A comparative study of steel- and carbon-fibre cement

Advances in Cement Research 15, 119-128 DOI: 10.1680/adcr.2003.15.3.119

Citation Report

#	Article	IF	CITATIONS
1	Cement-based electronics. , 2004, 5272, 369.		1
2	Discussion of "Resistance Changes during Compression of Carbon Fiber Cement Composites―by Farhad Reza, Gordon B. Batson, Jerry A. Yamamuro, and Jong S. Lee. Journal of Materials in Civil Engineering, 2005, 17, 605-605.	1.3	0
3	Effects of Strain and Damage on Strain-Sensing Ability of Carbon Fiber Cement. Journal of Materials in Civil Engineering, 2006, 18, 355-360.	1.3	34
4	Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars. Carbon, 2006, 44, 1496-1502.	5.4	105
5	The role of electronic and ionic conduction in the electrical conductivity of carbon fiber reinforced cement. Carbon, 2006, 44, 2130-2138.	5.4	128
6	Self-sensing of flexural strain and damage in carbon fiber polymer-matrix composite by electrical resistance measurement. Carbon, 2006, 44, 2739-2751.	5.4	172
7	Spatially resolved self-sensing of strain and damage in carbon fiber cement. Journal of Materials Science, 2006, 41, 4823-4831.	1.7	22
8	Rheology of low carbon fibre content reinforced cement mortar. Cement and Concrete Composites, 2006, 28, 773-780.	4.6	69
9	Partial replacement of carbon fiber by carbon black in multifunctional cement–matrix composites. Carbon, 2007, 45, 505-513.	5.4	162
10	Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure. Journal of Materials Science, 2007, 42, 6222-6233.	1.7	47
11	Complex Impedance and Dielectric Dispersion in Carbon Fiber Reinforced Cement Matrices. Journal of the American Ceramic Society, 2009, 92, 1617-1620.	1.9	14
12	Cement-based piezoelectret. Materials and Structures/Materiaux Et Constructions, 2009, 42, 541-557.	1.3	11
13	Electrical-resistance-based Sensing of Impact Damage in Carbon Fiber Reinforced Cement-based Materials. Journal of Intelligent Material Systems and Structures, 2010, 21, 83-105.	1.4	68
14	Mechanical and electrical characterization of self-sensing carbon black ECC. Proceedings of SPIE, 2011, , .	0.8	28
16	Compositions of Self-Sensing Concrete. , 2014, , 13-43.		6
17	Sensing Properties of Self-Sensing Concrete. , 2014, , 95-162.		4
18	Development of cement-based strain sensor for health monitoring of ultra high strength concrete. Construction and Building Materials, 2014, 65, 630-637.	3.2	102
19	Effect of fiber volume content on electromechanical behavior of strain-hardening steel-fiber-reinforced cementitious composites. Journal of Composite Materials, 2015, 49, 3621-3634.	1.2	57

