Developing Inhibitors to Selectively Target Two-Compo Transduction Systems of Pathogenic Microorganisms

Current Medicinal Chemistry 11, 765-773

DOI: 10.2174/0929867043455765

Citation Report

#	Article	IF	Citations
1	Comparative Genomic Assessment of Novel Broad-Spectrum Targets for Antibacterial Drugs. Comparative and Functional Genomics, 2004, 5, 304-327.	2.0	44
2	Quorum sensing and bacterial cross-talk in biotechnology. Current Opinion in Biotechnology, 2004, 15, 495-502.	3.3	143
3	Finding the gems using genomic discovery: antibacterial drug discovery strategies – the successes and the challenges. Drug Discovery Today: Therapeutic Strategies, 2004, 1, 519-527.	0.5	25
4	Adjunct antimicrobial therapy – prospects for the future. Therapy: Open Access in Clinical Medicine, 2005, 2, 67-76.	0.2	4
5	Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiology Reviews, 2005, 29, 281-301.	3.9	44
6	Searching for Potential Drug Targets in Two-component and Phosphorelay Signal-transduction Systems using Three-dimensional Cluster Analysis. Acta Biochimica Et Biophysica Sinica, 2005, 37, 293-302.	0.9	11
7	New Class of Competitive Inhibitor of Bacterial Histidine Kinases. Journal of Bacteriology, 2005, 187, 8196-8200.	1.0	49
8	Structural Analysis and Solution Studies of the Activated Regulatory Domain of the Response Regulator ArcA: A Symmetric Dimer Mediated by the $\hat{l}\pm4-\hat{l}^25-\hat{l}\pm5$ Face. Journal of Molecular Biology, 2005, 349, 11-26.	2.0	114
9	THE MAGIC BULLETS AND TUBERCULOSIS DRUG TARGETS. Annual Review of Pharmacology and Toxicology, 2005, 45, 529-564.	4.2	371
10	Regulation of bacterial virulence by two-component systems. Current Opinion in Microbiology, 2006, 9, 143-152.	2.3	371
11	Two-Component Signal Transduction Systems in the Cyanobacterium Synechocystis sp. PCC 6803*. Tsinghua Science and Technology, 2006, 11, 379-390.	4.1	3
12	Contrasting signal transduction mechanisms in bacterial and eukaryotic gene transcription. FEMS Microbiology Letters, 2006, 261, 155-164.	0.7	24
13	Characterization of the mrgRS locus of the opportunistic pathogen Burkholderia pseudomallei: temperature regulates the expression of a two-component signal transduction system. BMC Microbiology, 2006, 6, 70.	1.3	12
15	Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13774-13779.	3.3	88
16	The VicRK System of Streptococcus mutans Responds to Oxidative Stress. Journal of Dental Research, 2007, 86, 606-610.	2.5	71
17	Probing the nucleotide binding and phosphorylation by the histidine kinase of a novel three-protein two-component system fromMycobacterium tuberculosis. FEBS Letters, 2007, 581, 1903-1909.	1.3	16
18	Antituberculosis drugs: Ten years of research. Bioorganic and Medicinal Chemistry, 2007, 15, 2479-2513.	1.4	441
19	Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. BMC Microbiology, 2007, 7, 43.	1.3	75

