Innovative approach to low-level gluten determination enzyme-linked immunosorbent assay protocol

European Journal of Gastroenterology and Hepatology 15, 465-747

DOI: 10.1097/01.meg.0000059119.41030.df

Citation Report

#	Article	IF	CITATIONS
1	Assay of gliadin by real-time immunopolymerase chain reaction. Molecular Nutrition and Food Research, 2003, 47, 345-348.	0.0	23
2	Opinion of the Scientific Panel on Dietetic products, nutrition and allergies [NDA] on a request from the Commission relating to the evaluation of allergenic foods for labelling purposes. EFSA Journal, 2004, 2, 32.	0.9	10
3	A novel and sensitive method for the detection of T cell stimulatory epitopes of Â/Â- and Â-gliadin. Gut, 2004, 53, 1267-1273.	6.1	57
4	The safe threshold for gluten contamination in gluten-free products. Can trace amounts be accepted in the treatment of coeliac disease?. Alimentary Pharmacology and Therapeutics, 2004, 19, 1277-1283.	1.9	153
5	Advances in celiac disease. Current Opinion in Gastroenterology, 2004, 20, 95-103.	1.0	7
6	Advances in celiac disease. Current Opinion in Gastroenterology, 2005, 21, 152-161.	1.0	19
7	Report of a collaborative trial to investigate the performance of the R5 enzyme linked immunoassay to determine gliadin in gluten-free food. European Journal of Gastroenterology and Hepatology, 2005, 17, 1053-1063.	0.8	93
8	Development of a general procedure for complete extraction of gliadins for heat processed and unheated foods. European Journal of Gastroenterology and Hepatology, 2005, 17, 529-539.	0.8	101
9	Coeliac disease: a diverse clinical syndrome caused by intolerance of wheat, barley and rye. Proceedings of the Nutrition Society, 2005, 64, 434-450.	0.4	65
10	Cluten-free diet—what is toxic?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2005, 19, 359-371.	1.0	50
11	Monoclonal antibody-based competitive assay for the sensitive detection of coeliac disease toxic prolamins. Analytica Chimica Acta, 2005, 551, 105-114.	2.6	32
12	Quantification of gliadin levels to the picogram level by flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2005, 63A, 108-113.	1.1	7
13	Pasta Made from Durum Wheat Semolina Fermented with Selected Lactobacilli as a Tool for a Potential Decrease of the Gluten Intolerance. Journal of Agricultural and Food Chemistry, 2005, 53, 4393-4402.	2.4	68
14	Dietary guidelines and implementation for celiac disease. Gastroenterology, 2005, 128, S121-S127.	0.6	285
15	VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for Celiac Sprue probiotics and gluten intolerance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 80-93.	1.8	197
16	Consumption of gluten-free products: should the threshold value for trace amounts of gluten be at 20, 100 or 200???p.p.m.?. European Journal of Gastroenterology and Hepatology, 2006, 18, 1187-1195.	0.8	54
17	The toxicity of high molecular weight glutenin subunits of wheat to patients with coeliac disease. European Journal of Gastroenterology and Hepatology, 2006, 18, 483-491.	0.8	79
18	Detecting wheat gluten in food. , 2006, , 244-272.		2

