Longâ€Term Effects of Clipping and Nitrogen Managem Carbon and Nitrogen Dynamics

Journal of Environmental Quality 32, 1694-1700 DOI: 10.2134/jeq2003.1694

Citation Report

#	Article	IF	CITATIONS
1	Mechanisms of Carbon Sequestration in Soil Aggregates. Critical Reviews in Plant Sciences, 2004, 23, 481-504.	5.7	459
2	Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Clobal Change Biology, 2005, 11, 575-587.	9.5	321
3	Irrigation and fertiliser strategies for minimising nitrogen leaching from turfgrass. Agricultural Water Management, 2006, 80, 160-175.	5.6	118
4	A distinct urban biogeochemistry?. Trends in Ecology and Evolution, 2006, 21, 192-199.	8.7	557
5	Soil Organic Carbon and Nitrogen Accumulation in Plots of Rhizoma Perennial Peanut and Bahiagrass Grown in Elevated Carbon Dioxide and Temperature. Journal of Environmental Quality, 2006, 35, 1405-1412.	2.0	10
6	Earthworm population density and diversity in different-aged urban systems. Applied Soil Ecology, 2007, 37, 161-168.	4.3	71
7	Effects of Urban Land-Use Change on Biogeochemical Cycles. , 2007, , 45-58.		55
8	Nitrate Leaching in Overseeded Bermudagrass Fairways. Crop Science, 2007, 47, 2521-2528.	1.8	14
9	A Study of Hydraulic and Nutrient Retention Dynamics in Vegetated and Non-Vegetated Bioretention Mesocosms. , 2007, , .		5
10	Effect of consumption choices on fluxes of carbon, nitrogen and phosphorus through households. Urban Ecosystems, 2007, 10, 97-117.	2.4	43
11	Potential Nitrate Leaching Under Common Landscaping Plants. Water, Air, and Soil Pollution, 2007, 185, 323-333.	2.4	12
12	Modeling the carbon cycle of urban systems. Ecological Modelling, 2008, 216, 107-113.	2.5	165
13	A Study of Nutrient Retention Dynamics in Vegetated and Non-Vegetated Bioretention Mesocosms. , 2008, , .		4
14	Fate of ¹⁵ Nâ€Nitrate Applied to a Bermudagrass System: Assimilation Profiles in Different Seasons. Crop Science, 2009, 49, 2291-2301.	1.8	17
15	Interactions between N fertilization, grass clipping addition and pH in turf ecosystems: Implications for soil enzyme activities and organic matter decomposition. Soil Biology and Biochemistry, 2009, 41, 1425-1432.	8.8	69
16	Does N fertiliser regime influence N leaching and quality of different-aged turfgrass (Pennisetum) Tj ETQq1 1 0.78	34314 rgB ⁻ 3.7	T /Qverlock
17	A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosystems, 2009, 12, 45-62.	2.4	185
18	Technological-ecological networks for sustainable process design. , 2009, , .		0

#	Article	IF	CITATIONS
19	Nitrate Leaching and Nitrous Oxide Flux in Urban Forests and Grasslands. Journal of Environmental Quality, 2009, 38, 1848-1860.	2.0	146
20	Towards sustainability of engineered processes: Designing self-reliant networks of technological–ecological systems. Computers and Chemical Engineering, 2010, 34, 1413-1420.	3.8	21
21	Soil Organic Carbon Input from Urban Turfgrasses. Soil Science Society of America Journal, 2010, 74, 366-371.	2.2	98
22	Nitrous oxide emissions and isotopic composition in urban and agricultural systems in southern California. Journal of Geophysical Research, 2011, 116, .	3.3	41
23	Soil Organic Matter Accumulation in Creeping Bentgrass Greens: A Chronosequence with Implications for Management and Carbon Sequestration. Agronomy Journal, 2011, 103, 604-610.	1.8	12
24	Carbon footprinting for climate change management in cities. Carbon Management, 2011, 2, 49-60.	2.4	47
25	Denitrification in Suburban Lawn Soils. Journal of Environmental Quality, 2011, 40, 1932-1940.	2.0	52
26	A model of greenhouse gas emissions from the management of turf on two golf courses. Science of the Total Environment, 2011, 409, 1357-1367.	8.0	31
27	A model of greenhouse gas emissions from the management of turf on two golf courses. Science of the Total Environment, 2011, 409, 5137-5147.	8.0	3
28	Development and testing of a process-based model (MOSES) for simulating soil processes, functions and ecosystem services. Ecological Modelling, 2011, 222, 3795-3810.	2.5	11
29	Accumulation of Carbon and Nitrogen in Residential Soils with Different Land-Use Histories. Ecosystems, 2011, 14, 287-297.	3.4	180
30	Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management, 2011, 92, 331-362.	7.8	772
31	Are golf courses a source or sink of atmospheric carbon dioxide? A modelling approach. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2011, 225, 75-83.	0.7	5
32	Inconsistent definitions of "urban―result in different conclusions about the size of urban carbon and nitrogen stocks. Ecological Applications, 2012, 22, 1015-1035.	3.8	89
33	Frequent Trinexapacâ€ethyl Applications Reduce Nitrogen Requirements of Creeping Bentgrass Golf Putting Greens. Crop Science, 2012, 52, 1348-1357.	1.8	8
34	Biomass yield from an urban landscape. Biomass and Bioenergy, 2012, 37, 82-87.	5.7	38
35	Carbon, nitrogen, and water response to climate and land use changes in Pennsylvania during the 20th and 21st centuries. Ecological Modelling, 2012, 240, 49-63.	2.5	16
36	Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environmental Pollution, 2012, 164, 89-101.	7.5	137