#	Article	IF	CITATIONS
20	Conductive asphalt concrete: A review on structure design, performance, and practical applications. Journal of Intelligent Material Systems and Structures, 2015, 26, 755-769.	1.4	61
21	A 3D percolation model for conductive fibrous composites: application in cement-based sensors. Journal of Materials Science, 2015, 50, 5817-5821.	1.7	15
23	Nanotechnology in Construction. , 2015, , .		27
24	Comparative electromechanical damage-sensing behaviors of six strain-hardening steel fiber-reinforced cementitious composites under direct tension. Composites Part B: Engineering, 2015, 69, 159-168.	5.9	65
25	Intrinsic self-sensing concrete and structures: A review. Measurement: Journal of the International Measurement Confederation, 2015, 59, 110-128.	2.5	513
26	Self-sensing structural composites in aerospace engineering. , 2016, , 295-331.		3
27	Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete. Cement and Concrete Composites, 2016, 72, 48-65.	4.6	118
28	Development and characterization of self-sensing CNF HPFRCC. Materials and Structures/Materiaux Et Constructions, 2016, 49, 5327-5342.	1.3	32
29	Concrete with triphasic conductive materials for self-monitoring of cracking development subjected to flexure. Composite Structures, 2016, 138, 184-191.	3.1	35
30	Smart textile reinforcement with embedded stainless steel yarns for the detection of wetting and infiltration in TRC structures. Sensors and Actuators A: Physical, 2016, 243, 139-150.	2.0	13
31	Roles of water film thickness and polypropylene fibre content in fresh properties of mortar. Advances in Cement Research, 2017, 29, 71-80.	0.7	11
32	Effect of the fringing electric field on the apparent electric permittivity of cement-based materials. Composites Part B: Engineering, 2017, 126, 192-201.	5.9	29
33	Preparation, microstructure, and piezoresistive behavior of conductive nanocomposite foams based on poly(1-butene) and carbon black. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	7
34	Effect of matrix cracking on electrical resistivity of high performance fiber reinforced cementitious composites in tension. Construction and Building Materials, 2017, 156, 750-760.	3.2	26
36	Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes. Sensors, 2017, 17, 2481.	2.1	93
37	Development of Carbon Fiber-modified Electrically Conductive Concrete for Implementation in Des Moines International Airport. Case Studies in Construction Materials, 2018, 8, 277-291.	0.8	50
38	Self-sensing capability of ultra-high-performance concrete containing steel fibers and carbon nanotubes under tension. Sensors and Actuators A: Physical, 2018, 276, 125-136.	2.0	100
39	High electric permittivity of polymer-modified cement due to the capacitance of the interface between polymer and cement. Journal of Materials Science, 2018, 53, 7199-7213.	1.7	9

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
40	Electrical and piezoresistive properties of cement composites with carbon nanomaterials. Journal of Composite Materials, 2018, 52, 3325-3340.	1.2	57
41	Understanding the increase of the electric permittivity of cement caused by latex addition. Composites Part B: Engineering, 2018, 134, 177-185.	5.9	19
42	Electrical and piezoresistive sensing capacities of cement paste with multi-walled carbon nanotubes. Archives of Civil and Mechanical Engineering, 2018, 18, 371-384.	1.9	75
43	Multifunctional electrically conductive concrete using different fillers. Journal of Building Engineering, 2018, 15, 61-69.	1.6	88
44	Electromechanical Response of High-Performance Fiber-Reinforced Cementitious Composites Containing Milled Glass Fibers under Tension. Materials, 2018, 11, 1115.	1.3	7
45	Carbon fiber-based electrically conductive concrete for salt-free deicing of pavements. Journal of Cleaner Production, 2018, 203, 799-809.	4.6	121
46	Self-sensing properties of Engineered Cementitious Composites. Construction and Building Materials, 2018, 174, 253-262.	3.2	40
47	Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art. Composite Structures, 2019, 227, 111244.	3.1	95
48	State of the Art on Sensing Capability of Poorly or Nonconductive Matrixes with a Special Focus on Portland Cement–Based Materials. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	5
49	Self-heating of electrically conductive metal-cementitious composites. Journal of Intelligent Material Systems and Structures, 2019, 30, 2234-2240.	1.4	17
50	Piezoresistive behaviours of carbon black cement-based sensors with layer-distributed conductive rubber fibres. Materials and Design, 2019, 182, 108012.	3.3	81
51	Effect of Different Micro Metal Powders on the Electrical Resistivity of Cementitious Composites. IOP Conference Series: Materials Science and Engineering, 2019, 471, 032075.	0.3	4
52	A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Composites Part B: Engineering, 2019, 177, 107437.	5.9	121
53	Piezoresistive properties of cement-based sensors: Review and perspective. Construction and Building Materials, 2019, 203, 146-163.	3.2	214
54	Electrical resistivity and mechanical properties of cementitious composite incorporating conductive rubber fibres. Smart Materials and Structures, 2019, 28, 085013.	1.8	47
55	Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes. Construction and Building Materials, 2019, 221, 109-121.	3.2	57
56	Study on self-monitoring of multiple cracked concrete beams with multiphase conductive materials subjected to bending. Smart Materials and Structures, 2019, 28, 095003.	1.8	14
57	Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress. Construction and Building Materials, 2019, 220, 149-160.	3.2	72