#	Article	IF	CITATIONS
19	Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Alimentary Pharmacology and Therapeutics, 2006, 23, 559-575.	1.9	216
20	Monoclonal antibody R5 for detection of putatively coeliac-toxic gliadin peptides. European Food Research and Technology, 2006, 222, 78-82.	1.6	111
21	Confirmation of the Cereal Type in Oat Products Highly Contaminated with Gluten. Journal of the American Dietetic Association, 2006, 106, 665.	1.3	21
22	Response to Mendez Letter. Journal of the American Dietetic Association, 2006, 106, 665.	1.3	7
23	Fermentation by selected sourdough lactic acid bacteria to decrease coeliac intolerance to rye flour. Journal of Cereal Science, 2006, 43, 301-314.	1.8	80
24	Towards a new gliadin reference material–isolation and characterisation. Journal of Cereal Science, 2006, 43, 331-341.	1.8	169
25	Analysis of barley contamination in oats using R5 and ω-gliadin antibodies. Journal of Cereal Science, 2006, 44, 347-352.	1.8	49
27	Detection of gluten contamination with PCR method. Acta Alimentaria, 2007, 36, 241-248.	0.3	3
28	Specificity Analysis of Anti-gliadin Mouse Monoclonal Antibodies Used for Detection of Gliadin in Food for Gluten-free Diet. Journal of Agricultural and Food Chemistry, 2007, 55, 2627-2632.	2.4	16
29	Highly Efficient Gluten Degradation by Lactobacilli and Fungal Proteases during Food Processing: New Perspectives for Celiac Disease. Applied and Environmental Microbiology, 2007, 73, 4499-4507.	1.4	217
30	Fluorescence Correlation Spectroscopy Assay for Gliadin in Food. Analytical Chemistry, 2007, 79, 4687-4689.	3.2	25
31	Can oats be taken in a gluten-free diet? A systematic review. Scandinavian Journal of Gastroenterology, 2007, 42, 171-178.	0.6	76
32	Consumption of Pure Oats by Individuals with Celiac Disease: A Position Statement by the Canadian Celiac Association. Canadian Journal of Gastroenterology & Hepatology, 2007, 21, 649-651.	1.8	56
33	Alternative production of Bcl-2 and Bax by tumor cells determines the rates of in vivo tumor progression: Suggested mechanisms. Journal of Cellular Biochemistry, 2007, 101, 1148-1164.	1.2	2
34	Prolamin Hydrolysis in Wheat Sourdoughs with Differing Proteolytic Activities. Journal of Agricultural and Food Chemistry, 2007, 55, 978-984.	2.4	49
35	Interference of denaturing and reducing agents on the antigen/antibody interaction. Impact on the performance of quantitative immunoassays in gliadin analysis. European Food Research and Technology, 2008, 226, 591-602.	1.6	24
36	Commercial Assays to Assess Gluten Content of Gluten-Free Foods: Why They Are Not Created Equal. Journal of the American Dietetic Association, 2008, 108, 1682-1687.	1.3	76
37	Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat. Journal of Cereal Science, 2008, 48, 565-568.	1.8	90

#	Article	IF	CITATIONS
38	Gluten measurement and its relationship to food toxicity for celiac disease patients. Plant Methods, 2008, 4, 26.	1.9	23
39	Detection of gluten. , 2008, , 47-80.		8
40	Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control, 2008, 19, 1-8.	2.8	342
41	Electrochemical Immunosensor for Detection of Celiac Disease Toxic Gliadin in Foodstuff. Analytical Chemistry, 2008, 80, 9265-9271.	3.2	73
42	Oat products and their current status in the celiac diet. , 2008, , 191-202.		10
43	Fine specificity of monoclonal antibodies against celiac disease–inducing peptides in the gluteome. American Journal of Clinical Nutrition, 2008, 88, 1057-1066.	2.2	39
44	Sensitive detection of cereal fractions that are toxic to celiac disease patients by using monoclonal antibodies to a main immunogenic wheat peptide. American Journal of Clinical Nutrition, 2008, 87, 405-414.	2.2	183
45	Measurement of wheat gluten and barley hordeins in contaminated oats from Europe, the United States and Canada by Sandwich R5 ELISA. European Journal of Gastroenterology and Hepatology, 2008, 20, 545-554.	0.8	84
46	Issues related to gluten-free diet in coeliac disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 329-333.	1.3	41
47	The usefulness of rabbit anti-QQQPP peptide antibodies to wheat flour antigenicity studies. Czech Journal of Food Sciences, 2008, 26, 24-30.	0.6	9
48	Use of Selected Sourdough Strains of Lactobacillus for Removing Gluten and Enhancing the Nutritional Properties of Gluten-Free Bread. Journal of Food Protection, 2008, 71, 1491-1495.	0.8	93
49	Toward the Assessment of Food Toxicity for Celiac Patients: Characterization of Monoclonal Antibodies to a Main Immunogenic Gluten Peptide. PLoS ONE, 2008, 3, e2294.	1.1	141
50	Immunogenicity Characterization of Two Ancient Wheat α-Gliadin Peptides Related to Coeliac Disease. Nutrients, 2009, 1, 276-290.	1.7	30
51	Intolerance of celiac disease patients to bovine milk is not due to the presence of T-cell stimulatory epitopes of gluten. Nutrition, 2009, 25, 122-123.	1.1	7
52	Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines. BMC Plant Biology, 2009, 9, 41.	1.6	97
53	A modified extraction protocol enables detection and quantification of celiac disease-related gluten proteins from wheat. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 975-982.	1.2	66
54	Allergen immunoassays—considerations for use of naturally incurred standards. Analytical and Bioanalytical Chemistry, 2009, 395, 83-92.	1.9	124
55	Real-time PCR systems for the detection of the gluten-containing cereals wheat, spelt, kamut, rye, barley and oat. European Food Research and Technology, 2009, 228, 321-330.	1.6	55