#	Article	IF	CITATIONS
37	Lawn soil carbon storage in abandoned residential properties: An examination of ecosystem structure and function following partial human-natural decoupling. Journal of Environmental Management, 2012, 98, 155-162.	7.8	17
38	The residential landscape: fluxes of elements and the role of household decisions. Urban Ecosystems, 2012, 15, 1-18.	2.4	54
39	Residential landscapes as social-ecological systems: a synthesis of multi-scalar interactions between people and their home environment. Urban Ecosystems, 2012, 15, 19-52.	2.4	306
40	The capacity of roadside vegetated filter strips and swales to sequester carbon. Ecological Engineering, 2013, 54, 227-232.	3.6	35
41	Evaluating nutrient impacts in urban watersheds: Challenges and research opportunities. Environmental Pollution, 2013, 173, 138-149.	7.5	154
42	Techno-Ecological Synergy as a Path Toward Sustainability of a North American Residential System. Environmental Science & Technology, 2013, 47, 1985-1993.	10.0	28
43	Effect of Cut Plant Residue Management and Fertilization on the Dry-Matter Yield of Swards and on Carbon Content of Soil. Communications in Soil Science and Plant Analysis, 2013, 44, 205-218.	1.4	7
44	Carbon Sequestration by Roadside Filter Strips and Swales: A Field Study. , 2013, , .		0
45	Impact of returned clippings on turfgrass growth as affected by nitrogen fertilizer rate, time of return, and weather conditions. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2013, 63, 579-587.	0.6	3
46	Simulation of Nitrous Oxide Emissions and Estimation of Global Warming Potential in Turfgrass Systems Using the DAYCENT Model. Journal of Environmental Quality, 2013, 42, 1100-1108.	2.0	44
47	Development of Best Turfgrass Management Practices Using the DAYCENT Model. Agronomy Journal, 2013, 105, 1151-1159.	1.8	13
48	Design and Planning of Residential Landscapes to Manage the Carbon Cycle: Invention and Variation in Land Use and Land Cover. , 0, , 477-502.		Ο
49	Multi-factor controls on terrestrial carbon dynamics in urbanized areas. Biogeosciences, 2014, 11, 7107-7124.	3.3	27
50	Soil Carbon Dynamics in Residential Lawns Converted from Appalachian Mixed Oak Stands. Forests, 2014, 5, 425-438.	2.1	33
51	Drivers of soil carbon in residential â€~pure lawns' in Auburn, Alabama. Urban Ecosystems, 2014, 17, 205-219.	2.4	24
52	Nitrogen budgets of urban lawns under three different management regimes in southern California. Biogeochemistry, 2014, 121, 127-148.	3.5	22
53	Influence of aboveground tree biomass, home age, and yard maintenance on soil carbon levels in residential yards. Urban Ecosystems, 2014, 17, 787-805.	2.4	18
54	Chemical, Physical, and Biological Characteristics of Urban Soils. Agronomy, 0, , 119-152.	0.2	59

