Liver aquaporins: Significance in canalicular and ductal

Annals of Hepatology 3, 130-136 DOI: 10.1016/s1665-2681(19)32090-3

Citation Report

#	Article	IF	CITATIONS
1	Diagnostic significance of aquaporin-1 in liver tumors. Human Pathology, 2005, 36, 1226-1231.	1.1	49
2	Water Transport in the Gastrointestinal Tract. , 2006, , 1827-1845.		7
3	Aquaporins: a promising target for drug development. Expert Opinion on Therapeutic Targets, 2006, 10, 889-909.	1.5	45
4	Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19138-19143.	3.3	186
5	Identification and characterization of aquaporin-9 (AQP9) in porcine hepatic tissue and hepatocytes in monolayer culture. Domestic Animal Endocrinology, 2007, 32, 273-286.	0.8	15
6	Decreased aquaporin expression leads to increased resistance to apoptosis in hepatocellular carcinoma. Cancer Letters, 2007, 250, 36-46.	3.2	110
7	Down-regulation of aquaporin-1 in intrahepatic cholangiocarcinoma is related to tumor progression and mucin expression. Human Pathology, 2007, 38, 1819-1825.	1.1	38
8	High glucose induced translocation of Aquaporin8 to chicken hepatocyte plasma membrane: Involvement of cAMP, PI3K/Akt, PKC, MAPKs, and microtubule. Journal of Cellular Biochemistry, 2008, 103, 1089-1100.	1.2	13
9	Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clinical Science, 2008, 114, 567-588.	1.8	42
10	Oxidative stress: A radical way to stop making bile. Annals of Hepatology, 2008, 7, 16-33.	0.6	49
11	Protozoan parasite aquaporins. Expert Review of Proteomics, 2009, 6, 199-211.	1.3	16
12	Altered aquaporin 9 expression and localization in human hepatocellular carcinoma. Hpb, 2009, 11, 66-74.	0.1	17
13	An <i>in Vivo</i> Membrane Density Perturbation Strategy for Identification of Liver Sinusoidal Surface Proteome Accessible from the Vasculature. Journal of Proteome Research, 2009, 8, 123-132.	1.8	18
14	Bicarbonate secretion of mouse cholangiocytes involves Na ⁺ -HCO ₃ ^{â^'} cotransport in addition to Na ⁺ -independent Cl ^{â^'} /HCO ₃ ^{â^'} exchange. Hepatology, 2010. 51. 891-902.	3.6	36
15	Arsenite induces aquaglyceroporin 9 expression in murine livers. Environmental Research, 2010, 110, 443-447.	3.7	17
16	Altered aquaporin expression and role in apoptosis during hepatic stellate cell activation. Liver International, 2011, 31, 42-51.	1.9	28
17	Water Transport in the Gastrointestinal Tract. , 2012, , 1757-1780.		5
18	Localization status of hepatocellular transporters in cholestasis. Frontiers in Bioscience - Landmark, 2012, 17, 1201.	3.0	41

ATION RE

#	Article	IF	CITATIONS
19	Physiological and molecular biochemical mechanisms of bile formation. World Journal of Gastroenterology, 2013, 19, 7341.	1.4	94
20	Pathogenic role of oxidative and nitrosative stress in primary biliary cirrhosis. World Journal of Gastroenterology, 2014, 20, 5746.	1.4	30
21	History of hepatic bile formation: old problems, new approaches. American Journal of Physiology - Advances in Physiology Education, 2014, 38, 279-285.	0.8	9
22	A comprehensive analysis of aquaporin and secretory related gene expression in neonate and adult cholangiocytes. Gene Expression Patterns, 2014, 15, 96-103.	0.3	16
23	Aquaporins: Their role in gastrointestinal malignancies. Cancer Letters, 2016, 373, 12-18.	3.2	45
24	Oxidative and Nitrosative Stress in Chronic Cholestasis. , 2017, , 225-237.		5
25	Water Transport in the Gastrointestinal Tract. , 2018, , 1249-1272.		6
26	Role of Aquaporins in the Physiological Functions of Mesenchymal Stem Cells. Cells, 2020, 9, 2678.	1.8	16
27	Primary cilia in the Syrian hamster biliary tract: Bile flow antennae and outlooks about signaling on the hepato-biliary-pancreatic stem cells. Translational Research in Anatomy, 2020, 19, 100063.	0.3	1
28	Yesâ€associated protein regulates the hepatoprotective effect of vitamin <scp>D</scp> receptor activation through promoting adaptive bile duct remodeling in cholestatic mice. Journal of Pathology, 2021, 255, 95-106.	2.1	7
29	Aquaporins implicated in the cell proliferation and the signaling pathways of cell stemness. Biochimie, 2021, 188, 52-60.	1.3	8
30	Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Current Medicinal Chemistry, 2019, 26, 1113-1154.	1.2	11
32	Dynamic localization of hepatocellular transporters in health and disease. World Journal of Gastroenterology, 2008, 14, 6786.	1.4	61
34	Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery. Molecules, 2022, 27, 2961.	1.7	17