A thermostable variant of fructose bisphosphate aldolas evolution also shows increased stability in organic solve

Protein Engineering, Design and Selection 17, 689-697 DOI: 10.1093/protein/gzh081

Citation Report

#	Article	IF	CITATIONS
1	Directed evolution strategies for improved enzymatic performance. Microbial Cell Factories, 2005, 4, 29.	1.9	79
2	Synthesis of screening substrates for the directed evolution of sialic acid aldolase: towards tailored enzymes for the preparation of influenza A sialidase inhibitor analogues. Organic and Biomolecular Chemistry, 2005, 3, 1795.	1.5	13
3	One-pot multi-step synthesis: a challenge spawning innovation. Organic and Biomolecular Chemistry, 2005, 3, 2899.	1.5	145
4	Recent developments in preparative enzymatic syntheses of carbohydrates. Natural Product Reports, 2006, 23, 412.	5.2	35
5	Directed Evolution of Biocatalysts. Organic Process Research and Development, 2006, 10, 562-571.	1.3	48
6	Stereoselectivity of fructose-1,6-bisphosphate aldolase in Thermus caldophilus. Biochemical and Biophysical Research Communications, 2006, 347, 616-625.	1.0	10
7	Directed evolution of enzymes and biosynthetic pathways. Current Opinion in Microbiology, 2006, 9, 261-267.	2.3	186
8	Directed Evolution: An Approach to Engineer Enzymes. Critical Reviews in Biotechnology, 2006, 26, 165-199.	5.1	124
9	Microbial aldolases as C–C bonding enzymes—unknown treasures and new developments. Applied Microbiology and Biotechnology, 2006, 71, 253-264.	1.7	152
10	Iterative Saturation Mutagenesis on the Basis of B Factors as a Strategy for Increasing Protein Thermostability. Angewandte Chemie - International Edition, 2006, 45, 7745-7751.	7.2	423
12	Engineering Enzymes for Biocatalysis. Recent Patents on Biotechnology, 2007, 1, 1-9.	0.4	50
13	Structure and Mechanism of HpcH: A Metal Ion Dependent Class II Aldolase from the Homoprotocatechuate Degradation Pathway of Escherichia coli. Journal of Molecular Biology, 2007, 373, 866-876.	2.0	28
14	Recent Advances in Aldolase-Catalyzed Asymmetric Synthesis. Advanced Synthesis and Catalysis, 2007, 349, 1308-1320.	2.1	209
15	In vivo selection for the directed evolution of l-rhamnulose aldolase from l-rhamnulose-1-phosphate aldolase (RhaD). Bioorganic and Medicinal Chemistry, 2007, 15, 5905-5911.	1.4	35
16	Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries. Biotechnology Letters, 2007, 29, 421-430.	1.1	38
17	Directed evolution of a histone acetyltransferase – enhancing thermostability, whilst maintaining catalytic activity and substrate specificity. FEBS Journal, 2008, 275, 5635-5647.	2.2	11
18	Directed evolution of aldolases for exploitation in synthetic organic chemistry. Archives of Biochemistry and Biophysics, 2008, 474, 318-330.	1.4	77
19	Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media. Protein Engineering, Design and Selection, 2008, 21, 673-680.	1.0	67