#	Article	IF	Citations
55	Sustainable Turfgrass Management in an Increasingly Urbanized World. , 2015, , 1007-1028.		1
56	Biology and Applications of Fungal Endophytes in Turfgrasses. , 0, , 713-731.		4
57	The effects of household management practices on the global warming potential of urban lawns. Journal of Environmental Management, 2015, 151, 233-242.	7.8	53
58	Carbon fluxes from an urban tropical grassland. Environmental Pollution, 2015, 203, 227-234.	7.5	30
59	Simulated biomass, environmental impacts and best management practices for long-term switchgrass systems in a semi-arid region. Biomass and Bioenergy, 2015, 75, 254-266.	5.7	18
60	Management alters C allocation in turfgrass lawns. Landscape and Urban Planning, 2015, 134, 119-126.	7.5	26
61	Selecting Turfgrasses and Mowing Practices that Reduce Mowing Requirements. Crop Science, 2016, 56, 3318-3327.	1.8	35
62	Persistence in and Release of 2,4â€D and Azoxystrobin from Turfgrass Clippings. Journal of Environmental Quality, 2016, 45, 2030-2037.	2.0	4
63	Nitrous Oxide Emissions from a Golf Course Fairway and Rough after Application of Different Nitrogen Fertilizers. Journal of Environmental Quality, 2016, 45, 1788-1795.	2.0	18
64	Plant nitrogen concentration and isotopic composition in residential lawns across seven US cities. Oecologia, 2016, 181, 271-285.	2.0	29
65	Variability of soil organic carbon stocks and soil CO2 efflux across urban land use and soil cover types. Geoderma, 2016, 271, 80-90.	5.1	76
66	Drivers of soil and tree carbon dynamics in urban residential lawns: a modeling approach. Ecological Applications, 2017, 27, 991-1000.	3.8	21
67	Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review. Environmental Science and Pollution Research, 2017, 24, 11177-11191.	5.3	104
68	Biogeochemical cycling of carbon and nitrogen in cool-season turfgrass systems. Urban Forestry and Urban Greening, 2017, 26, 158-162.	5.3	24
69	Changes of soil organic carbon stocks and CO2 emissions at the early stages of urban turf grasses' development. Urban Ecosystems, 2017, 20, 309-321.	2.4	40
70	Turfgrass Selection and Grass Clippings Management Influence Soil Carbon and Nitrogen Dynamics. Agronomy Journal, 2017, 109, 1719-1725.	1.8	19
71	Deficit Irrigation and Fertility Effects on NO ₃ –N Exports from St. Augustinegrass. Journal of Environmental Quality, 2017, 46, 793-801.	2.0	5
72	Nitrous Oxide Emissions in Turfgrass Systems: A Review. Agronomy Journal, 2018, 110, 2222-2232.	1.8	17

#	Article	IF	CITATIONS
73	Soil carbon and nitrogen accumulation in residential lawns of the Salt Lake Valley, Utah. Oecologia, 2018, 187, 1107-1118.	2.0	22
74	Global challenges and adaptations in management practices to preserve soil carbon pool with changing climate. Environmental Earth Sciences, 2018, 77, 1.	2.7	5
75	Correlations between Two Alkali Extractable Aminoâ€Nitrogen Tests and Response to Organic Fertilizer in Turfgrass Soils. Soil Science Society of America Journal, 2019, 83, 791-799.	2.2	7
76	Urban Grassland Management Implications for Soil C and N Dynamics: A Microbial Perspective. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	33
77	Effect of clipping on aboveground biomass and nutrients varies with slope position but not with slope aspect in a hilly semiarid restored grassland. Ecological Engineering, 2019, 134, 47-55.	3.6	11
78	Soil Carbon Accumulation and Nutrient Availability in Managed and Unmanaged Ecosystems of East Tennessee. Soil Science Society of America Journal, 2019, 83, 458-465.	2.2	7
79	Predicting spatial structure of soil physical and chemical properties of golf course fairways using an apparent electrical conductivity sensor. Precision Agriculture, 2019, 20, 496-519.	6.0	9
80	Lignocellulosic biomass for bioenergy beyond intensive cropland and forests. Renewable and Sustainable Energy Reviews, 2019, 102, 139-149.	16.4	65
81	Lawn mowing frequency and its effects on biogenic and anthropogenic carbon dioxide emissions. Landscape and Urban Planning, 2019, 182, 114-123.	7.5	30
82	Plant production decreases whereas nutrients concentration increases in response to the decrease of mowing stubble height. Journal of Environmental Management, 2020, 253, 109745.	7.8	39
83	Urban soil carbon and nitrogen converge at a continental scale. Ecological Monographs, 2020, 90, e01401.	5.4	32
84	Aggregate distribution and substrate-induced respiration under different tillage and mulching management systems in organic farming. Soil Science and Plant Nutrition, 2020, 66, 878-888.	1.9	5
85	Effect of Biowastes on Soil Remediation, Plant Productivity and Soil Organic Carbon Sequestration: A Review. Energies, 2020, 13, 5813.	3.1	17
86	Impact of urbanization on soil loss: a case study from sod production. Environmental Monitoring and Assessment, 2020, 192, 588.	2.7	15
87	Soil physiochemical properties and carbon sequestration of Urban landscapes in Lubbock, TX, USA. Urban Forestry and Urban Greening, 2020, 56, 126847.	5.3	16
88	Soil carbon sequestration in bermudagrass golf course fairways in Lubbock, Texas. Agronomy Journal, 2020, 112, 148-157.	1.8	8
89	Management effects on plant community and functional assemblages in Chicago's vacant lots. Applied Vegetation Science, 2020, 23, 266-276.	1.9	5
90	Biogeochemical and socioeconomic drivers of above- and below-ground carbon stocks in urban residential yards of a small city. Landscape and Urban Planning, 2020, 196, 103724.	7.5	15