#	Article	IF	CITATIONS
58	Enhancing Damage-Sensing Capacity of Strain-Hardening Macro-Steel Fiber-Reinforced Concrete by Adding Low Amount of Discrete Carbons. Materials, 2019, 12, 938.	1.3	15
59	Spatial damage sensing ability of metallic particulate-reinforced cementitious composites: Insights from electrical resistance tomography. Materials and Design, 2019, 175, 107817.	3.3	14
60	Effect of steel fiber and carbon black on the self-sensing ability of concrete cracks under bending. Construction and Building Materials, 2019, 207, 630-639.	3.2	67
61	Piezoresistive Load Sensing and Percolation Phenomena in Portland Cement Composite Modified with In-Situ Synthesized Carbon Nanofibers. Nanomaterials, 2019, 9, 594.	1.9	19
62	Concrete with nanomaterials and fibers for self-monitoring of strain and cracking subjected to flexure. , 2019, , 261-279.		0
63	Steel microfibres in fly ash geopolymer for multifunctional conductive composites. IOP Conference Series: Materials Science and Engineering, 2019, 596, 012014.	0.3	3
64	Development of sensing concrete: Principles, properties and its applications. Journal of Applied Physics, 2019, 126, .	1.1	58
65	A microstructure-guided numerical approach to evaluate strain sensing and damage detection ability of random heterogeneous self-sensing structural materials. Computational Materials Science, 2019, 156, 195-205.	1.4	21
66	Direct tensile self-sensing and fracture energy of steel-fiber-reinforced concretes. Composites Part B: Engineering, 2020, 183, 107714.	5.9	48
67	Self-sensing capabilities of cement-based sensor with layer-distributed conductive rubber fibres. Sensors and Actuators A: Physical, 2020, 301, 111763.	2.0	66
68	Strain sensitivity of steel-fiber-reinforced industrial smart concrete. Journal of Intelligent Material Systems and Structures, 2020, 31, 127-136.	1.4	23
69	Characterization of smart brass fiber reinforced concrete under various loading conditions. Construction and Building Materials, 2020, 265, 120411.	3.2	16
70	A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. Journal of Materials Science, 2020, 55, 15367-15396.	1.7	97
71	Materials for electromagnetic interference shielding. Materials Chemistry and Physics, 2020, 255, 123587.	2.0	220
72	Experimental investigation and modelling of flexural properties of carbon textile reinforced concrete. Construction and Building Materials, 2020, 262, 120877.	3.2	32
73	Influence of NaCl Freeze Thaw Cycles and Cyclic Loading on the Mechanical Performance and Permeability of Sulphoaluminate Cement Reactive Powder Concrete. Coatings, 2020, 10, 1227.	1.2	22
74	Effects of steel slag aggregate size and content on piezoresistive responses of smart ultra-high-performance fiber-reinforced concretes. Sensors and Actuators A: Physical, 2020, 305, 111925.	2.0	33
75	Mechanical and piezoelectric properties of ECC with CNT incorporated through fiber modification. Construction and Building Materials, 2020, 260, 119717.	3.2	16