CITAT	ELONI.	DEDODT
		Report
011/1		

#	Article	IF	CITATIONS
56	Is the calculation of the gluten content by multiplying the prolamin content by a factor of 2 valid?. European Food Research and Technology, 2009, 229, 9-13.	1.6	77
57	Determination of gluten in glucose syrups. Journal of Food Composition and Analysis, 2009, 22, 762-765.	1.9	17
58	Microfluorimeter with disposable polymer chip for detection of coeliac disease toxic gliadin. Lab on A Chip, 2009, 9, 3535.	3.1	13
59	Classification of Proteins in Cereal Grains: What Is Toxic and How Is It Measured in Foods?. , 0, , 28-41.		Ο
60	Celiac disease diagnosis and gluten-free food analytical control. Analytical and Bioanalytical Chemistry, 2010, 397, 1743-1753.	1.9	26
61	Standardization in allergen determination. Accreditation and Quality Assurance, 2010, 15, 207-216.	0.4	15
62	Reactivity of gluten detecting monoclonal antibodies to a gliadin reference material. Journal of Cereal Science, 2010, 51, 198-204.	1.8	40
63	Optimisation of a solvent for the complete extraction of prolamins from heated foods. Journal of Cereal Science, 2010, 52, 331-332.	1.8	22
64	Gluten Contamination of Grains, Seeds, and Flours in the United States: A Pilot Study. Journal of the American Dietetic Association, 2010, 110, 937-940.	1.3	89
67	Mechanism of Degradation of Immunogenic Gluten Epitopes from <i>Triticum turgidum</i> L. var. <i>durum</i> by Sourdough Lactobacilli and Fungal Proteases. Applied and Environmental Microbiology, 2010, 76, 508-518.	1.4	93
68	Gluten-free barley malt beers. Cerevisia, 2011, 36, 93-97.	0.4	39
69	Celiac disease, gluten-free diet, and oats. Nutrition Reviews, 2011, 69, 107-115.	2.6	61
70	Deamidation of gluten proteins and peptides decreases the antibody affinity in gluten analysis assays. Journal of Cereal Science, 2011, 53, 335-339.	1.8	34
71	Magneto immunosensor for gliadin detection in gluten-free foodstuff: Towards food safety for celiac patients. Biosensors and Bioelectronics, 2011, 27, 46-52.	5.3	47
72	A highly sensitive real-time PCR system for quantification of wheat contamination in gluten-free food for celiac patients. Food Chemistry, 2011, 128, 795-801.	4.2	59
73	Double antibody sandwich enzyme linked immunoassay and rapid Immunoswab assay for detection of gliadin in food. Food and Agricultural Immunology, 2012, 23, 169-181.	0.7	6
74	Prolamin Levels through Brewing and the Impact of Prolyl Endoproteinase. Journal of the American Society of Brewing Chemists, 2012, 70, 35-38.	0.8	39
75	QUANTITATIVE DOUBLE ANTIBODY SANDWICH ELISA FOR THE DETERMINATION OF GLIADIN. Journal of Immunoassay and Immunochemistry, 2012, 33, 339-351.	0.5	11