CITATION REPORT

#	Article	IF	CITATIONS
20	Improving low-temperature activity ofSulfolobus acidocaldarius2-keto-3-deoxygluconate aldolase. Archaea, 2009, 2, 233-239.	2.3	10
21	Engineering thermal stability of <scp>lâ€</scp> asparaginase by <i>in vitro</i> directed evolution. FEBS Journal, 2009, 276, 1750-1761.	2.2	83
22	Characterization of a extreme thermostable fructose-1,6-bisphosphate aldolase from hyperthermophilic bacterium Aquifex aeolicus. Enzyme and Microbial Technology, 2009, 45, 261-266.	1.6	5
23	Improving Protein Functions by Directed Evolution. , 2009, , .		1
24	Natural Diversity to Guide Focused Directed Evolution. ChemBioChem, 2010, 11, 1861-1866.	1.3	120
25	Organic solvent-tolerant enzymes. Biochemical Engineering Journal, 2010, 48, 270-282.	1.8	442
26	Evolving thermostability in mutant libraries of ligninolytic oxidoreductases expressed in yeast. Microbial Cell Factories, 2010, 9, 17.	1.9	64
27	Evaluation of four microbial Class II fructose 1,6-bisphosphate aldolase enzymes for use as biocatalysts. Protein Expression and Purification, 2011, 80, 224-233.	0.6	16
28	Cloning of endo-β-glucanase I gene and expression in Pichia pastoris. Frontiers of Agriculture in China, 2011, 5, 196-200.	0.2	3
29	Enhancing the Thermal Robustness of an Enzyme by Directed Evolution: Least Favorable Starting Points and Inferior Mutants Can Map Superior Evolutionary Pathways. ChemBioChem, 2011, 12, 2502-2510.	1.3	58
30	Development of an organo- and enzyme-catalysed one-pot, sequential three-component reaction. Tetrahedron, 2012, 68, 7719-7722.	1.0	16
31	In vitro rapid evolution of fungal immunomodulatory proteins by DNA family shuffling. Applied Microbiology and Biotechnology, 2013, 97, 2455-2465.	1.7	17
32	Organic solvent tolerance and thermostability of a β-glucosidase co-engineered by random mutagenesis. Journal of Molecular Catalysis B: Enzymatic, 2013, 96, 61-66.	1.8	21
33	An efficient procedure for synthesis of fructose derivatives. Tetrahedron Letters, 2013, 54, 2788-2790.	0.7	10
34	Engineering Enzyme Stability and Resistance to an Organic Cosolvent by Modification of Residues in the Access Tunnel. Angewandte Chemie - International Edition, 2013, 52, 1959-1963.	7.2	113
35	Strategies for Stabilization of Enzymes in Organic Solvents. ACS Catalysis, 2013, 3, 2823-2836.	5.5	514
36	Engineering protein thermostability using a generic activity-independent biophysical screen inside the cell. Nature Communications, 2013, 4, 2901.	5.8	74
37	From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes. International Journal of Molecular Sciences, 2013, 14, 1232-1277.	1.8	366

CITATION REPORT

#	Article	IF	CITATIONS
38	Design of an activity and stability improved carbonyl reductase from Candida parapsilosis. Journal of Biotechnology, 2013, 165, 52-62.	1.9	33
39	Stabilizing biocatalysts. Chemical Society Reviews, 2013, 42, 6534.	18.7	396
40	Functioning of a metabolic flux sensor in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1130-1135.	3.3	177
42	Recombinant expression, purification of L-asparaginase-II from thermotolerant E. Coli strain and evaluation of its antiproliferative activity. African Journal of Microbiology Research, 2014, 8, 1610-1619.	0.4	7
43	Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2897-2902.	3.3	103
44	Structural and Functional Characterization of Methicillin-Resistant <i>Staphylococcus aureus's</i> Class Ilb Fructose 1,6-Bisphosphate Aldolase. Biochemistry, 2014, 53, 7604-7614.	1.2	13
45	Directed evolution of Bacillus licheniformis lipase for improvement of thermostability. Biochemical Engineering Journal, 2014, 91, 276-282.	1.8	28
46	DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications. Extremophiles, 2014, 18, 1-13.	0.9	22
47	Hydrophobic Substitution of Surface Residues Affects Lipase Stability in Organic Solvents. Molecular Biotechnology, 2014, 56, 360-368.	1.3	21
48	Production, characterization and applications of tannase. Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 137-147.	1.8	68
49	Engineering aldolases as biocatalysts. Current Opinion in Chemical Biology, 2014, 19, 25-33.	2.8	84
50	Computational Library Design for Increasing Haloalkane Dehalogenase Stability. ChemBioChem, 2014, 15, 1660-1672.	1.3	68
51	Modeling the metabolism of escherichia coli under oxygen gradients with dynamically changing flux bounds. , 2015, , .		0
52	Engineering Protocells: Prospects for Self-Assembly and Nanoscale Production-Lines. Life, 2015, 5, 1019-1053.	1.1	29
53	Evaluation of ionic liquids as alternative solvents for aldolase activity: Use of a new automated SIA methodology. Talanta, 2015, 141, 293-299.	2.9	5
54	Improving the acetaldehyde tolerance of DERASEP by enhancing the rigidity of its protein structure. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 148-152.	1.8	11
55	Biocatalysis: A Status Report. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 319-345.	3.3	128
56	Biocatalysts: application and engineering for industrial purposes. Critical Reviews in Biotechnology, 2016, 36, 246-258.	5.1	145