#	Article	IF	CITATIONS
76	Environment-Friendly, Self-Sensing Concrete Blended with Byproduct Wastes. Sensors, 2020, 20, 1925.	2.1	18
77	Piezoresistive sensing of cementitious composites reinforced with shape memory alloy, steel, and carbon fibres. Construction and Building Materials, 2021, 267, 121046.	3.2	16
78	Mechanical properties, electrical resistivity and piezoresistivity of carbon fibre-based self-sensing cementitious composites. Ceramics International, 2021, 47, 7864-7879.	2.3	39
79	Piezoelectric behaviour of hybrid engineered cementitious composites containing shape-memory alloy, steel, and carbon fibres under compressive stress cycles. Construction and Building Materials, 2021, 273, 121671.	3.2	11
80	Self-sensing concrete: from resistance-based sensing to capacitance-based sensing. International Journal of Smart and Nano Materials, 2021, 12, 1-19.	2.0	51
81	Development of self-sensing cementitious composites incorporating CNF and hybrid CNF/CF. Construction and Building Materials, 2021, 273, 121659.	3.2	22
82	Electrical properties of smart ultra-high performance concrete under various temperatures, humidities, and age of concrete. Cement and Concrete Composites, 2021, 118, 103979.	4.6	23
83	Multifunctional cementitious composites with integrated self-sensing and hydrophobic capacities toward smart structural health monitoring. Cement and Concrete Composites, 2021, 118, 103962.	4.6	66
84	Novel humidity sensors based on nanomodified Portland cement. Scientific Reports, 2021, 11, 8189.	1.6	8
85	The electro-mechanical tensile properties of an engineered cementitious composite. Advances in Cement Research, 2021, 33, 478-495.	0.7	3
86	Modifying self-sensing cement-based composites through multiscale composition. Measurement Science and Technology, 2021, 32, 074002.	1.4	8
87	Research on the self-sensing and mechanical properties of aligned stainless steel fiber-reinforced reactive powder concrete. Cement and Concrete Composites, 2021, 119, 104001.	4.6	62
88	External erosion of sodium chloride on the degradation of self-sensing and mechanical properties of aligned stainless steel fiber reinforced reactive powder concrete. Construction and Building Materials, 2021, 287, 123028.	3.2	25
89	Conductive Metakaolin Geopolymer with Steel Microfibres . Solid State Phenomena, 0, 321, 59-64.	0.3	1
90	An Innovative Smart Concrete Anchorage with Self-Stress Sensing Capacity of Prestressing Stress of PS Tendon. Sensors, 2021, 21, 5251.	2.1	3
91	Integrating multiscale numerical simulations with machine learning to predict the strain sensing efficiency of nano-engineered smart cementitious composites. Materials and Design, 2021, 209, 109995.	3.3	11
92	Development of a smart concrete block with an eccentric load sensing capacity. Construction and Building Materials, 2021, 306, 124881.	3.2	8
93	Self-sensing ultra-high performance concrete for in-situ monitoring. Sensors and Actuators A: Physical, 2021, 331, 113049.	2.0	31

TION P

#	Article	IF	CITATIONS
94	Enhancing self-stress sensing ability of smart ultra-high performance concretes under compression by using nano functional fillers. Journal of Building Engineering, 2021, 44, 102717.	1.6	13
95	The Strain Sensitivity of Coal Reinforced Smart Concrete by Piezoresistive Effect. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2022, 33, 11507-11519.	0.5	5
96	Self-Sensing Concrete. , 2017, , 81-116.		6
97	Smart nano-engineered cementitious composite sensors for vibration-based health monitoring of large structures. Sensors and Actuators A: Physical, 2020, 311, 112088.	2.0	30
98	The effect of moisture and reinforcement on the self-sensing properties of hybrid-fiber-reinforced concrete. Engineering Research Express, 2020, 2, 025026.	0.8	8
99	Variables affecting strain sensing function in cementitious composites with carbon fibers. Computers and Concrete, 2011, 8, 229-241.	0.7	28
100	Effect of Moisture on Piezoresistivity of Carbon Fiber-Reinforced Cement Paste. ACI Materials Journal, 2008, 105, .	0.3	4
101	Carbon Fiber-Reinforced Cement-Based Composites for Tensile Strain Sensing. ACI Materials Journal, 2017, 114, .	0.3	10
102	Smart Self-Healing and Self-Sensing Cementitious Composites—Recent Developments, Challenges, and Prospects. Advances in Civil Engineering Materials, 2019, 8, 554-578.	0.2	23
103	Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Applied Sciences (Switzerland), 2020, 10, 9152.	1.3	50
104	Elucidation of Conduction Mechanism in Graphene Nanoplatelets (GNPs)/Cement Composite Using Dielectric Spectroscopy. Materials, 2020, 13, 275.	1.3	15
105	A review of intrinsic self-sensing cementitious composites and prospects for their application in transport infrastructures. Construction and Building Materials, 2021, 310, 125139.	3.2	35
106	Additional Carbon Dependent Electrical Resistivity Behaviors of High Performance Fiber-Reinforced Cementitious Composites. Lecture Notes in Civil Engineering, 2018, , 310-318.	0.3	3
107	Matrix dependent piezoresistivity responses of high performance fiber-reinforced concretes. Lecture Notes in Civil Engineering, 2020, , 337-342.	0.3	0
108	Self-sensing performance of cementitious composites with functional fillers at macro, micro and nano scales. Construction and Building Materials, 2022, 314, 125679.	3.2	20
109	Enhanced sensing performance of cement-based composites achieved via magnetically aligned nickel particle network. Composites Communications, 2022, 29, 101006.	3.3	4
110	Aligning conductive particles using magnetic field for enhanced piezoresistivity of cementitious composites. Construction and Building Materials, 2021, 313, 125582.	3.2	5
111	Experimental study on optimization of smart mortar with the addition of brass fibres. Materials Today: Proceedings, 2022, 50, 388-393.	0.9	3