	CITATION REPORT		
#	Article	IF	Citations
91	Organic matter decomposition under warming climatic conditions. , 2020, , 397-412.		3
92	Managing coolâ€season turfgrass without herbicides: Optimizing maintenance practices to control weeds. Crop Science, 2020, 60, 2204-2220.	1.8	13
93	Adverse Effect of Lawn on Carbon Sequestration Vis-A-Vis Climate Change and Mitigation Strategies. , 2021, , 1-26.		0
94	Impact of city historical management on soil organic carbon stocks in Paris (France). Journal of Soils and Sediments, 2021, 21, 1038-1052.	3.0	13
95	Soil surfactants applied with ¹⁵ N labeled urea increases bermudagrass uptake of nitrogen and reduces nitrogen leaching#. Journal of Plant Nutrition and Soil Science, 2021, 184, 378-387.	1.9	3
96	Greenhouse gas fluxes from turfgrass systems: Species, growth rate, clipping management, and environmental effects. Journal of Environmental Quality, 2021, 50, 547-557.	2.0	9
97	Mulching has negative impact on fungal and plant diversity in Slovak oligotrophic grasslands. Basic and Applied Ecology, 2021, 52, 24-37.	2.7	5
98	Effects of mowing interval on turfgrass clipping tissue characteristics and soil nitrogen dynamics. Soil Science Society of America Journal, 2021, 85, 1174-1184.	2.2	0
99	Vacant lot plant establishment techniques alter urban soil ecosystem services. Urban Forestry and Urban Greening, 2021, 61, 127096.	5.3	4
100	Environmental Product Declarations for plants and soils: how to quantify carbon uptake in landscape design and construction?. International Journal of Life Cycle Assessment, 2021, 26, 1100-1116.	4.7	8
101	Plantâ€available soil nitrogen fluxes and turfgrass quality of kentucky bluegrass fertilized with humic substances. Crop Science, 0, , .	1.8	2
103	New Concepts for Managing Urban Pollution. , 2009, , 69-91.		23
104	Carbon Sequestration in Turfed Landscapes: A Review. , 2012, , 197-213.		10
105	Microbial Control of Soil Carbon Accumulation in Turfgrass Systems. , 2012, , 215-231.		8
106	Carbon Stocks in Urban Forest Remnants: Atlanta and Baltimore as Case Studies. , 2012, , 103-120.		12
108	Soil Organic Matter and Nutrient Dynamics of Shortgrass Steppe Ecosystems. , 2008, , .		10
110	Disproportionality as a Framework to Target Pollution Reduction from Urban Landscapes. Cities and the Environment, 2008, 1, 1-15.	0.4	11
111	Comparing Cultivars of Three Cool-season Turfgrasses for Nitrogen Recovery in Clippings. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 827-831.	1.0	16

