Short-term training attenuates muscle TCA cycle expan

Journal of Applied Physiology 95, 999-1004 DOI: 10.1152/japplphysiol.01118.2002

Citation Report

#	Article	IF	CITATIONS
1	The Importance of Glutamate in Skeletal Muscle Metabolism Under Differrent Exercise Conditions. Applied Physiology, Nutrition, and Metabolism, 2004, 29, 684-684.	1.7	0
2	Tricarboxylic-Acid-Cycle Intermediates and Cycle Endurance Capacity. International Journal of Sport Nutrition and Exercise Metabolism, 2004, 14, 720-729.	2.1	16
3	Effect of endurance training on muscle TCA cycle metabolism during exercise in humans. Journal of Applied Physiology, 2004, 97, 579-584.	2.5	38
5	Skeletal muscle glutamate metabolism in health and disease: state of the art. Current Opinion in Clinical Nutrition and Metabolic Care, 2005, 8, 41-51.	2.5	72
6	An acute decrease in TCA cycle intermediates does not affect aerobic energy delivery in contracting rat skeletal muscle. Journal of Physiology, 2005, 565, 637-643.	2.9	20
7	What can metabolic myopathies teach us about exercise physiology?. Applied Physiology, Nutrition and Metabolism, 2006, 31, 21-30.	1.9	17
8	Effects of glutamine and hyperoxia on pulmonary oxygen uptake and muscle deoxygenation kinetics. European Journal of Applied Physiology, 2006, 99, 149-161.	2.5	12
9	Tricarboxylic acid cycle intermediates accumulate at the onset of intense exercise in man but are not essential for the increase in muscle oxygen uptake. Pflugers Archiv European Journal of Physiology, 2006, 452, 737-743.	2.8	13
10	Tricarboxylic Acid Cycle Intermediate Pool Size. Sports Medicine, 2007, 37, 1071-1088.	6.5	60
11	No effect of glutamine supplementation and hyperoxia on oxidative metabolism and performance during high-intensity exercise. Journal of Sports Sciences, 2008, 26, 1081-1090.	2.0	7
12	Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16701-16706.	7.1	94
13	Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism. Journal of Applied Physiology, 2008, 105, 547-554.	2.5	12
14	A–Z of nutritional supplements: dietary supplements, sports nutrition foods and ergogenic aids for health and performance: Part 36. British Journal of Sports Medicine, 2012, 46, 893-894.	6.7	0
15	Age, experience, injury, and the changing brain. Developmental Psychobiology, 2012, 54, 311-325.	1.6	73
16	Metabolomic responses to high-intensity interval exercise in equine skeletal muscle: effects of rest interval duration. Journal of Experimental Biology, 2024, 227, .	1.7	0