CITATION REPORT

#	Article	IF	CITATIONS
112	The combined effect of carbon fiber and carbon nanotubes on the electrical and self-heating properties of cement composites. Journal of Intelligent Material Systems and Structures, 2022, 33, 2271-2284.	1.4	6
113	Effect of Gasification Char and Recycled Carbon Fibres on the Electrical Impedance of Concrete Exposed to Accelerated Degradation. Sustainability, 2022, 14, 1775.	1.6	4
114	Electrical and Piezoresistive Properties of Steel Fiber Cement-based Composites Aligned by a Magnetic Field. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 229-240.	0.4	4
115	Advances in multifunctional cementitious composites with conductive carbon nanomaterials for smart infrastructure. Cement and Concrete Composites, 2022, 128, 104454.	4.6	44
116	Electro-mechanical investigations of steel fiber reinforced self-sensing cement composite and their implications for real-time structural health monitoring. Journal of Building Engineering, 2022, 51, 104343.	1.6	11
117	Impact of Carbon Particle Character on the Cement-Based Composite Electrical Resistivity. Materials, 2021, 14, 7505.	1.3	3
118	Smart Graphite–Cement Composites with Low Percolation Threshold. Materials, 2022, 15, 2770.	1.3	3
119	Research Progress in Environmental Response of Fiber Concrete and Its Functional Mechanisms. Advances in Materials Science and Engineering, 2022, 2022, 1-26.	1.0	1
120	Development of 3D printable self-sensing cementitious composites. Construction and Building Materials, 2022, 337, 127601.	3.2	11
121	A Review on Principles, Theories and Materials for Self Sensing Concrete for Structural Applications. Materials, 2022, 15, 3831.	1.3	12
122	Multifunctional Super-Fine Stainless Wires Reinforced UHPC for Smart Prefabricated Structures. Lecture Notes in Civil Engineering, 2023, , 794-804.	0.3	2
123	An Experimental Study on Electrical Properties of Self-Sensing Mortar. Journal of Composites Science, 2022, 6, 208.	1.4	9
124	The mechanical and conductive properties of intelligent magnesium phosphate cement mortar. Journal of Building Engineering, 2022, 60, 105133.	1.6	0
125	Experimental Investigation on the Compressive Stress-Sensing Ability of Steel Fiber-Reinforced Cement-Based Composites under Varying Temperature Conditions. Construction Materials, 2022, 2, 258-275.	0.5	0
126	Thermal properties of conductive concrete using graphite powder and steel fibers. Journal of Building Pathology and Rehabilitation, 2023, 8, .	0.7	1
127	Evaluation of conductive concrete made with steel slag aggregates. Construction and Building Materials, 2022, 360, 129515.	3.2	7
128	A critical review of electrical-resistance-based self-sensing in conductive cement-based materials. Carbon, 2023, 203, 311-325.	5.4	33
129	The Effect of Exposure Conditions on the Properties of Cementitious Composites with Reduced Electrical Resistivity. Buildings, 2022, 12, 2124.	1.4	2

#	Article	IF	CITATIONS
130	Piezoresistivity and AC Impedance Spectroscopy of Cement-Based Sensors: Basic Concepts, Interpretation, and Perspective. Materials, 2023, 16, 768.	1.3	3
131	New Materials and Technologies for Durability and Conservation of Building Heritage. Materials, 2023, 16, 1190.	1.3	2
133	Influence of Carbon Nanotubes Dispersion Degree on the Piezo-Resistive Behavior of Self-sensing Cementitious Composites. RILEM Bookseries, 2023, , 516-527.	0.2	0