#	Article	IF	Citations
112	Effect of Composted Biosolids on Soil Organic Carbon Storage During Establishment of Transplanted Sod. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 503-507.	1.0	5
113	Modeling Carbon Sequestration in Home Lawns. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 808-814.	1.0	80
114	Effectiveness of Squid Hydrolysate as a Home Lawn Fertilizer. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 380-385.	1.0	2
115	A Review of Turfgrass Fertilizer Management Practices: Implications for Urban Water Quality. HortTechnology, 2012, 22, 280-291.	0.9	62
116	Enhancing Turfgrass Nitrogen Use under Stresses. Books in Soils, Plants, and the Environment, 2007, , 557-601.	0.1	2
117	Toward Sustainability by Designing Networks of Technological-Ecological Systems. , 2009, , 167-183.		1
120	Using Traditional and Simulation Methods for C and N Cycling Studies with Additional Periods of Human Civilisation: Replicating the Procedures at Regional Levels Advocate. , 2020, , 117-184.		0
121	Aggregate stability of Alfisols root zone upon turfgrass treatment. Sains Tanah, 2020, 17, 50.	0.4	2
122	Perennial Ryegrass (Lolium perenne) Culm and Inflorescence Density in Lawns: Effects of Nitrogen Fertilization, and Scalping Timing and Height. Crop Science, 0, , .	1.8	1
123	Creeping Bentgrass Yield Prediction With Machine Learning Models. Frontiers in Plant Science, 2021, 12, 749854.	3.6	4
124	Adverse Effect of Lawn on Carbon Sequestration Vis-a-Vis Climate Change and Mitigation Strategies. , 2022, , 2229-2254.		0
125	Urban net primary production: Concepts, field methods, and <scp>Baltimore, Maryland, USA</scp> case study. Ecological Applications, 2022, 32, e2562.	3.8	3
126	Bermudagrass Cultivars with Different Tolerance to Nematode Damage Are Characterized by Distinct Fungal but Similar Bacterial and Archaeal Microbiomes. Microorganisms, 2022, 10, 457.	3.6	2
127	Carbon sequestration potential of street tree plantings in Helsinki. Biogeosciences, 2022, 19, 2121-2143.	3.3	9
128	Contribution of grass clippings to turfgrass fertilization and soil water content under four nitrogen levels. Science of the Total Environment, 2022, 837, 155765.	8.0	5
129	Implementation and modelling of turf grass management options to improve soil carbon sequestration in a semi-arid environment. Environmental Sustainability, 0, , .	2.8	2
130	Settlement Land Cover and Carbon Stocks by Land Use and Parcel Size in Ontario, Canada. SSRN Electronic Journal, 0, , .	0.4	0
131	Metalâ^'Organic Frameworks for Capturing Carbon Dioxide from Flue Gas. ACS Symposium Series, 0, , 355-391.	0.5	1

#	ARTICLE	IF	CITATIONS
132	Plant functional type affects nitrogen dynamics in urban park soils similarly to boreal forest soils. Plant and Soil, 0, , .	3.7	0
133	Landscape management alters relationships between edaphic conditions, bacterial diversities, and nitrogen-cycling traits. Applied Soil Ecology, 2022, 179, 104604.	4.3	0
134	Carbon Sequestration in Turfgrass–Soil Systems. Plants, 2022, 11, 2478.	3.5	13
135	Development of an Urban Turfgrass and Tree Carbon Calculator for Northern Temperate Climates. Sustainability, 2022, 14, 12423.	3.2	2
136	The impact of urbanization on soil organic carbon stocks and particle size and density fractions. Journal of Soils and Sediments, 2023, 23, 792-803.	3.0	1
137	Simulations of nitrous oxide emissions and global warming potential in a C4 turfgrass system using process-based models. European Journal of Agronomy, 2023, 142, 126668.	4.1	2
138	High soil carbon sequestration rates persist several decades in turfgrass systems: A meta-analysis. Science of the Total Environment, 2022, , 159974.	8.0	8
139	Grasscycling: A Key Practice for Sustainable Turfgrass Management. , 2022, 1, 45-52.		1
140	Calling time on the imperial lawn and the imperative for greenhouse gas mitigation. Global Sustainability, 2023, 6, .	3.3	3
141	Strategies for reducing inputs and emissions in turfgrass systems. Crop, Forage and Turfgrass Management, 2023, 9, .	0.6	0
142	Influence of Meso- and Microclimatic Conditions on the CO2 Emission from Soils of the Urban Green Infrastructure of the Moscow Metropolis. Eurasian Soil Science, 2023, 56, 1257-1269.	1.6	0
143	Short-Term Dynamics of CO2 Emission and Carbon Content in Urban Soil Constructions in the Steppe Zone. Eurasian Soil Science, 2023, 56, 1270-1280.	1.6	0
144	Influence of urban land use types on ecosystem services in two rapidly urbanizing cities of southwestern Nigeria. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
145	Analysis of CO2 Emission from Urban Soils of the Kola Peninsula (European Arctic). Eurasian Soil Science, 2023, 56, 1653-1666.	1.6	0
147	Management dampens seasonal variability in soil microclimates and alters its chemical and physical properties in a semi-arid region. Journal of Urban Ecology, 2024, 10, .	1.5	0
148	Legacy effects of longâ€ŧerm autumn leaf litter removal slow decomposition rates and reduce soil carbon in suburban yards. Plants People Planet, 0, , .	3.3	0