#	Article	IF	CITATIONS
57	Comparative analysis of point mutations on protein COOH terminal near surface and its hydrophobic core provide insights on thermostability of Bacillus Lipase LipJ. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S482-S490.	1.8	2
58	A robust cosolvent-compatible halohydrin dehalogenase by computational library design. Protein Engineering, Design and Selection, 2017, 30, 173-187.	1.0	23
59	Epistasis effects of multiple ancestral-consensus amino acid substitutions on the thermal stability of glycerol kinase from Cellulomonas sp. NT3060. Journal of Bioscience and Bioengineering, 2016, 121, 497-502.	1.1	10
60	Selection Finder (SelFi): A computational metabolic engineering tool to enable directed evolution of enzymes. Metabolic Engineering Communications, 2017, 4, 37-47.	1.9	8
61	Engineering thermal stability and solvent tolerance of the soluble quinoprotein PedE from <i>Pseudomonas putida</i> KT2440 with a heterologous wholeâ€cell screening approach. Microbial Biotechnology, 2018, 11, 399-408.	2.0	10
62	Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nature Catalysis, 2018, 1, 878-888.	16.1	106
63	Catalytic enantioselective aldol reactions. Chemical Society Reviews, 2018, 47, 4388-4480.	18.7	229
64	Hot CoFi Blot: A High-Throughput Colony-Based Screen for Identifying More Thermally Stable Protein Variants. Methods in Molecular Biology, 2019, 2025, 299-320.	0.4	0
65	Simultaneous Enhancement of Thermostability and Catalytic Activity of a Metagenome-Derived β-Glucosidase Using Directed Evolution for the Biosynthesis of Butyl Glucoside. International Journal of Molecular Sciences, 2019, 20, 6224.	1.8	7
66	The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnology Advances, 2019, 37, 530-537.	6.0	117
67	An energetic reformulation of kinetic rate laws enables scalable parameter estimation for biochemical networks. Journal of Theoretical Biology, 2019, 461, 145-156.	0.8	26
68	Glycosyl hydrolase catalyzed glycosylation in unconventional media. Applied Microbiology and Biotechnology, 2020, 104, 9523-9534.	1.7	7
69	Effects of sodium and calcium chloride ionic stresses on model yeast membranes revealed by molecular dynamics simulation. Chemistry and Physics of Lipids, 2020, 233, 104980.	1.5	4
70	DiRect: Site-directed mutagenesis method for protein engineering by rational design. Biochemical and Biophysical Research Communications, 2021, 551, 107-113.	1.0	5
72	Protein Assembly by Design. Chemical Reviews, 2021, 121, 13701-13796.	23.0	123
73	Current Approaches for Engineering Proteins with Diverse Biological Properties. Advances in Experimental Medicine and Biology, 2007, 620, 18-33.	0.8	3
74	Development of an Improved Peroxidase-Based High-Throughput Screening for the Optimization of D-Glycerate Dehydratase Activity. International Journal of Molecular Sciences, 2020, 21, 335.	1.8	6
76	High-throughput directed evolution: a golden era for protein science. Trends in Chemistry, 2022, 4, 378-391.	4.4	12

IF

- # ARTICLE
- Engineering enzyme for microenvironment. , 2023, , 87-116.

CITATIONS