The pattern of surfactant cholesterol during vertebrate ontogeny recapitulate phylogeny?

Reproduction, Fertility and Development 15, 55 DOI: 10.1071/rd02087

Citation Report

#	Article	IF	CITATIONS
1	Surfactant from diving aquatic mammals. Journal of Applied Physiology, 2004, 96, 1626-1632.	2.5	41
2	The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development. Tobacco Induced Diseases, 2004, 2, 3.	0.6	24
3	Cholesterol Rules. Journal of Biological Chemistry, 2004, 279, 40715-40722.	3.4	260
4	Interfacial properties of pulmonary surfactant layers. Advances in Colloid and Interface Science, 2005, 117, 33-58.	14.7	169
5	The lipid composition of autophagic vacuoles regulates expression of multilamellar bodies. Journal of Cell Science, 2005, 118, 1991-2003.	2.0	86
6	The composition of pulmonary surfactant from diving mammals. Respiratory Physiology and Neurobiology, 2006, 152, 152-168.	1.6	25
7	Regulation of surfactant protein and defensin mRNA expression in cultured ovine type II pneumocytes by all-trans retinoic acid and VEGF. International Journal of Experimental Pathology, 2006, 87, 393-403.	1.3	12
8	Surfactant as an Airway Smooth Muscle Relaxant. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 609-615.	2.9	26
9	Collectins and Cationic Antimicrobial Peptides of the Respiratory Epithelia. Veterinary Pathology, 2006, 43, 595-612.	1.7	60
10	Comparison of the respiratory transition at birth or hatching in viviparous and oviparous amniote vertebrates. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, 755-760.	1.8	10
11	Structure of pulmonary surfactant membranes and films: The role of proteins and lipid–protein interactions. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1676-1695.	2.6	409
12	Special relationship between sterols and oxygen: Were sterols an adaptation to aerobic life?. Free Radical Biology and Medicine, 2009, 47, 880-889.	2.9	107
13	CHOLESTEROL AS AN EVOLUTIONARY RESPONSE TO LIVING WITH OXYGEN. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	47
14	Some Molecular Aspects in the Biology of Respiration. , 2011, , 85-140.		0
15	Evolution and Cell Physiology. 1. Cell signaling is all of biology. American Journal of Physiology - Cell Physiology, 2013, 305, C682-C689.	4.6	10
16	Paramecium caudatum enhances transmission and infectivity of Mycobacterium marinum and M. chelonae in zebrafish Danio rerio. Diseases of Aquatic Organisms, 2013, 106, 229-239.	1.0	46
17	Structure-function relationships in pulmonary surfactant membranes: From biophysics to therapy. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1568-1585.	2.6	204
18	Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. , 2015, 6, 363-422.		26

ATION RED

#	Article	IF	CITATIONS
19	A Central Theory of Biology. Medical Hypotheses, 2015, 85, 49-57.	1.5	53
20	Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chemistry and Physics of Lipids, 2015, 185, 153-175.	3.2	219
21	The Unicellular State as a Point Source in a Quantum Biological System. Biology, 2016, 5, 25.	2.8	35
22	Critical appraisal of some factors pertinent to the functional designs of the gas exchangers. Cell and Tissue Research, 2017, 367, 747-767.	2.9	8
23	The resolution of ambiguity as the basis for life: A cellular bridge between Western reductionism and Eastern holism. Progress in Biophysics and Molecular Biology, 2017, 131, 288-297.	2.9	48
24	Human amniotic membrane as newly identified source of amniotic fluid pulmonary surfactant. Scientific Reports, 2017, 7, 6406.	3.3	16
25	Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Annals of Anatomy, 2017, 209, 78-92.	1.9	90
26	A diachronic evolutionary biologic perspective: Reconsidering the role of the eukaryotic unicell offers a 'Timeless' biology. Progress in Biophysics and Molecular Biology, 2018, 140, 103-106.	2.9	2
27	The Nexus of Development and Environment. , 2018, , 1-5.		2
28	Properties of Lipid Models of Lung Surfactant Containing Cholesterol and Oxidized Lipids: A Mixed Experimental and Computational Study. Langmuir, 2020, 36, 1023-1033.	3.5	12
29	The Potential Role of Bioactive Plasmalogens in Lung Surfactant. Frontiers in Cell and Developmental Biology, 2021, 9, 618102.	3.7	21
30	Identifying the Spatial Distribution of Vitamin E, Pulmonary Surfactant and Membrane Lipids in Cells and Tissue by Confocal Raman Microscopy. Methods in Molecular Biology, 2009, 579, 513-535.	0.9	8
31	Comparative Transcriptome Analyses Indicate Molecular Homology of Zebrafish Swimbladder and Mammalian Lung. PLoS ONE, 2011, 6, e24019.	2.5	139
32	Functional Designs of the Gas Exchangers. , 2011, , 141-221.		1
33	On the evolution of development. Trends in Developmental Biology, 2014, 8, 17-37.	1.0	8
34	Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. Coatings, 2022, 12, 277.	2.6	7
35	Fluid Interfaces as Models for the Study of Lipid-Based Films with Biophysical Relevance. Coatings, 2023, 13, 1560.	2.6	1

CITATION REPORT