#	Article	IF	Citations
20	Bacterial response regulators: versatile regulatory strategies from common domains. Trends in Biochemical Sciences, 2007, 32, 225-234.	3.7	286
21	Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Current Genetics, 2007, 51, 197-208.	0.8	87
22	The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiology Reviews, 2008, 32, 461-473.	3.9	383
23	Emerging roles for protein histidine phosphorylation in cellular signal transduction: lessons from the islet $l^2 \hat{a} \in ell$. Journal of Cellular and Molecular Medicine, 2008, 12, 1885-1908.	1.6	18
24	Microcalorimetry: a response to challenges in modern biotechnology. Microbial Biotechnology, 2008, 1, 126-136.	2.0	73
25	Expression and characterization of the integral membrane domain of bacterial histidine kinase SCO3062 for structural studies. Biochemical and Biophysical Research Communications, 2008, 376, 409-413.	1.0	7
26	Essentiality, Bypass, and Targeting of the YycFG (VicRK) Two-Component Regulatory System in Gram-Positive Bacteria. Journal of Bacteriology, 2008, 190, 2645-2648.	1.0	89
27	Efforts Towards the Development of New Antitubercular Agents: Potential for Thiolactomycin Based Compounds. Journal of Pharmacy and Pharmaceutical Sciences, 2008, 11, 56.	0.9	32
28	Characterization of the Sporulation Initiation Pathway of <i>Clostridium difficile</i> and Its Role in Toxin Production. Journal of Bacteriology, 2009, 191, 7296-7305.	1.0	150
29	Benzoxazine Series of Histidine Kinase Inhibitors as Potential Antimicrobial Agents with Activity against Enterococci. Chemotherapy, 2009, 55, 414-417.	0.8	6
30	Evolution of prokaryotic two-component systems: insights from comparative genomics. Amino Acids, 2009, 37, 459-466.	1.2	58
31	The histidine kinase inhibitor Sda binds near the site of autophosphorylation and may sterically hinder autophosphorylation and phosphotransfer to SpoOF. Molecular Microbiology, 2009, 71, 659-677.	1.2	43
32	Probing the Roles of the Two Different Dimers Mediated by the Receiver Domain of the Response Regulator PhoB. Journal of Molecular Biology, 2009, 389, 349-364.	2.0	39
33	Novel antibacterial compounds specifically targeting the essential WalR response regulator. Journal of Antibiotics, 2010, 63, 127-134.	1.0	54
34	Kinetics of ATP and TNP-ATP Binding to the Active Site of CheA from <i>Thermotoga maritima</i> Biochemistry, 2010, 49, 5799-5809.	1.2	15
35	Two-component signal transduction as potential drug targets in pathogenic bacteria. Current Opinion in Microbiology, 2010, 13, 232-239.	2.3	267
36	Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Research International, 2010, 43, 1885-1894.	2.9	76
37	Mechanism for the Autophosphorylation of CheA Histidine Kinase: QM/MM Calculations. Journal of Physical Chemistry B, 2011, 115, 11895-11901.	1.2	14

#	Article	IF	Citations
38	A High-Throughput TNP-ATP Displacement Assay for Screening Inhibitors of ATP-Binding in Bacterial Histidine Kinases. Assay and Drug Development Technologies, 2011, 9, 174-183.	0.6	24
39	Predicting the Fission Yeast Protein Interaction Network. G3: Genes, Genomes, Genetics, 2012, 2, 453-467.	0.8	29
40	Broad Spectrum Pro-Quorum-Sensing Molecules as Inhibitors of Virulence in Vibrios. PLoS Pathogens, 2012, 8, e1002767.	2.1	76
41	Lactoferricin B Inhibits the Phosphorylation of the Two-Component System Response Regulators BasR and CreB. Molecular and Cellular Proteomics, 2012, 11, M111.014720.	2.5	38
42	Thiazolidione derivatives targeting the histidine kinase YycG are effective against both planktonic and biofilm-associated Staphylococcus epidermidis. Acta Pharmacologica Sinica, 2012, 33, 418-425.	2.8	25
43	Decreased Expression of Type 1 Fimbriae by a <i>pst</i> Mutant of Uropathogenic Escherichia coli Reduces Urinary Tract Infection. Infection and Immunity, 2012, 80, 2802-2815.	1.0	49
44	A Review of Antimycobacterial Drugs in Development. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1404-1418.	1.1	3
45	Identification of BfmR, a Response Regulator Involved in Biofilm Development, as a Target for a 2-Aminoimidazole-Based Antibiofilm Agent. Biochemistry, 2012, 51, 9776-9778.	1.2	72
46	Isolation and Characterization of Signermycin B, an Antibiotic That Targets the Dimerization Domain of Histidine Kinase Walk. Antimicrobial Agents and Chemotherapy, 2012, 56, 3657-3663.	1.4	41
47	Essential genes in Bacillus subtilis: a re-evaluation after ten years. Molecular BioSystems, 2013, 9, 1068.	2.9	95
48	Role of the PAS Sensor Domains in the Bacillus subtilis Sporulation Kinase KinA. Journal of Bacteriology, 2013, 195, 2349-2358.	1.0	11
49	DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase. BMC Microbiology, 2014, 14, 195.	1.3	29
51	Teaching old drugs new tricks: Addressing resistance inFrancisella. Virulence, 2015, 6, 414-416.	1.8	2
52	VirR-Mediated Resistance of Listeria monocytogenes against Food Antimicrobials and Cross-Protection Induced by Exposure to Organic Acid Salts. Applied and Environmental Microbiology, 2015, 81, 4553-4562.	1.4	61
53	The Response Regulator BfmR Is a Potential Drug Target for Acinetobacter baumannii. MSphere, 2016, 1,	1.3	91
54	Listeria monocytogenes – An examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiology, 2016, 54, 178-189.	2.1	92
55	Bacterial signal transduction networks via connectors and development of the inhibitors as alternative antibiotics. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1663-1669.	0.6	12
56	Evaluation of a 2-aminoimidazole variant as adjuvant treatment for dermal bacterial infections. Drug Design, Development and Therapy, 2017, Volume11, 153-162.	2.0	8