#	Article	IF	CITATIONS
76	The immunopathogenesis of celiac disease reveals possible therapies beyond the gluten-free diet. Seminars in Immunopathology, 2012, 34, 581-600.	2.8	27
77	Comprehensive analysis of gluten in processed foods using a new extraction method and a competitive ELISA based on the R5 antibody. Talanta, 2012, 91, 33-40.	2.9	88
78	Detection of Gliadin in Foods Using a Quartz Crystal Microbalance Biosensor That Incorporates Gold Nanoparticles. Journal of Agricultural and Food Chemistry, 2012, 60, 6483-6492.	2.4	68
79	Selection of a monoclonal antibody for detection of gliadins and glutenins: A step towards reliable gluten quantification. Journal of Cereal Science, 2012, 56, 760-763.	1.8	9
80	What is in a Beer? Proteomic Characterization and Relative Quantification of Hordein (Gluten) in Beer. Journal of Proteome Research, 2012, 11, 386-396.	1.8	123
81	The S-poor prolamins of wheat, barley and rye: Revisited. Journal of Cereal Science, 2012, 55, 79-99.	1.8	71
82	Beer proteomics analysis for beer quality control and malting barley breeding. Food Research International, 2013, 54, 1013-1020.	2.9	34
83	Celiac Disease in Infants: Prevention and Dietary Treatment. , 2013, , 145-151.		0
84	The Gluten-Free Diet: Testing Alternative Cereals Tolerated by Celiac Patients. Nutrients, 2013, 5, 4250-4268.	1.7	79
85	Sensitive detection and quantification of gliadin contamination in gluten-free food with immunomagnetic beads based liposomal fluorescence immunoassay. Analytica Chimica Acta, 2013, 787, 246-253.	2.6	44
86	Sorghum, a Healthy and Gluten-free Food for Celiac Patients As Demonstrated by Genome, Biochemical, and Immunochemical Analyses. Journal of Agricultural and Food Chemistry, 2013, 61, 2565-2571.	2.4	97
87	Avenin diversity analysis of the genus Avena (oat). Relevance for people with celiac disease. Journal of Cereal Science, 2013, 58, 170-177.	1.8	54
88	Accuracy of ELISA Detection Methods for Gluten and Reference Materials: A Realistic Assessment. Journal of Agricultural and Food Chemistry, 2013, 61, 5681-5688.	2.4	114
89	Development of an Incurred Cornbread Model for Gluten Detection by Immunoassays. Journal of Agricultural and Food Chemistry, 2013, 61, 12146-12154.	2.4	27
90	Gluten contamination of naturally gluten-free flours and starches used by Canadians with celiac disease. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 2017-2021.	1.1	36
91	Might gluten traces in wheat substitutes pose a risk in patients with celiac disease? A population-based probabilistic approach to risk estimation. American Journal of Clinical Nutrition, 2013, 97, 109-116.	2.2	53
92	Kinetics of the histological, serological and symptomatic responses to gluten challenge in adults with coeliac disease. Gut, 2013, 62, 996-1004.	6.1	205
93	Literature searches and reviews related to the prevalence of food allergy in Europe. EFSA Supporting Publications, 2013, 10, 506E.	0.3	1

#	Article	IF	CITATIONS
97	Degradation of Gluten in Wheat Bran and Bread Drink by Means of a Proline-Specific Peptidase. Journal of Nutrition & Food Sciences, 2014, 04, .	1.0	23
98	Gluten Contamination in Foods Labeled as "Gluten Free―in the United States. Journal of Food Protection, 2014, 77, 1830-1834.	0.8	51
99	Study of a New Gliadin Capture Agent and Development of a Protein Microarray as a New Approach for Gliadin Detection. Journal of Proteomics and Bioinformatics, 2014, 07, .	0.4	4
100	Diversity of oat varieties in eliciting the early inflammatory events in celiac disease. European Journal of Nutrition, 2014, 53, 1177-1186.	1.8	42
101	Cereals for developing gluten-free products and analytical tools for gluten detection. Journal of Cereal Science, 2014, 59, 354-364.	1.8	117
102	Using mass spectrometry to detect hydrolysed gluten in beer that is responsible for false negatives by ELISA. Journal of Chromatography A, 2014, 1370, 105-114.	1.8	71
103	Effect of Rothia mucilaginosa enzymes on gliadin (gluten) structure, deamidation, and immunogenic epitopes relevant to celiac disease. American Journal of Physiology - Renal Physiology, 2014, 307, G769-G776.	1.6	21
104	Gluten-Free Products. , 2014, , 173-223.		3
105	Aptamer Binding to Celiac Disease-Triggering Hydrophobic Proteins: A Sensitive Gluten Detection Approach. Analytical Chemistry, 2014, 86, 2733-2739.	3.2	58
106	Fining white wine with plant proteins: effects of fining on proanthocyanidins and aroma components. European Food Research and Technology, 2014, 238, 265-274.	1.6	29
107	Characterization of Grain-Specific Peptide Markers for the Detection of Gluten by Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2014, 62, 5835-5844.	2.4	81
108	Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA Journal, 2014, 12, 3894.	0.9	122
109	Celiac disease-specific prolamin peptide content of wheat relatives and wild species determined by ELISA assays and bioinformatics analyses. Cereal Research Communications, 2015, 43, 133-143.	0.8	10
110	Characterization of Antibodies and Development of an Indirect Competitive Immunoassay for Detection of Deamidated Gluten. Journal of Agricultural and Food Chemistry, 2015, 63, 5403-5409.	2.4	20
111	Label free targeted detection and quantification of celiac disease immunogenic epitopes by mass spectrometry. Journal of Chromatography A, 2015, 1391, 60-71.	1.8	48
112	Despite sequence homologies to gluten, salivary proline-rich proteins do not elicit immune responses central to the pathogenesis of celiac disease. American Journal of Physiology - Renal Physiology, 2015, 309, G910-G917.	1.6	4
113	The glutenâ€free diet and its current application in coeliac disease and dermatitis herpetiformis. United European Gastroenterology Journal, 2015, 3, 121-135.	1.6	91
114	Degradation of gluten in rye sourdough products by means of a proline-specific peptidase. European Food Research and Technology, 2015, 240, 517-524.	1.6	24

