BMB Reports, 2015, 48, 249-255.	1.1	26
258	cyt-PTPe. The AFCS-nature Molecule Pages, 0, , .	0.2	0
259	RPTPe. The AFCS-nature Molecule Pages, 0, , .	0.2	0
260	Prostate Cancer Dephosphorylation Atlas. , 0, , .		0
261	Don't Take Away My P: Phosphatases as Therapeutic Targets in Huntington's Disease. , 0, , .		1
262	HUPHO: the human phosphatase portal. EMBnet Journal, 2012, 18, 55.	0.2	O
263	Tumor-Suppression Mechanisms of Protein Tyrosine Phosphatase O and Clinical Applications. Asian Pacific Journal of Cancer Prevention, 2015, 16, 6215-6223.	0.5	5
267	Cytoplasmic expression of BAP1 as an independent prognostic biomarker for patients with gliomas. International Journal of Clinical and Experimental Pathology, 2015, 8, 5035-43.	0.5	6
268	Protein tyrosine phosphatases in skeletal development and diseases. Bone Research, 2022, 10, 10.	5.4	5
269	Recent advances in the discovery of protein tyrosine phosphatase SHP2 inhibitors. RSC Medicinal Chemistry, 2022, 13, 246-257.	1.7	11
271	The Non-Receptor Protein Tyrosine Phosphatase PTPN6 Mediates a Positive Regulatory Approach From the Interferon Regulatory Factor to the JAK/STAT Pathway in Litopenaeus vannamei. Frontiers in Immunology, 0, 13, .	2.2	3
272	Ultraviolet Radiation Exposure and its Impacts on Cutaneous Phosphorylation Signaling in Carcinogenesis: Focusing on Protein Tyrosine Phosphatases ^{â€} . Photochemistry and Photobiology, 2023, 99, 344-355.	1.3	1
273	Small-molecule PTPN2 Inhibitors Sensitize Resistant Melanoma to Anti-PD-1 Immunotherapy. Cancer Research Communications, 2023, 3, 119-129.	0.7	3
274	Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty?. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1