#	Article	IF	CITATIONS
57	The role of the CroR response regulator in resistance of <i>Enterococcus faecalis</i> to Dâ€eycloserine is defined using an inducible receiver domain. Molecular Microbiology, 2018, 107, 416-427.	1.2	13
58	Essential Two-Component Systems Regulating Cell Envelope Functions: Opportunities for Novel Antibiotic Therapies. Journal of Membrane Biology, 2018, 251, 75-89.	1.0	29
59	IN SILICO IDENTIFICATION OF NOVEL DRUG TARGETS IN ACINETOBACTER BAUMANNII BY SUBTRACTIVE GENOMIC APPROACH. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 230.	0.3	12
60	Moleculer dynamics simulaiton revealed reciever domain of <i>Acinetobacter baumannii</i> BfmR enzyme as the hot spot for future antibiotics designing. Journal of Biomolecular Structure and Dynamics, 2019, 37, 2897-2912.	2.0	6
61	Roles of two-component regulatory systems in antibiotic resistance. Future Microbiology, 2019, 14, 533-552.	1.0	111
62	The role of ArlRS in regulating oxacillin susceptibility in methicillin-resistant <i>Staphylococcus aureus</i> indicates it is a potential target for antimicrobial resistance breakers. Emerging Microbes and Infections, 2019, 8, 503-515.	3.0	25
63	Signal Transduction Proteins in Acinetobacter baumannii: Role in Antibiotic Resistance, Virulence, and Potential as Drug Targets. Frontiers in Microbiology, 2019, 10, 49.	1.5	55
64	Quorum Sensing Inhibition: Current Advances of the Natural Antimicrobial Agents. Russian Journal of Bioorganic Chemistry, 2019, 45, 488-504.	0.3	2
65	Quinazoline-Based Antivirulence Compounds Selectively Target <i>Salmonella</i> PhoP/PhoQ Signal Transduction System. Antimicrobial Agents and Chemotherapy, 2019, 64, .	1.4	23
66	Progress Overview of Bacterial Two-Component Regulatory Systems as Potential Targets for Antimicrobial Chemotherapy. Antibiotics, 2020, 9, 635.	1.5	42
67	2â€Aminobenzothiazoles Inhibit Virulence Gene Expression and Block Polymyxin Resistance in <i>Salmonella enterica</i> . ChemBioChem, 2020, 21, 3500-3503.	1.3	6
68	Capturing the VirA/VirG TCS of Agrobacterium tumefaciens. Advances in Experimental Medicine and Biology, 2008, 631, 161-177.	0.8	13
69	Adjunct antimicrobial therapy - prospects for the future. Therapy: Open Access in Clinical Medicine, 2005, 2, 67-76.	0.2	0
70	Two-component signal transduction systems: the adapt and survive response. Microbiology Australia, 2006, 27, 101.	0.1	0
71	Modulating quorum sensing and type III secretion systems in bacterial plant pathogens for disease management, 2007,, 16-57.		2
72	HepK, a protein-histidine kinase from the cyanobacterium Anabaena sp. strain PCC 7120, binds sequence-specifically to DNA. Trends in Bacteriology, 2014, 1, 3.	0.0	O
73	HepK, a protein-histidine kinase from the cyanobacterium Anabaena sp. strain PCC 7120, binds sequence-specifically to DNA. International Research Journal of Bacteriology, 2014, 1, 3.	0.0	0
74	<i>uvrY</i> Deletion and Acetate Reduce Gut Colonization of Crohn's Disease-Associated Adherent-Invasive Escherichia coli by Decreasing Expression of Type 1 Fimbriae. Infection and Immunity, 2022, 90, iai0066221.	1.0	6

#	ARTICLE	IF	CITATIONS
75	Two-Component Regulatory Systems. , 0, , 502-543.		0
76	The W-Acidic Motif of Histidine Kinase WalK Is Required for Signaling and Transcriptional Regulation in Streptococcus mutans. Frontiers in Microbiology, 2022, 13, 820089.	1.5	1
77	Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics, 2023, 12, 190.	1.5	1
78	Study of structurally diverse currently used and recently developed antimycobacterial drugs. Medicinal Chemistry, 2023, 19, .	0.7	0
79	Small Molecule Attenuates Bacterial Virulence by Targeting Conserved Response Regulator. MBio, 0, , .	1.8	1