#	Article	IF	CITATIONS
115	Sensitive gluten determination in gluten-free foods by an electrochemical aptamer-based assay. Analytical and Bioanalytical Chemistry, 2015, 407, 6021-6029.	1.9	42
116	Detection and control of gluten as a food allergen. , 2015, , 367-377.		0
117	Detection and Quantification of Gluten during the Brewing and Fermentation of Beer Using Antibody-Based Technologies. Journal of Food Protection, 2015, 78, 1167-1177.	0.8	39
118	Allergen relative abundance in several wheat varieties as revealed via a targeted quantitative approach using MS. Proteomics, 2015, 15, 1736-1745.	1.3	25
119	Multiplex liquid chromatography-tandem mass spectrometry for the detection of wheat, oat, barley and rye prolamins towards the assessment of gluten-free product safety. Analytica Chimica Acta, 2015, 895, 62-70.	2.6	50
120	Gluten detection in foods available in the United States – A market survey. Food Chemistry, 2015, 169, 120-126.	4.2	53
121	The Effects of Processing on Gluten from Wheat, Rye, and Barley, and its Detection in Foods. , 2015, , 303-308.		2
122	Genetic Diversity Among Buckwheat Samples in Regards to Gluten-Free Diets and Coeliac Disease. , 2016, , 203-217.		0
123	Production of wheat gluten hydrolysates with reduced antigenicity employing enzymatic hydrolysis combined with downstream unit operations. Journal of the Science of Food and Agriculture, 2016, 96, 3358-3364.	1.7	17
124	Gluten weight in ancient and modern wheat and the reactivity ofÂepitopes towards R5 and G12 monoclonal antibodies. International Journal of Food Science and Technology, 2016, 51, 1801-1810.	1.3	20
126	Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease. American Journal of Physiology - Renal Physiology, 2016, 311, G571-G580.	1.6	25
127	Competitive immunosensor based on gliadin immobilization on disposable carbon-nanogold screen-printed electrodes for rapid determination of celiotoxic prolamins. Analytical and Bioanalytical Chemistry, 2016, 408, 7289-7298.	1.9	26
128	Defining the wheat gluten peptide fingerprint via a discovery and targeted proteomics approach. Journal of Proteomics, 2016, 147, 156-168.	1.2	68
129	Label-free SPR detection of gluten peptides in urine for non-invasive celiac disease follow-up. Biosensors and Bioelectronics, 2016, 79, 158-164.	5.3	62
130	Changes in wheat kernel proteins induced by microwave treatment. Food Chemistry, 2016, 197, 634-640.	4.2	61
131	Recent developments in analytical methods for tracing gluten. Journal of Cereal Science, 2016, 67, 112-122.	1.8	89
132	Development of a barcode-style lateral flow immunoassay for the rapid semi-quantification of gliadin in foods. Food Chemistry, 2016, 192, 934-942.	4.2	30
133	Immunochemical Detection Methods for Gluten in Food Products: Where Do We Go from Here?. Critical Reviews in Food Science and Nutrition, 2016, 56, 2455-2466.	5.4	24

#	Article	IF	CITATIONS
134	Microwave-based treatments of wheat kernels do not abolish gluten epitopes implicated in celiac disease. Food and Chemical Toxicology, 2017, 101, 105-113.	1.8	23
135	Label-Free Detection of Gliadin in Food by Quartz Crystal Microbalance-Based Immunosensor. Journal of Agricultural and Food Chemistry, 2017, 65, 1281-1289.	2.4	23
136	Label-Free Proteomic Analysis of Wheat Gluten Proteins and Their Immunoreactivity to ELISA Antibodies. Cereal Chemistry, 2017, 94, 820-826.	1.1	25
137	A new label-free impedimetric aptasensor for gluten detection. Food Control, 2017, 79, 200-206.	2.8	46
139	Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion. Applied and Environmental Microbiology, 2017, 83, .	1.4	46
140	Cluten Content Change Over the Two Last Decades. SpringerBriefs in Food, Health and Nutrition, 2017, , 47-57.	0.5	1
142	Fundamental study on reactivities of gluten protein types from wheat, rye and barley with five sandwich ELISA test kits. Food Chemistry, 2017, 237, 320-330.	4.2	42
143	Evaluation of gluten in gluten-free-labeled foods and assessment of exposure level to gluten among celiac patients in Lebanon. International Journal of Food Sciences and Nutrition, 2017, 68, 881-886.	1.3	14
145	Disposable electrochemical aptasensor for gluten determination in food. Sensors and Actuators B: Chemical, 2017, 241, 522-527.	4.0	29
146	Impact of gluten-friendlyâ,,¢ technology on wheat kernel endosperm and gluten protein structure in seeds by light and electron microscopy. Food Chemistry, 2017, 221, 1258-1268.	4.2	16
147	Cluten-containing grains skew gluten assessment in oats due to sample grind non-homogeneity. Food Chemistry, 2017, 216, 170-175.	4.2	18
148	Sensory and antigenic properties of enzymatic wheat gluten hydrolysates produced in an enzyme membrane reactor in comparison with batch. European Food Research and Technology, 2017, 243, 807-816.	1.6	5
149	Confirmation of gluten-free status of wheatgrass (<i>Triticum aestivum</i>). Quality Assurance and Safety of Crops and Foods, 2017, 9, 123-128.	1.8	4
150	Development of TaqMan probes targeting the four major celiac disease epitopes found in α-gliadin sequences of spelt (Triticum aestivum ssp. spelta) and bread wheat (Triticum aestivum ssp. aestivum). Plant Methods, 2017, 13, 72.	1.9	8
151	Measurement of Gluten in Food Products: Proficiencyâ€Testing Rounds as a Measure of Precision and Applicability. , 0, , .		0
152	Comprehensive Proteomic Profiling of Wheat Gluten Using a Combination of Data-Independent and Data-Dependent Acquisition. Frontiers in Plant Science, 2016, 7, 2020.	1.7	54
153	Evolution of Gluten Content in Cereal-Based Gluten-Free Products: An Overview from 1998 to 2016. Nutrients, 2017, 9, 21.	1.7	29
154	Gluten Contamination in Naturally or Labeled Gluten-Free Products Marketed in Italy. Nutrients, 2017, 9, 115.	1.7	54

#	Article	IF	CITATIONS
155	Ancient Wheats and Pseudocereals for Possible use in Cereal-Grain Dietary Intolerances. , 2017, , 353-389.		13
157	Variation in protein composition among wheat (Triticum aestivum L.) cultivars to identify cultivars suitable as reference material for wheat gluten analysis. Food Chemistry, 2018, 267, 387-394.	4.2	62
158	Lowâ€gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 2018, 16, 902-910.	4.1	455
159	Gluten Immunogenic Peptides as Standard for the Evaluation of Potential Harmful Prolamin Content in Food and Human Specimen. Nutrients, 2018, 10, 1927.	1.7	53
160	New Protocol for Production of Reduced-Gluten Wheat Bread and Pasta and Clinical Effect in Patients with Irritable Bowel Syndrome: A randomised, Double-Blind, Cross-Over Study. Nutrients, 2018, 10, 1873.	1.7	16
161	Standalone Point-of-Use Device for Gluten Detection in Food: POCT Application Experiment in SMARTER-SI European Project. Proceedings (mdpi), 2017, 2, .	0.2	0
162	Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins. PLoS ONE, 2018, 13, e0192804.	1.1	52
163	A sensitive and specific real-time PCR targeting DNA from wheat, barley and rye to track gluten contamination in marketed foods. LWT - Food Science and Technology, 2019, 114, 108378.	2.5	18
164	Stability of Proteins During Processing and Storage. , 2019, , 295-330.		5
165	Gluten Free Wheat: Are We There?. Nutrients, 2019, 11, 487.	1.7	52
166	An integrated, accurate, rapid, and economical handheld consumer gluten detector. Food Chemistry, 2019, 275, 446-456.	4.2	35
1/7			
167	Recent advances in biosensors for diagnosis of celiac disease: A review. Biotechnology and Bioengineering, 2019, 116, 444-451.	1.7	10
167		1.7 2.9	10 12
	Bioengineering, 2019, 116, 444-451. The hidden â€~plant side' of insect novel foods: A DNA-based assessment. Food Research International,		
168	 Bioengineering, 2019, 116, 444-451. The hidden †plant side' of insect novel foods: A DNA-based assessment. Food Research International, 2020, 128, 108751. Characterisation and comparison of selected wheat (Triticum aestivum L.) cultivars and their blends 	2.9	12
168 169	 Bioengineering, 2019, 116, 444-451. The hidden â€~plant side' of insect novel foods: A DNA-based assessment. Food Research International, 2020, 128, 108751. Characterisation and comparison of selected wheat (Triticum aestivum L.) cultivars and their blends to develop a gluten reference material. Food Chemistry, 2020, 313, 126049. Are current analytical methods suitable to verify VITAL® 2.0/3.0 allergen reference doses for EU 	2.9 4.2	12 13
168 169 170	 Bioengineering, 2019, 116, 444-451. The hidden †plant side†of insect novel foods: A DNA-based assessment. Food Research International, 2020, 128, 108751. Characterisation and comparison of selected wheat (Triticum aestivum L.) cultivars and their blends to develop a gluten reference material. Food Chemistry, 2020, 313, 126049. Are current analytical methods suitable to verify VITAL® 2.0/3.0 allergen reference doses for EU allergens in foods?. Food and Chemical Toxicology, 2020, 145, 111709. Truncated aptamers as selective receptors in a gluten sensor supporting direct measurement in a deep 	2.9 4.2 1.8	12 13 83

	CITATION RE	PORT	
#	Article	IF	CITATIONS
174	Exploring genetic variability for developing celiac disease safe wheat. , 2020, , 183-202.		0
175	Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity. Frontiers in Nutrition, 2020, 7, 29.	1.6	34
176	Old and modern wheat (Triticum aestivum L.) cultivars and their potential to elicit celiac disease. Food Chemistry, 2021, 339, 127952.	4.2	17
177	Quantification of Accidental Cluten Contamination in the Diet of Children with Treated Celiac Disease. Nutrients, 2021, 13, 190.	1.7	6
178	Engineering wheat for gluten safe. , 2021, , 177-197.		0
179	Rapid, Effective, and Versatile Extraction of Gluten in Food with Application on Different Immunological Methods. Foods, 2021, 10, 652.	1.9	8
180	New transcriptomic insights in two RNAi wheat lines with the gliadins strongly down-regulated by two endosperm specific promoters. Crop Journal, 2022, 10, 194-203.	2.3	5
181	Advances in quantification and analysis of the celiacâ€related immunogenic potential of gluten. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4278-4298.	5.9	6
182	Immunoanalytic investigation of grain proteins antigenic for celiac disease patients in an einkorn collection. Food Chemistry, 2021, 371, 131148.	4.2	0
183	Determination of gluten immunogenic peptides for the management of the treatment adherence of celiac disease: A systematic review. World Journal of Gastroenterology, 2021, 27, 6306-6321.	1.4	25
184	Fluorescence-Based Biosensors. Methods in Molecular Biology, 2012, 875, 193-216.	0.4	60
186	Chapter 13 Medical Applications of Gluten-Composition Knowledge. , 2006, , 387-409.		9
187	DETECTION OF GLUTEN AND RELATED PROTEINS IN FOODS AND BEVERAGES, AND SAFETY ISSUES RELATED TO GLUTEN-FREE FOODS AND BEVERAGESâ€"SPECIFIC DETECTION WITH THE R5 ANTIBODY IN A READY-TO-USE TEST KIT FOR INDUSTRY. , 2009, , 41-52.		2
188	OATS—AN OVERVIEW FROM A CELIAC DISEASE POINT OF VIEW. , 2009, , 69-81.		3
189	Approaches to the Detection of Food Allergens, from a Food Science Perspective. , 0, , 187-218.		1
190	Critical Evaluation of Uncertainties of Gluten Testing: Issues and Solutions for Food Allergen Detection. , 0, , 286-300.		2
191	Detecting wheat gluten in food. , 0, , 244-272.		1
192	Improved extraction of prolamins for gluten detection in processed foods. Agricultural and Food Science, 2011, 20, 206.	0.3	12

#	Article	IF	CITATIONS
193	Validation of a qualitative R5 dip-stick for gluten detection with a new mathematical-statistical approach. Quality Assurance and Safety of Crops and Foods, 2016, 8, 309-318.	1.8	2
194	Analytical Tools for Gluten Detection. Policies and Regulation. , 2015, , 527-564.		12
195	Safety Food in Celiac Disease Patients: A Systematic Review. Food and Nutrition Sciences (Print), 2013, 04, 55-74.	0.2	6
196	Einführung in moderne analytische Verfahren mit ausgewälten Beispielen. , 2006, , 241-275.		Ο
197	Analytik von Lebensmittelallergenen. , 2010, , 169-192.		0
198	Assessment of the gluten content in gluten-free labeled foods: comparison of two gluten detection methods. SeguranA§a Alimentar E Nutricional, 2015, 17, 70.	0.1	1
199	Avaliação do atendimento Ãs Boas Práticas de Fabricação relacionada à possÃvel contaminação acidental por glúten em uma Unidade de Fabricação de Produtos Panificados. Segurança Alimentar E Nutricional, 2015, 20, 96.	0.1	0
200	Identification of key effects causing weak performance of allergen analysis in processed food matrices. Acta Alimentaria, 2016, 45, 45-53.	0.3	0
201	From Polyclonal Sera to Recombinant Antibodies: A Review of Immunological Detection of Gluten in Foodstuff. Foods, 2021, 10, 66.	1.9	11
202	Gluten contamination in labelled gluten-free, naturally gluten-free and meals in food services in low-, middle- and high-income countries: a systematic review and meta-analysis. British Journal of Nutrition, 2022, 127, 1528-1542.	1.2	12
204	Chemical Composition, Fatty Acid and Mineral Content of Food-Grade White, Red and Black Sorghum Varieties Grown in the Mediterranean Environment. Foods, 2022, 11, 436.	1.9	17
205	Quantification of Barley Contaminants in Gluten-Free Oats by Four Gluten ELISA Kits. Journal of Agricultural and Food Chemistry, 2022, 70, 2366-2373.	2.4	5
206	Challenges in Gluten Analysis: A Comparison of Four Commercial Sandwich ELISA Kits. Foods, 2022, 11, 706.	1.9	8
207	The Effect of Abiotic Stresses on the Protein Composition of Four Hungarian Wheat Varieties. Plants, 2022, 11, 1.	1.6	23
208	Versatile and automatized microfluidic platform for quantitative magnetic beads based protocol: application to gluten detection. Lab on A Chip, 0, , .	3.1	3
209	Unprocessed wheat γâ€gliadin reduces gluten accumulation associated with the endoplasmic reticulum stress and elevated cell death. New Phytologist, 2022, 236, 146-164.	3.5	5
210	Comparative characterization of the gluten and fructan contents of breads from industrial and artisan bakeries: a study of food products in the Spanish market. Food and Nutrition Research, 0, 66, .	1.2	1
211	A chromatographic and immunoprofiling approach to optimising workflows for extraction of gluten proteins from flour. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2023, 1215, 123554.	1.2	1

			_
#	Article	IF	CITATIONS
212	An elite <i>γâ€gliadin</i> allele improves endâ€use quality in wheat. New Phytologist, 2023, 239, 87-101.	3.5	9
213	Lossy mode resonance-based optical immunosensor towards detecting gliadin in aqueous solutions. Food Control, 2023, 147, 109624.	2.8	4
215	Regulation and Labelling. Methods of Analysis for the Determination of Gluten in Foods. , 2023, , 361-388.		0
216	Isolation of gluten from wheat flour and its structural analysis. , 2023, , 275-292.		0
225	Normative framework and public health interventions for the protection of celiac disease patients. , 2024, , 283-291.		0